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Abstract—Network modeling of high-dimensional time series
data is a key learning task due to its widespread use in a num-
ber of application areas, including macroeconomics, finance, and
neuroscience. While the problem of sparse modeling based on vec-
tor autoregressive models (VAR) has been investigated in depth in
the literature, more complex network structures that involve low
rank and group sparse components have received considerably
less attention, despite their presence in data. Failure to account for
low-rank structures results in spurious connectivity among the ob-
served time series, which may lead practitioners to draw incorrect
conclusions about pertinent scientific or policy questions. In order
to accurately estimate a network of Granger causal interactions af-
ter accounting for latent effects, we introduce a novel approach for
estimating low-rank and structured sparse high-dimensional VAR
models. We introduce a regularized framework involving a combi-
nation of nuclear norm and lasso (or group lasso) penalties. Sub-
sequently, we establish nonasymptotic probabilistic upper bounds
on the estimation error rates of the low-rank and the structured
sparse components. We also introduce a fast estimation algorithm
and finally demonstrate the performance of theproposed modeling
framework over standard sparse VAR estimates through numeri-
cal experiments on synthetic and real data.

Index Terms—Lasso, group lasso, nuclear norm, low rank,
vector autoregression, probabilistic bounds, identifiability, fast
algorithm.

I. INTRODUCTION

T
HE problem of learning the network structure among a

large set of time series arises in many signal process-

ing, economic, finance and biomedical applications. Exam-

ples include processing signals obtained from radars [1], [2],

macroeconomic policy making and forecasting [3], assessing

connectivity among financial firms [4], reconstructing gene reg-
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ulatory interactions from time-course genomic data [5] and

understanding connectivity between brain regions from fMRI

measurements [6]. Vector Autoregressive (VAR) models pro-

vide a principled framework for these tasks.

Formally, a VAR model for p-dimensional time series Xt is

defined in its simplest possible form involving a single time-lag

as

X t = B′X t−1 + εt , t = 1, . . . , T, (1)

where B is a p × p transition matrix specifying the lead-lag

cross dependencies among the p time series and {εt} is a zero

mean error process. VAR models for small number of time series

(low-dimensional) have been thoroughly studied in the literature

[7]. However, the above mentioned applications, where dozens

to hundreds of time series are involved, created the need for the

study of VAR models under high dimensional scaling and the

assumption that their interactions are sparse to compensate for

the possible lack of adequate number of time points (samples;

see [8] and references therein). There has been a growing body

of literature on sparse estimation of large scale VAR models,

including alternative penalties beyond the popular �1 penalty

(lasso), such as the Berhu regularization introduced in [9], group

lasso type penalties employed in [21], [22], as well as non-

convex penalties akin to a square-root lasso investigated in [11].

Further, [10] examines estimation of the transition matrix and

the inverse covariance matrix of the error process through a

joint sparse penalty. Note that the problem of sparse estimation

of these two model parameters separately from a least squares

and maximum likelihood viewpoints is addressed in [3], [8],

respectively, where in addition probabilistic finite sample error

bounds for the obtained estimates are obtained.

Nevertheless, there are occasions where the sparsity assump-

tion may not be sufficient. For example, during financial crisis

periods, returns on assets move together in a more concerted

manner [4], [12], while transcription factors regulate a large

number of genes that may lead to hub-node network structures

[13]. Similarly, in brain connectivity networks, particular tasks

activate a number of regions that cross talk in a collaborative

manner [14]. Hence, it is of interest to study VAR models under

high dimensional scaling where the transition matrix governing

the temporal dynamics exhibits a more complex structure; e.g.

it is low rank and/or (group) sparse.

In a low-dimensional regime, where the number of time points

scales to infinity, but the number of time series under study

remains fixed, [15] examined asymptotic properties of VAR

models, where the parameters exhibit reduced rank structure and
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also discussed connections with canonical correlation analysis

of such models presented in [16]. Specifically, the transition

matrix B in (2) can be written as the product of two rank-k
matrices Φ,Ψ, i.e. B = ΦΨ′, so that in the resulting model

specification of the original p time series is expressed as linear

combinations Zt = ΨX t of the original ones, and Φ specifies

the dependence between X t and Zt ; namely X t = Φ′Zt−1 +
εt . Hence, to obtain Φ and Ψ, [15] suggests to estimate the

parameters of the original model in (1) under the constraint that

B = ΦΨ and that rank(B) = k. Other works include low rank

approximations of Hankel matrices that represent the input-

output structure of a linear time invariant systems and were

studied in [17], [18]. Finally, a brief mention to the possibility

that the VAR transition matrix may exhibit such a structure

appeared as a motivating example in [19].

On the other hand, there is a mature literature on imposing

low rank plus sparse, or pure group sparse structure for many

learning tasks for independent and identically distributed (i.i.d.)

data. Examples include group sparsity in regression and graph-

ical modeling [20], low rank and sparse matrix approximations

for dimension reduction [18], etc. However, as shown in [8], the

presence of temporal dependence across observations induces

intricate dependencies between both rows and columns of the

design matrix of the corresponding least squares estimation

problem, as well as between the design matrix and the error

term, that require careful handling to establish consistency

properties for the model parameters under sparsity and high

dimensional scaling. These issues are further compounded

when more complex regularizing norms are involved, as

discussed in [21]. In this paper, the authors model grouping

structures within each column of B, but do not consider a

low-rank component. In contrast, we focus on groups poten-

tially spanning across different columns and allow a low-rank

component in B.

More recently, [37] and [38] extended the framework of [18]

beyond decomposing an observable matrix, to the problem of

Gaussian process identification, by assuming a low-rank plus

sparse structure on the inverse spectral density and the transfer

function of a general VAR(d) system, respectively. Our work

is complementary to these recent developments. We directly

model the transition matrix of a VAR(1) process that enables us

to identify a directed network of (group) sparse Granger causal

relationships that are of interest in a number of applications;

e.g. in financial economics where firms with higher out-degree

are of particular interest in measuring systemic risk [4], [12].

Further, our approach explicitly addresses identifiability issues

for extracting the respective low-rank and sparse components,

which in turn are leveraged to obtain probabilistic error bounds

that characterize the quality of their estimates. The latter provide

insights to the practitioner on sample size requirements and

tuning parameter selection for real data applications. Finally,

note that our approach to the issue of identifiability builds on

[19], wherein we characterize the degree of unidentifiability

which guides in an explicit manner the selection of the tuning

parameters used in the proposed optimization algorithm.

Further, to estimate the posited model in (1) with B be-

ing both low-rank and structured sparse (henceforth indicating

that it could be either pure sparse or group sparse or both),

we also introduce a fast accelerated proximal gradient algo-

rithm, inspired by [30], [31], for the corresponding optimization

problems. The key idea is that instead of searching for the lo-

cal Lipschitz constant of the gradient of the smooth compo-

nent of the objective function, the proposed algorithm utilizes

a safeguarded Barzilai-Borwein (BB) initial stepsize [25] and

employs relaxed line search conditions to achieve better per-

formance in practice. The latter enables the selection of more

“aggressive” stepsizes, while preserving the accelerated con-

vergence rate of O( 1
k 2 ), where k denotes the number of iter-

ations required until convergence. Finally, the performance of

the model parameters under different structures together with

the associated estimation procedure based on the accelerated

proximal gradient algorithm are calibrated on synthetic data,

and illustrated on three data sets examining realized volatilities

of stock prices of 75 large financial firms before, during and

after the 2007–09 US financial crisis.

Notation: Throughout the paper, we employ the following

notation: ‖.‖, ‖.‖2 and ‖.‖F denote the �2-norm of a vector, the

spectral norm and the Frobenius norm of a matrix, respectively.

For a p × p matrix B, the symbol ‖B‖∗ is used to denote the nu-

clear norm, i.e.
∑p

j=1 σj (B), the sum of the singular values of

a matrix, while B† denotes the conjugate transpose of a matrix

B. For any matrix B, we use ‖B‖0 to denote card(vec(B)),
‖B‖1 for ‖vec(B)‖1 and ‖B‖max to denote ‖vec(B)‖∞. Fur-

ther, if {G1 , G2 , . . . , GK } denote a partition of {1, 2, . . . , p2}
into K non-overlapping groups, then we use ‖B‖2,1 to denote
∑K

k=1 ‖(B)Gk
‖F , ‖B‖2,max for maxk=1,2,...K ‖(B)Gk

‖F ,

while ‖B‖2,0 denotes the number of nonzero groups in B.

Here, with a little abuse of notation, we use BGk
to denote

vec(B)Gk
. In addition, Λmax(.), Λmin(.) denote the maximum

and minimum eigenvalues of a symmetric or Hermitian ma-

trix. For any integer p ≥ 1, we use S
p−1 to denote the unit ball

{v ∈ R
p : ‖v‖ = 1}. We also use {e1 , e2 , . . .} generically to

denote unit vectors in R
p , when p is clear from the context. Fi-

nally, for positive real numbers A,B, we write B � A if there

exists an absolute positive constant c, independent of the model

parameters, such that B ≥ cA.

II. MODEL FORMULATION AND ESTIMATION PROCEDURE

Consider a VAR(1) model where the transition matrix B is

low-rank plus structured sparse given by

X t = B
′
X t−1 + εt , εt i.i.d.∼ N(0,Σε), (2)

B = L∗ + R∗, rank(L∗) = r, (3)

where L∗ corresponds to the low rank component and R∗ rep-

resents either a sparse S∗, or group-sparse component G∗. It

is further assumed that the number of non-zero elements in

the sparse case is ‖S∗‖0 = s, while in the group sparse case the

number of non-zero groups is ‖G∗‖2,0 = g, with r 	 p, s 	 p2

and g 	 p2 . The matrix L∗ captures persistence structure across

all p time series and enables the model to be applicable in set-

tings where there are strong cross-autocorrelations, a feature

that the standard sparse VAR model is not equipped to han-

dle. The sparse or group sparse component captures additional

cross-sectional autocorrelation structure among the time series.
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Finally, it is assumed that the error terms are serially uncorre-

lated. Our objective is to estimate L∗ and R∗ accurately based

on a relatively small number of samples N 	 p2 .

Stability: In order to ensure consistent estimation, we assume

that the posited VAR model in (2) is stable; i.e. its characteristic

polynomial B(z) := Ip − B
′
z satisfies det(B(z)) 
= 0 on the

unit circle of the complex plane {z ∈ C : |z| = 1}. This is a

common assumption in the literature of multivariate time series

[7], required for consistency and asymptotic normality of low-

dimensional VAR models. This assumption also ensures that the

spectral density of the VAR model

fX (θ) =
1

2π

(
B−1
(
eiθ
))

Σε

(
B−1
(
eiθ
))†

, θ ∈ [−π, π], (4)

is bounded above in spectral norm.

It was shown in [8] that this condition is sufficient to establish

consistency of regularized VAR estimates of a sparse transition

matrix. Further, the following quantities play a central role in

the error bounds of the regularized estimates:

M(fX ) = sup
θ∈ [−π ,π ]

Λmax(fX (θ)),

m(fX ) = sup
θ∈ [−π ,π ]

Λmin(fX (θ)),

µmax(B) = max
|z |=1

Λmax

(
B†(z)B(z)

)
,

µmin(B) = min
|z |=1

Λmin

(
B†(z)B(z)

)
. (5)

As shown in [8], M(fX ) and m(fX ) together capture the

narrowness of the spectral density of a time series. Processes

with stronger temporal and cross-sectional dependence have

narrower spectra that in turn lead to slower convergence rates

for the regularized estimates. For VAR models, M(fX ) and

m(fX ) are related to µmax(B) and µmin(B) as follows:

m(fX ) ≥ 1

2π

Λmin(Σε)

µmax(B)
, M(fX ) ≤ 1

2π

Λmax(Σε)

µmin(B)
. (6)

Proposition 2.2 in [8] provides a lower bound on µmin(B).
For the special structure of the models considered here, we can

get an improved upper bound on µmax(B), as shown in the

following lemma:

Lemma II.1: For a stable VAR(1) model of the class (2), we

have

µmax(B) ≤ [1 + l + (vin + vout)/2]2 (7)

where l is the largest singular value of L∗, vin = max1≤j≤p∑p
i=1 |R∗

ij | and vout = max1≤i≤p

∑p
j=1 |R∗

ij |.
Proof: ‖B(z)‖=‖I − (L∗ + R∗)z‖≤‖I‖ + ‖L∗‖ + ‖R∗‖

for any z ∈ C with |z| = 1. The result follows from the fact

that µmax(B) = max|z |=1 ‖B(z)‖2 . �

A. Estimation Procedure

The estimation of VAR model parameters is based on the

following regression formulation (see [7]). Given T + 1 con-

secutive observations {X0 , . . . , XT } from the VAR model, we

work with the autoregressive design as follows:
⎡

⎢
⎣

(XT )′

...

(X1)′

⎤

⎥
⎦

︸ ︷︷ ︸

Y

=

⎡

⎢
⎣

(XT −1)′

...

(X0)

⎤

⎥
⎦

︸ ︷︷ ︸

X

B +

⎡

⎢
⎣

(εT )′

...

(ε1)′

⎤

⎥
⎦

︸ ︷︷ ︸

E

. (8)

This is a standard regression problem with N ≡ T samples

and q = p2 variables. Our goal is to estimate L∗, R∗ with high

accuracy when N 	 p2 .

There is an inherent identifiability issue in the estimation of

the components L∗ and R∗. Suppose the low-rank component

L∗ itself is s-sparse or g-group sparse and the sparse or group-

sparse component R∗ is of rank r. In that scenario, we can not

hope for any method to estimate L∗ and R∗ separately without

imposing any further constraints. So, a minimal condition for

low-rank and sparse (or group-sparse) recovery is that the low

rank component should not be too sparse and the sparse (group-

sparse) component should not be low-rank.

This issue has been rigorously addressed in the literature (e.g.

[18]) for independent and identically distributed data and re-

solved by imposing an incoherence condition. Such a condition

is sufficient for exact recovery of the low rank and the sparse

or group-sparse component by solving a convex program. In a

recent paper, [19] showed that in a noisy setting where exact

recovery of the two components is impossible, it is still pos-

sible to achieve good estimation error under a comparatively

mild assumption. In particular, they formulated a general mea-

sure for the radius of non-identifiability of the problem under

consideration and established a non-asymptotic upper bound

on the estimation error ‖L̂ − L∗‖2
F + ‖R̂ − R∗‖2

F , which de-

pends on this radius. The key idea is to allow for simultaneously

sparse (or group-sparse) and low-rank matrices in the model,

and control for the error introduced. We refer the readers to

the above paper for a more detailed discussion on this notion

of non-identifiability. In this work, the low-rank plus sparse

(group-sparse) decomposition problem under restrictions on the

radius of non-identifiability takes the form

(L̂, R̂) = argmin
L,R∈ Rp ×p

L∈ Ω

l(L,R),

l(L,R) :=
1

2
‖Y − X (L + R)‖2

F + λN ‖L‖∗ + µN ‖R‖
.
(9)

Here Ω = {L ∈ R
p×p : ‖L‖max ≤ α

p } (for sparse) or {L ∈
R

p×p : ‖L‖2,max ≤ β√
K
} (for group sparse), ‖ · ‖
 represents

‖ · ‖1 or ‖ · ‖2,1 depending on sparsity or group sparsity of R,

and λN and µN are non-negative tuning parameters controlling

the regularizations of low-rank and sparse/group-sparse parts.

The parameters α and β control the degree of non-identifiability

of the matrices allowed in the model class. For instance, larger

values of α provide sparser estimates of S and allow simulta-

neously sparse and low-rank components to be absorbed in L̂.

A smaller value of α, on the other hand, tends to produce a

matrix L with smaller rank and pushes the simultaneously low-

rank and sparse components to be absorbed in Ŝ. In practice,
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we recommend choosing α and β in the range [1, p] and [1,K],
respectively. The issue of selecting them robustly in practice is

discussed in Section V.

Remark: On certain occasions, it may be useful to have both

sparse and group-sparse components in the model, in addi-

tion to the low rank structure. We then have R∗ = S∗ + G∗

in (9) with ‖R‖
 = ‖S‖1 + νN

µN
‖G‖2,1 . However, to guarantee

the simultaneous identifiability of the sparse and group-sparse

components from the low-rank component, stronger conditions

need to be imposed on L; namely, Ω = {L ∈ R
p×p : ‖L‖max ≤

α
p & ‖L‖2,max ≤ β√

K
}.

Remark: Note that the estimated VAR model is not guaran-

teed to be stable, although the error bound analysis in Section III

ensures its stability with high probability, as long as the sample

size is large enough and the true generative model is stable. For

network reconstruction and visualization purposes, stability of

the estimated VAR is not strictly required. However, enforcing

stability is essential for forecasting purposes. When there is a

small deviation of the estimated model from stability (e.g the

spectral radius of the estimated B̂ is a little over 1), stability

can be enforced through a post-processing step of shrinking the

moduli of eigenvalues of B̂ below 1, while keeping its eigenvec-

tors unchanged. This type of projection argument is common in

covariance and correlation matrix estimation with missing data

for ensuring positive definiteness of the estimates [41]. How-

ever, in case of moderate to large deviation from stability, a

closer look at the individual time series is recommended to

re-assess the validity of the VAR formulation. For example, in

macroeconomics, it is customary to use suitable transformations

of the component time series to ensure that each of the individual

time series and the resulting VAR model is stable, as opposed

to modeling the individual and the joint time series (without

transformation) as unit root and co-integrating processes. For

instance, see [39], [40] for specific recommendations on useful

transformations for macroeconomic time series.

III. THEORETICAL PROPERTIES OF THE ESTIMATES

Next, we derive non-asymptotic probabilistic upper bounds

on the estimation errors of the low-rank plus structured sparse

components of the transition matrix B. The main result shows

that consistent estimation is possible with a sample size of the

order N � pM2(fX )/m
2(fX ), as long as the process {X t}

is stable and the radius of nondentifiability, as measured by

‖L∗‖max and/or ‖L∗‖2,max , is small in an appropriate sense

detailed next.

To establish the results, we first consider fixed realizations of

X and E and impose the following assumptions:

1) Restricted Strong Convexity (RSC): There exist ζ > 0 and

τN > 0 such that

1

2
‖X∆‖2

F ≥ ζ

2
‖∆‖2

F − τN Φ2(∆), for all ∆ ∈ �p×p

where Φ(∆) = infL+R=∆{λN ‖L‖∗ + µN ‖R‖
}, and

2) Deviation Conditions: There exists a deterministic function

φ(B,Σε) of the model parameters B and Σε such that

‖X ′E/N‖2 ≤ φ(B,Σε)
√

p/N, and

‖X ′E/N‖max ≤ φ(B,Σε)

√

2 log p

N
, and

‖X ′E/N‖2,max ≤ φ(B,Σε)

√
m log K√

N
,

where m is the size of the largest group max1≤k≤K card(Gk ).
Later on, we show that assumptions 1) and 2) are indeed sat-

isfied with high probability when the data are generated from

model (2).

Next, we present the non-asymptotic upper bounds on the

estimation errors of the low-rank plus structured sparse compo-

nents, respectively.

Proposition 1: (a) Suppose that the matrix L∗ has rank at

most r, while the matrix S∗ has at most s nonzero entries.

Then, for any λN ≥ 4‖X ′
E‖2 and µN ≥ 4‖X ′

E‖max + 4ζα
p ,

any solution (L̂, Ŝ) of (9) satisfies

‖L̂ − L∗‖2
F + ‖Ŝ − S∗‖2

F ≤ 4

ζ2

(
9

2
λ2

N r + 4µ2
N s

)

.

(b) Suppose that the matrix L∗ has rank at most r, while the

matrix G∗ has at most g non-zero groups. Then, for any λN ≥
4‖X ′

E‖2 and µN ≥ 4‖X ′
E‖2,max + 4ζβ√

K
, any solution (L̂, Ĝ)

of (9) satisfies

‖L̂ − L∗‖2
F + ‖Ĝ − G∗‖2

F ≤ 4

ζ2

(
9

2
λ2

N r + 4µ2
N g

)

Remark: It should be noted that if each group in G∗ has

only one element, then we have K = p2 and g non-zero entries.

For such cases, part (b) of Proposition 1 becomes identical to

part (a).

As a byproduct, we also give the estimation error bound of

the transition matrix which can be characterized by the sparse

plus group-sparse and the low-rank plus sparse and group-sparse

components, respectively, under the assumption that the strength

of the connections in the group-sparse component G is weak;

i.e. G ∈ Ψ with Ψ = {G ∈ R
p×p : ‖G‖max ≤ γ

p }, where γ ∈
[1, p].

Proposition 2: (a) Suppose that the matrix S∗ has at most

s nonzero entries, while the matrix G∗ has at most g non-

zero groups. Then, for any µN ≥ 4‖X ′
E‖max + 4ζ γ

p and νN ≥
4‖X ′

E‖2,max , any solution (Ŝ, Ĝ) of (9) satisfies

‖Ŝ + Ĝ − S∗ − G∗‖2
F ≤ 4

ζ2
(8µ2

N s + 9ν2
N g).

(b) Suppose that the matrix L has rank at most r, while the

matrix S has at most s nonzero entries and the matrix G has at

most g non-zero groups. Then, for any λN ≥ 4‖X ′
E‖2 , µN ≥

4‖X ′
E‖max + 4ζα

p + 4ζ γ
p , and νN ≥ 4‖X ′

E‖2,max + 4ζβ√
K

, any
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solution (L̂, Ŝ, Ĝ) of (9) satisfies

‖L̂ − L∗‖2
F + ‖Ŝ + Ĝ − S∗ − G∗‖2

F

≤ 4

ζ2

(

9λ2
N r +

25

2
µ2

N s + 8ν2
N g

)

.

See Appendix A for detailed proofs of Propositions 1 and 2.

Note that the objective in Proposition 2 is not the accurate

recovery of the S∗ and G∗ components separately. The latter

can be in principle achieved, if one sets γ to a very small value.

In order to obtain meaningful results in the context of our

problem, we need upper bounds on ‖X ′E‖2 , ‖X ′E‖max and

‖X ′E‖2,max and a lower bound on Λmin(X ′X ) that hold with

high probability. For the case of independent and identically

distributed data, such high-probability deviation bounds are es-

tablished in [19]. However, for time series data all entries of the

X matrix are dependent on each other, and hence it is a non-

trivial technical task to establish such deviation bounds. A key

technical contribution of this work is to derive these deviation

bounds, which lead to meaningful analysis for VAR models.

The results rely on the measure of stability defined in (5) and an

analysis of the joint spectrum of {X t−1} and {εt} undertaken

next.

Proposition 3: Consider a random realization of {X0 , . . . ,
XT } generated according to a stable VAR(1) process (2) and

form the autoregressive design (8). Define

φ(B,Σε) = Λmax(Σε)

[

1 +
1 + µmax(B)

µmin(B)

]

Then, there exist universal positive constants ci > 0 such that

1) for N � p,

P

[∥
∥
∥
∥

X ′E

N

∥
∥
∥
∥

2

> c0φ(B,Σε)

√
p

N

]

≤ c1 exp [−c2 log p]

and for any N � log p,

P

[∥
∥
∥
∥

X ′E

N

∥
∥
∥
∥

max

> c0φ(B,Σε)

√

log p

N

]

≤ c1 exp [−c2 log p]

and for N � m log p,

P

[∥
∥
∥
∥

X ′E

N

∥
∥
∥
∥

2,max

> c0φ(B,Σε)

√
m log p√

N

]

≤ c1 exp [−c2 log p]

2) for N � pM2(fX )/m
2(fX ),

P

[

Λmin

(X ′X
N

)

>
Λmin(Σε)

2µmax(B)

]

≤ c1 exp [−c2 log p]

See Appendix B for the detailed proof of Proposition 3.

Applying the above deviation bounds to the non-asymptotic

errors of Propositions 1, we obtain the final result for approxi-

mate recovery of the low-rank and the structured sparse compo-

nents using nuclear and �1/�2,1 norm relaxations, as we show

next.

Proposition 4: Consider the setup of Proposition 3. There

exist universal positive constants ci > 0 such that for N �

pM2(fX )/m
2(fX ), and ‖L∗‖max ≤ α/p, any solution (L̂, Ŝ)

of the program (9) satisfies, with probability at least 1 −
c1 exp[−c2 log p],

‖Ŝ − S∗‖2
F + ‖L̂ − L∗‖2

F ≤ c0φ
2(B,Σε)µ

2
max(B)

Λ2
min(Σε)

(rp + s log p)

N
+

32Λ2
min(Σε)

µ2
max(B)

sα2

p2
.

(10)

Remark: The error bound presented in the above proposition

consists of two key terms. The first term is the error of estima-

tion emanating from randomness in the data and limited sample

capacity. For a given model, this error goes to zero as the sam-

ple size increases. The second term represents the error due to

the unidentifiability of the problem. This is more fundamental

to the structure of the true low-rank and structured sparse com-

ponents, and depends only on the model parameters and does

not vanish, even with infinite sample size.

Further, the estimation error is a product of two terms - the

second term (rp + s log p)/N involves the dimensionality pa-

rameters and matches the parametric convergence rate for inde-

pendent observations. The effect of dependence in the data is

captured through the first part of the term:
c0 φ2 (B,Σ ε )µ2

m a x (B)
Λ2

m in (Σ ε )
.

As discussed in [8], this term is larger when the spectral density

is more spiky, indicating a stronger temporal and cross-sectional

dependence in the data.

Proposition 5: Consider the setup of Proposition 3. There

exist universal positive constants ci > 0 such that for N �

pM2(fX )/m
2(fX ), for any G0 with ‖L∗‖2,max ≤ β/

√
K, any

solution (L̂, Ĝ) of the program (9) satisfies, with probability at

least 1 − c1 exp[−c2 log p],

‖Ĝ − G∗‖2
F + ‖L̂ − L∗‖2

F ≤ c0φ
2(B,Σε)µ

2
max(B)

Λ2
min(Σε)

(rp + g(m log p))

N
+

32Λ2
min(Σε)

µ2
max(B)

gβ2

K
.

(11)

See Appendix B for detailed proofs of Propositions 4 and 5.

Remark: Based on Proposition 5, analogous conclusions can

be obtained to those for the low rank plus sparse case.

IV. COMPUTATIONAL ALGORITHM AND ITS

CONVERGENCE PROPERTIES

Next, we introduce a fast algorithm for estimating the transi-

tion matrix B from data. For ease of presentation and to convey

the key ideas clearly, we first present the algorithm for B rep-

resenting a single structure (e.g. only low rank, or only group

sparse, or only sparse), and in addition establish its convergence

properties. Subsequently, we modify the algorithm to handle the

composite structures considered in this paper and also establish

its convergence.

The fast network structure learning (FNSL) Algorithm 1 is

described next. A safeguarded BB initial value is selected, as
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Algorithm 1: Fast Network Structure Learning (FNSL)

method.

Choose C ≥ 0, σ > 1, η0,1 ≥ ηmin . Set α1 = 1, Bag
1 = B1 ,

and Q1 = 0.

For i = 1, 2, . . . , k, 1.

//Backtracking

1) Set ηi = αiη0,i , where η0,i is from (12). Solve αi

from 1
α i−1 η i−1

= 1−α i

α i η i
for i > 1. Compute

Bmd
i = (1 − αi)B

ag
i + αiBi ,

Bi+1 = arg min
B

{

〈∇l(Bmd
i ), B〉

+
ηi

2
‖B − Bi‖2

F + PB (B, λ)
}

,

Γi = ‖Bi+1 − Bi‖2 − αi

ηi
‖X (Bi+1 − Bi)‖2

F ,

Qi+1 = βiQi + Γi , where 0 ≤ βi ≤
(

1 − 1

i

)2

.

2) If Qi+1 < −C/i2 , then replace η0,i by ση0,i and

return to step 1.

//Updating iterates

3) Compute

Bag
i+1 = (1 − αi)B

ag
i + αiBi+1 .

EndFor

Output Bag
k+1 .

the initial choice of the nominal step ηi , i.e.

η0,i = max

{

ηmin ,
‖X (Bi − Bi−1)‖2

F

‖Bi − Bi−1‖2
F

}

for i > 1. (12)

For notational convenience, the penalty term for estimating the

transition matrix B is denoted by PB (B, λ), where λ > 0 de-

notes the tuning parameter. The specific Bi+1 update depends

on the employed penalty term; for an �1 penalty inducing spar-

sity, it corresponds to soft-thresholding [27], for a group sparse

penalty to group soft-thresholding [20], while for a nuclear norm

penalty to singular value thresholding [28].

It can also been seen from Algorithm 1, that for αi ≡ 1
for ∀ i ≥ 1, then Bmd

i = Bi and Bag
i+1 = Bi+1 , which leads

to the traditional gradient descent algorithm. Indeed, Algo-

rithm 1 is obtained by incorporating an efficient backtrack-

ing strategy into the accelerated multi-step scheme by [29],

[30]. It provides a different way to look for a larger step-

size by employing a relaxed line search condition, instead of

searching for the gradient Lipschitz constant of the data fi-

delity term. Steps 1 and 2 constitute the backtracking ones.

Both Bmd
i and Bag

i are linear combinations of all past iter-

ations of Bi , but based on different weights as can be seen

from their updates, i.e. Bag
i = (1 − αi−1)B

ag
i−1 + αi−1Bi and

Bmd
i = (1 − αi)B

ag
i + αiBi . Here ‘ag’ simply denotes ‘aggre-

gate’. The data fidelity term in the cost function is linearized at

Bmd
i . Since it is used after we have obtained Bag

i and before we

obtain Bi+1 , we use ‘md’ to denote a ‘middle’ update. Further,

Γi and Qi are the parameters most closely related to our line

search conditions. Intuitively, if we set Γi ≥ 0, we are certainly

able to guarantee the accelerated rate of convergence. However,

this will render the stepsize smaller. Fortunately, our conver-

gence analysis enables us to relax this condition by utilizing the

summing up procedure, with Qi corresponding to the part of the

sum of Γi . Thus, we can impose a relaxed termination condition

on Qi (see step 2 of Algorithm 1) without impacting the rate

of convergence while being able to obtain a more aggressive

stepsize. In fact, parameter C in Step 2 plays an important role,

i.e. the number of the trial steps can be reduced significantly

when a relatively larger C is selected. However, the value of C
can not be too large either, since it might impair the convergence

rate in terms of the objective function value.

The convergence rate of Algorithm 1 is established next.

Proposition 6: Let {Bag
k+1} be generated by Algorithm 1.

Then, for any k ≥ 1

l(Bag
k+1) − l(B̂) ≤ 2σ‖X‖2

2‖B0 − B̂‖2
F + C̃

(k + 1)2
(13)

where C̃ is a finite positive number independent of k.

See Appendix C for its detailed proof. It should be noted that

the convergence rate of {Bk+1} is still an open problem, which

needs to be addressed further in future, considering its good

performance for some cases.

Next, we enhance the algorithm for solving (9) in the gen-

eral case. The accelerated convergence rate can be obtained by

following the proof of Proposition 6. Similarly to the case in

Algorithm 1, the initial trial step of ηi is a safeguarded BB

choice

η0,i = max

{

ηmin ,
‖X (Li + Ri − Li−1 − Ri−1)‖2

F

‖Li + Ri − Li−1 − Ri−1‖2
F

}

(14)

The update of the L component is based on singular value

thresholding, while that of the R component on (group) soft-

thresholding. Note that the most expensive computational op-

eration corresponds to the singular value decomposition (SVD)

when updating Li+1 . As mentioned earlier, the proposed algo-

rithm is able to look for larger magnitude step sizes by con-

ducting fewer number of line searches, due to employing more

relaxed line search conditions. Actually, this is an important im-

provement considering the computational cost of SVD. Indeed,

the efficiency of the proposed algorithm can be enhanced further

if we employ the truncated SVD [32] instead of the full SVD.

The convergence rate of the proposed Algorithm 2 (given in

supplement due to limited space) is established next.

Proposition 7: Let (Lag
k+1 , R

ag
k+1) be a sequence of updates

generated by Algorithm 2. Then, for any k ≥ 1

l(Lag
k+1 , R

ag
k+1) − l(L̂, R̂)

≤ 2σ‖X‖2
2

(
‖L0 − L̂‖2

F + ‖R0 − R̂‖2
F

)
+ C̃

(k + 1)2
(15)

where C̃ is a finite positive number independent of k.
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TABLE I
PARAMETER SETTINGS IN THE PROPOSED ALGORITHMS FOR

ALL THE EXPERIMENTS

Proposition 7 is a direct extension of Proposition 6 and can be

obtained by following the roadmap of the proof for the former

result.

V. PERFORMANCE EVALUATION

Next, we present experimental results on both synthetic and

real data. Specifically, the first two experiments focus on large-

scale network learning with single penalty term to show the

efficiency and effectiveness of the proposed algorithms, while

the remaining ones assess the accuracy of recovering low rank

plus structured sparse transition matrices B.

A. Performance Metrics and Experimental Settings

We introduce the performance metrices used in the numerical

work. For network estimation, we use the true positive rate

(TPR) and false alarm rate (FAR) defined as:
� TPR :=

�{b̂i j 
=0 and bi j 
=0}
�{bi j 
=0}

� FAR :=
�{bi j =0 and b̂i j 
=0}

�{bi j =0}
where bij and b̂ij are the correspnding elemnets in B and B̂,

respectively. The estimation error (EE) and out-of-sample pre-

diction error (PE) are defined as
� EE := ‖B̂−B ‖F

‖B ‖F

� PE := ‖Ŷ − Y‖2
F /‖Y‖2

F

To select the optimal value of the tuning parameters, we com-

bine the three (or two or one, respectively) -dimensional grid

search method with the AIC/BIC/forward cross-validation cri-

teria. We will specify the criterion on a case by case basis for

the following experiments. In examples B and C, the tuning pa-

rameter λ is selected by the AIC criterion. A grid of 100 values

in the interval [0, ‖X ′Y‖max ] is used for λ. In examples D, E

and F, we utilize a two/three-dimensional grid search to select

the optimal values of λN , µN and/or νN as that for λ. For the

experiments employing synthetic data, the tuning parameters

are selected by assuming the rank of the true low-rank transi-

tion matrix and/or the non-zero group-sparse components of the

true group-sparse transition matrix are known. We will specify

the forward cross-validation procedure for the real data case in

example G.

For all the experiments, the parameters used in the proposed

algorithms are depicted in Table I. Also we set Σε = ε2I and

ε2 = 1. We rescale the entries of B to ensure stability of the

process (the spectral radius ρ ∈ (0.45, 0.95). All the results are

based on 50 replications. Finally, all algorithms are run in the

MATLAB R2015a environment on a PC equipped with 12GB

memory.

TABLE II
PERFORMANCE COMPARISON OF FNSL WITH A VARIANT OF FISTA ON A

LARGE-SCALE SPARSE NETWORK STRUCTURE LEARNING PROBLEM

B. Large-Scale Sparse Network Learning

We start by comparing the performance of the proposed algo-

rithm 1 with FISTA with line search [33] to solve problem (9)

with a sparse transition matrix.

We consider three different VAR(1) models with p =
800, 900 and 1000 variables. For each of these models, we

generate N = 1000, 1500, and 2000 observations from a Gaus-

sian VAR(1) process (2). The p × p transition matrix B with

sparsity is generated in the following way. First, the topology

is generated from a directed random graph G(p, ξ), where the

edge from one node to another node occurs independently with

probability ξ = 10/p. Then, the strength of the edges is gener-

ated independently from a Gaussian distribution. This process

is repeated until we obtain a transition matrix B with a desired

spectral radius ρ. We compare TPR, FAR, EE, and computa-

tional time (denoted by T ).

Table II shows the experimental results for sparse network

structure with different network size p and sample size N . It

can be seen that the proposed algorithm performs similarly to

FISTA in terms of TPR, FAR, and estimation error. To show

the efficiency of the proposed algorithm, we also compare the

computational time in seconds in terms of the convergence of

the objective function value. Clearly, the proposed algorithm

outperforms FISTA in efficiency, especially when the network

and sample size become larger. This is mainly due to the relaxed

line search scheme, as previously discussed. To further support

our claim, we also show the graphs of the decreasing objective

function value vs. CPU, see Fig. 1 when p = 1000 and N =
2000.

Table III shows comparisons between a variant of FISTA and

FNSL in terms of objective function values, CPU time in sec-

onds and the number of matrix products for a network of size
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Fig. 1. Performance comparison of a variant of FISTA and the proposed
algorithm: plotting the objective function values vs. CPU time for sparse network
learning problem with p = 1000 and N = 2000.

TABLE III
COMPARISON OF OBJECTIVE FUNCTION VALUE, CPU TIME IN SECONDS, AND

THE NUMBER OF MATRIX PRODUCTS (AX) FOR A VARIANT OF FISTA AND

FNSL ON A SPARSE NETWORK STRUCTURE FOR DIFFERENT SAMPLE SIZES

p = 1000 with sample size 1000, 1500 and 2000, respectively.

For each data set, FISTA needs around 30 iterations to reach

convergence and the total number of line searches is 3 for all

iterations, while FNSL needs no more than 20 iterations and

the total number of line searches is no more than 4 for all itera-

tions. This illustrates the computational savings of the proposed

algorithm.

C. Network Learning With a Low-Rank Transition Matrix

To further show the efficiency of the proposed algorithms, we

compare the performance of a variant of FISTA [34] and FNSL

on estimating low-rank transition matrices.

We consider three different VAR(1) models with p = 200,
300 and 400 variables. For each of these models, we generate

N = 400, 1200, and 2000 observations from a Gaussian VAR(1)

process (2). The p × p low-rank transition matrix B is generated

with rank �p/25� + 1. Subsequently, we rescale the entries of B
to ensure the spectral radius ρ lies in (0.45, 0.95). We compare

the rank of the estimated transition matrix, denoted by r̂, EE,

and computational time T .

Table IV shows the experimental results for low-rank network

structure with different network and sample size. Both FISTA

and the proposed algorithm achieve good recovery of the tran-

sition matrix B with the correct rank and they have similar

performance in terms of estimation error. Clearly, the proposed

algorithm outperforms FISTA in efficiency for this case as well.

TABLE IV
PERFORMANCE COMPARISON OF A VARIANT OF FISTA AND FNSL ON

ESTIMATING LOW-RANK TRANSITION MATRICES PROBLEMS

Fig. 2. Performance comparison of a variant of FISTA and the proposed
algorithm: plotting the objective function values vs. CPU time for a low-rank
transition matrix estimation problem with with p = 400 and N = 2000.

The graphs of the decreasing objective function value vs. CPU

are depicted in Fig. 2.

The first two experiments focused on computational effi-

ciency of the proposed algorithms, while retaining good network

estimation properties. Next, we demonstrate their accuracy for

learning structured sparse networks.

D. Sparse Plus Low-Rank Network Learning

Next, we investigate estimation of sparse plus low-rank tran-

sition matrices and compare it to ordinary least square (OLS)

and lasso estimates.

We consider three different VAR(1) models with p = 50, 75
and 100 variables. For each of these models, we generate N =
100 and 200 observations from the model defined in (2) where B
can be decomposed into a low-rank matrix L of rank �p/25� + 1
and a sparse matrix S with 2–4% non-zero entries. We rescale

the entries of B to ensure stability of the process (the spectral

radius is set to ρ(B) = 0.7). We compare the estimation and

out-of-sample prediction errors. The number of out of samples

is set to 10.
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TABLE V
TRUE POSITIVE RATE AND FALSE ALARM RATE OF THE L+S MODEL ON

IDENTIFYING THE SPARSE COMPONENT S WITH DIFFERENT α

TABLE VI
PERFORMANCE COMPARISON OF L+S WITH OLS AND LASSO

First, we study the influence of α in (9) on this learning prob-

lem with p = 50 and N = 200. From Table V, that a smaller

α parameter leads to markedly improved identification of all

the true nonzero entries in the sparse component, which conse-

quently leads to better separating the sparse component S from

the low-rank component L.

The corresponding estimation errors are reported in Table VI.

In all three settings, we find that the low-rank plus sparse VAR

estimates outperform the estimates using ordinary least-squares

(OLS) and lasso, as expected. We observe that as the ratio of

N/p increases, OLS may produce lower estimation error than

lasso, even though the OLS model is not interpretable for this

case. Further, we note that the estimation errors of all three

methods decrease with increasing sample sizes as expected

and predicted by theory. In addition, we illustrate how the

squared Frobenius norm error in Proposition 4 of the VAR

model with low rank plus sparse transition matrix scales with

the sample size N and dimension p, when the rank r of B
is fixed. The network size p is set to 50, 100, 150 and 200,

respectively, while the rank r is fixed to be 2 for all p. Sparsity

s and ε are defined similarly as above, while the sample size is

set to N ∈ (150, 5500). The squared Frobenius norm error of

Fig. 3. Estimation error of low rank plus sparse structure ‖S − Ŝ‖2
F

+ ‖L −
L̂‖2

F
with different network size p and sample size N .

Fig. 4. Estimation error of low rank plus sparse structure ‖S − Ŝ‖2
F

+ ‖L −
L̂‖2

F
with rescaled sample size N/(slog(p) + rp).

estimation given by ‖S − Ŝ‖2
F + ‖L − L̂‖2

F is depicted in Fig. 3,

which displays the errors for different values of p, plotted

against the sample size N . As predicted by our theoretical

result, the error is larger for larger p. Fig. 4 displays the error

against the rescaled sample size N/(s log(p) + rp). it can be

seen that the corresponding error curves for different values

of p align well, which is consistent with the estimation error

obtained in Proposition 4.

In addition to its improved estimation and prediction perfor-

mance, the low-rank plus sparse modeling strategy aids in recov-

ering the underlying Granger causal network after accounting

for the latent structure. In Figs. 5, we demonstrate this using

a VAR(1) model with p = 50 and n = 200. The top panel of

the Figs. 5 displays the true transition matrix B, its low-rank

component L and the structure of its sparse component S. The

bottom panel of the Figs. 5 displays the structure of the Granger

causal networks estimated by the method of Lasso and the low-

rank plus sparse modeling strategy. As predicted by the theory,

it can be that the lasso estimate of the Granger causal network

selects many false positives due to its failure to account for the

latent structure. On the other hand, the sparse component S pro-

vides an estimate exhibiting significantly fewer false positives

entries.

It is interesting to note that the estimation performance of

the regularized estimates in low-rank plus sparse VAR models
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Fig. 5. Estimated Granger causal networks using lasso and low-rank plus sparse VAR estimates. The top panel displays the true transition matrix B , the structure

of its sparse component S and its low-rank component L. The bottom panel displays the structure of the Granger causal networks estimated by lasso (B̂Lasso ),

the low-rank plus sparse modeling strategy (Ŝ) and the estimated low-rank component (L̂).

is worse than the performance of lasso in sparse VAR models

of similar dimension [8], even for the same sample sizes. This

is in line with the error bounds presented in Proposition 4. The

estimation error in low-rank plus sparse models is of the order

of O(rp + s log p)/N , while the error of lasso in sparse VAR

models scales at a faster rate of O(s log p/N). Further note that

a s-sparse VAR requires estimating s parameters in S, while the

presence of r factors introduces an additional rp parameters in

the loading matrix Λ.

E. Sparse Plus Group-Sparse Plus Low-Rank Network

Learning

Finally, we conduct numerical experiments to assess the per-

formance of low-rank plus sparse plus group-sparse modeling

in VAR analysis and compare it to the performance of sparse

plus group-sparse and low-rank plus sparse estimates.

We consider three different VAR(1) models with p = 50, 100
and 150 variables. For each of these models, we generate N =
200 and 300 observations from the Gaussian VAR(1) process

defined in (2), where B can be decomposed into a low-rank

matrix L of rank �p/25� + 1, a sparse matrix S with 2–4% non-

zero entries, and a group-sparse matrix G with each column

corresponding to a different group for a total of p groups. We

rescale the entries of B to ensure stability of the process (the

spectral radius is set to ρ(B) = 0.7) and compare the estimation

and out-of-sample prediction errors, with the number of out-

samples set to 10.

The corresponding estimation errors are reported in Table VII.

In those three settings, we find that the low-rank plus sparse plus

group-sparse VAR estimates performs only slightly better than

low-rank plus sparse VAR estimates. One of the reasons lie in

TABLE VII
PERFORMANCE COMPARISON OF L+S+G WITH S+G AND L+S

that the ability of the identification will degrade as more struc-

tures are involved. The other one is that multiple-times shrinkage

for the multiple structures lead to severe bias estimation. Even

though the group structures can be recovered completely, some

non-zero elements in the sparse component vanished. An ad-

hoc way to improve the performance for this case is to combine

these two methods together. However, both methods outper-

form the estimates using sparse plus group-sparse VAR. We also
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Fig. 6. Estimated Granger causal networks based on L+S estimates. The left panel depicts the structure of the Granger causal network of the estimated sparse

component Ŝ in the pre-crisis period and has 298 edges, the middle during the crisis and has 592 edges, while the right panel in the post-crisis periods and has 345
edges.

observe that, as the ratio of N/p increases, the estimation errors

of all three methods decrease with increasing sample sizes, as

expected and predicted by theory.

F. Structured Network Learning of Asset Pricing Data

Finally, we employ the proposed framework to learn Granger

causal networks of asset pricing data obtained from the Uni-

versity of Chicago’s Center for Research in Security Prices

(CRSP) and retrieved from the Wharton Research Data Service

(WRDS). Specifically, we examine the network structure of real-

ized volatilities of financial institutions representing banks (BA),

primary broker/dealers (PB) and insurance companies (INS).

The analysis was performed across the following time periods:

September 2002–August 2005, September 2006–August 2008

and September 2010–August 2012 that correspond to instances

before the financial crisis of 2008 (pre-crisis period), the build-

up and apex of the crisis and the post-crisis period, respectively.

For each period, we collected data on 75 firms with 25 compa-

nies in each of the three categories - BA, PB and INS based on

the size of the average market capitalization of each firm, but

dropped a few due to duplicate/missing observations. The final

form of the variables used are based on the log transformation of

the difference between the highest and lowest stock price during

a day that acts as a proxy for realized volatility and subsequently

detrending it.

To select the tuning parameters, we employ the following for-

ward cross-validation procedure: (1) We use a time window of

length W , the available number of time points in the data. Then,

starting from time t, we use the most recent W observations to

estimate B and denote the transition matrix estimate by B̂t . We

use the next W ′ observations (right after W observations) to val-

idate B̂t . (2) We select the optimal tuning parameters (λ
′
N , µ

′
N )

so that

(λ
′
N , µ

′
N ) = arg min

{

1

�m−500
25 �

m∑

t=500+25∗i
Err(B̂t)

}

where Err(B̂t) = ‖YW ′ −XW ′B̂t‖2
F and i = 0, ...

In our analysis, we set W = 500 and W ′ = 50. Further, to

separate the sparse component from the low-rank component as

much as possible, we set α = p/10. The learned Granger causal

network structures (the sparse component Ŝ) estimated by a

sparse plus low-rank model are depicted in Fig. 6. It can be seen

that even in the presence of a low-rank component, the sparse

component exhibits a certain density (about 5% in the pre-crisis

period, rising to 10% during the crisis and dropping down to

about 6% in the post-crisis period). This increased connectivity

during the crisis period has been observed in Granger causal

networks for log-returns as well [4]. In the Supplement, we also

provide the Granger causal network structures estimated by only

assuming sparsity of the transition matrix B (see Supplement

Fig. 5). A similar increased connectivity pattern is observed

during the crisis period. Also note that after accounting for the

low-rank component, the estimated sparse component is signifi-

cantly more sparse than that estimated by a lasso approach, thus

enabling us to better examine specific firms that are key drivers

in the volatility network.

VI. DISCUSSION

Our modeling and technical developments were based on a

VAR(1) model. However, it can be generalized to VAR(d) mod-

els in different ways, depending on the context of the application.

One possible formulation where the low rank component stays

the same across lags can be expressed as

Xt =

d∑

�=1

(L + S�)Xt−� + vt .

This model can be posed as a 1-order (L+S) model on the con-

catenated process X̃t = [X�
t , X�

t−1 , . . . , X
�
t−d+1 ]

� using the

standard transformation [7]:
⎡

⎢
⎢
⎢
⎣

Xt

Xt−1

...

Xt−d

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

X̃ t

=

⎡

⎢
⎢
⎢
⎣

L L . . . L
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

L̃

⎡

⎢
⎢
⎢
⎣

Xt−1

Xt−2

...

Xt−d−1

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

X̃ t−1

+

⎡

⎢
⎢
⎢
⎣

S1 S2 . . . Sd

I 0 . . . 0
...

...
. . .

...

0 . . . I 0

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

S̃

⎡

⎢
⎢
⎢
⎣

Xt−1

Xt−2

...

Xt−d−1

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

X̃ t−1

+

⎡

⎢
⎢
⎢
⎣

vt

0
...

0

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

ṽ t

.
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Since the matrices L̃ and S̃ are respectively low-rank and

sparse, our proposed algorithm can be used and the error bounds

will be applicable. Further, to maintain the special structure of

these new matrices, additional constraints can be imposed to the

posited objective function or the final estimates can be projected

to this space.

Finally, motivated by [37], [38], it would be of interest to

consider analogous developments in the frequency domain and

address identifiability issues, as well as establish finite sample

error bounds.

APPENDIX A

The proof of Proposition 1 and part (a) of Proposition 2

can be easily obtained by the following proof for part (b) of

Proposition 2.

Proof of part (b) of Proposition 2: By the optimality of

(L̂, Ŝ, Ĝ) and the feasibility of (L∗, S∗, G∗), we have

1

2
‖Y − X (L̂ + Ŝ + Ĝ)‖2

F + λN ‖L̂‖∗ + µN ‖Ŝ‖1

+ νN ‖Ĝ‖2,1 ≤ 1

2
‖Y − X (L∗ + S∗ + G∗)‖2

F

+ λ1‖L∗‖∗ + µN ‖S∗‖1 + νN ‖G∗‖2,1 (16)

By setting ∆̂L = L̂ − L∗, ∆̂S = Ŝ − S∗, and ∆̂G = Ĝ − G∗

and combining with Y = X (L∗ + S∗ + G∗) + E, we have

1

2
‖X (∆̂L + ∆̂S + ∆̂G )‖2

F ≤ 〈∆̂L + ∆̂S + ∆̂G ,X ′
E〉

+ λN ‖L∗‖∗ + µN ‖S∗‖1 + νN ‖G∗‖2,1 − λN ‖L + ∆̂L‖∗
− µN ‖S∗ + ∆̂S ‖1 − νN ‖G∗ + ∆̂G‖2,1

By Lemma 1 in [19] and lemma 2.3 in [35], we obtain

1

2
‖X (∆̂L + ∆̂S + ∆̂G )‖2

F ≤ 〈∆̂L + ∆̂S + ∆̂G ,

X ′
E〉 + λN (‖∆̂L

A‖∗ − ‖∆̂L
B ‖∗)

+ 2λN

d∑

j=r+1

σj (L
∗) + µN (‖∆̂S

M ‖1 − ‖∆̂S
M ⊥‖1)

+ 2µN ‖S∗
M ⊥‖1 + νN (‖∆̂G

N ‖2,1 − ‖∆̂G
N ⊥‖2,1)

+ 2νN ‖G∗
N ⊥‖2,1 (17)

where the matrices (A,B)∈{(Ā, B̄) : ĀB̄′ = 0 & Ā′B̄ = 0},

(M,M⊥) and (N,N⊥) denote an arbitrary subspace pair for

which ‖S‖1 and ‖G‖2,1 are decomposable, respectively. Since

〈∆̂L + ∆̂S + ∆̂G ,X ′
E〉 ≤ ‖∆̂L‖∗‖X

′
E‖2

+ ‖∆̂S ‖1‖X
′
E‖max + ‖∆̂G‖2,1‖X

′
E‖2,max

≤ (‖∆̂L
A‖∗ + ‖∆̂L

B ‖∗)‖X
′
E‖2 + (‖∆̂S

M ‖1 + ‖∆̂S
M ⊥‖1)

‖X ′
E‖max + (‖∆̂G

N ‖2,1 + ‖∆̂G
N ⊥‖2,1)‖X

′
E‖2,max (18)

Substituting (18) into (17) and recalling conditions for λN , µN

and νN , we have

1

2
‖X (∆̂L + ∆̂S + ∆̂G )‖2

F ≤ 3

2
λN ‖∆̂L

A‖∗

+
3

2
µN ‖∆̂S

M ‖1 +
3

2
νN ‖∆̂G

N ‖2,1 + 2λN

d∑

j=r+1

σj (L
∗) + 2µN ‖S∗

M ⊥‖1 + 2νN ‖G∗
N ⊥‖2,1 (19)

By the RSC condition, the constraints on L and G in (9), and

the definition of µN and νN , we have

1

2
‖X (∆̂L + ∆̂S + ∆̂G )‖2

F ≥ ζ

2
‖∆̂L + ∆̂S + ∆̂G‖2

F

≥ ζ

2
‖∆̂L‖2

F +
ζ

2
‖∆̂S ‖2

F +
ζ

2
‖∆̂G‖2

F − ζ|〈∆̂L , ∆̂S 〉|

− ζ|〈∆̂L , ∆̂G 〉| − ζ|〈∆̂G , ∆̂S 〉|

≥ ζ

2
‖∆̂L‖2

F +
ζ

2
‖∆̂S ‖2

F +
ζ

2
‖∆̂G‖2

F − ζ‖∆̂L‖max‖∆̂S ‖1

− ζ‖∆̂L‖2,max‖∆̂G‖2,1 − ζ‖∆̂G‖max‖∆̂S ‖1

≥ ζ

2
‖∆̂L‖2

F +
ζ

2
‖∆̂S ‖2

F +
ζ

2
‖∆̂G‖2

F − µN

2
‖∆̂S ‖1

− νN

2
‖∆̂G‖2,1 −

µN

2
‖∆̂S ‖1

Inserting the above inequality into (19), we have

ζ

2
(‖∆̂L‖2

F + ‖∆̂S ‖2
F + ‖∆̂G‖2

F ) ≤ 3

2
λN ‖∆̂L

A‖∗

+
3

2
µN ‖∆̂S

M ‖1 +
3

2
νN ‖∆̂G

N ‖2,1 + µN ‖∆̂S ‖1 +
νN

2
‖∆̂G‖2,1

+ 2λN

d∑

j=r+1

σj (L
∗) + 2λN ‖S∗

M ⊥‖1 + 2µN ‖G∗
N ⊥‖2,1

By the compatibility constant in [19], we have

ζ

2
(‖∆̂L‖2

F + ‖∆̂S ‖2
F + ‖∆̂G‖2

F) ≤
(

3

2
λN

√
2r

)

‖∆̂L‖F

+

(
5

2
µN

)√
s‖∆̂S ‖F + 2νN

√
g‖∆̂G‖F + 2λN

d∑

j=r+1

σj (L
∗)

+ 2µN ‖S∗
M ⊥‖1 + 2νN ‖G∗

N ⊥‖2,1

By our assumptions, we have

ζ

4
(‖∆̂L‖2

F + ‖∆̂S ‖2
F + ‖∆̂G‖2

F )

≤
√
(

3

2
λ1

√
2r

)2

+

(
5

2
λ2

√
s

)2

+ (2λ3
√

g)2

√

‖∆̂L‖2
F + ‖∆̂S ‖2

F + ‖∆̂G‖2
F

Combining with the inequality ‖∆̂L‖2
F + ‖∆̂S + ∆̂G‖2

F ≤ 2

(‖∆̂L‖2
F + ‖∆̂S ‖2

F + ‖∆̂G‖2
F ), we conclude part (b) of

Corollary 2. �
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APPENDIX B

Proof of Proposition 3:

1) We seek to find upper bounds on ‖X ′E/N‖max , ‖X ′

E/N‖ and ‖X ′E/N‖2,max that hold with high probabil-

ity. Note that such an upper bound for ‖X ′E/N‖max has

already been derived in [8]. Here we adopt a different

technique that takes a unified approach to provide upper

bounds on both quantities. To this end, note that the two

norms have the following representations

1

N
‖X ′E‖ = sup

u,v∈ Sp −1

1

N
u′X ′Ev,

1

N
‖X ′E‖max = sup

u,v∈ {e1 ,...,ep }

1

N
u′X ′Ev

For any given u, v ∈ S
p−1 , we first provide a bound on

u′(X ′E/N)v.

Using Proposition 2.4 of [8], we obtain

P [|u′(X ′E/N)v| > 2πηφ(B,Σε)]

≤ 6 exp
[
−cN min{η, η2}

]
(20)

for any u, v ∈ S
p−1 and any η > 0.

To derive the deviation bound on ‖X ′E/N‖max , we sim-

ply take a union bound over the p2 possible choices of

u, v ∈ {e1 , e2 , . . . , ep}. This leads to

P [‖X ′E/N‖max > 2πηφ(B,Σε)]

≤ 6 exp
[
−cN min{η, η2} + 2 log p

]

Since N � p, we can set η =
√

(2 + c1) log p/cN so that

η < 1 (i.e., η2 < η) will be satisfied for large enough N .

This implies that

P [‖X ′E/N‖max > c0φ(B,Σε)] ≤ c1 exp [−c2 log p]

for some universal constants ci > 0.

Similarly, for any group Gi of size mi , we have

P [‖vec(X ′
rEs/N, (r, s) ∈ Gi)‖ > 2π

√
miηφ(B,Σε)]

≤ 6 exp
[
−cN min{η, η2} + log mi

]
. (21)

Taking a union bound over K non-overlapping groups Gi

leads to

P

[

‖X ′E/N‖2,max > 2π
√

mηφ(B,Σε)
]

≤ 6 exp
[
−cN min{η, η2} + log p

]
, (22)

where m = maxi=1,...,K mi . As before, setting η =
√

log p/N implies

P

[

‖X ′E/N‖2,max > 2π
√

m log p/Nφ(B,Σε)
]

≤ c1 exp [−c2 log p] (23)

for some ci > 0.

To derive the deviation bound on the spectral norm, we

discretize the unit ball Sp−1 using an ε-net N of cardi-

nality at most (1 + 2/ε)p . An argument along the line of

Supplementary Lemma F.2 in [8] then shows that for a

small enough ε > 0,

sup
u,v∈ Sp −1

|u′(X ′E/N)v| ≤ κ sup
u,v∈ N

|u′(X ′E/N)v|

for some constant κ > 1, possibly dependent on ε. As

before, taking a union bound over the (1 + 2/ε)2p choices

of u and v, we get

P [‖X ′E/N‖ > 2πκηφ(B,Σε)]

≤ 6 exp
[
−cN min{η, η2} + 2p log(1 + 2/ε)

]

Since N � p, choosing η =
√

(c1 +2 log(1+2/ε))p/cN en-

sures η < 1 for large enough N . Setting η as above con-

cludes the proof.

2) We want to obtain a lower bound on the minimum eigen-

value of X ′X/N that holds with high probability.

Since Λmin(X ′X/N) = infv∈Sp −1 v′(X ′X/N)v, we start

with the single deviation bound of Proposition 2.3 in [8],

P

[

|v′ (X ′X/N − ΓX (0)) v| > 2πηM(fX )
]

≤ 2 exp
[
−cN min{η, η2}

]

for any v ∈ S
p−1 and η > 0.

The next step is to extend this single deviation bound

uniformly on the set S
p−1 . As in the proof of part 1, we

construct a ε-net of cardinality at most (1 + 2/ε)p and

approximate the quadratic form using its values on the

net. This yields the following deviation bound

P

[

sup
v∈ Sp −1

∣
∣
∣
∣
v′
(X ′X

N
− ΓX (0)

)

v

∣
∣
∣
∣
> 2κπηM(fX )

]

≤ 2 exp

[

−cN min{η, η2} + p log

(

1 +
2

ε

)]

for some constant κ > 1. Seting η = m(fX )/4κπM(fX )
< 1 and noting that N � M2(fX )/m

2(fX )p, we con-

clude

P

[

sup
v∈Sp −1

|v′ (X ′X/N − ΓX (0)) v| > m(fX )/2

]

≤ c0 exp [−c1 log p]

The result follows from the lower bound on m(fX ) pre-

sented in (6) and the fact that v′ΓX (0)v ≥ m(fX ) for all

v ∈ S
p−1 . �

Proof of Proposition 4 and 5: Clearly, setting ζ to the lower

bound on m(fX ) as in (6) satisfies the RSC. Combining the

estimates of Proposition 1 and 3 leads to Proposition 4 and 5

after simple algebraic computation. �

APPENDIX C

In the following proof, we denote 1
2 ‖Y − XB‖2

F and the

regularization term by H(B) and PB (B, λ), respectively.
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Proof of Proposition 6: By the differentiability of H , we

have

H(Bag
i+1) = H(Bmd

i ) +

∫ 1

0

< ∇H(Bmd
i

+ τ(Bag
i+1 − Bmd

i )), Bag
i+1 − Bmd

i > dτ

(24)

Then, by the definition of H(B) and Bag
i+1 , and the relationship

Bag
i+1 − Bmd

i = αi(Bi+1 − Bi), we have

l(Bag
i+1) = H(Bag

i+1) + PB (Bag
i+1 , λ)

= H(Bmd
i ) +

∫ 1

0

〈X T X (Bmd
i + τ(Bag

i+1 − Bmd
i ))

−X T Y, Bag
i+1 − Bmd

i 〉dτ + PB (Bag
i+1 , λ)

= H(Bmd
i ) +

∫ 1

0

〈X T(XBmd
i − Y), Bag

i+1 − Bmd
i 〉dτ

+

∫ 1

0

τ‖X (Bag
i+1 − Bmd

i )‖2dτ + PB (Bag
i+1 , λ)

= H(Bmd
i ) + 〈∇H(Bmd

i ), Bag
i+1 − Bmd

i 〉

+
1

2
‖X (Bag

i+1 − Bmd
i )‖2 + PB (Bag

i+1 , λ)

= H(Bmd
i ) + (1 − αi)〈∇H(Bmd

i ), Bag
i − Bmd

i 〉

+ αi〈∇H(Bmd
i ), Bi+1 − Bmd

i 〉

+
α2

i

2
‖X (Bi+1 − Bi)‖2

+ (1 − αi)PB (Bag
i , λ) + αiPB (Bi+1 , λ)

= (1 − αi)(H(Bmd
i ) + 〈∇H(Bmd

i ), Bag
i − Bmd

i 〉

+ PB (Bag
i , λ)) + αi(H(Bmd

i )

+ 〈∇H(Bmd
i ), Bi+1 − Bmd

i 〉)

+
α2

i

2
‖X (Bi+1 − Bi)‖2 + αiPB (Bi+1 , λ).

(25)

By the convexity of H(B) and (25), we have

l(Bag
i+1) = (1 − αi)(H(Bmd

i ) + 〈∇H(Bmd
i ),

Bag
i − Bmd

i 〉 + PB (Bag
i ))

+ αi(H(Bmd
i ) + 〈∇H(Bmd

i ), B − Bmd
i 〉)

+ αi〈∇H(Bmd
i ), Bi+1 − B〉

+
α2

i

2
‖X (Bi+1 − Bi)‖2 + αiPB (Bi+1 , λ)

≤ (1 − αi)L(Bag
i ) + αiL(B)

+ αi〈∇H(Bmd
i ), Bi+1 − B〉

+
α2

i

2
‖X (Bi+1 − Bi)‖2

+ αiPB (Bi+1 , λ) − αiPB (B, λ)

(26)

Subtracting l(B) from both sides of (26) and rearranging some

terms, we have

[l(Bag
i+1) − l(B)] − (1 − αi)[l(B

ag
i ) − l(B)]

≤ αi〈∇H(Bmd
i ), Bi+1 − B〉 +

α2
i

2
‖X (Bi+1 − Bi)‖2

+ αi〈ξ,Bi+1 − B〉

(27)

where ξ ∈ ∂PB (Bi+1 , λ). On the other hand, by the first-order

optimality conditions for the sequence Bi+1 in Algorithm 1, we

have

〈∇H(Bmd
i ), Be

i+1〉 + ηi〈Bi+1 − Bi , B
e
i+1〉

+ 〈∂PB (Bi+1 , λ), Bi+1 − B〉 ≤ 0
(28)

Combining (27) and (28), we obtain

[l(Bag
i+1) − l(B)] − (1 − αi)[l(B

ag
i ) − l(B)]

≤ αi

{

ηi〈Bi − Bi+1 , B
e
i+1〉 +

αi

2
‖X (Bi+1 − Bi)‖2

}

≤ αi

{ηi

2
(‖Be

i ‖2 − ‖Be
i+1‖2 − ‖Bi+1 − Bi‖2)

+
αi

2
‖X (Bi+1 − Bi)‖2

}

(29)

where we used the relationship 2〈a − b, a − c〉 = −‖b − c‖2 +
‖a − c‖2 + ‖a − b‖2 and the definition of Be

i+1 .

Dividing both sides of (29) by αiηi , we have

1

αiηi
[l(Bag

i+1) − l(B)] − (1 − αi)

αiηi
[L(Bag

i ) − L(B)]

≤ 1

2
(‖Be

i ‖2 − ‖Be
i+1‖2) − 1

2

(

‖Bi+1 − Bi‖2

− αi

ηi
‖X (Bi+1 − Bi)‖2

)

≤ 1

2
(‖Be

i ‖2 − ‖Be
i+1‖2) − 1

2
Γi

(30)

Adding
(β i Q i +Γ i )

2 to both sides of (30), we have

1

αiηi
[l(Bag

i+1) − l(B)] − (1 − αi)

αiηi
[l(Bag

i ) − l(B)]

+
(βiQi + Γi)

2

≤ 1

2
(‖Be

i ‖2 − ‖Be
i+1‖2) +

(βi − 1)Qi

2
+

Qi

2

(31)

Since Qi+1 = βiQi + Γi , 0 ≤ βi ≤ (1 − 1
i )

2 , and Qi ≥
− C

(i−1)2 , we obtain

1

αiηi
[l(Bag

i+1) − l(B)] − (1 − αi)

αiηi
l(Bag

i ) − l(B)]

+
Qi+1

2

≤ 1

2
(‖Be

i ‖2 − ‖Be
i+1‖2) +

(1 − βi)C

2(i − 1)2
+

Qi

2

(32)
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Setting B = B̂, by the relationship 1
α i η i

= 1−α i + 1

α i + 1 η i + 1
, and α1 =

1, we obtain

1

αiηi
[l(Bag

i+1) − l(B)]

≤ 1

2
‖B0 − B̂‖2 +

k∑

i=2

(1 − βi)C

(i − 1)2
+

C

k2

(33)

after summing (32) from i = 1 to k.

Next we show the upper bound of αkηk . Since ηmin ≤ η0,1 ,

we have ηmin ≤ ‖X T X‖2 . Then, by definition of η0,i , we get

ηmin ≤ η0,i ≤ ||X T X||2 . (34)

Denote σlη0,i by η
′
i , where l is the number of line search in

Step 3 of Algorithm 1. By 1
α i η i

= 1−α i + 1

α i + 1 η i + 1
and the definition

of ηi , we have

1

αi

√

η
′
i

=

√
1 − αi+1

αi+1

√

η
′
i+1

≤ 1

αi+1

√

η
′
i+1

− 1

2η
′
i+1

for i ≥ 1

(35)

Then, by induction we can get, with α1 = 1,

⎛

⎝
1
√

η
′
1

+
1

2

k∑

i=2

1
√

η
′
k

⎞

⎠

2

≤ 1

α2
kη

′
k

which implies

αkηk ≤ 1
(

1√
η
′
1

+ 1
2

∑k
i=2

1√
η
′
k

)2

≤ 4σ||X T X||2
(k + 1)2

for k ≥ 1

(36)

where we used (35) and the definition of η
′
i .

Combining (33) and (36), we obtain (13). �
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