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Low Rank and Structured Modeling of
High-Dimensional Vector Autoregressions

Sumanta Basu, Xianqi Li

Abstract—Network modeling of high-dimensional time series
data is a key learning task due to its widespread use in a num-
ber of application areas, including macroeconomics, finance, and
neuroscience. While the problem of sparse modeling based on vec-
tor autoregressive models (VAR) has been investigated in depth in
the literature, more complex network structures that involve low
rank and group sparse components have received considerably
less attention, despite their presence in data. Failure to account for
low-rank structures results in spurious connectivity among the ob-
served time series, which may lead practitioners to draw incorrect
conclusions about pertinent scientific or policy questions. In order
to accurately estimate a network of Granger causal interactions af-
ter accounting for latent effects, we introduce a novel approach for
estimating low-rank and structured sparse high-dimensional VAR
models. We introduce a regularized framework involving a combi-
nation of nuclear norm and lasso (or group lasso) penalties. Sub-
sequently, we establish nonasymptotic probabilistic upper bounds
on the estimation error rates of the low-rank and the structured
sparse components. We also introduce a fast estimation algorithm
and finally demonstrate the performance of theproposed modeling
framework over standard sparse VAR estimates through numeri-
cal experiments on synthetic and real data.

Index Terms—Lasso, group lasso, nuclear norm, low rank,
vector autoregression, probabilistic bounds, identifiability, fast
algorithm.

1. INTRODUCTION

HE problem of learning the network structure among a
large set of time series arises in many signal process-
ing, economic, finance and biomedical applications. Exam-
ples include processing signals obtained from radars [1], [2],
macroeconomic policy making and forecasting [3], assessing
connectivity among financial firms [4], reconstructing gene reg-
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ulatory interactions from time-course genomic data [S] and
understanding connectivity between brain regions from fMRI
measurements [6]. Vector Autoregressive (VAR) models pro-
vide a principled framework for these tasks.

Formally, a VAR model for p-dimensional time series X; is
defined in its simplest possible form involving a single time-lag
as

X' =B'X'"V4e, t=1,....T, (D

where B is a p X p transition matrix specifying the lead-lag
cross dependencies among the p time series and {¢'} is a zero
mean error process. VAR models for small number of time series
(low-dimensional) have been thoroughly studied in the literature
[7]. However, the above mentioned applications, where dozens
to hundreds of time series are involved, created the need for the
study of VAR models under high dimensional scaling and the
assumption that their interactions are sparse to compensate for
the possible lack of adequate number of time points (samples;
see [8] and references therein). There has been a growing body
of literature on sparse estimation of large scale VAR models,
including alternative penalties beyond the popular /; penalty
(lasso), such as the Berhu regularization introduced in [9], group
lasso type penalties employed in [21], [22], as well as non-
convex penalties akin to a square-root lasso investigated in [11].
Further, [10] examines estimation of the transition matrix and
the inverse covariance matrix of the error process through a
joint sparse penalty. Note that the problem of sparse estimation
of these two model parameters separately from a least squares
and maximum likelihood viewpoints is addressed in [3], [8],
respectively, where in addition probabilistic finite sample error
bounds for the obtained estimates are obtained.

Nevertheless, there are occasions where the sparsity assump-
tion may not be sufficient. For example, during financial crisis
periods, returns on assets move together in a more concerted
manner [4], [12], while transcription factors regulate a large
number of genes that may lead to hub-node network structures
[13]. Similarly, in brain connectivity networks, particular tasks
activate a number of regions that cross talk in a collaborative
manner [14]. Hence, it is of interest to study VAR models under
high dimensional scaling where the transition matrix governing
the temporal dynamics exhibits a more complex structure; e.g.
it is low rank and/or (group) sparse.

In alow-dimensional regime, where the number of time points
scales to infinity, but the number of time series under study
remains fixed, [15] examined asymptotic properties of VAR
models, where the parameters exhibit reduced rank structure and
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also discussed connections with canonical correlation analysis
of such models presented in [16]. Specifically, the transition
matrix B in (2) can be written as the product of two rank-k
matrices ®, ¥, i.e. B = ®¥’, so that in the resulting model
specification of the original p time series is expressed as linear
combinations Z! = WX" of the original ones, and ¢ specifies
the dependence between X' and Z'; namely X! = ®'Z!~! +
¢'. Hence, to obtain ® and WU, [15] suggests to estimate the
parameters of the original model in (1) under the constraint that
B = U and that rank(B) = k. Other works include low rank
approximations of Hankel matrices that represent the input-
output structure of a linear time invariant systems and were
studied in [17], [18]. Finally, a brief mention to the possibility
that the VAR transition matrix may exhibit such a structure
appeared as a motivating example in [19].

On the other hand, there is a mature literature on imposing
low rank plus sparse, or pure group sparse structure for many
learning tasks for independent and identically distributed (i.i.d.)
data. Examples include group sparsity in regression and graph-
ical modeling [20], low rank and sparse matrix approximations
for dimension reduction [18], etc. However, as shown in [8], the
presence of temporal dependence across observations induces
intricate dependencies between both rows and columns of the
design matrix of the corresponding least squares estimation
problem, as well as between the design matrix and the error
term, that require careful handling to establish consistency
properties for the model parameters under sparsity and high
dimensional scaling. These issues are further compounded
when more complex regularizing norms are involved, as
discussed in [21]. In this paper, the authors model grouping
structures within each column of B, but do not consider a
low-rank component. In contrast, we focus on groups poten-
tially spanning across different columns and allow a low-rank
component in B.

More recently, [37] and [38] extended the framework of [18]
beyond decomposing an observable matrix, to the problem of
Gaussian process identification, by assuming a low-rank plus
sparse structure on the inverse spectral density and the transfer
function of a general VAR(d) system, respectively. Our work
is complementary to these recent developments. We directly
model the transition matrix of a VAR(1) process that enables us
to identify a directed network of (group) sparse Granger causal
relationships that are of interest in a number of applications;
e.g. in financial economics where firms with higher out-degree
are of particular interest in measuring systemic risk [4], [12].
Further, our approach explicitly addresses identifiability issues
for extracting the respective low-rank and sparse components,
which in turn are leveraged to obtain probabilistic error bounds
that characterize the quality of their estimates. The latter provide
insights to the practitioner on sample size requirements and
tuning parameter selection for real data applications. Finally,
note that our approach to the issue of identifiability builds on
[19], wherein we characterize the degree of unidentifiability
which guides in an explicit manner the selection of the tuning
parameters used in the proposed optimization algorithm.

Further, to estimate the posited model in (1) with B be-
ing both low-rank and structured sparse (henceforth indicating
that it could be either pure sparse or group sparse or both),
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we also introduce a fast accelerated proximal gradient algo-
rithm, inspired by [30], [31], for the corresponding optimization
problems. The key idea is that instead of searching for the lo-
cal Lipschitz constant of the gradient of the smooth compo-
nent of the objective function, the proposed algorithm utilizes
a safeguarded Barzilai-Borwein (BB) initial stepsize [25] and
employs relaxed line search conditions to achieve better per-
formance in practice. The latter enables the selection of more
“aggressive” stepsizes, while preserving the accelerated con-
vergence rate of O(%), where k denotes the number of iter-
ations required until convergence. Finally, the performance of
the model parameters under different structures together with
the associated estimation procedure based on the accelerated
proximal gradient algorithm are calibrated on synthetic data,
and illustrated on three data sets examining realized volatilities
of stock prices of 75 large financial firms before, during and
after the 2007-09 US financial crisis.

Notation: Throughout the paper, we employ the following
notation: ||.||, |||z and ||.|| 7 denote the ¢-norm of a vector, the
spectral norm and the Frobenius norm of a matrix, respectively.
For ap x p matrix B, the symbol || B||, is used to denote the nu-
clear norm, i.e. >°"_, 0;(B), the sum of the singular values of
a matrix, while B! denotes the conjugate transpose of a matrix
B. For any matrix B, we use ||B||o to denote card(vec(B)),
I|B||; for ||vec(B)||; and || B||max to denote ||vec(B)||. Fur-
ther, if {G1,Ga,...,Gg } denote a partition of {1,2,...,p*}
into K non-overlapping groups, then we use || B||.; to denote
K B, lre 1Bllamax for maxi—ia..x [(B)e, [,
while ||B||2,0 denotes the number of nonzero groups in B.
Here, with a little abuse of notation, we use B¢, to denote
vec(B)gq, . In addition, Ay ax(.), Amin(.) denote the maximum
and minimum eigenvalues of a symmetric or Hermitian ma-
trix. For any integer p > 1, we use SP~! to denote the unit ball
{v eRP: |jv]| =1}. We also use {e1,eq,...} generically to
denote unit vectors in R”, when p is clear from the context. Fi-
nally, for positive real numbers A, B, we write B 77 A if there
exists an absolute positive constant ¢, independent of the model
parameters, such that B > cA.

II. MODEL FORMULATION AND ESTIMATION PROCEDURE

Consider a VAR(1) model where the transition matrix B is
low-rank plus structured sparse given by

)
3

where L* corresponds to the low rank component and R* rep-
resents either a sparse S*, or group-sparse component G*. It
is further assumed that the number of non-zero elements in
the sparse case is ||S*||p = s, while in the group sparse case the
number of non-zero groups is | G*||2.0 = g, withr < p, s < p?
and g < p?. The matrix L* captures persistence structure across
all p time series and enables the model to be applicable in set-
tings where there are strong cross-autocorrelations, a feature
that the standard sparse VAR model is not equipped to han-
dle. The sparse or group sparse component captures additional
cross-sectional autocorrelation structure among the time series.

X' =BX'4é, &K N©, D),
B=L"+R" rank(L") =,
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Finally, it is assumed that the error terms are serially uncorre-
lated. Our objective is to estimate L* and R* accurately based
on a relatively small number of samples N < p?.

Stability: In order to ensure consistent estimation, we assume
that the posited VAR model in (2) is stable; i.e. its characteristic
polynomial B(z) := I, — B’z satisfies det(B(z)) # 0 on the
unit circle of the complex plane {z € C : |z| = 1}. This is a
common assumption in the literature of multivariate time series
[7], required for consistency and asymptotic normality of low-
dimensional VAR models. This assumption also ensures that the
spectral density of the VAR model

1
Cor

is bounded above in spectral norm.

It was shown in [8] that this condition is sufficient to establish
consistency of regularized VAR estimates of a sparse transition
matrix. Further, the following quantities play a central role in
the error bounds of the regularized estimates:

fx(0)= 5 (B (") S (B ()", O [-mal, @

M(fx) = P Amax (fx (6)),
m(fx) = S Awin(fx (9)),
i (B) = 3 Ay (B'(2)B(2)),
tmin(B) = min Auin (B(2)B(2)) 5)

As shown in [8], M(fx) and m(fx) together capture the
narrowness of the spectral density of a time series. Processes
with stronger temporal and cross-sectional dependence have
narrower spectra that in turn lead to slower convergence rates
for the regularized estimates. For VAR models, M(fx) and
m(fx ) are related to pimax (B) and pimi, (B) as follows:

< i Amax (ZE)
T 27 ,Ufmin(B) .

Proposition 2.2 in [8] provides a lower bound on fiyi, (B).
For the special structure of the models considered here, we can
get an improved upper bound on fiy . (B), as shown in the
following lemma:

Lemma I1.1: For a stable VAR(1) model of the class (2), we
have

1 Amin (EE )

m(fx) = o— » M(fx) (6)

Hmax <B> S [1 + l + (Uin + Uouf)/2]2 (7)

where [ is the largest singular value of L*, v;, = maxi<;<,
1 |sz‘ and vo,y = maxi<i<p Z?:l |Rf]|
Proof: ||B(2)|=1 — (L* + R*)z|| < [I]| + [|1L7|| + || 7]
for any z € C with |z| = 1. The result follows from the fact
that fiyay (B) = max).|—; I1B(2)|>. [ |

A. Estimation Procedure

The estimation of VAR model parameters is based on the
following regression formulation (see [7]). Given T+ 1 con-
secutive observations { X", ..., X7} from the VAR model, we
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work with the autoregressive design as follows:
(XT)/ (XTfl)/ (ET)/
: = : B+ : . (8)
(Xl)/ (XO) (61)/
———
y X E

This is a standard regression problem with N =T samples
and ¢ = p? variables. Our goal is to estimate L*, R* with high
accuracy when N < p?.

There is an inherent identifiability issue in the estimation of
the components L* and R*. Suppose the low-rank component
L* itself is s-sparse or g-group sparse and the sparse or group-
sparse component R* is of rank r. In that scenario, we can not
hope for any method to estimate L* and R* separately without
imposing any further constraints. So, a minimal condition for
low-rank and sparse (or group-sparse) recovery is that the low
rank component should not be too sparse and the sparse (group-
sparse) component should not be low-rank.

This issue has been rigorously addressed in the literature (e.g.
[18]) for independent and identically distributed data and re-
solved by imposing an incoherence condition. Such a condition
is sufficient for exact recovery of the low rank and the sparse
or group-sparse component by solving a convex program. In a
recent paper, [19] showed that in a noisy setting where exact
recovery of the two components is impossible, it is still pos-
sible to achieve good estimation error under a comparatively
mild assumption. In particular, they formulated a general mea-
sure for the radius of non-identifiability of the problem under
consideration and established a non-asymptotic upper bound
on the estimation error || — L*||% + || R — R*||%, which de-
pends on this radius. The key idea is to allow for simultaneously
sparse (or group-sparse) and low-rank matrices in the model,
and control for the error introduced. We refer the readers to
the above paper for a more detailed discussion on this notion
of non-identifiability. In this work, the low-rank plus sparse
(group-sparse) decomposition problem under restrictions on the
radius of non-identifiability takes the form

(L,R) = argmin I(L,R),

L,Re RP*»
LeQ

1
l(L,R) = 5 ||y - X(L + R)H% + )\NHLH* + MNHRHQ

©)
Here  ={L € R”7 : [|L||max < &} (for sparse) or {L €
RPP || L||2max < \/[—%} (for group sparse), || - || represents

[l - |li or || - ||2,1 depending on sparsity or group sparsity of R,
and Ay and py are non-negative tuning parameters controlling
the regularizations of low-rank and sparse/group-sparse parts.
The parameters « and 3 control the degree of non-identifiability
of the matrices allowed in the model class. For instance, larger
values of o provide sparser estimates of .S and allow simulta-
neously sparse and low-rank components to be absorbed in L.
A smaller value of «, on the other hand, tends to produce a
matrix L with smaller rank and pushes the simultaneously low-
rank and sparse components to be absorbed in S. In practice,
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we recommend choosing «v and (3 in the range [1, p] and [1, K],
respectively. The issue of selecting them robustly in practice is
discussed in Section V.

Remark: On certain occasions, it may be useful to have both
sparse and group-sparse components in the model, in addi-
tion to the low rank structure. We then have R* = S* 4+ G*
in (9) with [|[R|l. = [[S[[x + ;2[|G[|2,1. However, to guarantee
the simultaneous identifiability of the sparse and group-sparse
components from the low-rank component, stronger conditions
need to be imposed on L; namely, @ = {L € R?*? : || L[| yax <
% & HLHQ,max S \/% .

Remark: Note that the estimated VAR model is not guaran-
teed to be stable, although the error bound analysis in Section III
ensures its stability with high probability, as long as the sample
size is large enough and the true generative model is stable. For
network reconstruction and visualization purposes, stability of
the estimated VAR is not strictly required. However, enforcing
stability is essential for forecasting purposes. When there is a
small deviation of the estimated model from stability (e.g the
spectral radius of the estimated B is a little over 1), stability
can be enforced through a post-processing step of shrinking the
moduli of eigenvalues of Bbelow 1, while keeping its eigenvec-
tors unchanged. This type of projection argument is common in
covariance and correlation matrix estimation with missing data
for ensuring positive definiteness of the estimates [41]. How-
ever, in case of moderate to large deviation from stability, a
closer look at the individual time series is recommended to
re-assess the validity of the VAR formulation. For example, in
macroeconomics, it is customary to use suitable transformations
of the component time series to ensure that each of the individual
time series and the resulting VAR model is stable, as opposed
to modeling the individual and the joint time series (without
transformation) as unit root and co-integrating processes. For
instance, see [39], [40] for specific recommendations on useful
transformations for macroeconomic time series.

III. THEORETICAL PROPERTIES OF THE ESTIMATES

Next, we derive non-asymptotic probabilistic upper bounds
on the estimation errors of the low-rank plus structured sparse
components of the transition matrix B. The main result shows
that consistent estimation is possible with a sample size of the
order N = p M?(fx)/m?(fx), as long as the process {X'}
is stable and the radius of nondentifiability, as measured by
|IL*||max and/or ||L*||2,max. is small in an appropriate sense
detailed next.

To establish the results, we first consider fixed realizations of
X and F and impose the following assumptions:

1) Restricted Strong Convexity (RSC): There exist ¢ > 0 and
7y > 0 such that

1
LIXALR = SIAIR — v #2(A), forall A € W

where ®(A) = inf, . roa {Av||L]l« + pn || R||o}, and
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2) Deviation Conditions: There exists a deterministic function
¢(B, X,) of the model parameters B and ¥, such that

||X’E/N||2 < ¢(B7E€) \Y% p/N7 and

2logp
N
Vmlog K
N

where m is the size of the largest group max; <<y card(Gy,).
Later on, we show that assumptions 1) and 2) are indeed sat-
isfied with high probability when the data are generated from
model (2).

Next, we present the non-asymptotic upper bounds on the
estimation errors of the low-rank plus structured sparse compo-
nents, respectively.

Proposition 1: (a) Suppose that the matrix L* has rank at
most r, while the matrix S* has at most s nonzero entries.
Then, for any Ay > 4[|X"Ell; and iy > 4| X E|[max + %,

any solution (L, S) of (9) satisfies

|X'E/N ||lmax < ¢(B, %) and

||‘X,E/N||2-,max < ¢(B7Ee)

. . N . 4 (9
12— L 415 - 51 < 25 (52 + i),
(b) Suppose that the matrix L* has rank at most r, while the
matrix G* has at most g non-zero groups. Then, for any Ay >
4|X By and puy > 4HX/E||27max + f/%, any solution (L, )
of (9) satisfies

I~ L 411G - 6713 < 5 (30 + o)

Remark: 1t should be noted that if each group in G* has
only one element, then we have K = p* and g non-zero entries.
For such cases, part (b) of Proposition 1 becomes identical to
part (a).

As a byproduct, we also give the estimation error bound of
the transition matrix which can be characterized by the sparse
plus group-sparse and the low-rank plus sparse and group-sparse
components, respectively, under the assumption that the strength
of the connections in the group-sparse component G is weak;
ie. G € U with ¥ ={G € R"" : ||Glmax < 7}, where v €
[1,p].

Proposition 2: (a) Suppose that the matrix S* has at most
s nonzero entries, while the matrix G* has at most g non-
zero groups. Then, for any py > 4||2€/EHmax + % and vy >

4| X" E||2.max» any solution (S, G) of (9) satisfies

R A * * 4
IS +G— 8" =G| < 47(8M?v8+9m%/9)~

(b) Suppose that the matrix L has rank at most r, while the
matrix S has at most s nonzero entries and the matrix GG has at
most g non-zero groups. Then, for any Ay > 4[|X /E||2, N >
X Ellmax + B& + B2 andvy > 4| X El|2,max + 52, any
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solution (L, S, G) of (9) satisfies
IL = L3 + 15 + G = 5" = G|

4 25
< o <9A?\,r+ 2u§vs+81/12\,g> .

See Appendix A for detailed proofs of Propositions 1 and 2.

Note that the objective in Proposition 2 is not the accurate
recovery of the S* and G* components separately. The latter
can be in principle achieved, if one sets y to a very small value.

In order to obtain meaningful results in the context of our
problem, we need upper bounds on | X'E|s, ||X"E||max and
[|X"El|2,max and a lower bound on A, (X’ X) that hold with
high probability. For the case of independent and identically
distributed data, such high-probability deviation bounds are es-
tablished in [19]. However, for time series data all entries of the
X matrix are dependent on each other, and hence it is a non-
trivial technical task to establish such deviation bounds. A key
technical contribution of this work is to derive these deviation
bounds, which lead to meaningful analysis for VAR models.
The results rely on the measure of stability defined in (5) and an
analysis of the joint spectrum of {X'~'} and {¢'} undertaken
next.

Proposition 3: Consider a random realization of {X", ...,
X T} generated according to a stable VAR(1) process (2) and
form the autoregressive design (8). Define

1+ Hmax (B) :|
HMmin (B)

Then, there exist universal positive constants ¢; > 0 such that

S(B, %) = Amax (5) [1 N

1) for N = p,
X'E
P [H alh > CO¢(B?EG)\/§:| < crexp [~z log p]
and for any N = log p,
x'E log p
P B, %,
2], > womzoy22]

< ¢y exp [—e2 logp]

and for N 7Z mlogp,

X'E vml
P H > cop(B, 5) YL
N 2, max N

< ¢y exp [~ log p]
2) for N Z pM?(fx)/m?(fx),

X/X Amin(ze)
P Amin
{ < N > ~ 2pimax (B)

See Appendix B for the detailed proof of Proposition 3.

Applying the above deviation bounds to the non-asymptotic
errors of Propositions 1, we obtain the final result for approxi-
mate recovery of the low-rank and the structured sparse compo-
nents using nuclear and ¢; /¢5 ; norm relaxations, as we show
next.

| < rom s s
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Proposition 4: Consider the setup of Proposition 3. There
exist universal positive constants ¢; > 0 such that for N 7
pM2(fx)/m2(fx ), and || L*||max < a/p, any solution (L, S)
of the program (9) satisfies, with probability at least 1 —
¢1 exp[—es log pl,

CO¢2 (B> E‘)MIQHQX (B)

& * 12 7 *(|12
— L—L <
19 8"l + 1 - L7 < =

) ) (10)
(rp+ slogp) = 32A;,,(2) sa

N s (B) PP

Remark: The error bound presented in the above proposition
consists of two key terms. The first term is the error of estima-
tion emanating from randomness in the data and limited sample
capacity. For a given model, this error goes to zero as the sam-
ple size increases. The second term represents the error due to
the unidentifiability of the problem. This is more fundamental
to the structure of the true low-rank and structured sparse com-
ponents, and depends only on the model parameters and does
not vanish, even with infinite sample size.

Further, the estimation error is a product of two terms - the
second term (rp + slogp)/N involves the dimensionality pa-
rameters and matches the parametric convergence rate for inde-

pendent observations. The effect of dependence in the data is
00¢2(BQ,Zs)Nimx(B)

min e

As discussed in [8], this term is larger when the spectral density
is more spiky, indicating a stronger temporal and cross-sectional
dependence in the data.

Proposition 5: Consider the setup of Proposition 3. There
exist universal positive constants ¢; > 0 such that for N 7
pM?2(fx)/m?(fx), for any G with || L*||o,max < 8/VK, any
solution (ﬁ, G‘) of the program (9) satisfies, with probability at
least 1 — ¢y exp[—cy log p),

captured through the first part of the term:

. . 2(B, X ) pd . (B
||G—G*H%+HL—L*”% < CO¢( ) ):umax( )

B Algnin(zﬁ)
) ) an
(’I"p + g(m 1ng)) 32Amin(z€) ﬂ
N Mo (B) K

See Appendix B for detailed proofs of Propositions 4 and 5.
Remark: Based on Proposition 5, analogous conclusions can
be obtained to those for the low rank plus sparse case.

IV. COMPUTATIONAL ALGORITHM AND ITS
CONVERGENCE PROPERTIES

Next, we introduce a fast algorithm for estimating the transi-
tion matrix B from data. For ease of presentation and to convey
the key ideas clearly, we first present the algorithm for B rep-
resenting a single structure (e.g. only low rank, or only group
sparse, or only sparse), and in addition establish its convergence
properties. Subsequently, we modify the algorithm to handle the
composite structures considered in this paper and also establish
its convergence.

The fast network structure learning (FNSL) Algorithm 1 is
described next. A safeguarded BB initial value is selected, as



1212

Algorithm 1: Fast Network Structure Learning (FNSL)
method.
Choose C' > 0,0 > 1,791 > Nmin- Set oy = 1, B} = By,

and 1 = 0.
Fori=1,2,... k, 1.
/IBacktracking

1) Set n; = a;no,;, where 1 ; is from (12). Solve «;

1 _ l—ay -
from ST T e for 7 > 1. Compute

B;”d = (]. — ai)Bfg + CVZ'B,L',

By = arg 1rnin{<Vl(B{”d)7 B)
B
+ 2B = Bill} + Py (BN},

Q;
I; =||Bis1 — Bil|” — ;HX(BHl - Bi)ll%,

1\2
Qiv1 =6iQ; + 1, where0 < 3; < (1 - z) .

2) If Qi1 < —C/i?, then replace 1 ; by o7 ; and
return to step 1.
//Updating iterates

3) Compute

B:lfl = (1 — OéZ)B:“] + aiBi+1-

EndFor
Output B;Y .

the initial choice of the nominal step 7;, i.e.

| X(B; — Bi—1)|%
|Bi — Bi-1|%

No,; = mMax {nrnin’ } fOr Z > 1. (]2)

For notational convenience, the penalty term for estimating the
transition matrix B is denoted by Pg (B, \), where A > 0 de-
notes the tuning parameter. The specific B;; update depends
on the employed penalty term; for an ¢; penalty inducing spar-
sity, it corresponds to soft-thresholding [27], for a group sparse
penalty to group soft-thresholding [20], while for a nuclear norm
penalty to singular value thresholding [28].

It can also been seen from Algorithm I, that for o; =1
for V i > 1, then B"? = B; and B}/, = Bj11, which leads
to the traditional gradient descent algorithm. Indeed, Algo-
rithm 1 is obtained by incorporating an efficient backtrack-
ing strategy into the accelerated multi-step scheme by [29],
[30]. It provides a different way to look for a larger step-
size by employing a relaxed line search condition, instead of
searching for the gradient Lipschitz constant of the data fi-
delity term. Steps 1 and 2 constitute the backtracking ones.
Both B¢ and B{ are linear combinations of all past iter-
ations of B;, but based on different weights as can be seen
from their updates, i.e. B = (1 — o;_1)B}Y; + a;_1 B; and
B" = (1 — «;)B}Y + «; B;. Here ‘ag’ simply denotes ‘aggre-
gate’. The data fidelity term in the cost function is linearized at
B". Since it is used after we have obtained B{'¢ and before we
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obtain B, 1, we use ‘md’ to denote a ‘middle’ update. Further,
I'; and Q; are the parameters most closely related to our line
search conditions. Intuitively, if we set I'; > 0, we are certainly
able to guarantee the accelerated rate of convergence. However,
this will render the stepsize smaller. Fortunately, our conver-
gence analysis enables us to relax this condition by utilizing the
summing up procedure, with Q; corresponding to the part of the
sum of I';. Thus, we can impose a relaxed termination condition
on ; (see step 2 of Algorithm 1) without impacting the rate
of convergence while being able to obtain a more aggressive
stepsize. In fact, parameter C' in Step 2 plays an important role,
i.e. the number of the trial steps can be reduced significantly
when a relatively larger C' is selected. However, the value of C'
can not be too large either, since it might impair the convergence
rate in terms of the objective function value.

The convergence rate of Algorithm 1 is established next.

Proposition 6: Let {B}Y} be generated by Algorithm 1.
Then, for any & > 1

20| X|3||By — B|% + C
(k+1)?

1(BY

1) —U(B) < (13)

where C is a finite positive number independent of k.

See Appendix C for its detailed proof. It should be noted that
the convergence rate of { Bj;1 } is still an open problem, which
needs to be addressed further in future, considering its good
performance for some cases.

Next, we enhance the algorithm for solving (9) in the gen-
eral case. The accelerated convergence rate can be obtained by
following the proof of Proposition 6. Similarly to the case in
Algorithm 1, the initial trial step of n; is a safeguarded BB
choice

) T . 2
||X(L7 + R; L szl)”F } (14)

Mo, = maX{nminv ||LZ +Rz‘ — Lifl — Rz?lH%

The update of the L component is based on singular value
thresholding, while that of the R component on (group) soft-
thresholding. Note that the most expensive computational op-
eration corresponds to the singular value decomposition (SVD)
when updating L;. ;. As mentioned earlier, the proposed algo-
rithm is able to look for larger magnitude step sizes by con-
ducting fewer number of line searches, due to employing more
relaxed line search conditions. Actually, this is an important im-
provement considering the computational cost of SVD. Indeed,
the efficiency of the proposed algorithm can be enhanced further
if we employ the truncated SVD [32] instead of the full SVD.

The convergence rate of the proposed Algorithm 2 (given in
supplement due to limited space) is established next.

Proposition 7: Let (L}% |, R}% | ) be a sequence of updates
generated by Algorithm 2. Then, for any £ > 1

UL Bydy) — UL, R)

_ 20| XIB (Lo — LIlF + 1B — RIIF) +C
- (k+1)2

5)

where C is a finite positive number independent of k.
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TABLE I
PARAMETER SETTINGS IN THE PROPOSED ALGORITHMS FOR
ALL THE EXPERIMENTS
Parameters | o Mmin C B
Values 2| ||X&"X]2/10 | 100 | 1/k

Proposition 7 is a direct extension of Proposition 6 and can be
obtained by following the roadmap of the proof for the former
result.

V. PERFORMANCE EVALUATION

Next, we present experimental results on both synthetic and
real data. Specifically, the first two experiments focus on large-
scale network learning with single penalty term to show the
efficiency and effectiveness of the proposed algorithms, while
the remaining ones assess the accuracy of recovering low rank
plus structured sparse transition matrices .

A. Performance Metrics and Experimental Settings

We introduce the performance metrices used in the numerical
work. For network estimation, we use the true positive rate
(TPR) and false alarm rate (FAR) defined as:

. t{bi; #0 and b;; #0}
© TPR="m A

e FAR := 0, =0
where b;; and b;; are the correspnding elemnets in B and B,
respectively. The estimation error (EE) and out-of-sample pre-
diction error (PE) are defined as

 IB-Blr
* EE:= "5,

* PE:= Y- Y[L/IIVIE

To select the optimal value of the tuning parameters, we com-
bine the three (or two or one, respectively) -dimensional grid
search method with the AIC/BIC/forward cross-validation cri-
teria. We will specify the criterion on a case by case basis for
the following experiments. In examples B and C, the tuning pa-
rameter A is selected by the AIC criterion. A grid of 100 values
in the interval [0, ||X’Y||max] is used for A. In examples D, E
and F, we utilize a two/three-dimensional grid search to select
the optimal values of Ay, py and/or vy as that for . For the
experiments employing synthetic data, the tuning parameters
are selected by assuming the rank of the true low-rank transi-
tion matrix and/or the non-zero group-sparse components of the
true group-sparse transition matrix are known. We will specify
the forward cross-validation procedure for the real data case in
example G.

For all the experiments, the parameters used in the proposed
algorithms are depicted in Table 1. Also we set ¥, = €21 and
€2 = 1. We rescale the entries of B to ensure stability of the
process (the spectral radius p € (0.45,0.95). All the results are
based on 50 replications. Finally, all algorithms are run in the
MATLAB R2015a environment on a PC equipped with 12GB
memory.
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TABLE II
PERFORMANCE COMPARISON OF FNSL WITH A VARIANT OF FISTA ON A
LARGE-SCALE SPARSE NETWORK STRUCTURE LEARNING PROBLEM

P N | method | (TPR, FAR)(%) | EE | T
lo0o |_FISTA | (885, 14.4) | 0227 119

FNSL (88.6, 13.9) | 022 | 6.1

FISTA | (90.8, 12.3) | 0.17 | 14.7

800 1 1500 —Rsr (90.7, 12.0) | 0.17 | 8.2
5000 |_FISTA | (913, 11.0) | 0.14 | 176

FNSL (913, 11.3) | 0.14 | 10.8

lo0o |_FISTA | (878,150) | 0.24 | 13.1

FNSL (878, 14.7) | 024 | 7.2

FISTA | (89.1, 10.7) | 0.19 | 163

90011500 I —ERsr (89.1, 10.5) | 0.19 | 8.7
5000 |_FISTA | (909, 12.0) | 0.16 | 20.7

FNSL (909, 11.8) | 0.16 | 13.5

l00p |FISTA | (885,152) | 025 | 186

FNSL (884, 14.8) | 025 | 11.2

FISTA | (903, 14.1) | 020 | 215

100011500 | —er (90.2, 13.8) | 0.20 | 12.8
2000 |_FISTA | (012, 12.) | 0.16 | 247

FNSL (012, 124) | 0.16 | 15.1

B. Large-Scale Sparse Network Learning

We start by comparing the performance of the proposed algo-
rithm 1 with FISTA with line search [33] to solve problem (9)
with a sparse transition matrix.

We consider three different VAR(1) models with p =
800, 900 and 1000 variables. For each of these models, we
generate N = 1000, 1500, and 2000 observations from a Gaus-
sian VAR(1) process (2). The p x p transition matrix B with
sparsity is generated in the following way. First, the topology
is generated from a directed random graph G(p, £), where the
edge from one node to another node occurs independently with
probability £ = 10/p. Then, the strength of the edges is gener-
ated independently from a Gaussian distribution. This process
is repeated until we obtain a transition matrix B with a desired
spectral radius p. We compare TPR, FAR, EE, and computa-
tional time (denoted by 7).

Table II shows the experimental results for sparse network
structure with different network size p and sample size N. It
can be seen that the proposed algorithm performs similarly to
FISTA in terms of TPR, FAR, and estimation error. To show
the efficiency of the proposed algorithm, we also compare the
computational time in seconds in terms of the convergence of
the objective function value. Clearly, the proposed algorithm
outperforms FISTA in efficiency, especially when the network
and sample size become larger. This is mainly due to the relaxed
line search scheme, as previously discussed. To further support
our claim, we also show the graphs of the decreasing objective
function value vs. CPU, see Fig. 1 when p = 1000 and N =
2000.

Table III shows comparisons between a variant of FISTA and
FNSL in terms of objective function values, CPU time in sec-
onds and the number of matrix products for a network of size
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Fig. 1. Performance comparison of a variant of FISTA and the proposed
algorithm: plotting the objective function values vs. CPU time for sparse network
learning problem with p = 1000 and N = 2000.

TABLE III
COMPARISON OF OBJECTIVE FUNCTION VALUE, CPU TIME IN SECONDS, AND
THE NUMBER OF MATRIX PRODUCTS (AX) FOR A VARIANT OF FISTA AND
FNSL ON A SPARSE NETWORK STRUCTURE FOR DIFFERENT SAMPLE SIZES

Algorithms Objective value CPU AX
p = 1000, N = 1000
FISTA 4.140e+5 18.6 66
FNSL 4.089e+5 112 44
p = 1000, N = 1500
FISTA 6.137e+5 215 62
FNSL 6.071e+5 12.8 38
p = 1000, N = 2000
FISTA 8.239e+5 247 66
FNSL 8.169e+5 15.1 41

p = 1000 with sample size 1000, 1500 and 2000, respectively.
For each data set, FISTA needs around 30 iterations to reach
convergence and the total number of line searches is 3 for all
iterations, while FNSL needs no more than 20 iterations and
the total number of line searches is no more than 4 for all itera-
tions. This illustrates the computational savings of the proposed
algorithm.

C. Network Learning With a Low-Rank Transition Matrix

To further show the efficiency of the proposed algorithms, we
compare the performance of a variant of FISTA [34] and FNSL
on estimating low-rank transition matrices.

We consider three different VAR(1) models with p = 200,
300 and 400 variables. For each of these models, we generate
N = 400, 1200, and 2000 observations from a Gaussian VAR(1)
process (2). The p x p low-rank transition matrix B is generated
withrank |p/25] 4 1. Subsequently, we rescale the entries of B
to ensure the spectral radius p lies in (0.45,0.95). We compare
the rank of the estimated transition matrix, denoted by 7, EE,
and computational time 7.

Table IV shows the experimental results for low-rank network
structure with different network and sample size. Both FISTA
and the proposed algorithm achieve good recovery of the tran-
sition matrix B with the correct rank and they have similar
performance in terms of estimation error. Clearly, the proposed
algorithm outperforms FISTA in efficiency for this case as well.
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TABLE IV
PERFORMANCE COMPARISON OF A VARIANT OF FISTA AND FNSL ON
ESTIMATING LOW-RANK TRANSITION MATRICES PROBLEMS

p N method | 7 EE T
400 FISTA | 8 | 0.80 | 4.9
FNSL | 8 | 0.80 | 3.4

FISTA | 8 | 0.63 | 9.7

200 1 1200 FNSL | 8 | 0.63 | 6.9
FISTA | 8 | 0.57 | 142

2000 FNSL | 8 | 0.57 | 10.5
400 FISTA | 12 | 0.84 | 7.8
FNSL | 12 | 0.84 | 5.7

FISTA | 12 | 0.72 | 16.1

300 1 1200 FNSL | 12| 0.72 | 11.7
FISTA | 12 | 0.68 | 18.2

2000 FNSL | 12 | 0.68 | 13.8
400 FISTA | 16 | 0.87 | 8.5
FNSL | 16 | 0.87 | 5.9

FISTA | 16 | 0.82 | 20.5

400 1 1200 FNSL | 16 | 0.82 | 174
FISTA | 16 | 0.75 | 314

2000 FNSL | 16 | 0.75 | 25.1

Fig. 2. Performance comparison of a variant of FISTA and the proposed
algorithm: plotting the objective function values vs. CPU time for a low-rank
transition matrix estimation problem with with p = 400 and N = 2000.

The graphs of the decreasing objective function value vs. CPU
are depicted in Fig. 2.

The first two experiments focused on computational effi-
ciency of the proposed algorithms, while retaining good network
estimation properties. Next, we demonstrate their accuracy for
learning structured sparse networks.

D. Sparse Plus Low-Rank Network Learning

Next, we investigate estimation of sparse plus low-rank tran-
sition matrices and compare it to ordinary least square (OLS)
and lasso estimates.

We consider three different VAR(1) models with p = 50, 75
and 100 variables. For each of these models, we generate N =
100 and 200 observations from the model defined in (2) where B
can be decomposed into a low-rank matrix L of rank [p/25] + 1
and a sparse matrix S with 2-4% non-zero entries. We rescale
the entries of B to ensure stability of the process (the spectral
radius is set to p(B) = 0.7). We compare the estimation and
out-of-sample prediction errors. The number of out of samples
is set to 10.
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TABLE V
TRUE POSITIVE RATE AND FALSE ALARM RATE OF THE L+S MODEL ON
IDENTIFYING THE SPARSE COMPONENT S WITH DIFFERENT ¢

o | (TPR, FAR)(%)

p/I8 | (845, 17.4)
p/A | (824, 17.2)
P2 | (804, 17.5)

P (732, 17.1)
2p | (547, 17.0)
4p | (402, 17.8)
8p | (227, 17.4)

TABLE VI
PERFORMANCE COMPARISON OF L+S WITH OLS AND LASSO

p | N [ model | (TPR, FAR)(%) | EE | PE
OLS ) 0.84 | 0.72

100 | Lasso | (73.2,30.0) | 0.69 | 0.53

<0 L+S | (76.3,18.9) | 0.48 | 0.47
OLS ) 052 | 041

200 | Lasso | (77.3,35.0) | 0.57 | 045

L+S | (804, 17.5) | 0.31 | 0.36

OLS ) 0.75 | 0.37

100 | Lasso | (71.0, 247) | 0.75 | 0.37

- L+S | (79.0,18.0) | 0.51 | 0.29
OLS ) 053 | 0.18

200 | Lasso | (77.0, 28.6) | 0.67 | 0.22

L+S | (83.8,183) | 0.36 | 0.16

OLS ) 37 | 40

100 | Lasso | (57.3,29.0) | 1.06 | 1.05

100 L+S | (52.3,20.1) | 092 1.0
OLS ) 207 | 1.73

200 | Lasso | (59.4,255) | 0.86 | 0.95

L+S | (604, 20.5) | 0.72 | 0.90

First, we study the influence of « in (9) on this learning prob-
lem with p = 50 and N = 200. From Table V, that a smaller
« parameter leads to markedly improved identification of all
the true nonzero entries in the sparse component, which conse-
quently leads to better separating the sparse component S from
the low-rank component L.

The corresponding estimation errors are reported in Table VI.
In all three settings, we find that the low-rank plus sparse VAR
estimates outperform the estimates using ordinary least-squares
(OLS) and lasso, as expected. We observe that as the ratio of
N/p increases, OLS may produce lower estimation error than
lasso, even though the OLS model is not interpretable for this
case. Further, we note that the estimation errors of all three
methods decrease with increasing sample sizes as expected
and predicted by theory. In addition, we illustrate how the
squared Frobenius norm error in Proposition 4 of the VAR
model with low rank plus sparse transition matrix scales with
the sample size N and dimension p, when the rank r of B
is fixed. The network size p is set to 50,100, 150 and 200,
respectively, while the rank r is fixed to be 2 for all p. Sparsity
s and ¢ are defined similarly as above, while the sample size is
set to N € (150,5500). The squared Frobenius norm error of
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estimation given by || S — S||% + ||L — L||% is depicted in Fig. 3,
which displays the errors for different values of p, plotted
against the sample size N. As predicted by our theoretical
result, the error is larger for larger p. Fig. 4 displays the error
against the rescaled sample size N/(slog(p) + rp). it can be
seen that the corresponding error curves for different values
of p align well, which is consistent with the estimation error
obtained in Proposition 4.

In addition to its improved estimation and prediction perfor-
mance, the low-rank plus sparse modeling strategy aids in recov-
ering the underlying Granger causal network after accounting
for the latent structure. In Figs. 5, we demonstrate this using
a VAR(1) model with p = 50 and n = 200. The top panel of
the Figs. 5 displays the true transition matrix B, its low-rank
component L and the structure of its sparse component S. The
bottom panel of the Figs. 5 displays the structure of the Granger
causal networks estimated by the method of Lasso and the low-
rank plus sparse modeling strategy. As predicted by the theory,
it can be that the lasso estimate of the Granger causal network
selects many false positives due to its failure to account for the
latent structure. On the other hand, the sparse component S' pro-
vides an estimate exhibiting significantly fewer false positives
entries.

It is interesting to note that the estimation performance of
the regularized estimates in low-rank plus sparse VAR models
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of its sparse component S and its low-rank component L. The bottom panel displays the structure of the Granger causal networks estimated by lasso (B Lasso)s
the low-rank plus sparse modeling strategy (S) and the estimated low-rank component (L).

is worse than the performance of lasso in sparse VAR models
of similar dimension [8], even for the same sample sizes. This
is in line with the error bounds presented in Proposition 4. The
estimation error in low-rank plus sparse models is of the order
of O(rp + slogp)/N, while the error of lasso in sparse VAR
models scales at a faster rate of O(slogp/N). Further note that
a s-sparse VAR requires estimating s parameters in .S, while the
presence of r factors introduces an additional rp parameters in
the loading matrix A.

E. Sparse Plus Group-Sparse Plus Low-Rank Network
Learning

Finally, we conduct numerical experiments to assess the per-
formance of low-rank plus sparse plus group-sparse modeling
in VAR analysis and compare it to the performance of sparse
plus group-sparse and low-rank plus sparse estimates.

We consider three different VAR(1) models with p = 50, 100
and 150 variables. For each of these models, we generate N =
200 and 300 observations from the Gaussian VAR(1) process
defined in (2), where B can be decomposed into a low-rank
matrix L of rank |p/25] + 1, a sparse matrix .S with 2-4% non-
zero entries, and a group-sparse matrix G with each column
corresponding to a different group for a total of p groups. We
rescale the entries of B to ensure stability of the process (the
spectral radius is set to p(B) = 0.7) and compare the estimation
and out-of-sample prediction errors, with the number of out-
samples set to 10.

The corresponding estimation errors are reported in Table VII.
In those three settings, we find that the low-rank plus sparse plus
group-sparse VAR estimates performs only slightly better than
low-rank plus sparse VAR estimates. One of the reasons lie in

TABLE VII
PERFORMANCE COMPARISON OF L+S+G WITH S+G AND L+S

p | N | method | (TPR, FAR)(%) | EE | PE
S+G (855, 34.1) | 046 | 0.53

200 [ L+S (82.6, 26.4) | 041 | 051

s [+5+G | (83.3,26.9) | 0.41 | 0.51
S+G (1.7, 47.0) | 037 | 0.58

300 [ L+S (88.6, 24.4) | 031 | 0.56
L+S+G | (90.6, 24.9) | 0.30 | 0.56

S+G (92.3,49.9) | 048 | 0.73

200 [ L+S (843,284) | 044 | 0.2

100 L+S+G | (85.3,27.3) | 0.44 | 0.72
S+G (94.8,49.0) | 044 | 0.72

300 [ L+S (89.6, 25.4) | 0.37 | 0.70
L+S+G | (90.0,25.1) | 0.36 | 0.70

S+G (92.0, 50.5) | 0.64 | 0.73

200 | L+S (833, 28.8) | 057 | 0.71

150 L+S+G | (84.0,28.1) | 0.55 | 0.70
S+G (93.6, 50.2) | 0.55 | 0.71

300 [ L+S (85.6, 27.4) | 046 | 0.68
L+S+G | (86.4, 27.6) | 0.46 | 0.68

that the ability of the identification will degrade as more struc-
tures are involved. The other one is that multiple-times shrinkage
for the multiple structures lead to severe bias estimation. Even
though the group structures can be recovered completely, some
non-zero elements in the sparse component vanished. An ad-
hoc way to improve the performance for this case is to combine
these two methods together. However, both methods outper-
form the estimates using sparse plus group-sparse VAR. We also
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Fig. 6.

Estimated Granger causal networks based on L+S estimates. The left panel depicts the structure of the Granger causal network of the estimated sparse

component S in the pre-crisis period and has 298 edges, the middle during the crisis and has 592 edges, while the right panel in the post-crisis periods and has 345

edges.

observe that, as the ratio of N/p increases, the estimation errors
of all three methods decrease with increasing sample sizes, as
expected and predicted by theory.

F. Structured Network Learning of Asset Pricing Data

Finally, we employ the proposed framework to learn Granger
causal networks of asset pricing data obtained from the Uni-
versity of Chicago’s Center for Research in Security Prices
(CRSP) and retrieved from the Wharton Research Data Service
(WRDS). Specifically, we examine the network structure of real-
ized volatilities of financial institutions representing banks (BA),
primary broker/dealers (PB) and insurance companies (INS).
The analysis was performed across the following time periods:
September 2002—August 2005, September 2006—August 2008
and September 2010—August 2012 that correspond to instances
before the financial crisis of 2008 (pre-crisis period), the build-
up and apex of the crisis and the post-crisis period, respectively.
For each period, we collected data on 75 firms with 25 compa-
nies in each of the three categories - BA, PB and INS based on
the size of the average market capitalization of each firm, but
dropped a few due to duplicate/missing observations. The final
form of the variables used are based on the log transformation of
the difference between the highest and lowest stock price during
a day that acts as a proxy for realized volatility and subsequently
detrending it.

To select the tuning parameters, we employ the following for-
ward cross-validation procedure: (1) We use a time window of
length W, the available number of time points in the data. Then,
starting from time ¢, we use the most recent W observations to
estimate BB and denote the transition matrix estimate by B,. We
use the next W’ observations (right after W observations) to val-
idate B;. (2) We select the optimal tuning parameters (X, fy)
so that

m

1

25 t=>500+25%i

A ,,u, ;) = arg min Err(B,
NN

where E’I"’I"(Bt) = Hyw’/ — XVV’BtH%T and i = 0,

In our analysis, we set W = 500 and W' = 50. Further, to
separate the sparse component from the low-rank component as
much as possible, we set « = p/10. The learned Granger causal
network structures (the sparse component S) estimated by a

sparse plus low-rank model are depicted in Fig. 6. It can be seen
that even in the presence of a low-rank component, the sparse
component exhibits a certain density (about 5% in the pre-crisis
period, rising to 10% during the crisis and dropping down to
about 6% in the post-crisis period). This increased connectivity
during the crisis period has been observed in Granger causal
networks for log-returns as well [4]. In the Supplement, we also
provide the Granger causal network structures estimated by only
assuming sparsity of the transition matrix B (see Supplement
Fig. 5). A similar increased connectivity pattern is observed
during the crisis period. Also note that after accounting for the
low-rank component, the estimated sparse component is signifi-
cantly more sparse than that estimated by a lasso approach, thus
enabling us to better examine specific firms that are key drivers
in the volatility network.

VI. DISCUSSION

Our modeling and technical developments were based on a
VAR(1) model. However, it can be generalized to VAR(d) mod-
elsin different ways, depending on the context of the application.
One possible formulation where the low rank component stays
the same across lags can be expressed as

d
Xy =Y (L+85)X; ¢+
=1

This model can be posed as a 1-order (L+S) model on the con-

catenated process X; = [X,, X, ... . X, 4.1)" using the
standard transformation [7]:
X, L L ... L X1
X1 0 0 ... 0 X9
X4 0 0 ... 0 X g1
X, L X
Sl 52 e Sd Xt,1 UVt
I 0 ... 0 X9 0
+ 1 . .. . ) +
0 I 0 Xi a1 0
———
S X5 Ut
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Since the matrices L and S are respectively low-rank and
sparse, our proposed algorithm can be used and the error bounds
will be applicable. Further, to maintain the special structure of
these new matrices, additional constraints can be imposed to the
posited objective function or the final estimates can be projected
to this space.

Finally, motivated by [37], [38], it would be of interest to
consider analogous developments in the frequency domain and
address identifiability issues, as well as establish finite sample
error bounds.

APPENDIX A

The proof of Proposition 1 and part (a) of Proposition 2
can be easily obtained by the following proof for part (b) of
Proposition 2.

Proof of part (b) of Proposition 2: By the optimality of

(L, S, G) and the feasibility of (L*, S*, G*), we have

1 A A o A N
IV = XL+ S+ F + AL+ px[[S]

A 1
i Gllaa < 51V - XL+ 5+ G
XL+ a1 1+ o 6 s (16)

By setting AL = [ — L*, AS = § — 6% and A® =G - G*
and combining with Y = X'(L* + S* + G*) + E, we have

%HX(AL +AS LAY < (AF + A + AC X'E)
S+ on |G [l21 — An ||L + AL,
A% 2

AN +
— 8" + A5 — vy G +

By Lemma 1 in [19] and lemma 2.3 in [35], we obtain
1 R R R R R R
IXAT + AT+ AD)E < (A" + A%+ A,

X'E) + v (1A% — 1A )

d
+2v Y oy (L) + pn (1AT 1 = 1A3 1)
j=r
+ 20 S5, I+ ow (1AF 2 = 1AS fl2.1)
+ 2un |Gy L [l21 a7
where the matrices (A, B)€{(A,B): AB' =0 & A'B = 0},

(M, M*) and (N, N*) denote an arbitrary subspace pair for
which ||S]|; and ||G||2,1 are decomposable, respectively. Since

(AP + A%+ A% X'E) < || A" .| X Elly
HNAT N Ellwax + A 12,1 [ X Ell2 max
< (1AL 1L+ NAR 11X Ellz + (1AF Il + A3, 1)

”X EHmdx + (HA ||2 1+ HA i”?.,l)HXE”?,max (18)
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Substituting (18) into (17) and recalling conditions for Ay,
and vy, we have

w

1 ~ A o
SIXAL + A%+ A9)|E < “av AL

\}

d
3 A 3 A
+ §NN||A15C1||1 + §VN||A%||2,1 + 2y Z

j=r+1
o (L*) + 2un[[Sy el + 2un |Gy e l20 19)

By the RSC condition, the constraints on L and G in (9), and
the definition of p and vy, we have

SIRAE 4 A% £ A3 > S|A 4 A + AT}
> SIAPIE + SIAS I + SIACIE — CI(A%,A%)
— (AL, A%)| - ¢(AC, A%))
> SIAME + SIATIE + SIAS I — CIA® fma A%

[\]

- <HAL ||2.,maX||AG H2,1 - CHAGHmaX”ASHI

S 6
> SALE +

_UNGAG),  — PN AS
2|| 2.2 = =~ 1A

A Cia BN A
*||AS||% + 5\\AG||% - 7|\AS||1

Inserting the above inequality into (19) we have

(HALHF +A%E + 1A)E) < )\N”A [+

3 3
+ *MNHA [+ VNIIA o1 + A5y + 2 HAGIIM

+ 2\N Z O']

j=r+1

)+ 220 (153 c 1l + 208 Gy 2

By the compatibility constant in [19], we have

¢ A A 3 ;

SUATIE+IATIE + [AC]E) < ( SAvv2r ) A%
d

5 . .
4 (30m) VBIAT e+ 20 VEIAC e+ 20 3 5(2)

j=r+1
+2p 1Sy Ml + 208 [ Gy l2.1

By our assumptions, we have

¢ A R
Z(IIALH% + AT |E + AR

< \/ @ﬁ) n (;Af> + (2%

VIALE + |AS |2 + A2

Combining with the inequality |A% |2 + [|AS + A3, <2
(JJAF )% + [|A%)% + [|AG||%), we conclude part (b) of
Corollary 2. |
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Proof of Proposition 3:
1) We seek to find upper bounds on ||X'E/N ||lmax, || X’

E/N| and || X"E/N |2 max that hold with high probabil-
ity. Note that such an upper bound for ||X"E /N ||;yax has
already been derived in [8]. Here we adopt a different
technique that takes a unified approach to provide upper
bounds on both quantities. To this end, note that the two
norms have the following representations

1 1
NHX'EH: sup Nu'X’Ev,

u,v€ SP—1
LB = sup =X
max —
N 11,1)6{(31....,(’,])}N

For any given u,v € SP~!, we first provide a bound on
u'(X'E/N)v.
Using Proposition 2.4 of [8], we obtain
P [/ (X'E/N)o| > 2mné(B,%,)]
< 6exp [—cN min{n, n*}] (20)
for any u,v € SP~! and any 1 > 0.
To derive the deviation bound on || X' E /N ||;yax, We sim-

ply take a union bound over the p? possible choices of
u,v € {e1,ea,...,e,}. This leads to

P [|X"E/Nllmax > 2m0¢(B, )]
< 6exp [—cN min{n, 7Yy +2 log p|

Since N - p, wecansetn = /(2 + ¢;) log p/cN so that
n < 1 (@.e., n? < n) will be satisfied for large enough N.
This implies that

P [HX/E/NHmax > CO¢(B7E€)] S C1 €Xp [702 lng]

for some universal constants ¢; > 0.
Similarly, for any group G; of size m,;, we have

P [lvec(X[E;/N, (r,s) € G;)| > 2m/ming(B, %)
< 6exp [ch min{n,n*} + log mi] . (21)

Taking a union bound over K non-overlapping groups G;
leads to

P |:|‘X/E/N||2,7na:v > 2”\/57%25(37 EF)]
< 6exp [—cNmin{n,n’} +logp],  (22)

where m = max;_

v/log p/N implies
P {HX’E/NHQJM‘,L, > 27r\/mlogp/N¢(B7EE)}

< ¢j exp [—eo logp] (23)

x m;. As before, setting n =

for some ¢; > 0.

To derive the deviation bound on the spectral norm, we
discretize the unit ball S?~! using an e-net A of cardi-
nality at most (1 4 2/€)”. An argument along the line of
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Supplementary Lemma F.2 in [8] then shows that for a
small enough € > 0,

sup |[W(X'E/N)v| <k sup |[u/(X'E/N)v|

u,ve Sp-1 u,ve N

for some constant x > 1, possibly dependent on e. As
before, taking a union bound over the (1 + 2/¢)?? choices
of v and v, we get

P[|X"E/N|| > 2nrn¢(B, X))
< 6exp [—cN min{n,n*} + 2plog(1 + 2/¢)]

Since N - p, choosing 1 =+/(ci +2log(1+2/c))p/cN en-
sures 1 < 1 for large enough N. Setting 1 as above con-
cludes the proof.

2) We want to obtain a lower bound on the minimum eigen-
value of X’ X' /N that holds with high probability.
Since Ayin (X' X/N) = inf,cgp 1 V' (X' X /N)v, we start
with the single deviation bound of Proposition 2.3 in [8],

P[ o/ (X'2/N = Tx (0)) o] > 2mnM(fx))|
< 2exp [—eN min{n, n*}]

for any v € SP~! and 1 > 0.

The next step is to extend this single deviation bound
uniformly on the set S, As in the proof of part 1, we
construct a e-net of cardinality at most (1 + 2/¢)? and
approximate the quadratic form using its values on the
net. This yields the following deviation bound

X'x
P [ sup v'( I‘X(O)>v
ve Sp-1 N

2
< 2exp {—cNmin{n,nZ} + plog (1 + )}
€

> QKWVM(]CX)}

for some constant x > 1. Setingn = m(fx ) /4T M(fx)
< 1 and noting that N = M?(fx)/m?(fx)p, we con-
clude

P [ sup [V (X' X/N —Tx(0))v]| > m(fX)/Q}

veSp-1

< co exp [~y log p]

The result follows from the lower bound on m(fx ) pre-
sented in (6) and the fact that v'T'x (0)v > m(fx ) for all

v e SPL, |
Proof of Proposition 4 and 5: Clearly, setting ( to the lower
bound on m(fx) as in (6) satisfies the RSC. Combining the
estimates of Proposition 1 and 3 leads to Proposition 4 and 5
after simple algebraic computation. |

APPENDIX C

In the following proof, we denote % ||V — X BHQF and the
regularization term by H(B) and Pp (B, ), respectively.
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Proof of Proposition 6: By the differentiability of H, we Subtracting [(B) from both sides of (26) and rearranging some
have terms, we have

) — H(Btmd) + /01 < VH(BZ"(I o1 [Z(Bff1) - l(B)] - (1 - ai)[l(qugQ) - l(B)]

H(B,

. md ) o af ) . 12 27
(B, — B, B - B> dr < al(VH(B™), Biss = B) + - [X(Bias = B)IP 27

Then, by the definition of H(B) and B, , and the relationship (€, Biy1 — B)

B!, — B™ = ;(B;;1 — B;), we have where & € OPp(B;,1,)). On the other hand, by the first-order
” » ag optimality conditions for the sequence B; ; in Algorithm 1, we
Z(B’H»l):H(Bi+1)+PB(Bi+17)\) have
1 md e e
:H(B;"d)+/ <XTX(B;”d+T(Bffl ,Blmd)) (VH(B""), B 1) +ni(Biv1 — Bi, Bi, 1) 28)
. o . +(0Pp(Bi+1,A), Biv1 — B) <0
= X'V, B, - B"")dr + Pp(Bi{;, ) . .
. Combining (27) and (28), we obtain
md T md a md
= H(B, >+/U (ANXB =), B, = B")dr  ((BY,) = I(B)] — (1 — ) [l(B™) — I(B)]
L < a; {n(Bi — Bis1, B XX (Bt — B
+ [ ol - By Par+ Po(B2 N < o {(Bi = Bt Bi) + S 1X (B ~ B o
i el2 e 2 2
, , <o i 12 _ || B By — B
_ H(Bimd) + <VH(BZmd)7BZl+(11 _ Bzmd> = @ { 9 (HBz ” ||Bz+1|| ||BZ+1 BZ” )
1 w . a ol X(B,.1 — B 2}
- §HX(B¢'+]1 - Bz“d)HQ +PB(BH]17>‘) 25) + 2 1% (Bisa ol
= H(B") + (1 — ;) (VH(B™), B* — B™) where we used the relationship 2(a — b,a — ¢) = —||b — c||* +
' h ' ' lla — €| + |la — b||* and the definition of BY, ,.
+ oy <VH(Bzmd)> Biy1 — B{”d> Dividing both sides of (29) by «;7;, we have
o 1 (1— o)
X (Bigr — By ag y gy~ L) pagy
+ 5 X (Bt = B B —UB) ~ S P L(BY) ~ L(B)
+ (1 — Oéi)PB (B;Zg, A) + OéiPB(BiJrla)\) S %(HB?HQ . ||B7€+1 ||2) . %(”B,Hrl . B7||2
= (1= a))(H(B""") + (VH(B!""), B’ — B"") N (30)
v . J— . 2
T Py (B, N) + as(H(BM™) - 1B = B?)
H(B""), By, — B! Loime e 1
TAVHB). B = B)) < SUIBFIP = 1BEa %) — 5T
2
a; ) o2 . .
+ 51X (Bivs = Bi)llI” + i Pp(Bit1,A).- Adding 241 16 both sides of (30), we have
By the convexity of H(B) and (25), we have 1 (B, — 1(B)] - (1 - ) 1(B) — 1(B)
;. i+1 s i
U(Bf)) = (1 —a;)(H(B") + (VH(B[""), o (8:Qi +T) o
a m a Wikdi T2 i) 3D
B} — B") + Py (B}")) L
. H Bmd VH Bmd B*Bmd 1 . . (ﬁ _ 1)Q Q
+ o (H(B"") + (VH(B]"), ) S5(\|Bi||2—||3i+1||2)+%+71

+ i (VH(B[""), Biy1 — B)
) Since Qis1=06Q;i +Ti, 0<3 <(1—-1)% and Q; >
a C .
+ 51X (Biss = BI)[* + aiPs(Biv1, N) 26) G We obtain

< (1= a)L(B") + aiL(B) L e, - 10my) - L2y - ip)
Q1) Q1)
+ai(VH(B""), Bis1 — B) 0,
) + i+1 (32)
o 2 2
+7||X(Bz'+1_Bi)H ) 1-8)C 0
< Z(IBCIZ — | BE. |12 4 Ao P i
+ OQPB(BH_l,)\) - OéiPB (B,)\) - Q(HBl H HBZ+1|| ) + 2(1 - 1)2 * 2
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Setting B = B, by the relationship a,,lm = ;i?ﬁ, and o; =
1, we obtain
1 a
B — 1)
k (33)
1 s (1-p)C  C
< —||By — B|]? E — + —
< 3llBo - Bl +i:2 (-1 R’

after summing (32) from i = 1to k.
Next we show the upper bound of «ay.my,. Since 1ymin < 10,1,
we have 7, < [|X7 X||2. Then, by definition of 7 ;, we get

Thnin S 7]0,1' S HXTXHQ (34)

Denote alng_j by 17;, where [ is the number of line search in

i I & 7ES U "
Step 3 of Algorithm 1. By o T A and the definition
of n;, we have

1 VI— i

_ —
. ) !
ai\/n; Qit14/Mis1

1
< —

1
i1/ M 21 41

Then, by induction we can get, with a; =

(35)

for 1 >1

which implies

—

M <

2
1 1 k 1
7 +7 = T
VvV 22/ 2\/"k>
40| XT X||,
- (k+1)

(36)

for k>1

where we used (35) and the definition of 77;
Combining (33) and (36), we obtain (13). |
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