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1.  Introduction

Structural control is an attractive method 
for mitigating the undesired response of civil 
infrastructure (e.g. bridges, buildings) when subject 
to extreme load events, such as high winds or 
earthquakes. Rather than relying on dissipating energy 
through damage to the structure, feedback control 
systems aim to reduce structural response by applying 
counteracting forces using an actuating device 
[1]. Numerous researchers have demonstrated the 
effectiveness of such systems on civil structures using 
active control techniques [2–4]. Traditionally these 
systems have relied on numerous sensors distributed 
throughout the structure to transmit data via cables 
to a single controller that commands an actuator. As a 
result, all information has to be aggregated at a central 

location prior to the execution of the control law 
which can result in delays that inevitably degrade the 
control effectiveness. In an effort to overcome this, the 
architectural design of these systems has been extended 
to include multiple controllers and numerous semi-
active actuators [3, 5, 6], but real-time communication 
between the sensors, controllers, and actuators is often 
still unachievable due to system constraints.

As such, researchers have explored replacing 
cables with wireless telemetry in control applica-
tions, partially due to the success of wireless sensor 
networks (WSNs) in monitoring many complex and 
large-scale engineered systems such as bridges [7–10], 
buildings [11–13], wind turbines [14, 15], and ships  
[16, 17]. Due to their on-board microcontroller, wire-
less sensing units are capable of localized data process-
ing, which allows them to serve as the controller in 
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Abstract
Civil structures, such as buildings and bridges, are constantly at risk of failure due to external 
environmental loads, such as earthquakes or strong winds. To minimize the effects of these 
loads, active feedback control systems have been proposed but such systems still face numerous 
challenges which impede their widespread adoption. In order to overcome many of these challenges, 
inspiration can be drawn from the signal processing and actuating techniques employed by the 
biological central nervous system to develop a bio-inspired control algorithm. In this study the 
front-end, signal processing techniques employed by biological sensory systems, and in particular 
the mammalian auditory system, are drawn upon in order to alleviate computations at the actuation 
node. This results in a simplistic control law that is a weighted combination of input information 
about the structure’s response such that F  =  WN, where F is the applied control force, W is a pre-
determined weighting matrix, and N is a deconstructed representation of the structural response to 
the applied excitation. There is no empirical solution for deriving an optimal weighting matrix, W, 
and in this study numerous methods are explored in order to determine values for this matrix that 
produce the most effective control. These methods include particle swarm optimization, artificial 
neural networks, and optimal control theory. The various weighting matrices are integrated into 
the proposed bio-inspired control algorithm and applied in simulation to a five story benchmark 
structure. These methods are also compared to a traditional linear quadratic regulator (LQR) to gain 
insight into the overall performance of the bio-inspired control algorithm. Of the three training 
techniques, the particle swarm optimization technique offers the most effective control which is 
comparable in performance to the traditional LQR.
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the actuation network. Additionally, they seamlessly 
interface with transducers, thus allowing them to serve 
as a sensing node, and actuators, which allows them to 
act as an actuating node, thereby increasing the overall 
flexibility of the network. Wireless telemetry has 
been successfully integrated into centralized control  
architectures [18–21], but these studies also high-
light the challenges of the technology, such as a higher  
probability of data loss during transmission. Similar 
to the information bottleneck experienced with cabled 
systems, this data loss can degrade real-time execution 
of control algorithms, thus impeding the overall effec-
tiveness [22].

In an attempt to address these limitations, 
researchers have explored pairing WSNs with decen-
tralized control architectures and localized actuation. 
In decentralized control, a large-scale control system 
is divided into small sub-systems that use local and 
neighboring sensor data to make control decisions. 
Because WSNs are capable of peer-to-peer commu-
nication, they are well suited for decentralized control 
as this eliminates the need for a centralized controller 
and creates countless possible control architectures. In 
[23], a partially decentralized linear quadratic regula-
tor (LQR) control scheme that leverages a Kalman fil-
ter to estimate unknown system states was validated 
on a full scale structure. In [24], a sparse representa-
tion of the LQR was proposed which requires less 
information for decision-making than a traditional 
centralized approach, thus reducing information flow 
requirements. In [25], the authors proposed a distrib-
uted H∞ algorithm for civil infrastructure and in [26], 
the authors explored distributing the H∞ algorithm 
across multiple communication subnets of wireless 
sensing nodes. While these studies have demonstrated 
the successful use of WSNs in decentralized control 
architectures they also highlight several challenges 
associated with this technology, such as increased 
computational requirements at the already resource-
constrained sensing node or decision-making based 
on reduced information, resulting in some degrada-
tion in control effectiveness. Furthermore, while wire-
less structural control has been validated on a variety 
of experimental test beds, all of these applications 
have been performed within the confines of laborato-
ries and few have been extended to real-world struc-
tures and long-term deployments. As such, in order to 
effectively implement wireless structural control it is 
imperative that the current challenges of the technol-
ogy be addressed. One potential strategy for overcom-
ing current deficiencies is to draw inspiration from the 
method by which biological systems sense and actuate, 
thus resulting in a novel bio-inspired sensing and actu-
ating paradigm.

Biological systems are capable of integrating sens-
ing with actuation in a simplistic manner that is desir-
able for engineered sensing and actuating systems. 
Within biological systems, information is received 
from external stimulus through multiple receptors 

[27]. Receptor neurons transmit this information to 
layers of processing neurons where the data is further 
integrated and manipulated through basic operations, 
such as addition, subtraction, multiplication, or filter-
ing [28]. Finally motor neurons receive this informa-
tion from a layer of processing neurons and activate 
their associated muscles, thus initiating actuation in 
the system [29]. In this paper, inspiration is drawn 
from the processes utilized by biological sensory and 
actuation systems to overcome the limitations found 
in equivalent engineering systems. In particular, a bio-
inspired control algorithm is proposed that uses the 
front-end signal processing employed by the auditory 
system to streamline computations at the actuation 
node.

2.  Actuation in biological systems

Sensing and actuation in biological systems is a 
streamlined and efficient process which starts when 
information is perceived by various sensory receptors. 
Sensory receptors are tuned to specific input stimuli 
(e.g. frequency, pressure, light) [27]. While each class 
of sensory receptors forms networks with subsequent 
neurons in distinct structures in the central nervous 
system, in general, connections between layers of 
neurons follow similar patterns (figure 1(a)). The 
receptor neuron transmits information about the 
stimulus to a sensory neuron via a graded potential 
(figure 1(b)), which is an electrical signal with 
constant amplitude whose duration encodes the 
amplitude of the input signal [30]. The sensory 
neuron converts the received information to a 
series of action potentials (figure 1(c)), or electrical 
pulses of constant amplitude, and transmits these to 
subsequent layers of neurons, termed interneurons. 
The frequency and overall duration of the action 
potentials encode the amplitude of the received signal 
[31]. The interneurons aggregate information from 
multiple sources based on the connection type (i.e. 
excitatory or inhibitory) between the transmitting 
and receiving neurons. Excitatory connections further 
promote decisions while inhibitory connections work 
to inhibit decisions and help to provide spatial detail 
in sensory systems [32]. Depending on the complexity 
of the required decision making, this process may 
continue through several layers of neurons, whereby 
each layer further integrates information through 
simple connections, until reaching the level of the 
motor neuron. For basic organisms with a minimal 
number of neurons, such as the leech or Elegan, the 
hierarchy of neurons and connection types can be 
mapped out, thus demonstrating the complete sensing 
and actuation process of these life forms [33, 34]. As 
organisms become more advanced, however, this 
mapping becomes increasingly complex.

To complete the sensing and actuation process in 
biological systems, motor neurons convey informa-
tion to muscle fibers which are typically responsible 
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for actuation in biological systems [29]. Similar to 
the connection between two neurons, the connection 
between a motor neuron and the muscle is a chemical 
synapse. Information is transmitted from the motor 
neuron through its axon (figure 2) via action poten-
tials. These action potentials induce neurotransmitters 
to flow from the presynaptic terminal on the motor 
neuron and into the postsynaptic membrane on the 
muscle. When these transmitters cross the synaptic 
cleft from the motor neuron to the muscle an action 
potential is initiated that travels the length of the mus-
cle. Muscles are comprised of bundles of muscle fibers 
and a single motor neuron can activate hundreds of 
these fibers at one time. The connection type (i.e. excit-
atory or inhibitory) between the motor neuron and 
each muscle fiber plays an important role in the overall 
response of the system. For example, it has been found 

that if the leech senses an external pressure on one side 
of its body, the motor neurons closest to the pressure 
are excited, thus causing contraction, while the motor 
neurons on the opposite side of its body are inhibited, 
thus causing relaxation [35]. By having both excitatory 
and inhibitory motor neuron connections, the leech is 
able to more effectively bend away from the stimulus.

A motor neuron dictates the magnitude of the 
force to be exerted by using both rate coding and the 
size principle. First, the motor neuron uses rate cod-
ing by sending a series of action potentials with each 
successive spike increasing the intensity of the muscle 
actuation, up to a limit [36]. Second, to increase the 
overall intensity of the muscle actuation, motor neu-
rons are recruited in an orderly manner by the motor 
cortex depending on their physiological properties 
[37, 38]. As such, the overall intensity of the actuation 

Figure 1.  Generalized structure of neurons used for sensing and actuation in biological sensory system (a), where receptors 
communicate the perceived stimulus to the sensory neurons via graded potentials ((b), top) and all other communication occurs 
between neurons via action potentials ((b), bottom).

Figure 2.  Connection between motor neuron and muscle.

Bioinspir. Biomim. 14 (2019) 036008
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increases as the number of activated motor neurons 
increases. Once commands have been sent from motor 
neurons to the muscle fibers, the neuron uses feedback 
mechanisms to ensure that the overall desired response 
is achieved and to fine-tune the actuation based on 
this information [39]. This enables effective actua-
tion for a variety of input stimulus. Therefore, all mus-
cle actuation depends on both the commands from 
motor neurons as well as the connection type between 
the neuron and the fiber. In this paper, the simplistic 
basis by which organisms respond to external stimuli 
through muscle actuation will be mimicked. In par
ticular, the inhibitory and excitatory connections of 
these systems will be adapted to establish synaptic 
strength connections between sensor nodes and motor 
neuron nodes. These synaptic values will vary in mag-
nitude which is similar to muscle recruitment of mul-
tiple muscle fibers. Multiple techniques for developing 
these synaptic strength values will be explored and 
their effectiveness will be evaluated in simulation.

3.  Bio-inspired control architecture

Actuation in biological systems relies on data 
transmission and information integration that 
starts with the sensory neurons, works through the 
interneuron layer, and ends with the motor neurons 
(figure 1(a)). The receptor neurons initiate the process 
and in the bio-inspired engineered system a novel 
sensing node inspired by the mammalian auditory 
system will be used as the input layer. This sensor, 
first proposed by Peckens et al [40], draws inspiration 
from the signal processing techniques employed by the 
cochlea within the auditory system to enable real-time 
frequency decomposition of convoluted signals [41]. 
As discussed by Peckens and Lynch [42], each cochlea-
inspired sensing node contains multiple ‘neurons’ that 
process and transmit data simultaneously. By enabling 
information extraction at the receptor nodes through 
real-time pre-processing, the actual control law at the 
motor neuron node is streamlined, thus alleviating 
the computational requirements at the node and 
overcoming one of the current challenges that plagues 
control systems in civil infrastructure.

The founding principle of this streamlined archi-
tecture is the information integration between layers 
of neurons using synaptic strengths (i.e. amplifica-
tion or attenuation factors), as well as the aggregation 
of information from multiple sources [43, 44]. This 
structure is mimicked in the bio-inspired control law 
with motor neuron nodes aggregating information 
from multiple receptor nodes using weighting values 
which can be both positive, for amplification, and neg-
ative, for attenuation (figure 3). The cochlea-inspired 
sensing node is utilized at the receptor layer which 
enables real-time spectral decomposition of the input 
information. Due to this front-end processing at the 
receptor node no further signal processing is required 
at the motor neuron node and instead it can apply a 
control force, Fk, that is simply a weighted aggregation 
of the received information

Fk =
n∑

i=1

b∑
j=1

WijkNij,� (1)

where Wijk is the synaptic strength between the j th 
neural unit for b units on the ith receptor node for n 
nodes and the kth motor neuron node for p  nodes. 
Nij is the output from the j th neural unit on the ith 
receptor node. In this architecture p  represents the 
number of actuating nodes in the system, while n 
represents the number of sensing nodes. It is possible 
for p  to equal n but it is not necessary. Developing 
the weighting matrix, W, is integral to the success of 
the control law and three different techniques for 
optimizing these values are evaluated in simulation in 
this paper: bio-inspired optimal control theory (BIO-
LQR), artificial neural networks (ANNs), and particle 
swarm optimization (PSO).

3.1.  State space system model
Prior to exploring these methods, however, the system 
model must be defined. The base-excited structural 
system is modeled in continuous time as an n degree-
of-freedom, linear time-invariant, lumped mass 
shear structure. The can be generalized through n 
equations of motion

Mẍ (t) + Cdẋ (t) + Ksx (t) = −Mιẍg (t) + LF (t)
� (2)

Figure 3.  Bio-inspired sensing and actuating architecture.

Bioinspir. Biomim. 14 (2019) 036008



5

C A Peckens et al

where M, Cd, and Ks ε Rnxn are the mass, damping 
and stiffness matrices, respectively. The displacement 
vector relative to the base of the structure is x ε Rn, xg 
is the ground displacement, and ιε Rn is the ground 
acceleration influence vector, where each term is 
unitary. The locations of the actuators are described by 
the matrix, L ε Rn×p, and F ε R p is a vector of control 
forces, where p  is the number of input control forces. 
The variable t represents continuous time.

The equation of dynamic equilibrium described in 
equation (2) can be represented in state space form as

ż = Az + Bu+ Gẍg� (3)

where z ε R2n is the vector representation of the states 

of the structure, such that zT =
î
xT ẋT

ó
  , u ε R p 

is the vector of input control forces (equivalent to 

F in equation (1)). A ε R2n×2n is the state transition 
matrix, defined as

A =

ñ
0 I

−M−1Ks −M−1Cd

ô
,

where I is the identity matrix. B ε R2n×p is the control 
matrix and G ε R2n is the ground input matrix, where

B =

ñ
0

M−1L

ô
, G =

ñ
0

−ι

ô
.

The output vector, y ε Rq, is based on the sensors that 
are available to measure the response of the structure 
as they relate to the states, z, such that

y = Cz + Du+Hẍg� (4)

given that C ε Rq×2n is the measurement output 
matrix, D ε Rq×p  is the control feedforward matrix, 
and H ε Rq is the ground feedforward matrices.

3.2.  Integration with the cochlea-inspired sensing 
node
To fully exploit the streamlined bio-inspired control 
architecture, the cochlea-inspired sensing node is 
used as the receptor node, thus leveraging its real-time 
frequency decomposition and parallel processing 

capabilities. The cochlea-inspired sensing node 
consists of ‘neurons’ that simultaneously bandpass 
the input signal through overlapping passbands. The 
sinusoidal output of each filter is tracked by a unique 
computing core which implements a real-time peak-
picking algorithm. When a peak is detected, it is 
immediately broadcasted to the motor neuron node. 
Each peak is considered to be the biological equivalent 
to a spike train signal used by neurons. Once received 
at the motor neuron node, the detected peak values are 
weighted according to their source and then summed, 
resulting in an actuating force, F. This complete 
process is summarized in figure 4; further details can 
be found in [40, 42]. Due to the on-board processing 
that occurs on the cochlea-inspired sensing node, 
the motor neuron node never receives a traditional 
Nyquist-sampled representation of the input signal or 
even the filtered signals after passing through the filter 
bank. Instead, the motor neuron node only receives the 
peak values of the filtered signals and these are directly 
weighted using equation  (1). While it is anticipated 
that this will result in a slight degradation of the overall 
control performance of the system, the computational 
requirements at the motor neuron node are greatly 
reduced, thus minimizing time delays and further 
promoting real-time control.

It is assumed that the inter-story drift of each floor 
of the structure is measured using a cochlea-inspired 
sensing node. To optimize the functionality of the 
cochlea-inspired sensing node, the bandwidth and fil-
ter spacing of each bandpass filter on the ‘neuron’ can 
be modified to best capture the dynamics of the given 
system. Based on a parametric optimization previ-
ously conducted by Peckens et al [40], these were cho-
sen to be 0.5 Hz and 0.7 Hz, respectively. Similarly, the 
number of filters in each node can be modified so as 
to fully capture the dynamic range of the structure as 
dictated by its modal response.

The on-board filtering of the ‘neurons’ introduces 
additional dynamics into the model which must be 
included. In order to properly model these dynam-

Figure 4.  Functional schematic of single cochlea-inspired sensing node integrated with motor neuron node; all neuron boards are 
simultaneously presented with the input signal, resulting in parallel processing at the node. BPF  =  bandpass filter.

Bioinspir. Biomim. 14 (2019) 036008
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ics, the state space equations (equations (3) and (4)) 
are extended to include the cochlea-inspired sensing 
nodes, which is a function of the bandpass filtering 
effect described through the transfer function,

Fi (s) =
2ξiωis

s2 + 2ξiωis+ ω2
i

,� (5)

where ξi is the damping ratio and ωi is the center 
frequency of the ith filter. In this case, the input to the 
transfer function is the inter-story displacement of a 
given floor and the output is the filtered component of 
the input signal at the given filter center frequency. The 
dynamics of the entire system including the structure 
and the sensing nodes can be represented by expanding 
the original state space equations to now include the 
states of the n cochlea-inspired sensing nodes

.
zz = Âzz + B̂u+ Ĝẍg� (6)

yy = Ĉz + D̂u+ “Hẍg ,� (7)

where zzT =
î
xT xTcs ẋT ẋTcs

ó
 such that xcs,i is the 

state representing the output of the ith filter board for 
i  =  1,..., b  ×  n, which represents the total number of 
filter boards across all sensor nodes, and yy ε Rbnis a 
vector containing the output of each filter board on 
each cochlea-inspired sensing node. With the addition 
of the cochlea-inspired sensing nodes, the system 
matrix is expanded to become

Â =




0 0 I 0
0 0 0 I

−M−1Ks 0 −M−1Cd 0
0 −X −Ψ −Υ


 ε R2(n+bn)×2(n+bn).

The matrices Xε Rbn×bn, Ψε Rbn×n, and Υε Rbn×bn 
are populated based on each filter’s dynamics, as 
described by equation (5). In particular,

X =




χ1 0 · · · 0
0 χ2 . . . 0
...

...
. . . 0

0 0 0 χn



,Ψ =




ψ1 0 · · · 0
0 ψ2 . . . 0
...

...
. . . 0

0 0 0 ψn



, and Υ =




υ1 0 · · · 0
0 υ2 . . . 0
...

...
. . . 0

0 0 0 υn



,

where χi = diag
¶
ω2
i1 ω2

i2 · · · ω2
ib

©
ε Rb×b,  

ψi =
î
2ξi1ωi1 2ξi2ωi2 · · · 2ξibωib

óT
ε Rb, and 

υi = diag
¶
2ξi1ωi1 2ξi2ωi2 · · · 2ξibωib

©
ε Rbxb, 

given that diag {·} represents a diagonal matrix.
In equation (7), the output matrix, Ĉ, is manipu-

lated to make the states associated with the filter out-
put, or xcs , the output variables. The cochlea-inspired 
sensing nodes do not affect B, D, G, or H, other than 
expanding them to account for additional states; as 
such, zeros are added that correspond to the states xcs  
and ẋcs  to form B̂, D̂, Ĝ, and “H .

3.3.  Bio-inspired control weighting matrix
The applied actuating force, F(t), is formulated as a 
weighted sum of the outputs of the cochlea-inspired 
sensing nodes. Three techniques are employed to 
determine appropriate weighting values, including 
optimal control theory, artificial neural networks, and 
particle swarm optimization.

3.3.1.  Optimal control theory
In the first approach, the synaptic weights are 
developed using well-established optimal control 
theory by leveraging the linear quadratic regulator 
(LQR) [45] to establish scaling factors between the 
input sensing data, or receptor nodes, and the actuating 
output, or motor neuron node. LQR uses the algebraic 
Riccati equation to minimize the cost function

J =

ˆ ∞

0

(
zTQz + uTRu

)
dt� (8)

subject to the full state feedback control law, u  =  −Kz, 
where K ε R p×m is the resulting constant feedback 
gain matrix, given m states and p  control forces. This 
minimization is subject to two parameters: Q ε Rm×m  
which applies a weight to the cost of the structural 
response and R ε R p×p which applies a weight to the 
cost of control effort.

When considering control of civil infrastructure, 
however, it is often difficult to measure all of the states 
in the system (i.e. displacement and velocity) without 
implementing computationally expensive observers 
such as the Kalman filter [46] and thereby, reducing the 
real-time capabilities of the system. As such, the tradi-
tional LQR is adapted for optimal control using out-
put-state feedback, u  =  Ky, such that K ε R p×q where 
q is the number of output states. For the bio-inspired 
control law these outputs states correspond to the out-

put of the ‘neurons’ on the cochlea-inspired sensing 
node such that q is equivalent to n  ×  b. The modifica-
tions to the performance index, as well as analysis for 
solving for the K matrix can be found in more detail in 
[47]. The resulting K matrix for output-state feedback 
represents the weighting matrix in the bio-inspired 
control algorithm, or W in equation (1).

3.3.2.  Artificial neural networks
Researchers have long been interested in the 
methods by which biology performs streamline 
signal processing through complex networks of 
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interconnected computing nodes and this has been 
encapsulated in the well-established field of artificial 
neural networks (ANNs). A standard ANN consists 
of many simple, connected processors called neurons 
which produce real-value activation outputs. Typically 
networks of these processors are constructed to 
include an input layer, at least one hidden layer, and 
then an output layer. Each subsequent layer of neurons 
is activated through weighted connections from 
the previous layer. If designed properly, ANNs can 
be used to efficiently model the nonlinear behavior 
of virtually any system [48, 49], including a wide 
range of engineering applications across numerous 
engineering disciplines.

For the purposes of this study, a feedforward ANN 
is applied to the bio-inspired control theory in order to 
develop the weighting matrices between the receptor 
nodes and the motor neuron nodes. The structure of 
the ANN consists of one input layer, one hidden layer, 
and one output layer. The output of each hidden node 
in the network is defined mathematically as

yH,j = fj
Ä∑

wjiyI,i + bj
ä

� (9)

where y I,i is the input data from the ith node in the 
input layer, y H,j  is the output data from the j th node in 
the hidden layer, wji is the weight between the ith input 
layer node and the j th hidden layer node, bj  is the bias 
value at the j th node, and f j (x) is its activation function 
[50]. A similar relationship is created between the 
hidden layer and the output layer

yO,k = fk
Ä∑

wkjyH,j + bk
ä
,� (10)

where y O,k is the output data from the kth node in the 
output layer and equivalent to F in equation (1).

The sigmoid function

fj (x) =
1

1+ e−x
,� (11)

is used as the activation function in the hidden layer, as 
it introduces a non-linearity in the estimated output 
and is commonly used for regression applications. A 
linear function, f k(x)  =  x, is chosen as the activation 
function for the output layer and therefore does not 
introduce any additional nonlinearities into the 
system.

The weighting values between layers of neurons 
are established using stochastic gradient descent with 
traditional backpropagation training methods [50]. 
To achieve this, the gradient of an error function, Ek, is 
used to alter the weighting and bias values of the neural 
network in the direction of the negative cost gradient, 
where

Ek =
1

2
(Tk − yO,k)

2� (12)

such that Tk is the target output of the kth node. 
Numerous training cases are presented to the ANN, 
and the weights and bias vectors between the layers 
of nodes are iteratively updated. As the ANN contains 

a hidden layer of nodes, as well as two weighting 
matrices, bias vectors, and activation functions, this 
method does not follow the same architecture that 
is proposed in figure 3. However, this algorithm still 
maintains the same function of figure 3 in that peak 
values are transmitted from the cochlea-inspired 
sensing nodes and then transformed into an output 
control force after passing through this multi-layer 
network.

3.3.3.  Particle swarm optimization
A third approach for optimizing the weighting matrix 
in the bio-inspired control algorithm focuses on 
utilizing particle swarm optimization (PSO), which is 
an iterative learning technique that draws inspiration 
from biology and is capable of optimizing continuous 
nonlinear functions. In PSO, a number of solutions, 
or particles, are dispersed randomly in a search space 
and each particle location is evaluated according 
to a specified objective function. Depending on its 
own history, as well as the behavior of other nearby 
particles, each particle moves to a new location in 
the search space with each iteration of the algorithm, 
with the goal of moving closer to the optimum of the 
objective function [51].

To achieve this, each particle in the swarm tracks 
three vectors: x which represents the current position, 
v which is the current velocity, and xb which is the pre-
vious best position. These three vectors are the dimen-
sion of the search space. Each particle also interacts 
with neighboring particles and stores the position that 
best optimizes the objective function, denoted as g, in 
order to leverage the benefits of the swarm. Each par-
ticle updates its three vectors every iteration through 
the equations:

vi (k+ 1) = ωvi (k) + ρ1γ1 (xb,i (k)− xi (k))

+ ρ2γ2 (g (k)− xi (k))�
(13)

xi (k+ 1) = xi (k) + vi (k+ 1)
� (14)

λ = λ× τ� (15)
where i is the particle number, k is the iteration number, 
ρ1 and ρ2 are random numbers between 0 and 1, and γ1 
and γ2 are the acceleration coefficients which are both 
assigned to be 2 as recommended in [51]. Equation (13) 
also includes an inertia weight, λ, which affects the 
convergence and plays a role in balancing local versus 
global search of the particles [52], as well an inertia 
damping constant, τ, which gradually modifies this 
balance. The inertia coefficient, λ, is initially assigned 
to be 1, and is decreased using a damping constant, τ, 
of 0.99 [53], resulting in a preliminary global search 
that gradually becomes more localized. In this study, 
each particle represents a potential weighting matrix 
(equivalent to W in equation (1)) between the receptor 
nodes and the motor neuron nodes in the bio-inspired 
control theory. The particle values which produce the 
lowest global function output in the final iteration 
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represent the synaptic strength values found within 
this weighting matrix.

4.  5-story benchmark

The bio-inspired control theory is validated on a 
model of the 5-story Kajima–Shizuoka building 
(figure 5, table 1). The model is similar to the lumped 
mass system used by Wang [54], which is a modified 
version of the Kajima–Shizuoka building presented 
by Kurata et al [6]. A classical damping matrix using 
Rayleigh damping that is both mass-proportional and 
stiffness-proportional is assumed, using 5% natural 
damping [55]. It is also assumed that only horizontal 
degrees-of-freedom are measured and controlled, 
while vertical and rotational degrees of freedom are 
considered negligible. As such, the states of the system 
as defined in equation (3) are horizontal displacements 
and velocities at each floor. Each floor is assumed to 
include an installed transducer that measures inter-
story displacement, which is input into a cochlea-
inspired sensing node, as well as an ideal actuator. It 
also assumed that these nodes communicate detected 
peak values to motor neuron nodes on all floors, which 
command their respective actuators.

The effectiveness of the bio-inspired control the-
ory is evaluated using multiple methods for creating 
the synaptic weights, including BIO-LQR, ANN, and 
PSO, and these are compared against a more traditional 
controller that employs a full state LQR. Four cost 
functions, adapted from Ohtori et al [56], are used to 
characterize the effectiveness of these different control-
lers in reducing the structure’s seismic response with 
respect to inter-story drift and floor acceleration when 
normalized to the uncontrolled structural response due 
to the same seismic excitation. Minimization of inter-
story drift is important as it reduces the likelihood of 
damage to the building system, especially to nonstruc-
tural elements such as partitions and windows. Floor 
acceleration is related to the force exerted on the struc-
ture, as well as occupational comfort during the event. 
The minimization of these two parameters is quanti-
fied according to two cost functions; one cost function 
compares absolute maximum values, while the other 
compares the vector norm of the response over the 
entire test period. The cost functions are given as

J1 =
max

(∣∣d(t)controlled
∣∣)

max
(∣∣d(t)uncontrolled

∣∣)� (16)

where d is the time history of the inter-story drift for 
all floors, and

J2 =

∥∥d(t)controlled
∥∥∥∥d(t)uncontrolled
∥∥� (17)

where ‖·‖ denotes the l2-norm function. For 
quantification of acceleration, the cost functions are

J3 =
max

(∣∣ẍ(t)controlled
∣∣)

max
(∣∣ẍ(t)uncontrolled

∣∣)� (18)

and

J4 =

∥∥ẍ(t)controlled
∥∥∥∥ẍ(t)uncontrolled
∥∥ .� (19)

Each cost function is an n-dimensional vector, 
thus providing quantification for each floor in the 
structure. Additionally, the control force demand is 
also quantified through a cost function provided in 
Ohtori et al, which is subsequently defined as

J5 =
max (|F (t)|)

Ws
� (20)

where F(t) is the time history of the control force for 
each floor and Ws is the seismic weight of the building 
based on the above ground mass of the structure.

As communication overhead is a common chal-
lenge associated with WSNs, and in particular when 
applied to control applications, an additional cost 
function,

J6 =
NPBIO
NPFS

,
� (21)
is introduced that compares the amount of data that is 
transmitted during the execution of the bio-inspired 

Figure 5.  Five story benchmark structure [6], including one 
actuator at each story. The five natural frequencies are 1.00, 
2.82, 4.49, 5.80, and 6.77 Hz.

Table 1.  Five story benchmark structure properties; structural 
damping ratio is 5%.

Floor

Seismic  

mass (kg)

Interstory stiffness 

(kN m−1)

1 215.2  ×  103 147  ×  103

2 209.2  ×  103 113  ×  103

3 207.0  ×  103 99  ×  103

4 204.8  ×  103 89  ×  103

5 266.1  ×  103 84  ×  103
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control algorithm versus the amount of data that is 
transmitted during the execution of the full-state LQR 
algorithm. In this cost index NPBIO is the number of 
peaks that are detected on all neuron boards across 
all receptor nodes, or all floors. NPFS is the number of 
data points obtained via traditional analog-to-digital 
converter-based data acquisition at Nyquist rates 
combined across all floors.

4.1.  Weighting matrices
The weighting values for the bio-inspired control 
theory are derived using the three different methods 
described in section  3 (BIO-LQR, ANN, and PSO). 
These weighting values are applied to the peak values 
that are transmitted by the cochlea-inspired sensing 
node and received at the motor neuron node. It is 
assumed that all of these weighting matrices are 
developed prior to execution of the control algorithm 
and no unsupervised training occurs, thus alleviating 
computational requirements at the motor neuron 
node and not affecting the overall control effectiveness.

The architecture of the weighting matrices is 
the same for BIO-LQR and PSO, resulting in a 55 x 5 
matrix in each case. 55 represents the total number 
of ‘neurons’ across all five floors (=11 ‘neurons’ per 
floor  ×  5 floors) and 5 is the number of actuating 
nodes in the network. The weighting values for the 
BIO-LQR are developed using the output only LQR 
algorithm with the state space model described in 
equations (6) and (7). In the algorithm, Q and R are 
chosen using the commonly accepted Bryson’s Rule 
[57], that establishes these values as proportional to 
the inverse of the square of the maximum acceptable 
displacement and control force, respectively. As such, 

Q is set to 1010 × Ĉ
T
Ĉ , and R is set to be 10−5.4 × I, 

where I is the identity matrix.
In order to determine the weighting matrix for the 

PSO algorithm, an appropriate objective function is 
needed. In this case, the algorithm seeks to minimize 
the cost functions defined in equations (16)–(19) by 
averaging the cumulative sum of each cost function 
overall all floors,

f
(
xij
)
=

(
4∑

m=1

(
n∑

l=1

Jm,l

))
/4� (22)

where n is the number of floors and equals 5 for the 
benchmark structure. In this objective function, each 
cost function is equally weighted so as to minimize 
both inter-story drift and acceleration. Each particle 
position, xij, represents a potential weighting matrix 
solution for the bio-inspired control theory and the 
objective function is evaluated on each position using 
the controlled structure’s response subject to the El 
Centro earthquake. The algorithm is executed using 50 
particles, each initialized as a vector of random values. 
As the search space is infinitely large, this relatively large 
number of initial positions allowed the system to span 
an adequate search space while also converging during 

a reasonable number of iterations. In particular, the 
number of iterations was limited to 100, during which 
time the solution plateaued to a single solution for 
several iterations, indicating that this was a localized 
optimal solution. It is possible that a better solution 
would have been found if the iterations continued, 
but this also increased the possibility of the solution 
becoming over-trained to a specific earthquake, in this 
case El Centro, making it less generalizable to other 
earthquakes.

The weighting matrix for the ANN method is 
slightly more complex than those used for BIO-LQR 
and PSO due to the multi-layer network. For this study, 
the ANN consists of 55 input nodes, a single layer of 
28 hidden nodes, and 5 output nodes. The input to the 
ANN is the inter-story displacement of each floor of 
the structure when subject to the El Centro earthquake 
after passing through the cochlea-inspired sensing 
nodes, resulting in 55 individual displacement signals. 
The output of the ANN represents the control force 
that is applied by the actuators. The ANN is trained 
over the time history of the El Centro earthquake sig-
nal using a target value that assumes that the ideal actu-
ator is capable of applying control forces that exactly 
counteract the forces applied by the earthquake. Each 
time step in the ideal control force time history is 
considered to be a training point for the ANN. Using 
a batch training approach, all training points are pre-
sented to the ANN prior to the weight values being 
updated across the network. This is considered to be 
one iteration of training and iterations continued until 
the change in the average error function defined in 
equation (12) was less than 1E-12, indicating accept-
able convergence of the solution.

As a comparison to the bio-inspired control algo-
rithm, a traditional full-state feedback LQR algorithm 
(FS-LQR) is also considered which assumed that all 
states (i.e. displacement and velocity) of all floors are 
measurable or estimated using techniques such as the 
Kalman filter. Based on the limitations described in  
[21, 23] it was assumed that the control sampling fre-
quency was limited to 40 Hz, thus subjecting the control 
effort to experimental constraints. For this comparative 
case, the bio-inspired sensing node was not included 
so the dynamics of the system are described by equa-
tions (3) and (4). Q is also chosen as 1010 × CTC, and 
R is set to be 10−5.4 × I, where I is the identity matrix.

4.2.  Earthquake simulation results
The structural response when excited by seismic 
base excitations is approximated using average 
Newmark integration [55]. The structure is subject 
to three different earthquake ground acceleration 
records: 1940 El Centro (SE), 1995 Kobe (JMA NS), 
and 1994 Northridge (Sylmar NS) (figure 6). Each 
earthquake record is normalized to obtain a maximum 
acceleration of 1.0 m s−2. Example time histories are 
provided in figure  7 of both the uncontrolled and 
controlled structure response in order to demonstrate 
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the effectiveness of the four control methods (i.e. BIO-
LQR, ANN, PSO, and centralized LQR) in mitigating 
the effect of the earthquake. In particular, the inter-
story drift of the fifth floor of the structure is shown 

for these scenarios as this floor is typically subject to 
large displacements resulting from the dominance  
of the first mode shape. In observing these time 
histories, however, it is evident that two of the 

Figure 6.  Seismic signals used as base excitation in simulation in time (a) and frequency (b) domains. SE: Southeast, NS: 
Northsouth, JMA: Japan Meteorological Agency.

Figure 7.  Inter-story drift response of the fifth floor when subject to the El Centro earthquake, shown on a full-time scale (a) and 
a sub-section of time (b), the Kobe earthquake, shown on a full time-scale (c) and a sub-section of time (d), and the Northridge 
earthquake, shown on a full time-scale (e) and a sub-section of time (f). FS-LQR: full-state linear quadratic regulator, BIO-LQR: bio-
inspired linear quadratic regulator, ANN: artificial neural network, PSO: particle swarm optimization.

Bioinspir. Biomim. 14 (2019) 036008



11

C A Peckens et al

methods, BIO-LQR and ANN, are not as effective at 
mitigating the response and these two methods are 
consequently removed in corresponding plots that 
are windowed over periods of large displacements in 
the uncontrolled system (figures 7(b), (d) and (f)). In 
considering these sub-sections of the time history, it 
is evident that both the FS-LQR and PSO are able to 
effectively mitigate the effects of the earthquake on the 
structure, especially when considering the El Centro 
and Kobe earthquakes. For the Northridge earthquake, 

however, the PSO method is not as effective and is 
specifically unable to reduce the initial drift on this 
floor.

For each of the earthquakes, the control effective-
ness of BIO-LQR, ANN, PSO, and centralized LQR is 
also considered using the displacement and accelera-
tion cost functions provided in equations  (16)–(19) 
(figure 8). To further understand the cumulative effect 
of these four different techniques, the sum of the cost 
functions associated with controlled displacement 

Figure 8.  Cost functions for benchmark structure subject to El Centro earthquake (a), Kobe earthquake (b), and Northridge 
earthquake (c). FS-LQR: full-state linear quadratic regulator, BIO-LQR: bio-inspired linear quadratic regulator, ANN: artificial 
neural network, PSO: particle swarm optimization.

Table 2.  Ratios of combined cost functions, J1  +  J2 and J3  +  J4, averaged across floors for each bio-inspired control method, shown for all 
earthquakes.

Method

Average displacement cost functions, J1  +  J2 Average acceleration cost functions, J3  +  J4

El Centro 

earthquake

Kobe 

earthquake

Northridge 

earthquake

El Centro 

earthquake

Kobe 

earthquake

Northridge 

earthquake

FS-LQR 0.27 0.30 0.34 0.72 0.56 0.65

BIO-LQR 0.92 0.94 0.99 0.92 0.94 0.91

ANN 0.60 0.71 0.99 0.82 0.97 0.96

PSO 0.45 0.52 0.87 0.78 0.82 0.79
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response (i.e. J1 and J2) for all floors is compared to the 
sum of the same cost functions using the uncontrolled 
responses for each earthquake. As the cost function is 
1.0 if no control is applied, this results in the denomi-
nator being 10 (=5 floors  ×  2 cost functions), yielding 
the equation

cost =

(
n∑

l=1

J1,l + J2,l

)
/10� (23)

and the results shown in table 2. A similar relationship 
can be constructed for the cost functions associated 
with acceleration response (i.e. J3 and J4). From this 
analysis, it is evident that the centralized LQR method 
results in the most effective control, when considering 
both displacement and acceleration. The PSO method 
is the most effective method of the bio-inspired 
techniques, with both the ANN and the BIO-LQR 
methods not able to significantly reduce the structure’s 
response. The ANN is more effective than the BIO-
LQR in reducing the inter-story drift but on average 
it only minimally reduces acceleration and in some 
cases it will increase it. All three methods exhibit better 
control effectiveness for inter-story displacement than 

acceleration.
The two other cost functions, J5 and J6, are also con-

sidered in order to fully quantify the control effective-
ness of the four methods. The scaled actuator response 

values, or J5, are provided in figure 9(a) through fig-
ure 9(c) for each earthquake. The cumulative actua-
tor response summed across all floors is also shown 
in figure 9(d). The PSO places the greatest demand on 
the actuators, with a particularly large output from the 
actuator on the fifth floor. During training, the objec-
tive function for the PSO places no limitation on the 
actuator output and therefore it is expected that the 
optimal solution would place a large demand on this. 
The centralized LQR method has the second largest 
demand and does exceed the cumulative control force 
of the PSO for the Northridge earthquake. As expected, 
this large demand in both the centralized LQR and 
PSO translate into more effective control, as depicted 
by the reduced control effectiveness cost functions  
(J1 through J4), Both the BIO-LQR and the ANN meth-
ods require significantly less actuator output but they 
also produce less effective control than the other two 

Figure 9.  Control effort cost function for benchmark structure subject to El Centro earthquake (a), Kobe earthquake (b), and 
Northridge earthquake (c), and combined across all floors for each earthquake (1  =  El Centro, 2  =  Kobe, 3  =  Northridge)  
(d). FS-LQR: full-state linear quadratic regulator, BIO-LQR: bio-inspired linear quadratic regulator, ANN: artificial neural network, 
PSO: particle swarm optimization.

Table 3.  Ratios of communication cost function, J6, for each  
bio-inspired control method and all earthquakes.

Method

El Centro 

earthquake

Kobe 

earthquake

Northridge 

earthquake

FS-LQR 1.00 1.00 1.00

BIO-LQR 1.22 0.64 0.49

ANN 1.21 0.70 0.49

PSO 1.28 0.89 0.63
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methods. The weights for the ANN method are pro-
duced by assuming an idealized actuator output that 
perfectly counterbalances the earthquake force at each 
floor but when compared to the trends demonstrated 
by the centralized LQR and PSO, it could be concluded 
that a larger actuator output from this method may 
produce more effective control. A scaling term was 
introduced into the weights between the hidden layer 
and output layer in an attempt to increase the actuator 
output and thereby improve the control effectiveness, 
but this produced an unstable result. Additionally, 
the BIO-LQR weighting matrix is constrained by the 
Q and R matrices and as such, different values could 
improve the control effectiveness. Numerous combi-
nations were explored and the general resulting trend 
was that as the displacement cost functions decreased 
the acceleration cost functions increased.

The communication constraints are considered 
using J6, which compares the number of packets trans-
mitted via the bio-inspired technique to the number 
of packets transmitted using traditional Nyquist sam-
pling techniques. Table 3 shows this cost function for 
the four methods across the three different earth-
quakes. The bio-inspired techniques transmit less data 
for all earthquakes except for the El Centro earthquake. 
This earthquake, as compared to the other two earth-
quakes, spans a much broader frequency band which 
causes the cochlea-inspired sensing node to trans-
mit more peaks [40]. These communication savings 
across the sensing and actuating network, in general, 
results in power savings of the overall system, which 
helps to justify the lower control performance in these 
methods. To further improve the power savings of the 
bio-inspired control method, especially when con-
sider relatively broad band earthquake signals such 
as the El Centro, pruning techniques could be applied 
to remove ‘neuron’ boards that do not significantly 
impact the control effectiveness. This will be explored 

in future work.
One final consideration is that the PSO and ANN 

were both trained using only the El Centro earthquake 
and this could lead to questions about the generaliz-
ability of these two methods. To address this, these 
two methods were trained using the El Centro, Kobe, 
and Northridge earthquakes and then were also evalu-
ated for control effectiveness using these three earth-
quakes, as well as the 2010 Chile (ANGOL) earthquake 
and 1989 Loma Prieta (CORRALITOS) earthquakes. 
Training the ANN on the three earthquakes has little 

effect on the weighting values and as a result, had no 
effect on the control effectiveness or actuator demands. 
By training the PSO algorithm on three earthquakes, 
however, the solutions became slightly more general, 
resulting in minor improvements in the cost function 
across all five earthquakes (table 4). Additionally, the 
average maximum actuator output is slightly reduced 
as well, indicating that this increased generalizability is 
an improvement.

5.  Conclusions

While feedback control systems integrated into civil 
infrastructure is not a new area of research, several 
challenges of the technology, such as computational 
delays and communication constraints, have prevented 
their widespread adoption. This study proposed a bio-
inspired control algorithm that leverages front-end 
signal processing to enable streamlined control at 
the actuating node, thus overcoming many of these 
challenges. The control algorithm is reduced down 
to a simplistic weighted combination of the inputs, 
similar to mechanisms employed by the central 
nervous system. The weights of this algorithm were 
developed using three different techniques: optimal 
control theory, artificial neural networks, and particle 
swarm optimization. The effectiveness of these three 
different methods was assessed in simulation on a 
five story benchmark structure. While the traditional 
full-state optimal control theory does outperform the 
bio-inspired control algorithm, the PSO technique 
in particular offers a competitive alternative in 
overall control effectiveness. The drawback of the 
PSO technique, however, it is that it does place a 
higher demand on the actuators, as compared to 
the other techniques and this must be considered 
when completing an experimental validation of the 
techniques. Additionally, the bio-inspired control 
techniques do offer power savings across the entire 
network as they typically transmit less data.

Future work will include experimental validation 
of the bio-inspired algorithm using the BIO-LQR, 
ANN, and PSO techniques, as well as the full-state 
feedback control system. This experimental valida-
tion will use WSNs for communicating information 
about the structural response, as well as command-
ing the actuator. To implement the full-state feedback 
method, a Kalman filter will be implemented which 
will inhibit the real-time capabilities of the full-state 

Table 4.  Ratios of combined cost functions, J1  +  J2 and J3  +  J4, averaged across floors and earthquakes and cumulative control force, J5, for 
ANN and PSO algorithms using just one training earthquake or three training earthquakes.

Method

Average displacement 

cost functions (J1, J2)

Average acceleration 

cost functions (J3, J4)

Average combined 

cost functions

Cumulative control 

force cost function, J5

ANN—El Centro only 0.73 0.87 0.80 0.21

ANN—3 earthquakes 0.73 0.86 0.80 0.21

PSO—El Centro only 0.58 0.77 0.68 0.37

PSO—3 earthquakes 0.54 0.78 0.66 0.36
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feedback method, due to communication sequenc-
ing and computational delays. The other three meth-
ods, however, will leverage the real-time front-end 
signal processing capabilities of the cochlea-inspired 
sensing node which will alleviate computations at the  
actuating node and prevent delays in the overall  
control system.
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