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ABSTRACT

We will show that skew polynomial rings in several variables over locally
nilpotent rings cannot contain nonzero idempotent elements. We will also
prove that such rings are Brown–McCoy radical.
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1. Introduction

Recently, skew polynomial rings over locally nilpotent rings have received significant attention
[1–7]. One of the most important results was the solution to a problem by Shestakov:
Smoktunowicz and Ziembowski proved that the differential polynomial ring over a locally nilpo-
tent ring need not be Jacobson radical [7]. In addition, Greenfeld, Smoktunowicz, and
Ziembowski posed many intesting problems about skew polynomial rings in their paper [4]. Our
first theorem is related to one of these problems, namely whether a skew Laurent polynomial
ring over a locally nilpotent ring contains a nonzero idempotent. Though this problem was solved
by Chebotar [2] by means of linear algebra, there is a more general and straightfoward solution.
Specifically, the result is extended in Theorem 1 from one to several variables.

Our second theorem is motivated by the result due to Smoktunowicz [5, Proposition 3.1] that
a differential polynomial ring over a locally nilpotent ring is Brown–McCoy radical. As above, we
extend this result to the case of several variables and replace the derivation with skew derivations.

Let R be a ring. Let I be a set of indices, and let J be a subset of I. Then let X ¼ fxiji 2 Ig be
a set of endomorphisms of R and W ¼ fwi j i 2 Ig the set of corresponding xi-derivations. Let
X ¼ fXi j i 2 Ig be a set of variables, and let Y ¼ fX�1

j j j 2 Jg be a set of inverses.
Define a word in X and Y to be a string X61

i1
X61
i2

:::X61
ik

, where Xim can have an exponent of
–1 only if im 2 J. Let W be the set of all words in X and Y.

Define the ðX;WÞ-skew polynomial ring R½X ;Y;X;W� as the set of left polynomials in non-
commutative variables in X and Y. Elements are of the form

P
w2W aww where only finitely

many aw 2 R are nonzero. Addition is the usual addition of polynomials. Multiplication is asso-
ciative, and we convert right polynomials to left polynomials by applying the rule
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Xia ¼ xiðaÞXi þ wiðaÞ, for all i 2 I and a 2 R. We assume that X�1
j a is well-defined as a left

polynomial, for all j 2 J and a 2 R.

Example 1. (Differential polynomial rings). Let X ¼ fXg and Y ¼ 1 (here I contains only one

element, and J is empty). Let x be the identity map and w a derivation. Then R½X ;Y; fxg; fwg�
is the differential polynomial ring R½X;w�.

Example 2. (Skew Laurent polynomial rings). Let X ¼ fXg and Y ¼ fX�1g (here I¼ J contains

only one element). Let x be any automorphism of R and w the zero map. Then

R½X ;Y; fxg; fwg� is the skew Laurent polynomial ring R½X;X�1
;x�.

We are now ready to state the main results of the paper.

Theorem 1. Let T ¼ R½X ;Y;X;W� be the ðX;WÞ-skew polynomial ring over a locally nilpotent

ring R. Then T does not contain a nonzero idempotent.

Theorem 2. Let T ¼ R½X ;Y;X;W� be the ðX;WÞ-skew polynomial ring over a locally nilpotent

ring R. Then T cannot be mapped onto a ring with identity.

2. Proofs

Proof of Theorem 1. Suppose for some locally nilpotent ring R the corresponding ðX;WÞ-skew
polynomial ring T contains a nonzero idempotent. Denote a nonzero idempotent by

e ¼
X

w2W

aww:

Since the multiplication on T is well-defined, each product wav is again a finite sum of the

form

wav ¼
X

u2W

bw;v;uu;

where bw;v;u 2 R. Then e2 will be of the form

e2 ¼
X

w;v2W

awwavv ¼
X

w;v;u2W

awbw;v;uuv ¼
X

y2W

X

uv ¼ y
w 2 W

awbw;v;u

0
@

1
Ay:

Now, let N be the ring generated by the finite set faw; bw;v;ug. Then N is nilpotent, so we can

find the smallest positive integer l such that ay 62 N lþ1, for some y 2 W. Note aw 2 N l for

all w 2 W.
As e ¼ e2, we obtain

ay ¼
X

uv ¼ y
w 2 W

awbw;v;u

by equating the coefficients of y. However, we know each aw 2 N l and each bw;v;u 2 N, so

ay 2 N lþ1, a contradiction. w

Remark 3. In the statement of Theorem 1, the variables do not commute. However, the same

argument works when the variables do commute. For example, let M be the ring of strictly upper

triangular matrices over the field of real numbers. Let R ¼ M½z1; :::; zn� be the polynomial ring

over M in commuting indeterminates z1; :::; zn. Let R½X1; :::;Xn; d1; :::; dn� be a differential polyno-

mial ring with commuting variables such that Xia ¼ aXi þ diðaÞ for all a 2 R, where di ¼
@
@zi
, the
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partial derivative with respect to zi. Since R is a locally nilpotent ring, R½X1; :::;Xn; d1; :::; dn� does
not contain a nonzero idempotent by the same reasoning as above.
Proof of Theorem 2. Suppose u is a homomorphism from T onto a simple ring S with 1. Let p ¼P

w2W aww be an element of T such that uðpÞ ¼ 1. Let eaw ¼ uðawÞ and ew ¼ uðwpÞ. Now,

u pð Þ ¼
X

w2W

eawew ¼ 1: (1)

Recall that the homomorphic image of a locally nilpotent ring is locally nilpotent. Therefore
uðRÞ is locally nilpotent. Let N be the subring of uðRÞ generated by the finite set feawg. So N is
nilpotent, and there exists a positive integer m such that Nm ¼ 0. Then

u pð Þ ¼
X

w2W

eawew ¼
X

w2W

eaw � 1 � ew ¼
X

w2W

eaw �
X

w2W

eawew
� �

� ew ¼
X

u2W

ebueu;

where each ebu is in N2, and the third equality follows from Equation (1). In the same vein,

u pð Þ ¼
X

u2W

ebueu ¼
X

u2W

ebu � 1 � eu ¼
X

u2W

ebu �
X

w2W

eawew
� �

� eu ¼
X

v2W

ecvev;

where each ecv is in N3. Continuing in this fashion, we obtain

u pð Þ ¼
X

y2W

ezyey;

where each ezy belongs to Nm and thus is zero. So 1 ¼ uðpÞ ¼ 0, a contradiction. w
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