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1. Introduction

Recently, skew polynomial rings over locally nilpotent rings have received significant attention
[1-7]. One of the most important results was the solution to a problem by Shestakov:
Smoktunowicz and Ziembowski proved that the differential polynomial ring over a locally nilpo-
tent ring need not be Jacobson radical [7]. In addition, Greenfeld, Smoktunowicz, and
Ziembowski posed many intesting problems about skew polynomial rings in their paper [4]. Our
first theorem is related to one of these problems, namely whether a skew Laurent polynomial
ring over a locally nilpotent ring contains a nonzero idempotent. Though this problem was solved
by Chebotar [2] by means of linear algebra, there is a more general and straightfoward solution.
Specifically, the result is extended in Theorem 1 from one to several variables.

Our second theorem is motivated by the result due to Smoktunowicz [5, Proposition 3.1] that
a differential polynomial ring over a locally nilpotent ring is Brown-McCoy radical. As above, we
extend this result to the case of several variables and replace the derivation with skew derivations.

Let R be a ring. Let I be a set of indices, and let J be a subset of I. Then let Q = {w;|i € I} be
a set of endomorphisms of R and W = {y,;|i € I} the set of corresponding w;-derivations. Let
X ={X;|i € I} be a set of variables, and let Y = {Xj_1 |j €]} be a set of inverses.

Define a word in X and ) to be a string X;"'X;"!... X;*!, where X;, can have an exponent of
-1 only if i,, € J. Let WV be the set of all words in X’ and ).

Define the (Q,¥)-skew polynomial ring R[X, V; Q, ¥] as the set of left polynomials in non-
commutative variables in X and ). Elements are of the form ) ., a,w where only finitely
many d,, € R are nonzero. Addition is the usual addition of polynomials. Multiplication is asso-
ciative, and we convert right polynomials to left polynomials by applying the rule

CONTACT Fei Yu Chen @ dennisfchen@berkeley.edu @ University of California, Berkeley, CA 94720, USA.
© 2018 Taylor & Francis Group, LLC



COMMUNICATIONS IN ALGEBRA® 1103

Xia = w;(a)X; + y;(a), for all i€ I and a € R. We assume that X;'a is well-defined as a left
polynomial, for all j € J and a € R.

Example 1. (Differential polynomial rings). Let X = {X} and J = & (here I contains only one
element, and ] is empty). Let o be the identity map and y a derivation. Then R[X,Y;{w}, {y}]
is the differential polynomial ring R[X; y/].

Example 2. (Skew Laurent polynomial rings). Let X = {X} and Y = {X '} (here =] contains
only one element). Let w be any automorphism of R and  the zero map. Then
R[X,Y;{w}, {y}] is the skew Laurent polynomial ring R[X, X~ }; w].

We are now ready to state the main results of the paper.

Theorem 1. Let T = R[X,);Q, P] be the (Q, ¥)-skew polynomial ring over a locally nilpotent
ring R. Then T does not contain a nonzero idempotent.

Theorem 2. Let T = R[X,Y;Q, V] be the (Q,¥)-skew polynomial ring over a locally nilpotent
ring R. Then T cannot be mapped onto a ring with identity.

2. Proofs

Proof of Theorem 1. Suppose for some locally nilpotent ring R the corresponding (Q,¥)-skew
polynomial ring T contains a nonzero idempotent. Denote a nonzero idempotent by

e= E ayw.

wew

Since the multiplication on T is well-defined, each product wa, is again a finite sum of the

form
wa, = E bw,v,uu;
ueWw

where b, , € R. Then ¢” will be of the form

e = E a,wa,v = E awbwﬁvﬁuuv:g g awbywyu \ y-

wveW wv,ueW yEW | ww=y
wew

Now, let N be the ring generated by the finite set {a,, by, ,}. Then N is nilpotent, so we can
find the smallest positive integer [ such that a, ¢ N'*!, for some y € W. Note a, € N' for
alweWw.

As e = ¢*, we obtain

ay = § awbw,v,u

uv =y
wew
by equating the coefficients of y. However, we know each a, € N’ and each b,,, € N, so
a, € N1 a contradiction. 0O

Remark 3. In the statement of Theorem 1, the variables do not commute. However, the same
argument works when the variables do commute. For example, let M be the ring of strictly upper
triangular matrices over the field of real numbers. Let R = M|z, ..., z,] be the polynomial ring
over M in commuting indeterminates zy, ..., z,. Let R[X, ..., X,;; 01, ..., 9,] be a differential polyno-
mial ring with commuting variables such that X;a = aX; + d;(a) for all a € R, where J; = a%’ the
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partial derivative with respect to z;. Since R is a locally nilpotent ring, R[Xj, ..., Xy; 01, ..., 0, does
not contain a nonzero idempotent by the same reasoning as above.

Proof of Theorem 2. Suppose ¢ is a homomorphism from T onto a simple ring S with 1. Let p =
> wew Aww be an element of T such that ¢(p) = 1. Let a,, = ¢(a,) and w = ¢(wp). Now,

Pp) =D dww =1, (1)

wew

Recall that the homomorphic image of a locally nilpotent ring is locally nilpotent. Therefore
@(R) is locally nilpotent. Let N be the subring of ¢(R) generated by the finite set {a,}. So N is
nilpotent, and there exists a positive integer m such that N” = 0. Then

o) =3 E =3 = 3 G (3 a) W= 3 b

wew wew wew wew ueWw

where each b, is in N?, and the third equality follows from Equation (1). In the same vein,

ueWw uew ueW wew

op)=> b= b,-1-i=3 b, (Z%»”v) 'EZVGWE@

where each ¢, is in N°. Continuing in this fashion, we obtain

® (P) = z}’yu
yew

where each z, belongs to N and thus is zero. So 1 = ¢(p) = 0, a contradiction. O
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