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ABSTRACT  

Civil structures, such as buildings and bridges, are constantly at risk of failure due to extensive environmental loads 
caused by earthquakes or strong winds.  In order to minimize this risk, the application of control systems for civil 
infrastructure stabilization has been proposed.  However, implementation challenges including communication latencies, 
computation inundation at the actuation node, and data loss have been impeding large-scale deployment.  In order to 
overcome many of these challenges, inspiration can be drawn from the signal processing techniques employed by the 
biological central nervous system.  This work uses a bio-inspired wireless sensor node, capable of real-time frequency 
decomposition, to simplify computations at an actuating node, thus alleviating both communication and computation 
inundation and enabling real-time control.  The simplistic control law becomes  𝐅 = 𝐰𝐍, where 𝐅 is the control force to 
be applied, 𝐰 is a weighting matrix that is specific to the structure, and  𝐍 is the displacement data from the wireless 
sensor node.  There is no empirical solution for deriving the optimal weighting matrix, 𝐰, and in this study the particle 
swarm optimization technique was used as a means for determining values for this matrix.  Multiple parameters of this 
optimization method were explored in order to produce the most effective control.  This bio-inspired approach was 
applied in simulation to a five story benchmark structure and using performance metrics it was concluded that this 
method performed similar to more traditional control method.   

Keywords: wireless sensor networks, structural control, bio-inspired control, particle swarm optimization 
 

1. INTRODUCTION  
Active control methods offer an attractive method for mitigating the undesired response of civil infrastructure (e.g., 
buildings, bridges) when subject to large external loads, such as earthquakes or high winds.  These integrated systems 
include sensors for measuring the structure’s response, such as displacement or velocity, computational nodes for 
determining appropriate reactions, and actuators for applying this counteracting force.  Traditionally, these systems have 
relied on  numerous sensors that are distributed throughout the structure and a centralized computational node, thus 
requiring information from all sensors to be transmit back to a centralized location through cables prior to actuation 
occurring1,2.  This inevitably leads to delays in the execution of the control action, which results in a degradation of the 
overall control effectiveness.  As a result, researchers have explored using wireless telemetry as a means for 
communicating between sensors, controllers, and actuators, thus enabling increased data sharing and hence an improved 
system response.             

Equipping nodes with wireless telemetry capabilities allows them to become localized data acquisition centers, 
commonly termed wireless sensor units (WSUs).  Each node typically contains an on-board microcontroller, a transducer 
interface (i.e., analog-to-digital converter), an actuation interface (i.e., digital-to-analog converter), and a wireless 
transceiver.  This allows the units to serve in any role required by the control system, thus increasing the overall 
adaptability of the network of nodes. While wireless telemetry has been shown to increase the overall flexibility of the 
network and was successfully integrated into global control architectures3–5, the technology also presents other 
challenges, such as a higher probability of data loss during transmission.  These studies also highlighted similar 
limitations as wired systems, such as delays in computations due to information bottleneck.  To overcome these 
challenges, researchers leveraged the peer-to-peer communication capabilities of these nodes to enable decentralized 
control architectures and localized actuation6–8.  While resulting in improved control effectiveness, it typically also 
increased computational requirements at the already resource-constrained node, as well as required decision-making 
based on reduced information, which further degraded the control effectiveness.  Thus, in order to effectively implement 
structural control of civil infrastructure, it is imperative that the current challenges faced by the technology be addressed.   
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One possible solution to this is to draw inspiration from the sensing and actuating techniques employed by the biological 
central nervous system (CNS), thus resulting in a new bio-inspired control paradigm.  Due to the unique signal 
processing techniques employed by the CNS, biological systems are capable of integrating information the sensing layer 
to the actuating layer in a simplistic manner that is desirable for equivalent engineered systems.  In particular, 
information is received at the receptor neurons where it is disseminated and aggregated across multiple layers of 
interneurons before being received at the motor neuron nodes.  Due to the dissemination and aggregation of data at 
previous layers, the motor neuron node is able to perform a simplistic actuation action that requires no computational 
effort, which is a desirable consequence for engineered systems.   In this paper a simplistic bio-inspired control 
algorithm is outlined and the details of the aggregation process are explored using an iterative optimization approach.  
The overall control effectiveness of this method is evaluated on a 5-story benchmark structure.        

2. SENSING AND ACTUATION ARCHITECTURE IN BIOLOGICAL CENTRAL 
NERVOUS SYSTEM 

Due to its up-front signal processing capabilities, as well as simplistic information integration capabilities, the biological 
CNS is able to sense and actuate using basic mechanisms which are desirable for equivalent engineered systems.  CNSs 
are composed of basic processing units, termed neurons, which form simplistic networks in order to aggregate and 
integrate stimulus information, so that it can then be used for learning or actuation (Figure 1a).  External information is 
received at the input layer, or receptor neurons, which typically perceive the stimulus based on their activation type, such 
as pressure, vibration, light, etc9.  These neurons pass information in the form of electrical pulses, termed action 
potentials, to subsequent layers of neurons where additional information integration occurs10.  Depending on the 
connection type (i.e., excitatory or inhibitory) and relationship strength between neurons, a decision is either further 
promoted or inhibited, thus allowing complex decision-making.  This information integration can occur through several 
layers of neuron before reaching the motor neuron node, which commands the actuation by controlling muscle fibers11.        

Based on the information received from preceding layers of neurons, the motor neuron activates muscle fibers which 
provide the required force using both rate coding and size principle.  Similar to the function of other neurons, the motor 
neuron node encodes the amplitude of the desired actuation into a series of electrical pulses, with each successive pulse 
increasing the intensity of the muscle activation, up to a limit12.  The motor cortex uses feedback mechanisms to both 
ensure that the magnitude of response is large enough and if a larger response is required then more motor neurons are 
recruited by the motor cortex13.  The neuronal network also uses feedback mechanisms to ensure that the overall desired 
response is achieved and to fine-tune the actuation based on this information14.  This ensures that effective actuation is 
achieved while still maintaining real-time processing capabilities.  To encapsulate the simplistic manner that biological 
organisms respond to external stimuli through muscle actuation, the overall network architecture will be mimicked in a 
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Figure 1. Sensing and actuating architecture in biological central nervous system (a) and propose bio-inspired sensing 
and actuating architecture (b). 
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bio-inspired control architecture (Figure 1b).      

3. BIO-INSPIRED CONTROL ARCHITECTURE 
The proposed bio-inspired control law mimics the simplistic architecture used in the biological CNS to achieve real-time 
control.  In the biological system the sensing and actuating process is initiated at the receptor neurons, which conduct 
pre-processing of the input signal based on their activation type. In the bio-inspired engineered system a novel sensing 
node, termed the cochlea-inspired sensing node, inspired by the mammalian auditory system will be used as this input 
layer.  This node, first proposed by Peckens et al.15, uses a bank of parallel and analog bandpass filters to perform real-
time spectral decomposition of a convoluted signal, thereby drawing inspiration from the mechanisms employed by the 
cochlea within the auditory system16.   The sensing node is comprised of multiple “neuron” boards (represented as Rij in 
Figure 1b), that each house a unique analog bandpass filter and microcontroller, thereby enabling parallel processing  
and data transmission17.  The microcontroller on the board receives a filtered signal from its respective filter, performs a 
simple peak-picking algorithm, and instantaneously transmits a peak value, representative of a series of biological action 
potentials, once detected.  This up-front signal processing allows the minimal computational requirements at the 
actuation node and also eliminates the need for scheduled data transmission schemes that are typically deployed at the 
sensing layer.  Both of these result in an elimination of the inherent time delay that currently plagues control systems in 
civil infrastructure and allows real-time control to be realized.  

The founding principle of the biological CNS architecture is the information integration from multiple sources between 
layers of neurons using synaptic strengths (i.e., amplification or attenuation factors).  This structure is mimicked in the 
bio-inspired control law with motor neuron nodes aggregating information from the neuron boards on multiple receptor 
nodes using weighting values which can be both positive for amplification and negative for attenuation.  This results in a 
simple control law in which the control force output, Fk, from each actuator is a weighted aggregation of the received 
information 

 𝐹𝑘 = ∑ ∑ 𝑊𝑖𝑗𝑘𝑅𝑖𝑗

𝑏

𝑗=1

𝑛

𝑖=1

 (1) 

where Wijk is the synaptic strength between the jth neural unit for b units on the ith receptor node for n nodes and the kth 
motor neuron node for M nodes.  Rij is the output of the jth neural unit on the ith receptor node.  In this architecture, as 
shown in Figure 1b, N represents the number of sensing nodes and M is the number of actuating nodes in the system.  
Developing the weighting matrix, W, is imperative to the success of the bio-inspired control algorithm and there is no 
empirical method for this derivation.  As a result, the particle swarm optimization (PSO) method will be used in order to 
derive these values.  In this study, various parameters for this optimization method are considered so as to ensure the 
best resulting weighting matrix using this technique.        

 Particle swarm optimization (PSO) is an iterative learning technique that draws inspiration from biology and is capable 
of optimizing continuous nonlinear functions.  In PSO, a number of solutions, or particles, are dispersed randomly in a 
search space and each particle location is evaluated according to a specified objective function.  With each iteration of 
the algorithm, each particles moved to a new location in the search space that is dependent on its own history, as well as 
the behavior of other nearby particles, with the goal of moving closer to the optimum of the objective function18.  Each 
particle in the swarm tracks three vectors: x which is the particle’s current position, v which is its current velocity, and xb 
which is its previous best position.  Each particle also interacts with neighboring particles and stores the best solution 
found from all neighbors, g, in order to leverage the benefits of the swarm.  Each particle updates its three vectors every 
iteration through the equations:         
 

      
𝒗𝒊(𝑘 + 1) = 𝜔𝒗𝒊(𝑘) + 𝜌1𝛾1 (𝒙𝒃,𝒊(𝑘) − 𝒙𝒊(𝑘)) + 𝜌2𝛾2(𝒈(𝑘) − 𝒙𝒊(𝑘))  (2) 

 
𝒙𝒊(𝑘 + 1) = 𝒙𝒊(𝑘) + 𝒗𝒊(𝑘 + 1) (3) 

 
𝜆 = 𝜆 × 𝜏 (4) 
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where i is the particle number, k is the iteration number, 1 and 2 are random numbers between 0 and 1, and 1 and 2 
are the acceleration coefficients which are both assigned to be 2 as recommended in18.  Equation 4 also includes an 
inertia weight, , which affects the convergence and plays a role in balancing local versus global search of the 
particles19, as well an inertia damping constant, , which gradually modifies this balance.  The inertia coefficient, , is 
initially assigned to be 1, and is decreased using a damping constant,  of 0.9920, which results in a global search that 
gradually becomes more localized.  Each particle represents a potential weighting matrix, W, between the receptor nodes 
and the motor neuron nodes in the bio-inspired control theory.  After completing the optimization, the particle that most 
closely matched the objective function was chosen as the resulting weighting matrix.   

4. BENCHMARK STRUCTURE 

In order to validate the proposed bio-inspired control algorithm and further study the impacts of varying parameters in 
the PSO optimization technique, a model of the 5-Story Kajima-Shizuoka building was developed (Figure 2).  The 
model is similar to the lumped mass system used by Wang 21, which is based on the actual structure used in the study 
conducted by Kurata et al.22.  The model assumes seismic mass values of 215.2 x 103, 209.2 x 103, 207.0 x 103, 204.8 x 
103, and 266.1 x103 kg on floors 1 through 5 respectively, and corresponding interstory stiffness of 147 x 103, 113 x 103, 
99 x 103, 89 x 103, and 84 x 103 kN/m.  This results in five natural frequencies of 1.00, 2.82, 4.49, 5.80, and 6.77 Hz.  
Additionally, the damping was modeled using Rayleigh damping that is both mass-proportional and stiffness-
proportional, using a 5% damping ratio23.  It is assumed that only the horizontal degrees-of-freedom are measurable and 
controllable.  Each floor is assumed to include an installed transducer that measures interstory displacement, which is 
input into the cochlea-inspired sensing node, as well as an ideal actuator.  It is also assumed that each sensing node is 
capable of directly communicating with the motor neuron nodes, which command their respective actuators.            

A state-space model was developed that encompasses the dynamics of the 5-story benchmark structure, as well as the 
dynamics introduced by the cochlea-inspired sensing node.  These equations are given as  

  𝒛̇ = 𝑨𝒛 + 𝑩𝒖 + 𝑮𝑥̈𝑔 (5) 

 𝒚 = 𝑪𝒛 + 𝑫𝒖 + 𝑯𝑥̈𝑔 (6) 

where A is the state transition matrix, B is the control matrix, G is the ground input matrix, C is the measurement output 
matrix, D is the control feedforward matrix, and H is the  ground feedforward matrices.  The states of the system are 

4.2 m
4 @

 3.6 m

 
Figure 2. 5-story benchmark structure.    
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represented by the vector z which includes the structure’s displacement and velocity terms, as well as the displacement 
and velocity terms of the cochlea-inspired sensing nodes.  The vector input of control forces (equivalent to F in Equation 
1) is represented by u, y is the output vector, and 𝑥̈𝑔 is the ground acceleration. 

As a comparative baseline to the bio-inspired control algorithm, traditional optimal control theory was also used to 
develop a centralized linear quadratic regulator (LQR).  The LQR uses the algebraic Riccati equation to minimize the 
cost function   

 
J = ∫ (zTQz+uTR

∞

0

u)dt (7) 

subject to the full state feedback control law, u = -Kz, where K is the resulting constant feedback gain matrix.  This 
minimization is subject to two parameters: Q which applies a weight to the cost of the structural response and R which 
applies a weight to the cost of control effort.  In the algorithm, Q and R are chosen using the commonly accepted 
Bryson’s Rule24 that establishes these values as proportional to the inverse of the square of the maximum acceptable 
displacement and control force, respectively.  As such, Q is chosen as 1010 x CTC , and R is set to be 10-5.4 x I, where I is 
the identity matrix.  As it is often difficult to measure all of the states of the system in civil infrastructure (i.e., 
displacement and velocity), it was also assumed that a Kalman filter was implemented to approximate any unknown 
states.  Based on the physical challenges presented by Spencer et al.25 and Wang et al.3 that impede the overall control 
sampling frequency, it was assumed that this baseline system could operate at a maximum of 40 Hz.   
 
4.1 Quantification of Control Effectiveness 

The effectiveness of the bio-inspired control theory using the PSO method is compared to the centralized LQR using 
four cost functions, adapted from Ohtori et al.26  These cost functions focus on quantifying the minimization of interstory 
displacement, which directly affects the damage to nonstructural elements, and the minimization of acceleration, which 
relates to occupational comfort during a seismic event. Each of these variables are minimized through two cost 
functions; one cost function compares the absolute maximum value of the variable of the uncontrolled response to the 
controlled response and the other compares the vector norm of the uncontrolled versus controlled over the entire event.  
The cost functions are given as   
           

 
𝑱𝟏 =

max (|𝒅(𝑡)𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑|)

max (|𝒅(𝑡)(𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑|)
 (8) 

 
where d is the time history of the interstory displacement for all floors, and  

 
𝑱𝟐 =

‖𝒅(𝑡)𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑‖

‖𝒅(𝑡)𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑‖
 (9) 

where ‖∙‖  denotes the l2-norm function.  For quantification of acceleration, a, the cost functions are 

 
𝑱𝟑 =

max (|a(𝑡)𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑|)

max (|a(𝑡)𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑|)
 (10) 

 
and 
  

 
𝑱𝟒 =

‖a(𝑡)𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑‖

‖a(𝑡)𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑‖
 (11) 

 
Equations 8-11 result in vectors of cost functions, where each indexed entry is associated with a floor.   Additionally, the 
control force demand is also quantified through a cost function provided in Ohtori et al., which is subsequently defined 
as  
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𝑱𝟓 =
max (|𝑭(𝑡)|)

𝑊𝑠

 (12) 

where F(t) is the time history of the control force for each floor and Ws is the seismic weight of the building based on the 
above ground mass of the structure. 
 
 
4.2 Particle Swarm Optimization Parameters 

There are several parameters within the PSO algorithm that can be modified to affect the overall speed of convergence, 
distribution across the search space, and the appropriateness of the solution.  In particular, these include the number of 
particles, the number of iterations of the optimization and the objective function.  The objective function dictates the 
appropriateness of the solution and in this study several different functions were explored that all focused on minimizing 
the cost functions defined in Equations 8-11.  One objective function, C1, is the cumulative sum of each cost function 
over all floors,            

 
𝐶1(𝑥𝑖𝑗) = ∑ (∑ 𝐽𝑚,𝑙

𝑛

𝑙=1

)

4

𝑚=1

 (13) 

where n is the number of floors and equals 5 for the benchmark structure and m is the associated cost function.  In this 
objective function, each cost function is equally weighted so as to minimize both inter-story drift and acceleration.  A 
second objective function, C2, is the cumulative sum of the cost functions associated with displacement (J1 and J2) over 
all floors and a third objective function, C3, is the cumulative sum of the cost functions associated with acceleration (J3 
and J4) over all floors,     

 
𝐶2(𝑥𝑖𝑗) = ∑ (∑ 𝐽𝑚,𝑙

𝑛

𝑙=1

)

2

𝑚=1

  (14) 
 

 
𝐶3(𝑥𝑖𝑗) = ∑ (∑ 𝐽𝑚,𝑙

𝑛

𝑙=1

)

4

𝑚=3

  
(15) 

 

Each particle position, xij, represents a potential weighting matrix solution for the bio-inspired control theory and each 
objective function is evaluated on each position using the controlled structure’s response subject to the 1940 El Centro 
(SE) earthquake (Figure 3). 

Prior to exploring these cost function, however, the number of particles in the algorithm was also considered.  Each 
particle represents a potential weighting matrix that can be used in the bio-inspired control algorithm.  As there are no 
physical bounds on this weighting matrix, the search space is infinitely large.  As such, a larger number of potential 
solutions (i.e., particles) allows the system to span an adequate search space while also converging to a local minimum 
during a reasonable number of iterations.  The algorithm was executed using Equation 13 as an objective function with 
the stopping condition that the solution either performed better than the centralized LQR solution or else the best particle 
did not change for 100 iterations. This criterion was explored for 10, 25, 50, and 100 particles (Table 1), with each 
particle solution initialized as a vector of random numbers.  For every iteration each particle has to be evaluated, which 
results in a significant number of calculations as the number of particles increases.  All of these trials were stopped after 
the best particle did not change for 100 iterations, indicating that the PSO did not find a solution that was better than the 
centralized LQR.  The search path of this algorithm is stochastic in nature, however, as it is dictated by the initial 
positional of all of the particles, which is randomly assigned.   As such, if these trials were repeated again they would 
require a different number of iterations and would presumably end with a different solution.  While 50 particles do 
require more computations than 25 or 10, it was chosen as the number of particles going forward as it allowed an 
adequate coverage of the search space.       
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4.3 Simulation Results  

To evaluate the effectiveness of the different objective functions, the PSO training was again executed using 50 particles 
and the El Centro earthquake.  Once a solution was found then the 5-story structure was also excited and assessed using 
the 1995 Kobe (JMA NS) earthquake (Figure 3) to ensure that the solution was not being overtrained to the El Centro 
earthquake.  The response of the structure was also compared against the idealized scenario using the centralized LQR 
method.  The resulting cost functions for the different training methods and the two earthquakes are shown in Figure 4.   

From these results, several interesting observations can be made.  First, in general, C2 performs poorly when considering 
J3 and J4.  This is expected as this objective function focuses on minimizing the cost functions associated with 
displacement, J1 and J2, which often results in a larger acceleration of the structure.  This is not true, however, when 
considering the Kobe earthquake which may indicate that the function was overtraining to the El Centro earthquake.  
Conversely, it can be observed that C3 typically performs better than the other two objective function scenarios when 
considering the cost functions associated with acceleration, J3 and J4, but does still perform moderately well for J1 and 
J2.  In order to assess the overall performance of the various methods, the average value for the three methods across 
both earthquakes and all cost functions was determined (Table 2).  It is observed that optimizing using C3 results in a 
slightly improved performance over using C1.  Additionally, C2 can be deemed inadequate as any benefits gained in J1 
and J2 are offset by the poor performance for J3 and J4.  As a result, it can be concluded that using Objective Function 3 
for training the PSO algorithm results in an acceptable performance.   

The other parameter that should be considered for control is the control effort exerted for each method, which is 
quantified using the cost function defined in Equation 12 or J5 (Figure 5).  During simulation, no constraint was applied 
to the actuators and it was assumed that they had unlimited actuation capabilities.  As a result, each method could 
demand as much actuation force as desired.  When considering the four methods, C2 placed the greatest demand on the 

Table 1. Convergence of PSO when varying number of particles 

No. of Particles, Np No. of Iterations, It No. of Calculations  
( = Np x It) 

10 407 4070 

25 443 11075 

50 334 16700 

100 285 28500 

 

 
(a) (b) 

Figure 3. Seismic signals used as base excitation in simulation in time (a) and frequency (b) domains.  SE: Southeast, 
JMA: Japan Meteorological Agency. 
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controllers, approximately 48% more effort than the case that placed the least demand on the controllers (centralized 
LQR).  C3 placed the least amount of demand on the controllers of the three PSO cases, approximately 12% more effort 
than the centralized LQR case.  In the future, an objective function that considers the control force should also be 
considered in order to better apply this realistic constraint.     

5. CONCLUSIONS 
While feedback control systems integrated into civil infrastructure is not a new area of research, several challenges of the 
technology, such as computational delays and communication constraints, have prevented their widespread adoption.  
This study proposed a bio-inspired control algorithm that leverages front-end signal processing to enable streamlined 
control at the actuating node, thus overcoming many of these challenges.  The control algorithm is reduced down to a 
simplistic weighted combination of the inputs, similar to mechanisms employed by the central nervous system.  The 

 
(a) 

 
(b) 

Figure 4. Cost functions for benchmark structure subject to El Centro earthquake (a) and Kobe earthquake (b).  PSO-Ci 
is the PSO algorithm executed using objective function i, as defined by Equations 13-15.   

Table 2. Average cost functions for various control methods and earthquakes  

Method El Centro 
earthquake 

Kobe 
earthquake 

Avg. all 
earthquakes 

Cent. LQR 0.6185 0.5348 0.5767 

PSO-C1 0.7314 0.8748 0.8031 

PSO-C2 0.8328 1.1477 0.9902 

PSO-C3 0.7532 0.8133 0.7833 
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weights of this algorithm were developed using the particle swarm optimization method based on various objective 
functions.  The effectiveness of this method was assessed in simulation on a five-story benchmark structure.   While the 
traditional full-state optimal control theory does outperform the bio-inspired control algorithm, the PSO technique in 
particular offers a competitive alternative in overall control effectiveness.  The drawback of the PSO technique, 
however, it is that it does place a higher demand on the actuators, as compared to the full-state LQR method and this 
must be considered when completing an experimental validation of these techniques. 

Future work will include experimental validation of the bio-inspired algorithm using the PSO technique, as well as the 
full-state feedback control system.  This experimental validation will use WSNs for communicating information about 
the structural response, as well as commanding the actuator.  To implement the full-state feedback method, a Kalman 
filter will be implemented which will inhibit the real-time capabilities of the full-state feedback method, due to 
communication sequencing and computational delays.  The PSO methods, however, will leverage the real-time front-end 
signal processing capabilities of the cochlea-inspired sensing node which will alleviate computations at the actuating 
node and prevent delays in the overall control system.    
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Figure 5. Control effort cost function for benchmark structure subject to El Centro earthquake (a) and Kobe 
earthquake (b).  PSO-Ci is the PSO algorithm executed using objective function i, as defined by equations 13-15.   
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