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1. Introduction

Let A be an associative ring. The Jordan product of any two elements z,y € A
is x oy = zy + yx. Throughout this paper, we will be discussing maps that preserve
a certain product on A; that is, if we let * denote either the ordinary or the Jordan
product, we will consider maps ¢ : A — A satisfying ¢(x) * o(y) = @(u) * ¢(v) whenever
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xxy = uxv = a for some fixed a € A. An example of a map ¢ satisfying this property is
a homomorphism multiplied by a central element of A. The question of interest becomes:
when is this description the only possibility?

Perhaps the most obvious type of product preserving map is those that preserve the
(ordinary) zero product; that is, maps satisfying

6(x)0(y) = 0 whenever xy = 0. (1)

A characterization of zero product preserving maps on various algebras can be found in
[1,3,8]. Each of these results comes to the same conclusion: the map must be the product
of a central element and a homomorphism. We say that a map 1 preserves square-zero
matrices if ¢ (z)? = 0 whenever 22 = 0 for z € M,,(A), the ring of n x n matrices over A.
In [12], Semrl studied such maps in the case that A = C, and in [4], his result was
extended for matrices over commutative rings.

A logical extension of the zero product preserving maps is to consider when a map
satisfies an identity similar to (1), but using the Jordan product in place of the usual
product. Chebotar, Ke, Lee, and Zhang showed that a surjective additive map 6 on
M,,(A) preserving the zero Jordan product (i.e. 8(x) o 0(y) = 0 whenever z oy = 0)
must have the form 0(x) = 6(1)y(x), where ¢ is a Jordan homomorphism (that is,
Y(xzoy) = Y(x) oy(y)) and 6(1) is a central element of M, (A) [6]. More examples of
maps satisfying similar properties with the Jordan product can be found in [10].

Another natural product preserving map to study is one preserving the identity prod-
uct. For instance, Chebotar, Ke, Lee, and Shiao found that a bijective additive map «
on a division ring D that satisfies a(a™1)a(a) = a(b™1)a(b) for all nonzero a,b € D must
have the form «a(z) = a(1)p(x), where ¢ is an automorphism or antiautomorphism, and
a(1) is a central element of D [5]. Lin and Wong generalized this result to M, (D) [11].

Our goal in this paper is to consider when more general products are preserved. Re-
cently, Catalano was able to expand the result from Chebotar et al. regarding the identity
preserving map, finding the form of o when it preserves an arbitrary fixed product; that
is, a(z)a(y) = a(u)a(v) whenever zy = uv = k for some fixed k € D [2]. In this case,
a has the form a(z) = a(l)p(x), where ¢ is an automorphism or antiautomorphism,
but «(1) is not necessarily central. Our first result generalizes [2, Theorem 5] to a map
on M, (D).

Theorem 1. Let D be a division ring with characteristic different from 2. Let R = M,,(D)
be the ring of n X n matrices with n > 2, and let Z be the center of R. With m,k € R
invertible fived elements, let f : R — R be a bijective additive map satisfying the identity

f@) fly) =m (2)

for every x,y € R such that vy = k. Then f(x) = f(1)p(x) for all x € R, where
@ : R — R is either an automorphism or an antiautomorphism. Moreover, we have
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(1) if ¢ is an automorphism, then f(1) € Z, and
(2) if ¢ is an antiautomorphism, then f(1) = f(k)~'m and f(k) € Z.

Let M = M, (C). For our next set of results, we will consider the natural extension
of property (2), replacing the usual product with the Jordan product.

Theorem 2. Let M, K € M be fized elements, where K has a square root. Let g : M — M
be a linear map satisfying the property

g(X)og(Y)=M (3)
for every X, Y € M such that X oY = K. Then g preserves square-zero matrices.

Theorem 2 is of particular interest when K is either diagonal, invertible, or idempo-
tent, although [7] gives a complete description of matrices that have square roots. To
the best of our knowledge, no one has considered a map preserving such an arbitrary
product as we have in Theorem 2. However, we note that the most comparable results,
such as those in [6] and [10], rely on the use of idempotent elements and matrix units in
the proofs, and our method of proof differs significantly.

Our next result generalizes Theorem 2 in the case where K does not have a square
root; nonetheless, the proof is considerably different and so will be presented separately.

Theorem 3. Let M, K € M be fized elements, and let g : M — M be a linear map
satisfying the property

9(X)og(Y)=M (4)
for every X, Y € M such that X oY = K. Then g preserves square-zero matrices.

Semr!’s results on maps preserving square-zero matrices [12] allow us to give an explicit
description of the maps described in Theorems 2 and 3.

Theorem 4. Let M, K € M be fized elements, and let g : M — M be a bijective linear
map satisfying the property

9(X)og(Y)=M (5)
for every X, Y € M with X oY = K. Then g is of one of the following forms:

(1) g(X)=cUXUL, or
(2) g(X)=cUXTU!,

for some invertible U € M and nonzero ¢ € C, where X denotes the transpose of the
matriz X .
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2. Proof of Theorem 1

Proof. Using identity (2), we know that m = f(z)f(z71k) for every x € R*, the set of
all invertible elements of R. Let y = a — aba. A useful identity due to Hua states that

a—aba=(a""+(b7' - a)_l)_l,

sothat y™* =a~!+ (b=t —a)~!. Then

m = f(y)f(y~"k)
= fla—aba)f(a 'k + (b7 —a) k)
= (f(a) - f(aba)) (f(a™'k) + f((b~" —a) " k))

= f(@)f(a™'k) + () F((b~" = a)'k)
—f(aba)f(a™'k) — flaba) f((b~" —a)"'k).

However, since m = f(a)f(a~'k), we note the equality above simplifies to

0= f(a)f((b~" —a)~"k) — f(aba)f(a™"k) — f(aba)f((b™" —a)~"k).

For any # € R*, m = f(x)f(z~1k) is equivalent to f(z~'k) = f(x)~'m, and so we can
see that

0= f(a)f(b" — a)"'m — f(aba)f(a) " 'm — f(aba) f(b~* — a)"'m. (6)

Rearranging (6) and multiplying through by m~1f(b=! — a) on the right hand side, we
have

which can equivalently be written as
flaba) = f(a)f(6~") 7" f(a)

whenever ab # 0, 1. Therefore, for any € R*\ {1}, we may let a = 1,b = « to find that
fl) = f)fz=)7 (D). (7)

Now, define ¢(z) = f(1)71f(2) for all z € R. The additivity of f immediately yields
the additivity of . Additionally, it is clear that ¢(1) = 1. Using (7), we note that for
any x € R*\ {1},
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p(a) = f(1)7 f(x)
=T
= =) (D),

which implies that

pla™) = F@) 7 () = (FO) @) = e@)

That is, for every invertible z € R, p(x™!) = ¢(z)~!. Thus, [9] gives us that ¢ is an
automorphism or an antiautomorphism.
Let x be an invertible element of R. We can see that when ¢ is an automorphism,

FQ)F (k) = f(2)f (k)
= f@)f(D)p(a" k)
= f(@)f(Dplx) (k)
= @) f (V@) F (1) (D) (k)
= F@) PO (FD)p() ™ F()elk)
= F(@)F () f (@) F(k);

that is, f(1)f(k) = f(x)f(1) f(x)~1 f(k). Multiplying through on the right by f(k)~!f(z),
we get that f(1)f(xz) = f(z)f(1), and so f(1) commutes with f(z) for every x € R*,
and in particular with every € R* such that z — 1 € R*. From this, we get that f(1)
is a central element [11, Lemma 3.2, Lemma 3.3(ii)].

If, alternatively, ¢ is an antiautomorphism, we have that

that is, f(k)f(1) = f(x)f(k)f(x)~f(1). Multiplying through on the right by f(1)~!f(z),
we have f(k)f(x) = f(x)f(k), and so f(k) commutes with f(x) for every x € R*. As
before, using [11, Lemma 3.2, Lemma 3.3(ii)], we get that f(k) is a central element. O
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3. Proof of Theorem 2

Let g : M — M be a linear map satisfying property (3). Let L € M be a square root
of K (that is L? = K) and let S € M be a square-zero matrix. We observe that

sLoL=L"=K,
and
I(L-8)o(L+8)=L"-S=K.
From (3), we have that
9(3L) 0 g(L) = M = g(5(L = §)) o g(L + S).
Simplifying this, we can see that
9(L)* = g(L)* — g(8)*,
which gives us that g(5)? = 0. Therefore, g preserves square-zero matrices.
4. Proof of Theorem 3

Observation 5. Any linear map g : M — M satisfies the assumptions of Theorem 3 if
and only if it satisfies the following property:

29(A)* —29(B)* = M (8)
for every A, B € M with 2A? — 2B%? = K.

This observation follows using the substitutions X = A+ B and Y = A — B for the

forward direction and using the substitutions A = % and B =% gY in the backward

direction.
Let A € C be a fixed element such that \J — % is invertible. To get our desired result,
we will also be using the following property for a map g : M — M:

V2 =W? = Al implies g(V)? = g(W)?. (9)
Lemma 6. If g : M — M is a linear map satisfying (8), then g satisfies (9).

Proof. Assume that g satisfies (8), and let V,W € M be such that V? = W2 = \I.

Since A\ — % is invertible (and hence, has a square root), we know there exists T' € M

such that 2V?2 — 272 = 2W?2 — 272 = K. From this, we have that
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29(V)? —29(T)* = 29(W)* — 29(T)* = M.
That is, g(V)? = 2 + ¢(T)? = g(W)?. O

Lemma 7. Let g : M — M be a linear map satisfying (9). Then g is a square-zero
preserving map.

Proof. Let S be an n x n square-zero matrix (i.e. S = 0) and let J be the Jordan form
of S. We know that J contains ¢ Jordan blocks of size 2 of the form

(o)

for some i € ZT U {0} with ¢ < %, while all other entries are zero. Let P be the block

diagonal matrix with ¢ blocks of size 2 (corresponding to the 2 x 2 Jordan blocks of J)

VA0
0 V)’
the remaining n — 2i diagonal entries are v/, and all other entries are zero. It is easy to
see that P? = (J + P)? = (J — P)? = AL
Let C € M be an invertible matrix such that S = CJC~!. Consider the matrix

Q = CPC~'. Using the fact that scalar matrices are central elements of M, we can see
that

of the form

Q*=CPC™' =c(\)C™! = \I.
Similarly, we have that
(S+Q)°=(S-Q)? =\

Let g : M — M be a linear map satisfying (9). This implies that g(S + Q)? =
g(S — @Q)?. The linearity of g gives us that

9(8)? +9(5) 0 9(Q) + 9(Q)* = g(5)* — 9(5) 0 9(Q) + 9(Q)?,
and this simplifies to
9(5) 0 g(Q) =0. (10)
Additionally, we know that g(Q)? = g(S + Q)?, and again, linearity yields

9(Q)? = g(9)* + g(5) 0 9(Q) + 9(Q)*.
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Subtracting g(Q)? from each side of the equality and using (10), we can see that
g(S)? = 0. That is, g preserves square-zero matrices. [

At this point, we can see that Observation 5, Lemma 6, and Lemma 7 together give
us that a map g : M — M satisfying the assumptions of Theorem 3 is also a square-zero
preserving map.

5. Proof of Theorem 4
As before, let A € C be a fixed element such that Al — % is invertible. Furthermore,

we will let e;; denote the matrix unit with 1 in the (7, j) position and 0 elsewhere. We
will begin by defining sets of matrices. When n = 2m + 1 for m € N, let

0 . 0
ay b1
A= Sa Tl : ca? +bicg=Afor 1 <i<mp,
. 0
A bm
0 0 Cm —Qm
and
ay b1 0 0
C1 —Qaq
0 S, _
B= ra; +bicg=Afor1 <i<m
: A bm
Cm  —Qm
0 0

Additionally, when n = 2m for m € N, let

0 - 0
0 0
al bl
C= 1 —a :a?—l—bicz-z)\forlgigm—l ,
0
Am—1 bm—l
0 0 0 Cm—1 —Am—1

and
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a; b

c1 —ap

D=4 f:a?—&-bici:)\forlgigm—l
am—1 bim—1

Cm—1 —am—1

0 0

Lemma 8. Let n =2m + 1 for m € N. Let X, Y € M such that
XoA=0 for every Ac A

and

Y o B =0 for every B € B.
Then X = aey; and 'Y = bey, for some a,b e C.
Lemma 9. Let n = 2m for m € N. Let X, Y € M such that

XoC =0 for every C € C

and
Y oD =0 for every D € D.
Then
11 12 0 - 0
ZT21 x22 O
X = 0 0 0 )
0 0
and
z11 0 - 0 =14
o o0 --- 0 0
Y = c. . s
o o0 --- 0 O
Tnl O O Tnn

where z;; € C for i,j € {1,2,n}.

The proofs of these lemmas are technical and straightforward, and so we shall omit
them.
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Proof of Theorem 4. We will consider three cases: the first when n is odd, the second
when n > 4 is even, and the third when n = 2.

Using Theorem 3, we have that since the map g satisfies (5), g will preserve square-zero
matrices. Let sl,, be the set of all matrices with trace 0. We can see that g : sl,, — sl,,
and a result by Semrl [12, Corollary 2] gives that when restricted to sl,,, g is of the form

g(Z)=cUZU™, (11)
9(Z)=cUZ"U~, (12)

for every Z € sl,, where U € M is invertible and ¢ € C is nonzero.

Notice that for any X € M, we may write X = Xy + tr(X)ey1, where X € sl,,, and
tr(X) denotes the trace of X. If we can show that g(e11) = cUe;U !, then we will have
either

g(X) = g(Xo) + tr(X)g(e11) = cUXoU ! + tr(X)cUe 1 U™ = cUXU L,
if g is of the form of (11) or, similarly,
g(X)=cUXTU!,

if g is of the form of (12), which is our desired result.

We define 9(X) = ¢ U 1g(X)U for every X € M. It is clear that ¢ is a linear
bijective map. Since g satisfies (9), we also have that v satisfies (9). Additionally, we can
see that for Z € sl,,, ¥(Z) = Z (if g is of the form of (11)) or ¥(Z) = Z7T (if g is of the
form of (12)). Finally, it is straightforward to see that g(e11) = cUe1;U ! if and only if
¥(e11) = e11, so showing ¢(ej;) = ey; will be our goal throughout cases 1 and 2, and
part of case 3.

Case 1: n = 2m + 1 for some m € N. Let A € A and observe that (v ej; + A)? =
(vVAe1r — A)2 = X, so by (9) we have

77[}(\/X611 + A)2 = ’l/)(\/Xen — A)2
Using the linearity of v, this equation yields
Np(enn)? + Vu(ern) 0 (A) + $(4)? = Mp(enn)® — VA(enr) o w(A) + (A),

and cancellation gives us 9(e11) o ¥(A) = 0. Since tr(4) = 0, ¢ acts as either the
identity map or the transpose map on A. In either case, ¥(A) € A. Therefore, we have
that i(e11) o A = 0 for every A € A. Lemma 8 and the bijectivity of ¢ give us that
Y(e11) = aerr, where a € C\ {0}.
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Now, let B € B, and notice that (v Aen, + B)? = (VAenn — B)? = M, and again
using (9), we have

T/)(\F)\Bnn + B)2 - w(\/xenn - B)2

Expanding and canceling as before, we get that ¢ (en,) o 9(B) = 0, and since (B) € B,
we have that 1(en,,) o B = 0 for every B € B. Therefore, once more using Lemma 8 and
the bijectivity of ¢, we must have ¥ (e, ) = ben,, where b € C\ {0}.

Since e11 — e,y is a symmetric matrix of trace 0, we know ¥(e1; — €nn) = €11 — €nn.-
However, ¥(e11 — enn) = ¥(e11) — ¥(enn) = ae11 — beyy,, and thus a = b = 1. Hence, we
have that ¥(e11) = e11.

Case 2: n = 2m for some m € N with m > 2. Let C € C and D € D. Observe that
(VA(e11 + e22) + C)2 = (VX(e1 + ea2) — C)? = M, so by (9) we have

1/)(\[\(611 +e20) +0)* = 1/1(\5(611 + e20) — O)2.
Using the linearity of v, this equation yields

Mp(err + e22)?+ VAP (err + e22) o P(C) + P(C)?
= M(e11 + e22)? — VAP (err + ean) 0 (C) + ¢(C)?,

and cancellation gives us ©(e11 + e22) 0 ¥(C) = 0. This results in

Y(e11) o P(C) + Y(eaz) o p(C) = 0. (13)
Similarly, we can show

Ple1r) o (C) — P(ea2) o Y(C) =0, (14)

¥(e11) o (D) + Y(enn) 0 (D) =0, (15)
and

Y(e11) o (D) — P(enn) o P(D) = 0. (16)

We can add (13) to (14) to obtain ¢ (e11) o ¥(C) = 0. Analogously, we can add (15)
to (16) to get ¥(e11) o (D) = 0. Since ¢(C) € C, we have that 1(e11) o C = 0 for every
C € C. Therefore, by Lemma 9, ¢(e11) must have the form

11 I12 0 0
T21 w22 0

0 0 0 1,
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where z;; € C for i, j € {1,2}. In addition, since ¢(D) € D, we have that ¥(e11) oD =0
for every D € D. Hence, by Lemma 9, ¥(e11) is equal to

11 0 - 0 z1,
0 0 0 0
0 0 0 0

Tp1 0 - 0 zun

where x;; € C for 4,j € {1,n}. Combining the two forms of 1(e;1) results in
w(en) = djey; for some d; € C \ {O}

We may use a similar approach to prove that 1(en,) = dnen, for some nonzero
d,, € C. Since e11 — ey, has trace 0, we know that ¥ (e11 — enn) = €11 — €ny. However, we
also know that 1(e11 — enn) = ¥(e11) — ¥(enn) = die11 — dpenn, and so we must have
that d; = d,, = 1. Therefore, ¥(e11) = e11, as desired.

Case 3: n = 2. Note that (v Ae11 +VAex)? = (VAerr — vVeaz)? = M, so by (9) we
have

Plenr + e22)” = Y(e1r — ex)”.

Next, we know that e1; — egs has trace zero and is symmetric, so 1(e11 —ea2) = e11 — €2a.
This implies that

¢(I)2 =(en + 622)2 =1(enn — 622)2 = (e — 622)2 =1,
which in turn yields
(W) - DY) +1)=0. (17)

Assume both ¢(I) — I and ¢(I) + I are singular. Let

W(I) = (wu 11)12)7
W1 W22
so that

det(Y(I) —I) = (w11 — 1)(waz — 1) — wi2wa1 = 0,
det(d;([) + ]) = (wu + 1)(’[1)22 + 1) — wiowo1 = 0.

This system of equations gives us wy1 + w2 = 0. Hence, tr(¢(I))=0. However, since 1 is
bijective and maps sl,, to itself, ¥ must send matrices of nonzero trace to matrices with
nonzero trace, and so we have a contradiction. Therefore, one of (I) —I or (I)+1 is
invertible, so from (17), either ¢»(I) — I =0 or ¥(I) +1 = 0.
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If (I) = I, then

P(I) =1P(e11 + e22) = e11 + eao.

Furthermore, we know
P(e1r — egn) = €11 — egn.

Adding these two equations and using the linearity of 1, we see that ¢(ej1) = €11, as
desired.
If (I) = —1I, then
P(I) = P(e11 +ex2) = —e11 — e2n.

Moreover, we know

77/1(611 - 622) = €11 — €22.

Adding these two equations and using the linearity of ¢, we have ¢ (ej1) = —eqs and
(ea2) = —ey1. Additionally, for any r, s € C, we know reja + ses; has trace 0, so that
either

P(reiz + sea1) = rejz + sea,
or
Y(rejs + sea1) = sejg + rea;.

This gives us a complete description of . In particular, let X € M be arbitrary and let
E= 0 -1 , so that B! = 0 1 . We have that
1 0 -1 0

$(X) = —EXEY,
or

P(X)=-EXTEL
Using the definition of v, we find that either

g(X)=—-cUEXE'U!
=—c(UE)X(UE)™ !,

g(z) = —c(UBYXT(UE)™™.

In either case, we have that g is of the desired form. 0O
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