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Let D be a division ring with characteristic different from 
2, and let R = Mn(D). The first goal of this paper is to 
describe an additive map f : R → R satisfying the identity 
f(x)f(y) = m for every x, y ∈ R such that xy = k, where 
m, k ∈ R are fixed invertible elements. Additionally, let 
M = Mn(C), the set of all n ×n matrices with complex entries. 
We will describe a bijective linear map g : M → M satisfying 
g(X) ◦ g(Y ) = M whenever X ◦ Y = K for every X, Y ∈ M, 
where M, K ∈ M are fixed, and ◦ denotes the Jordan product.
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1. Introduction

Let A be an associative ring. The Jordan product of any two elements x, y ∈ A
is x ◦ y = xy + yx. Throughout this paper, we will be discussing maps that preserve 

a certain product on A; that is, if we let ∗ denote either the ordinary or the Jordan 

product, we will consider maps ϕ : A → A satisfying ϕ(x) ∗ ϕ(y) = ϕ(u) ∗ ϕ(v) whenever 
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x ∗ y = u ∗ v = a for some fixed a ∈ A. An example of a map ϕ satisfying this property is 
a homomorphism multiplied by a central element of A. The question of interest becomes: 
when is this description the only possibility?

Perhaps the most obvious type of product preserving map is those that preserve the 

(ordinary) zero product; that is, maps satisfying

θ(x)θ(y) = 0 whenever xy = 0. (1)

A characterization of zero product preserving maps on various algebras can be found in 

[1,3,8]. Each of these results comes to the same conclusion: the map must be the product 
of a central element and a homomorphism. We say that a map ψ preserves square-zero 

matrices if ψ(x)2 = 0 whenever x2 = 0 for x ∈ Mn(A), the ring of n ×n matrices over A. 
In [12], Šemrl studied such maps in the case that A = C, and in [4], his result was 
extended for matrices over commutative rings.

A logical extension of the zero product preserving maps is to consider when a map 

satisfies an identity similar to (1), but using the Jordan product in place of the usual 
product. Chebotar, Ke, Lee, and Zhang showed that a surjective additive map θ on 

Mn(A) preserving the zero Jordan product (i.e. θ(x) ◦ θ(y) = 0 whenever x ◦ y = 0) 
must have the form θ(x) = θ(1)ψ(x), where ψ is a Jordan homomorphism (that is, 
ψ(x ◦ y) = ψ(x) ◦ ψ(y)) and θ(1) is a central element of Mn(A) [6]. More examples of 
maps satisfying similar properties with the Jordan product can be found in [10].

Another natural product preserving map to study is one preserving the identity prod-
uct. For instance, Chebotar, Ke, Lee, and Shiao found that a bijective additive map α

on a division ring D that satisfies α(a−1)α(a) = α(b−1)α(b) for all nonzero a, b ∈ D must 
have the form α(x) = α(1)ϕ(x), where ϕ is an automorphism or antiautomorphism, and 

α(1) is a central element of D [5]. Lin and Wong generalized this result to Mn(D) [11].
Our goal in this paper is to consider when more general products are preserved. Re-

cently, Catalano was able to expand the result from Chebotar et al. regarding the identity 

preserving map, finding the form of α when it preserves an arbitrary fixed product; that 
is, α(x)α(y) = α(u)α(v) whenever xy = uv = k for some fixed k ∈ D [2]. In this case, 
α has the form α(x) = α(1)ϕ(x), where ϕ is an automorphism or antiautomorphism, 
but α(1) is not necessarily central. Our first result generalizes [2, Theorem 5] to a map 

on Mn(D).

Theorem 1. Let D be a division ring with characteristic different from 2. Let R = Mn(D)
be the ring of n × n matrices with n ≥ 2, and let Z be the center of R. With m, k ∈ R
invertible fixed elements, let f : R → R be a bijective additive map satisfying the identity

f(x)f(y) = m (2)

for every x, y ∈ R such that xy = k. Then f(x) = f(1)ϕ(x) for all x ∈ R, where 

ϕ : R → R is either an automorphism or an antiautomorphism. Moreover, we have
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(1) if ϕ is an automorphism, then f(1) ∈ Z, and

(2) if ϕ is an antiautomorphism, then f(1) = f(k)−1m and f(k) ∈ Z.

Let M = Mn(C). For our next set of results, we will consider the natural extension 

of property (2), replacing the usual product with the Jordan product.

Theorem 2. Let M, K ∈ M be fixed elements, where K has a square root. Let g : M → M
be a linear map satisfying the property

g(X) ◦ g(Y ) = M (3)

for every X, Y ∈ M such that X ◦ Y = K. Then g preserves square-zero matrices.

Theorem 2 is of particular interest when K is either diagonal, invertible, or idempo-
tent, although [7] gives a complete description of matrices that have square roots. To 

the best of our knowledge, no one has considered a map preserving such an arbitrary 

product as we have in Theorem 2. However, we note that the most comparable results, 
such as those in [6] and [10], rely on the use of idempotent elements and matrix units in 

the proofs, and our method of proof differs significantly.
Our next result generalizes Theorem 2 in the case where K does not have a square 

root; nonetheless, the proof is considerably different and so will be presented separately.

Theorem 3. Let M, K ∈ M be fixed elements, and let g : M → M be a linear map 

satisfying the property

g(X) ◦ g(Y ) = M (4)

for every X, Y ∈ M such that X ◦ Y = K. Then g preserves square-zero matrices.

Šemrl’s results on maps preserving square-zero matrices [12] allow us to give an explicit 
description of the maps described in Theorems 2 and 3.

Theorem 4. Let M, K ∈ M be fixed elements, and let g : M → M be a bijective linear 

map satisfying the property

g(X) ◦ g(Y ) = M (5)

for every X, Y ∈ M with X ◦ Y = K. Then g is of one of the following forms:

(1) g(X) = cUXU−1, or

(2) g(X) = cUXT U−1,

for some invertible U ∈ M and nonzero c ∈ C, where XT denotes the transpose of the 

matrix X.
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2. Proof of Theorem 1

Proof. Using identity (2), we know that m = f(x)f(x−1k) for every x ∈ R×, the set of 
all invertible elements of R. Let y = a − aba. A useful identity due to Hua states that

a − aba =
(

a−1 + (b−1 − a)−1
)

−1
,

so that y−1 = a−1 + (b−1 − a)−1. Then

m = f(y)f(y−1k)

= f(a − aba)f(a−1k + (b−1 − a)−1k)

=
(

f(a) − f(aba)
)(

f(a−1k) + f((b−1 − a)−1k)
)

= f(a)f(a−1k) + f(a)f
(

(b−1 − a)−1k
)

−f(aba)f(a−1k) − f(aba)f
(

(b−1 − a)−1k
)

.

However, since m = f(a)f(a−1k), we note the equality above simplifies to

0 = f(a)f
(

(b−1 − a)−1k
)

− f(aba)f(a−1k) − f(aba)f
(

(b−1 − a)−1k
)

.

For any x ∈ R×, m = f(x)f(x−1k) is equivalent to f(x−1k) = f(x)−1m, and so we can 

see that

0 = f(a)f(b−1 − a)−1m − f(aba)f(a)−1m − f(aba)f(b−1 − a)−1m. (6)

Rearranging (6) and multiplying through by m−1f(b−1 − a) on the right hand side, we 

have

f(a) = f(aba)f(a)−1f(b−1 − a) + f(aba)

= f(aba)f(a)−1f(b−1) − f(aba)f(a)−1f(a) + f(aba)

= f(aba)f(a)−1f(b−1),

which can equivalently be written as

f(aba) = f(a)f(b−1)−1f(a)

whenever ab �= 0, 1. Therefore, for any x ∈ R× \{1}, we may let a = 1, b = x to find that

f(x) = f(1)f(x−1)−1f(1). (7)

Now, define ϕ(z) = f(1)−1f(z) for all z ∈ R. The additivity of f immediately yields 
the additivity of ϕ. Additionally, it is clear that ϕ(1) = 1. Using (7), we note that for 
any x ∈ R× \ {1},
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ϕ(x) = f(1)−1f(x)

= f(1)−1f(1)f(x−1)−1f(1)

= f(x−1)−1f(1),

which implies that

ϕ(x−1) = f(x)−1f(1) =
(

f(1)−1f(x)
)

−1
= ϕ(x)−1.

That is, for every invertible x ∈ R, ϕ(x−1) = ϕ(x)−1. Thus, [9] gives us that ϕ is an 

automorphism or an antiautomorphism.
Let x be an invertible element of R. We can see that when ϕ is an automorphism,

f(1)f(k) = f(x)f(x−1k)

= f(x)f(1)ϕ(x−1k)

= f(x)f(1)ϕ(x)−1ϕ(k)

= f(x)f(1)ϕ(x)−1f(1)−1f(1)ϕ(k)

= f(x)f(1)
(

f(1)ϕ(x)
)

−1
f(1)ϕ(k)

= f(x)f(1)f(x)−1f(k);

that is, f(1)f(k) = f(x)f(1)f(x)−1f(k). Multiplying through on the right by f(k)−1f(x), 
we get that f(1)f(x) = f(x)f(1), and so f(1) commutes with f(x) for every x ∈ R×, 
and in particular with every x ∈ R× such that x − 1 ∈ R×. From this, we get that f(1)
is a central element [11, Lemma 3.2, Lemma 3.3(ii)].

If, alternatively, ϕ is an antiautomorphism, we have that

f(k)f(1) = f(x)f(x−1k)

= f(x)f(1)ϕ(x−1k)

= f(x)f(1)ϕ(k)ϕ(x)−1

= f(x)f(1)ϕ(k)ϕ(x)−1f(1)−1f(1)

= f(x)f(1)ϕ(k)
(

f(1)ϕ(x)
)

−1
f(1)

= f(x)f(k)f(x)−1f(1);

that is, f(k)f(1) = f(x)f(k)f(x)−1f(1). Multiplying through on the right by f(1)−1f(x), 
we have f(k)f(x) = f(x)f(k), and so f(k) commutes with f(x) for every x ∈ R×. As 
before, using [11, Lemma 3.2, Lemma 3.3(ii)], we get that f(k) is a central element. �
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3. Proof of Theorem 2

Let g : M → M be a linear map satisfying property (3). Let L ∈ M be a square root 
of K (that is L2 = K) and let S ∈ M be a square-zero matrix. We observe that

1
2L ◦ L = L2 = K,

and

1
2(L − S) ◦ (L + S) = L2 − S2 = K.

From (3), we have that

g( 1
2L) ◦ g(L) = M = g( 1

2 (L − S)) ◦ g(L + S).

Simplifying this, we can see that

g(L)2 = g(L)2 − g(S)2,

which gives us that g(S)2 = 0. Therefore, g preserves square-zero matrices.

4. Proof of Theorem 3

Observation 5. Any linear map g : M → M satisfies the assumptions of Theorem 3 if 

and only if it satisfies the following property:

2g(A)2 − 2g(B)2 = M (8)

for every A, B ∈ M with 2A2 − 2B2 = K.

This observation follows using the substitutions X = A + B and Y = A − B for the 

forward direction and using the substitutions A = X+Y
2 and B = X−Y

2 in the backward 

direction.
Let λ ∈ C be a fixed element such that λI − K

2 is invertible. To get our desired result, 
we will also be using the following property for a map g : M → M:

V 2 = W 2 = λI implies g(V )2 = g(W )2. (9)

Lemma 6. If g : M → M is a linear map satisfying (8), then g satisfies (9).

Proof. Assume that g satisfies (8), and let V, W ∈ M be such that V 2 = W 2 = λI. 
Since λI − K

2 is invertible (and hence, has a square root), we know there exists T ∈ M
such that 2V 2 − 2T 2 = 2W 2 − 2T 2 = K. From this, we have that
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2g(V )2 − 2g(T )2 = 2g(W )2 − 2g(T )2 = M.

That is, g(V )2 = M
2 + g(T )2 = g(W )2. �

Lemma 7. Let g : M → M be a linear map satisfying (9). Then g is a square-zero 

preserving map.

Proof. Let S be an n × n square-zero matrix (i.e. S2 = 0) and let J be the Jordan form 

of S. We know that J contains i Jordan blocks of size 2 of the form
(

0 1
0 0

)

,

for some i ∈ Z
+ ∪ {0} with i ≤ n

2 , while all other entries are zero. Let P be the block 

diagonal matrix with i blocks of size 2 (corresponding to the 2 × 2 Jordan blocks of J) 
of the form

( √
λ 0

0 −
√

λ

)

,

the remaining n − 2i diagonal entries are 
√

λ, and all other entries are zero. It is easy to 

see that P 2 = (J + P )2 = (J − P )2 = λI.
Let C ∈ M be an invertible matrix such that S = CJC−1. Consider the matrix 

Q = CPC−1. Using the fact that scalar matrices are central elements of M, we can see 

that

Q2 = CP 2C−1 = C(λI)C−1 = λI.

Similarly, we have that

(S + Q)2 = (S − Q)2 = λI.

Let g : M → M be a linear map satisfying (9). This implies that g(S + Q)2 =
g(S − Q)2. The linearity of g gives us that

g(S)2 + g(S) ◦ g(Q) + g(Q)2 = g(S)2 − g(S) ◦ g(Q) + g(Q)2,

and this simplifies to

g(S) ◦ g(Q) = 0. (10)

Additionally, we know that g(Q)2 = g(S + Q)2, and again, linearity yields

g(Q)2 = g(S)2 + g(S) ◦ g(Q) + g(Q)2.
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Subtracting g(Q)2 from each side of the equality and using (10), we can see that 
g(S)2 = 0. That is, g preserves square-zero matrices. �

At this point, we can see that Observation 5, Lemma 6, and Lemma 7 together give 

us that a map g : M → M satisfying the assumptions of Theorem 3 is also a square-zero 

preserving map.

5. Proof of Theorem 4

As before, let λ ∈ C be a fixed element such that λI − K
2 is invertible. Furthermore, 

we will let eij denote the matrix unit with 1 in the (i, j) position and 0 elsewhere. We 

will begin by defining sets of matrices. When n = 2m + 1 for m ∈ N, let

A =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 · · · 0
a1 b1

... c1 −a1

...
. . . 0

am bm

0 · · · 0 cm −am

: a2
i + bici = λ for 1 ≤ i ≤ m

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

and

B =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a1 b1 0 · · · 0
c1 −a1

0
. . .

...
... am bm

cm −am

0 · · · 0

: a2
i + bici = λ for 1 ≤ i ≤ m

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Additionally, when n = 2m for m ∈ N, let

C =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 · · · 0
0 · · · 0

a1 b1

c1 −a1

...
...

...
. . . 0

am−1 bm−1

0 0 · · · 0 cm−1 −am−1

: a2
i + bici = λ for 1 ≤ i ≤ m − 1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

and
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D =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 · · · 0
a1 b1

c1 −a1

...
. . .

...
am−1 bm−1

cm−1 −am−1

0 · · · 0

: a2
i + bici = λ for 1 ≤ i ≤ m − 1

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Lemma 8. Let n = 2m + 1 for m ∈ N. Let X, Y ∈ M such that

X ◦ A = 0 for every A ∈ A

and

Y ◦ B = 0 for every B ∈ B.

Then X = ae11 and Y = benn for some a, b ∈ C.

Lemma 9. Let n = 2m for m ∈ N. Let X, Y ∈ M such that

X ◦ C = 0 for every C ∈ C

and

Y ◦ D = 0 for every D ∈ D.

Then

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x11 x12 0 · · · 0
x21 x22 0

0 0 0
...

...
. . .

0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

and

Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x11 0 · · · 0 x1n

0 0 · · · 0 0
...

. . .
...

0 0 · · · 0 0
xn1 0 · · · 0 xnn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where xij ∈ C for i, j ∈ {1, 2, n}.

The proofs of these lemmas are technical and straightforward, and so we shall omit 
them.
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Proof of Theorem 4. We will consider three cases: the first when n is odd, the second 

when n ≥ 4 is even, and the third when n = 2.
Using Theorem 3, we have that since the map g satisfies (5), g will preserve square-zero 

matrices. Let sln be the set of all matrices with trace 0. We can see that g : sln → sln, 
and a result by Šemrl [12, Corollary 2] gives that when restricted to sln, g is of the form

g(Z) = cUZU−1, (11)

or

g(Z) = cUZT U−1, (12)

for every Z ∈ sln, where U ∈ M is invertible and c ∈ C is nonzero.
Notice that for any X ∈ M, we may write X = X0 + tr(X)e11, where X0 ∈ sln, and 

tr(X) denotes the trace of X. If we can show that g(e11) = cUe11U−1, then we will have 

either

g(X) = g(X0) + tr(X)g(e11) = cUX0U−1 + tr(X)cUe11U−1 = cUXU−1,

if g is of the form of (11) or, similarly,

g(X) = cUXT U−1,

if g is of the form of (12), which is our desired result.
We define ψ(X) = c−1U−1g(X)U for every X ∈ M. It is clear that ψ is a linear 

bijective map. Since g satisfies (9), we also have that ψ satisfies (9). Additionally, we can 

see that for Z ∈ sln, ψ(Z) = Z (if g is of the form of (11)) or ψ(Z) = ZT (if g is of the 

form of (12)). Finally, it is straightforward to see that g(e11) = cUe11U−1 if and only if 
ψ(e11) = e11, so showing ψ(e11) = e11 will be our goal throughout cases 1 and 2, and 

part of case 3.
Case 1: n = 2m + 1 for some m ∈ N. Let A ∈ A and observe that (

√
λe11 + A)2 =

(
√

λe11 − A)2 = λI, so by (9) we have

ψ(
√

λe11 + A)2 = ψ(
√

λe11 − A)2.

Using the linearity of ψ, this equation yields

λψ(e11)2 +
√

λψ(e11) ◦ ψ(A) + ψ(A)2 = λψ(e11)2 −
√

λψ(e11) ◦ ψ(A) + ψ(A)2,

and cancellation gives us ψ(e11) ◦ ψ(A) = 0. Since tr(A) = 0, ψ acts as either the 

identity map or the transpose map on A. In either case, ψ(A) ∈ A. Therefore, we have 

that ψ(e11) ◦ A = 0 for every A ∈ A. Lemma 8 and the bijectivity of ψ give us that 
ψ(e11) = ae11, where a ∈ C \ {0}.
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Now, let B ∈ B, and notice that (
√

λenn + B)2 = (
√

λenn − B)2 = λI, and again 

using (9), we have

ψ(
√

λenn + B)2 = ψ(
√

λenn − B)2.

Expanding and canceling as before, we get that ψ(enn) ◦ ψ(B) = 0, and since ψ(B) ∈ B, 
we have that ψ(enn) ◦ B = 0 for every B ∈ B. Therefore, once more using Lemma 8 and 

the bijectivity of ψ, we must have ψ(enn) = benn, where b ∈ C \ {0}.
Since e11 − enn is a symmetric matrix of trace 0, we know ψ(e11 − enn) = e11 − enn. 

However, ψ(e11 − enn) = ψ(e11) − ψ(enn) = ae11 − benn, and thus a = b = 1. Hence, we 

have that ψ(e11) = e11.
Case 2: n = 2m for some m ∈ N with m ≥ 2. Let C ∈ C and D ∈ D. Observe that 

(
√

λ(e11 + e22) + C)2 = (
√

λ(e11 + e22) − C)2 = λI, so by (9) we have

ψ(
√

λ(e11 + e22) + C)2 = ψ(
√

λ(e11 + e22) − C)2.

Using the linearity of ψ, this equation yields

λψ(e11 + e22)2+
√

λψ(e11 + e22) ◦ ψ(C) + ψ(C)2

= λψ(e11 + e22)2 −
√

λψ(e11 + e22) ◦ ψ(C) + ψ(C)2,

and cancellation gives us ψ(e11 + e22) ◦ ψ(C) = 0. This results in

ψ(e11) ◦ ψ(C) + ψ(e22) ◦ ψ(C) = 0. (13)

Similarly, we can show

ψ(e11) ◦ ψ(C) − ψ(e22) ◦ ψ(C) = 0, (14)

ψ(e11) ◦ ψ(D) + ψ(enn) ◦ ψ(D) = 0, (15)

and

ψ(e11) ◦ ψ(D) − ψ(enn) ◦ ψ(D) = 0. (16)

We can add (13) to (14) to obtain ψ(e11) ◦ ψ(C) = 0. Analogously, we can add (15)
to (16) to get ψ(e11) ◦ ψ(D) = 0. Since ψ(C) ∈ C, we have that ψ(e11) ◦ C = 0 for every 

C ∈ C. Therefore, by Lemma 9, ψ(e11) must have the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x11 x12 0 · · · 0
x21 x22 0

0 0 0
...

...
. . .

0 · · · 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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where xij ∈ C for i, j ∈ {1, 2}. In addition, since ψ(D) ∈ D, we have that ψ(e11) ◦ D = 0
for every D ∈ D. Hence, by Lemma 9, ψ(e11) is equal to

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x11 0 · · · 0 x1n

0 0 0 0
...

. . .
...

0 0 0 0
xn1 0 · · · 0 xnn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where xij ∈ C for i, j ∈ {1, n}. Combining the two forms of ψ(e11) results in 

ψ(e11) = d1e11 for some d1 ∈ C \ {0}.
We may use a similar approach to prove that ψ(enn) = dnenn for some nonzero 

dn ∈ C. Since e11 − enn has trace 0, we know that ψ(e11 − enn) = e11 − enn. However, we 

also know that ψ(e11 − enn) = ψ(e11) − ψ(enn) = d1e11 − dnenn, and so we must have 

that d1 = dn = 1. Therefore, ψ(e11) = e11, as desired.
Case 3: n = 2. Note that (

√
λe11 +

√
λe22)2 = (

√
λe11 −

√
λe22)2 = λI, so by (9) we 

have

ψ(e11 + e22)2 = ψ(e11 − e22)2.

Next, we know that e11 −e22 has trace zero and is symmetric, so ψ(e11 −e22) = e11 −e22. 
This implies that

ψ(I)2 = ψ(e11 + e22)2 = ψ(e11 − e22)2 = (e11 − e22)2 = I,

which in turn yields

(ψ(I) − I)(ψ(I) + I) = 0. (17)

Assume both ψ(I) − I and ψ(I) + I are singular. Let

ψ(I) =

(

w11 w12

w21 w22

)

,

so that

det(ψ(I) − I) = (w11 − 1)(w22 − 1) − w12w21 = 0,

det(ψ(I) + I) = (w11 + 1)(w22 + 1) − w12w21 = 0.

This system of equations gives us w11 + w22 = 0. Hence, tr(ψ(I))=0. However, since ψ is 
bijective and maps sln to itself, ψ must send matrices of nonzero trace to matrices with 

nonzero trace, and so we have a contradiction. Therefore, one of ψ(I) − I or ψ(I) + I is 
invertible, so from (17), either ψ(I) − I = 0 or ψ(I) + I = 0.
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If ψ(I) = I, then

ψ(I) = ψ(e11 + e22) = e11 + e22.

Furthermore, we know

ψ(e11 − e22) = e11 − e22.

Adding these two equations and using the linearity of ψ, we see that ψ(e11) = e11, as 
desired.

If ψ(I) = −I, then
ψ(I) = ψ(e11 + e22) = −e11 − e22.

Moreover, we know

ψ(e11 − e22) = e11 − e22.

Adding these two equations and using the linearity of ψ, we have ψ(e11) = −e22 and 

ψ(e22) = −e11. Additionally, for any r, s ∈ C, we know re12 + se21 has trace 0, so that 
either

ψ(re12 + se21) = re12 + se21,

or

ψ(re12 + se21) = se12 + re21.

This gives us a complete description of ψ. In particular, let X ∈ M be arbitrary and let 

E =

(

0 −1
1 0

)

, so that E−1 =

(

0 1
−1 0

)

. We have that

ψ(X) = −EXE−1,

or

ψ(X) = −EXT E−1.

Using the definition of ψ, we find that either

g(X) = −cUEXE−1U−1

= −c(UE)X(UE)−1,

or
g(x) = −c(UE)XT (UE)−1.

In either case, we have that g is of the desired form. �
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