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Abstract: We present a new proof of Harish-Chandra’s formula (Harish-Chandra in
Am J Math 79:87–120, 1957)

Π(h1)Π(h2)
∫
G
e〈Adgh1,h2〉dg = [[Π,Π ]]

|W |
∑
w∈W

ε(w)e〈w(h1),h2〉,

where G is a compact, connected, semisimple Lie group, dg is normalized Haar mea-
sure, h1 and h2 lie in a Cartan subalgebra of the complexified Lie algebra, Π is the
discriminant, 〈·, ·〉 is the Killing form, [[·, ·]] is an inner product that extends the Killing
form to polynomials, W is a Weyl group, and ε(w) is the sign of w ∈ W . The proof in
this paper follows from a relationship between heat flow on a semisimple Lie algebra
and heat flow on a Cartan subalgebra, extending methods developed by Itzykson and
Zuber (J Math Phys 21:411–421, 1980) for the case of an integral over the unitary group
U (N ). The heat-flow proof allows a systematic approach to studying the asymptotics of
orbital integrals over a wide class of groups.

1. Introduction

Harish-Chandra’s integral formula states

Π(h1)Π(h2)
∫
G
e〈Adgh1,h2〉dg = [[Π,Π ]]

|W |
∑
w∈W

ε(w)e〈w(h1),h2〉, (1)

whereG is a compact, connected, semisimple Lie group, dg is normalizedHaarmeasure,
h1 and h2 lie in a Cartan subalgebra of the complexified Lie algebra, 〈·, ·〉 is the Killing
form,W is aWeyl group, and ε(w) is the sign ofw ∈ W . The polynomialΠ and bracket
notation [[Π,Π ]] are defined below in (3) and (6) respectively. We explain all notation
in detail in Sect. 2.
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This identity was first proved by Harish-Chandra in his 1957 paper on invariant dif-
ferential operators [1]. The importance of integrals such as (1) for mathematical physics
was first noted in 1980 by Itzykson and Zuber [2], who independently discovered the for-
mula for the case of an integral over the unitary group. The unitary integral has become
known as the Harish-Chandra–Itzykson–Zuber (HCIZ) integral and has applications in
random matrix theory, representation theory, combinatorics, and statistics. It has also
been shown that this integral can be understood in terms of enumerative geometry [3].
The HCIZ integral is typically written as

∫
U (N )

etr(AUBU†)dU =
⎛
⎝N−1∏

p=1

p!
⎞
⎠ det(eai b j )Ni, j=1

Δ(A)Δ(B)
(2)

where U (N ) is the group of N -by-N unitary matrices, A and B are fixed N -by-N
diagonal matrices with eigenvalues a1 < · · · < aN and b1 < · · · < bN respectively, and

Δ(A) =
∏
i< j

(a j − ai )

is the Vandermonde determinant. Although U (N ) is not semisimple, (2) follows from
(1) by decomposing U (N ) = SU (N ) �U (1) and integrating separately on the factors.
A general procedure for using (1) to evaluate integrals over compact groups that may be
neither semisimple nor connected is explained in [4].

Harish-Chandra’s proof of (1) relies on algebraic constructions that he develops for
the purpose of studying Fourier transforms on a semisimple Lie algebra, and the theorem
appears as an auxiliary result within a large project in harmonic analysis and represen-
tation theory. These may be reasons that analogous integrals over groups other than
U (N ) have received relatively little attention from mathematical physicists,1 although
Forrester, Ipsen, Liu, and Zhang have recently used the Harish-Chandra integrals over
O(N ) andUSp(2N ) to derive eigenvalue probability densities for certainmatrix product
ensembles [5].

In this paper, we prove Harish-Chandra’s formula by relating the heat flow on a
semisimple Lie algebra to the heat flow on a Cartan subalgebra. The proof generalizes
the methods employed by Itzykson and Zuber in their first proof of the HCIZ formula
in [2]. The main purpose of our proof is to provide insight into the asymptotics of (1) as
the rank of G increases. Leading-order asymptotics for (2) as N → ∞ were formally
computed byMatytsin [6] and rigorously justified by Guionnet and Zeitouni [7,8], while
Bun et al. have reformulated these results in terms of particle trajectories concentrating
around an instanton [9].

The central result in [6–8] on the large-N asymptotics of the HCIZ integral is an
expression for the leading-order contribution in terms of a particular solution to the
complex Burgers’ equation. It has been shown that this phenomenon can be understood
in termsof a relationship between theHCIZ integral and theCalogero-Moser system [10].
In fact, Harish-Chandra integrals arise naturally in the study of the quantum Calogero-
Moser system, where the homomorphism of invariant differential operators that Harish-
Chandra uses to derive (1) has been shown to provide a quantum Hamiltonian reduction

1 The papers [7–9], among others, also treat integrals of the form (2) over the orthogonal group O(N ) and
compact symplectic group USp(2N ). However, those integrals differ from (1), as they take the matrices A
and B to be symmetric in the orthogonal case or self-dual quaternionic in the symplectic case. In contrast, to
get an integral of the form (1) we would have to take A and B to be anti-symmetric or anti-self dual.
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of the algebra of differential operators on a reductive Lie algebra [11,12]. We elaborate
on the relationship between Harish-Chandra integrals and Calogero-Moser systems in
Sect. 4.1 below.

While it suffices for the purposes of this paper to relate heat flow on a Lie algebra
to heat flow on a Cartan subalgebra, one could obtain richer information by studying
the relationship between Brownian motion on the full algebra and Brownian motion
confined to a Weyl chamber. This latter process is an analogue of Dyson Brownian
motion and has been studied by Grabiner in [13]. The arguments regarding asymptotics
for the U (N ) integral in [7,8] rely on a large-deviations principle for Dyson Brownian
motion, suggesting that a similar investigation of processes on general Weyl chambers
could prove useful in the study of integrals over other groups.

There are other known proofs of (2), besides the heat-equation approach. These
include a symplectic geometry proof based on a stationary-phase approximation that is
shown to be exact using the Duistermaat–Heckman theorem [14] and a representation-
theoretic proof that proceeds by writing the integral in terms of irreducible characters
[2]. In fact, in [14] Duistermaat and Heckman already observed that their localization
result implies the general formula (1).We give a detailed presentation of this derivation in
Sect. 4.2, and inSect. 4.3we showhow the integral formula follows from its interpretation
in character theory.

Section 2 below introduces the necessary notation and background to formally state
the integral formula (1) and provides a brief overview of the proof strategy. Section 3
consists of the heat-flowproof of the integral formula. Section4discusses the relationship
between Harish-Chandra integrals and Calogero-Moser systems and presents the two
further proofs of the integral formula from the perspectives of symplectic geometry and
representation theory. The expository paper [4] contains a more detailed discussion of
the formula and its contemporary significance, along with a modern presentation of
Harish-Chandra’s original proof and explicit formulae for the integrals over the other
compact classical groups.

2. Preliminaries and Statement of the Theorem

Let G be a compact, connected, semisimple real Lie group of rank N with normalized
Haar measure dg, g0 its Lie algebra, and g = g0 ⊗ C the complexification of g0. Let
〈·, ·〉 be the Killing form on g0, which extends by linearity to g.

Let h0 ⊂ g0 be a Cartan subalgebra, h = h0 ⊗ C ⊂ g its complexification, and W
the Weyl group acting on h. For w ∈ W , let ε(w) be the sign of w, equal to 1 if w is
generated by an even number of reflections and −1 if w is generated by an odd number
of reflections. If we consider w as a linear operator acting on h, then ε(w) = detw.

Fix a choice α1, . . . , αr of the positive roots of h, and define the discriminant Π :
h → C to be the polynomial function

Π(h) =
r∏

i=1

αi (h). (3)

Geometrically, Π(h) is the square root of the volume of the adjoint orbit of h, computed
using the metric induced by the Killing form metric on g0. It can be shown (see e.g. [15,
ch. 3, Corollary 3.8]) that Π is skew with respect to the action of the Weyl group, in the
sense that Π(w(h)) = ε(w)Π(h).
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Let (z j )
dim g
j=1 be complex coordinates on g such that z j = x j + iy j where (x j ), (y j )

are coordinates on g0. We can write a polynomial function p on g as p(z) = ∑
cβ zβ ,

where the sum runs over multi-indices β. We can then associate to p the differential
operator

p(∂) =
∑
β

cβ

∂ |β|

∂zβ
=

∑
β

cβ

dim g∏
j=1

(
∂

∂x j
− i

∂

∂y j

)β j

. (4)

The coefficients cβ depend on the choice of coordinates (zi ), but the operator p(∂) does
not. We may always identify a polynomial function on g with its restriction to g0, and
we can consider p(∂) as a differential operator on g0 by defining, for f ∈ C∞(g0),

p(∂) f =
∑
β

cβ

∂ |β| f
∂xβ

, (5)

that is by differentiating only with respect to the real coordinates on g0.
Finally, if p, q are polynomial functions on g, define2

[[p, q]] = p(∂)q(z)
∣∣
z=0. (6)

We are now ready to state Harish-Chandra’s integral formula.

Theorem 1. For all h1, h2 ∈ h,

Π(h1)Π(h2)
∫
G
e〈Adgh1,h2〉dg = [[Π,Π ]]

|W |
∑
w∈W

ε(w)e〈w(h1),h2〉.

In his original proof of Theorem 1, Harish-Chandra starts by showing a general form
of Proposition 1 below on the radial part of an invariant differential operator, which
implies that the function

h1 	→ Π(h1)
∫
G
e〈Adgh1,h2〉dg

is a joint eigenfunction of all differential operators on h0 of the form q(∂), where q is
a W -invariant polynomial. He then proves that the algebra of all polynomial functions
on h0 is generated over the W -invariant polynomials by exactly |W | elements, which
allows him to show that such a joint eigenfunction must be a linear combination of terms
of the form e〈w(h1),h2〉 for w ∈ W . A clever technique for computing the coefficients in
this linear combination then allows him to establish the theorem.

The proof presented here also starts with the theory of radial parts of differential
operators, but instead we use this theory to obtain solutions to the heat equation on h0
from Ad-invariant solutions to the heat equation on g0. The integral (1) then appears
naturally when the heat kernel on g0 is averaged over the adjoint orbits. This allows us
to write the right-hand side of (1) in terms of a particular solution to the heat equation
on h0.

The following section consists of the proof of Theorem 1.

2 See [15, ch. 3 §1] for a proof that [[·, ·]] in fact defines an inner product on the symmetric algebra of formal
(commutative) polynomials over g, which restricts to the Killing form on g.
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3. Proof of the Integral Formula

3.1. Heat equations on g0 and h0. Let ω be the quadratic Casimir polynomial on g
defined by ω(x) = 〈x, x〉. The Laplacian on g0 is the differential operator ω(∂). A
function φ : g0 × (0,∞) → C satisfies the heat equation on g0 if

(
∂t +

1

2
ω(∂x )

)
φ(x, t) = 0, x ∈ g0, t ∈ (0,∞). (7)

Since G is compact and semisimple, the Killing form is negative definite, so that (7)
contains a plus sign instead of the more familiar minus sign for the Euclidean heat
equation. Similarly, ψ : h0 × (0,∞) → C satisfies the heat equation on h0 if

(
∂t +

1

2
ω̄(∂h)

)
ψ(h, t) = 0, h ∈ h0, t ∈ (0,∞), (8)

where the bar indicates restriction to h0.
We want to establish a relationship between the solutions of (7) and of (8). In general,

if φ satisfies (7), it is not the case that φ̄ satisfies (8). However, we will show

Lemma 1. If φ ∈ C2
1 (g0 × (0,∞)) solves (7) and is invariant under the adjoint action

of G in the sense that

φ(Adgx, t) = φ(x, t) ∀g ∈ G,

then Π(h)φ̄(h, t) solves (8).

Before proving the lemma, we need to briefly introduce some notions from Lie
theory and geometric analysis. Define the set of regular elements of h to be h′ = {h ∈
h | Π(h) �= 0}. The submanifold h′ ⊂ g is transverse to the adjoint orbits in g in the
sense that for each h ∈ h′ we have a decomposition of tangent spaces

Thg = ThOh ⊕ Thh
′, (9)

where Oh = {Adgh | g ∈ G} is the adjoint orbit of h. To see this, consider the root
space decomposition of g,

g = h ⊕
⊕

α

gα,

where α runs over the roots of gwith respect to h. Under the usual identification Thg ∼= g,
at h ∈ h′ we have

Thh
′ ∼= h, ThOh ∼= [g, h] =

⊕
α

gα,

which gives the transversality property.
We now state without proof two results from [15]. The first is a special case of [15,

ch. 2, Theorem 3.6].
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Theorem 2. Let M ⊂ g be a submanifold of g that is transverse to the adjoint orbits
in the sense of (9). Let D be a differential operator3 on g. Then there exists a unique
differential operator γ (D) on M such that, for each Ad-invariant function f : g → C,

(Df ) = γ (D) f̄ ,

the bar indicating restriction to M.

The differential operator γ (D) is called the radial part of D with transversal manifold
M . In particular, since h′ satisfies the transversality condition, we can define the radial
part of the Laplacian, γ (ω(∂)), such that

ω(∂) f = γ (ω(∂)) f̄

for all Ad-invariant f : g → C, where the bar indicates restriction to h′. The next
proposition gives an explicit expression for γ (ω(∂)). It was originally proven in [1,
Lemma 8] and also appears as [15, ch. 2, Proposition 3.14].

Proposition 1. The radial part of the Laplacian ω(∂) with transversal manifold h′ is
given by

γ (ω(∂)) = Π−1ω̄(∂) ◦ Π.

We now can prove Lemma 1.

Proof of Lemma 1. In order to apply Proposition 1 we have to work over the complexi-
fied algebra g, since we needed the root space decomposition to obtain the transversality
condition (9). Thus, we start by extending φ to a function on g × (0,∞) by defining

φ(z, t) := φ(x + iy, t) = φ(x, t), x, y ∈ g0.

This extended function is still Ad-invariant and satisfies the complex heat equation
(

∂t +
1

2
ω(∂z)

)
φ = 0, (10)

where ω(∂z) acts as a differential operator on g as in (4). Restricting (10) to h′ and
applying Proposition 1 gives the radial complex heat equation

(
∂t +

1

2
Π−1(h)ω̄(∂h) ◦ Π(h)

)
φ̄(h, t) = 0, (11)

where the bar indicates restriction to h′. This equation must still hold when considered
as a PDE on (h′ ∩ h0) × (0,∞), since φ was extended to g × (0,∞) such that all its
partial derivatives in the imaginary coordinate directions vanish. Multiplying both sides
by Π we have (

∂t +
1

2
ω̄(∂h)

)
Π(h)φ̄(h, t) = 0, h ∈ h′ ∩ h0 (12)

where the bar now indicates restriction to h0. Thus,Π(h)φ̄(h, t) solves the heat equation
on h0 ∩ h′ and therefore on all of h0 by continuity since h0 ∩ h′ is dense.

3 The theorem holds for the general definition of a (linear) differential operator as any C-linear operator
D acting on smooth functions and satisfying supp(Df ) ⊆ supp( f ). See [15, ch. 2, Theorem 1.4] for an
explanation of why this definition makes sense.
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3.2. The G-averaged heat kernel. The heat kernel on g0 is the function K : g20 ×
(0,∞) → C given by

K (x1, x2; t) =
(

1

2π t

)dim g0/2

e
1
2t 〈x1−x2,x1−x2〉.

K (x1, x2; t) solves the heat equation (7) where the spatial derivatives act on the x2
variables, with the boundary condition

lim
t→0

K (x1, x2; t) = δ(x1 − x2). (13)

The limit is understood in the distributional sense of

lim
t→0

∫
g0

K (x1, x2; t)ϕ(x2)dx2 = ϕ(x1)

for ϕ ∈ C∞
c (g0), where dx2 indicates the integration measure induced by the Killing

form. The choice of this integration measure is important, as it guarantees that for all x1
and t we have

∫
g0

K (x1, x2; t)dx2 = 1.

Following [2], we define the G-averaged heat kernel as

K̃ (x1, x2; t) :=
∫
G
K (Adgx1, x2; t)dg

=
(

1

2π t

)dim g0/2

e
1
2t (〈x1,x1〉+〈x2,x2〉) I (x1,−x2; t), (14)

where

I (x1, x2; t) :=
∫
G
e
1
t 〈Adgx1,x2〉dg.

Observe that for h1, h2 ∈ h0, I (h1, h2; 1) recovers the integral on the left-hand side of
(1), so that the integral appears naturally in this context.

K̃ is constant on adjoint orbits of both x1 and x2, and by linearity it satisfies the heat
equation (7) on g0 as well, so that by Lemma 1, Π(h2)K̃ (h1, h2; t) satisfies the heat
equation (8) on h0 with the spatial derivatives acting in the h2 variables. Therefore the
function

V (h1, h2; t) := (2π)(dim g0−N )/2Π(h1)Π(h2)K̃ (h1, h2; t) (15)

also satisfies (8) and is skew with respect to the action of W on either of h1 or h2
individually. Physically, V can be interpreted as a generalized Slater determinant. In the
next step we identify the boundary conditions that V satisfies as t approaches 0. This
will allow us to write an exact expression for V using the fundamental solution to the
heat equation on h0, yielding (1).
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3.3. Boundary conditions for V . We now further assume that both h1, h2 ∈ h0 ∩ h′. In
order to compute the distributional limit of V as t approaches 0, we use the steepest-
descent method to determine the asymptotics of I (h1, h2; t) to leading order in t . We
will show:

Lemma 2. If h1, h2 ∈ h0 ∩ h′, there exists a constant C ∈ R such that

lim
t→0

V (h1, h2; t) = C
∑
w∈W

ε(w)δ(w(h1) − h2) (16)

where the distributional sense of the limit is given by integration against test functions
in C∞

c (h0) with respect to the volume form induced by the restriction of the Killing form
to h0.

Proof. We first rewrite

V (h1, h2; t) = t− dim g0/2

(2π)N/2 Π(h1)Π(h2)e
1
2t (〈h1,h1〉+〈h2,h2〉) I (h1,−h2; t). (17)

Next we rewrite I (h1,−h2; t) as follows. Let S be the maximal torus in G with Lie
algebra h0. Let ds be the normalized Haar measure on S and let d(gS) be a left-invariant
normalized volume formonG/S. Then by a standard Fubini-type theorem for Lie groups
(see e.g. [15, ch. 1, Theorem 1.9]) we have

I (h1,−h2; t) =
∫
G
e

−1
t 〈Adgh1,h2〉dg =

∫
G/S

∫
S
e

−1
t 〈Adgsh1,h2〉ds d(gS)

=
∫
G/S

e
−1
t 〈Adgh1,h2〉d(gS). (18)

Wewill apply the steepest-descentmethod to the last integral in (18). Todo so,weneed
the following lemmas computing the critical points of the function gS 	→ 〈Adgh1, h2〉
along with its Hessian matrix at each critical point.

Lemma 3. The critical points of the function gS 	→ 〈Adgh1, h2〉 on G/S are the points
gS such that Adg represents some w ∈ W as a linear operator on h.

Proof. We first note that the map gS 	→ Adgh1 is a diffeomorphism of G/S onto the
adjoint orbit Oh1, which we think of as a submanifold of the complexified Lie algebra
g. Thus we may equivalently find the critical points of the function x 	→ 〈x, h2〉 for
x ∈ Oh1 . The tangent space at a point x0 ∈ Oh1 is Tx0Oh1 = [x0, g], and the partial
derivative of the linear functional 〈x, h2〉 in the direction of a tangent vector y is equal
to 〈y, h2〉. Thus, the condition for x0 ∈ Oh1 to be a critical point is

〈y, h2〉 = 0 ∀y ∈ [x0, g],
or equivalently

〈[x0, y], h2〉 = 0 ∀y ∈ g.

Using the antisymmetry of the bracket and the invariance property of the Killing form,
this is equivalent to

〈y, [x0, h2]〉 = 0 ∀y ∈ g.

By the non-degeneracy of the Killing form, this will hold if and only if [x0, h2] = 0,
which implies x0 ∈ h. Writing x0 = Adgh1, we will have Adgh1 ∈ h exactly when
Adgh1 = w(h1) for somew ∈ W . Thus, gS corresponds to a critical point exactly when
Adg represents an element of the Weyl group.
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Lemma 4. Let Hxx be theHessianmatrix of the function gS 	→ 〈Adgh1, h2〉 at a critical
point g0S, in coordinates on G/S given by ex S 	→ x + h0. If Adg0 = w ∈ W, then√

det(−Hxx ) = ε(w)Π(h1)Π(h2)

where the branch of the square root is chosen by writing
√
det(−Hxx ) = ∏n

j=1
√−μ j

where μ j are the eigenvalues of Hxx , and taking |arg√−μ j | < π/4.

Proof. Since

Adexp(x) =
∞∑
j=0

1

j !ad
j
x ,

expanding to second order in x around the critical point gives

〈Adexp(x)w(h1), h2〉 = 〈w(h1), h2〉 + 1

2
〈ad2xw(h1), h2〉 + O(|x |3), (19)

where |x | = √−ω(x) is the norm on g0.
To obtain the Hessian we must compute explicitly the second-order term in (19).

Let P = {α1, . . . αr } be the collection of positive roots used to define Π . For a root
α, let gα ⊂ g denote the corresponding root space. For each α ∈ P , choose xα ∈ gα ,
x−α ∈ g−α normalized so that 〈xα, x−α〉 = 1. Assuming without loss of generality that
x ∈ h⊥

0 , we may write

x =
∑
α∈P

cαxα + c−αx−α, (20)

and we find by a straightforward calculation that

1

2
〈ad2xw(h1), h2〉 =

∑
α∈P

α(w(h1))α(h2)cαc−α.

Thus Hxx is a block-diagonal matrix composed of 2-by-2 blocks of the form[
0 αi (w(h1))αi (h2)

αi (w(h1))αi (h2) 0

]
.

With the appropriate choice of branch for the square root, we find√
det(−Hxx ) = Π(w(h1))Π(h2) = ε(w)Π(h1)Π(h2)

as desired.

Returning now to the proof of Lemma 2 and applying the steepest-descent approxi-
mation to (18) together with Lemmas 3 and 4, we obtain

I (h1,−h2; t) = C
(2π t)(dim g0−N )/2

Π(h1)Π(h2)

∑
w∈W

ε(w)e
−1
t 〈w(h1),h2〉(1 + O(t)) (21)

where the constant C arises from the normalization of the volume form d(gS). Substi-
tuting this result into (17), we find

V (h1, h2; t) = C

(
1

2π t

)N/2 ∑
w∈W

ε(w)e
1
2t 〈w(h1)−h2,w(h1)−h2〉(1 + O(t)) (22)

as t → 0, which gives the desired limit (16).
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Because V solves the heat equation on h0, taking the convolution of the boundary
data (16) with the fundamental solution gives

V (h1, h2; t) = C

(
1

2π t

)N/2 ∑
w∈W

ε(w)e
1
2t 〈w(h1)−h2,w(h1)−h2〉. (23)

Thus the higher-order terms on the right-hand side of (22) actually vanish.

3.4. Normalization. It only remains to rearrange terms and determine the constant C .
Evaluating V at t = 1, we have

V (h1, h2; 1)
= (2π)(dim g0−N )/2Π(h1)Π(h2)K̃ (h1, h2; 1)
= (2π)(dim g0−N )/2Π(h1)Π(h2)

(
1

2π

)dim g0/2

e
1
2 (〈h1,h1〉+〈h2,h2〉) I (h1,−h2; 1)

= C

(
1

2π

)N/2 ∑
w∈W

ε(w)e
1
2 〈w(h1)−h2,w(h1)−h2〉

= C

(
1

2π

)N/2

e
1
2 (〈h1,h1〉+〈h2,h2〉) ∑

w∈W
ε(w)e〈w(h1),−h2〉.

After cancelations, this becomes

Π(h1)Π(h2)I (h1, h2; 1) = C
∑
w∈W

ε(w)e〈w(h1),h2〉. (24)

Up to this point we have assumed that h1, h2 ∈ h0 ∩ h′, but we can immediately remove
this assumption: since both sides of (24) are analytic in h1 and h2, this identity holds for
all h1, h2 ∈ h.

Finally, we determine C . Applying Π(∂h1) to both sides of (24) and evaluating at
h1 = 0, we obtain

Π(h2)[[Π,Π ]] = C |W |Π(h2), h2 ∈ h,

so that C = [[Π,Π ]]/|W |. This completes the proof of Theorem 1.

4. Concluding Remarks

4.1. Relationship to Calogero-Moser systems. To illustrate the relationship between
Harish-Chandra integrals and Calogero-Moser systems, we observe that by Lemma 1
the function

W (h1, h2; t) = 1

N 2 log K̃ (
√
Nh1,

√
Nh2; t)

satisfies

2
∂W

∂t
= N |∇W |2 + 2

N
∇(logΠ) · ∇W − 1

N
ω̄(∂)W − 1

N 3Π−1ω̄(∂)Π (25)
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where spatial derivatives act in the h2 variables and Π = Π(h2). Since Π is harmonic
(see [4, Proposition 4]), the last term on the right-hand side of (25) vanishes. To compute
the large-N asymptotics for the integral over U (N ) in [6], Matytsin drops the term
N−1ω̄(∂)W , arguing heuristically that it should be subdominant as N → ∞. If we
neglect this term and make the substitution W = S − N−2 logΠ , then we arrive at

2
∂S

∂t
= N |∇S|2 − N−3|∇(logΠ)|2. (26)

In fact (26) is (a scaling in N of) the Hamilton-Jacobi equation for the rational Calogero-
Moser system associated to the root system of the algebra g. From this observation we
expect that the large-N asymptotics of Harish-Chandra integrals can be understood in
terms of hydrodynamic scaling limits of Calogero-Moser systems. This is known to be
true for integrals over U (N ), as in [6,7] the leading-order asymptotics of the HCIZ
integral are derived in terms of a particular solution to the complex Burgers’ equation.
As explained in [10], the complex Burgers’ equation also arises as a hydrodynamic limit
of the Calogero-Moser system associated to the AN root system.

4.2. Proof of the integral formula via symplectic geometry. Below we give an alternate
proof of Theorem 1 using a localization technique in symplectic geometry. While the
existence of such a proof was observed already in [14], here we present the details of
the argument with the goal of making this derivation accessible to non-specialists.

The symplectic geometry approach illustrates a completely different perspective on
the Harish-Chandra integral. Rather than writing the integral in terms of the heat kernel
on g0, we instead view it as an oscillatory integral over a coadjoint orbit in g∗

0. The
proof begins with the steepest-descent approximation (21) for I (h1, h2; t) obtained in
the proof of Lemma 2, which becomes a stationary-phase approximation when t is taken
to be imaginary. Then, instead of observing that V solves the heat equation on h0, we use
the Duistermaat–Heckman theorem to deduce that the stationary-phase approximation
is exact, after which it remains only to compute the normalization constant following
the argument of Sect. 3.4 above.

We first state the Duistermaat–Heckman theorem, which was proved in [14] and later
shown to be an instance of a more general principle of equivariant localization [16]. Let
(M, ω) be a compact symplectic manifold of dimension 2n, and let S be a d-dimensional
torus acting smoothly on M , with Lie algebra s. For each s ∈ s we define a vector field
Xs on M by

Xs(x) f = d

dt

∣∣∣∣
t=0

f (exp(st) · x), x ∈ M, f ∈ C∞(M). (27)

We assume that there is amoment map for the action of S on M , that is a smooth function
Φ : M → s∗ such that

ιXsω(·) = −(dΦ(·), s), s ∈ s, (28)

where (·, ·) is the duality pairing of s∗ and s.4 The Liouville measure μ on M is given
by the volume form ω∧n

n! . Then we have the following:

4 Some authors define the moment map with the opposite sign in (28).



250 C. McSwiggen

Theorem 3 (Duistermaat–Heckman). The integral∫
M
eit (Φ(x),s)dμ(x) (29)

is exactly equal to its leading-order approximation by the method of stationary phase as
t → ∞.5

To prove the exactness of (21) from Theorem 3, we re-interpret I in the language of
symplectic geometry. For x ∈ g0 let x∗ ∈ g∗

0 be its dual under the Killing form, that is
x∗(y) = 〈x, y〉 for x, y ∈ g0. Let β = h∗ ∈ h∗

0. We define the coadjoint orbit

O∗
β = {Ad∗

gβ | g ∈ G} ⊂ g∗
0,

where Ad∗ is the coadjoint representation of G on g∗
0, defined by

Ad∗
gx

∗ = (Adg−1x)∗.

At a point x∗ ∈ O∗
β , under the usual identification Tx∗g∗

0
∼= g∗

0, we have

Tx∗O∗
β = {[x, y]∗ | y ∈ g∗

0}.
The Kirillov-Kostant-Soriau form is the G-invariant 2-form ω on O∗

β defined by

ωx∗([x, y]∗, [x, z]∗) = 〈x, [y, z]〉. (30)

This form can be shown by direct computation to be non-degenerate and closed, and it
therefore makes O∗

β into a symplectic manifold [17, ch. 1]. Let S ⊂ G be the maximal
toruswith tangent space h0. Then S acts smoothly onO∗

β via the coadjoint representation.
Let Φ : O∗

β → h∗
0 be the orthogonal projection onto h∗

0. We will show that Φ is a
moment map for the action of S on O∗

β . Observe that from the definition of Φ as an
orthogonal projection, we have

(Φ(x∗), s) = 〈x, s〉, s ∈ h0, x∗ ∈ O∗
β. (31)

Moreover, dΦ([x, y]∗) is also just the orthogonal projection of [x, y]∗ onto h∗
0, so that

−(dΦ([x, y]∗), s) = −〈[x, y], s〉 = 〈x, [s, y]〉 = ωx∗([x, s]∗, [x, y]∗).
A direct computation from (27) gives Xs(x∗) = [x, s]∗, so that Φ satisfies (28) and
therefore is a moment map as desired.

Next we relate the Liouvillemeasure onO∗
β to Haarmeasure onG. Let 2n = dimO∗

β.

The Liouville measure ω∧n/n! is G-invariant due to the invariance of ω. Pulling the
Liouville measure back along the map Ad∗β : G → O∗

β , we obtain a finite invariant
measure on G, which by the uniqueness of Haar measure must equal a constant times
dg. Thus for a Borel set E ⊂ G we have

∫
E
dg = 1

volμ(O∗
β)

∫
{Ad∗

gβ | g∈E}
ω∧n

n! . (32)

5 The Duistermaat–Heckman theorem is sometimes stated differently, as follows: every regular value of Φ

has a neighborhood in which Φ∗μ is equal to Lebesgue measure times a polynomial of degree at most n − d.
Theorem 3 follows from this statement by observing that the integral (29), considered as a function of t , is the
inverse Fourier transform of the measure (Φ, s)∗μ, i.e. the pushforward of μ by the map (Φ(·), s) : s∗ → R.
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Putting together (31) and (32) and writing dμ = ω∧n/n!, we can express I (h1, h2; t)
as an integral over O∗

h∗
1
:

I (h1, h2; t) =
∫
G
e
1
t 〈Adgh1,h2〉dg = 1

volμ(O∗
h∗
1
)

∫
O∗

h∗
1

e
1
t (Φ(β),h2)dμ(β).

This function is analytic in t for t ∈ (0,∞), and so by analytic continuation we can
equivalently consider

I (h1, h2; i t−1) = 1

volμ(O∗
h∗
1
)

∫
O∗

h∗
1

eit (Φ(β),h2)dμ(β).

We have now written I in the form (29), so that by Theorem 3 and (21) we have

I (h1, h2; i t−1) = C

(
2π i

t

)(dim g0−N )/2

(Π(h1)Π(h2))
−1

∑
w∈W

ε(w)e−i t〈w(h1),h2〉

for some constant C . The proof concludes by evaluating at t = i and computing C as in
Sect. 3.4.

4.3. Relationship to irreducible characters. The Harish-Chandra integral also has an
interpretation in terms of the irreducible characters ofG. Herewe discuss howTheorem1
is essentially equivalent to the Kirillov character formula in the case of a compact,
connected, semisimple group.

Let λ ∈ h∗
0 be the highest weight of an irreducible representation of G with character

χλ, and let ρ = 1
2

∑
α∈P α. Let μ be the Liouville measure associated to the Kirillov-

Kostant-Soriau form on the coadjoint orbit O∗
λ+ρ . The Kirillov character formula for

compact groups [17, ch. 5, Theorem 9] says:

Theorem 4. For h ∈ h0 ∩ h′,

χλ(e
h) = Π(h)∏

α∈P (eα(h)/2 − e−α(h)/2)

∫
O∗

λ+ρ

e(β,h)dμ(β). (33)

Although here we assume that G satisfies the assumptions of Theorem 1, versions of
this formula hold in a variety of situations even for non-compact groups; see the book
[17] for a detailed discussion.

On the other hand, theWeyl character formula (see e.g. [18, Theorem 25.4]) states:

Theorem 5. For h ∈ h0 ∩ h′,

χλ(e
h) =

∑
w∈W ε(w)e(w(λ+ρ),h)∏

α∈P (eα(h)/2 − e−α(h)/2)
. (34)

Note that either of (33) or (34) completely determines χλ. Since the character is
analytic it is determined on the maximal torus exp(h0) by its values on exp(h0 ∩ h′),
and since it is a class function it is determined on all of G by its restriction to a maximal
torus.
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One standard proof of Theorem4dating toKirillov’s paper [19,20]works by applying
Theorem 5 to the right-hand side of (1). However, theKirillov formula can also be proven
by other methods, for example by showing an identity for the Fourier transform on a
semisimple Lie algebra [21,22]. Nothing stops us, therefore, from using (33) to prove
(1) instead, as there is no circularity involved. For the sake of completeness, we record
this proof below.

Equating the right-hand sides of (33) and (34), writing h = h2 and λ + ρ = h∗
1, and

using the relation (32) between Liouville measure onO∗
λ+ρ and Haar measure on G, we

obtain

Π(h)

∫
O∗

λ+ρ

e(β,h)dμ(β)

= volμ(O∗
h∗
1
)Π(h2)

∫
G
e〈Adgh1,h2〉dg =

∑
w∈W

ε(w)e〈w(h1),h2〉.

Applying Π(∂h2) to both sides and evaluating at h2 = 0, we find

volμ(O∗
h∗
1
) = |W |

[[Π,Π ]]Π(h1), (35)

which recovers the integral formula (1) in the case that h2 ∈ h0 ∩ h′ and h∗
1 = λ + ρ

where λ is the highest weight of an irreducible representation of G. Since the right-hand
side of (1) is W -invariant in h1, the result also holds for h1 such that w(h1)∗ = λ + ρ,
w ∈ W , with λ a highest weight. Such h1 form a lattice spanning h0, so by scaling h2
and shifting the scaling onto h1 we obtain the result for all h2 ∈ h0∩h′ and h1 in a dense
subset of h0.6 Analytic continuation then gives the result for all h1, h2 ∈ h, completing
the proof of Theorem 1.
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