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Abstract: The Neuron Restrictive Silencer Factor (NRSF) is the well-known master transcriptional 

repressor of the neuronal phenotype. Research to date has shown that it is an important player in 

the growth and development of the nervous system. Its role in the maturation of neural precursor 

cells to adult neurons has been well characterized in stem cell models. While much has been 

characterized from a developmental perspective, research is revealing that NRSF plays a role in 

various neurological diseases, ranging from neurodegenerative, neuropsychiatric, to cancer. 

Dysregulation of NRSF activity disrupts downstream gene expression that is responsible for 

neuronal cell homeostasis in several models that contribute to pathologic states. Interestingly, it is 

now becoming apparent that the dysregulation of NRSF contributes to neurological disease through 

epigenetic mechanisms. Although NRSF itself is a transcription factor, its major effectors are 

chromatin modifiers. At the level of epigenetics, changes in NRSF activity have been well 

characterized in models of neuropathic pain and epilepsy. Better understanding of the epigenetic 

basis of brain diseases has led to design and use of small molecules that can prevent NRSF from 

repressing gene expression by neutralizing its interactions with its chromatin remodelers. This 

review will address the basic function of NRSF and its cofactors, investigate their mechanisms, then 

explore how their dysfunction can cause disease states. This review will also address research on 

NRSF as a therapeutic target and delve into new therapeutic strategies that focus on disrupting 

NRSF’s ability to recruit chromatin remodelers. 
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1. Introduction 

The first indication of the existence of a neural repressor came from study of the sodium voltage-

gated channel alpha subunit 2 gene (SCN2A) and a neuron-specific marker, superior cervical 

ganglion-10 (SCG10) [1,2]. The characterization of the promoter regions showed that a 21-bp neural 

restrictive silencer element (NRSE) was responsible for gene repression and it was bound by nuclear 

extracts from non-neural tissue, but not neural tissue. This led to the hypothesis that NRSE binding 

proteins existed and they were important for the differential expression of neural genes between 

neurons and non-neural cells. This cis-acting element would also be characterized as the RE-1 silencer 

and it would be characterized in a host of genes specific for neurons. The trans-acting transcription 

factor would be isolated and eventually named RE-1 silencing transcription factor (REST), or 

alternatively Neuron Restrictive Silencer Factor (NRSF). Further study of NRSF/REST showed that 
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this transcription factor played a role high in the hierarchy of neuronal gene expression during 

development, and as such served as a master transcriptional regulator [3,4]. Since then, hundreds of 

genes have been identified that are regulated by NRSF/REST, and in silico studies suggest that this 

number could be in the thousands [5].  

In situ hybridization has revealed that NRSF mRNA is expressed in all non-neural tissue in adult 

organisms [6,7]. Interestingly, NRSF seems to have a higher function in gene regulatory networks 

that maintain pluripotency in embryonic stem cells [8,9]. A high expression of NRSF is also present 

in neural stem cells to preserve stemness and prevent differentiation. Downregulation of NRSF in 

neural stem cells is enough to drive differentiation [10]. During the early development of the nervous 

system, the downregulation of NRSF de-represses gene neural expression long enough to allow for 

neurons to differentiate [11]. However, this downregulation during development is transient, and 

surprisingly, a basal level of expression in adult neural tissues is maintained throughout the life of 

an organism [6]. Despite what appears to be constitutive expression of NRSF, research has shown 

that its overall protein level does not always correlate with its activity level. Several factors determine 

if NRSF can repress expression of its target genes, including proper nuclear localization, recruitment 

of corepressors, and the presence or absence of dominant interfering spliced isoforms.  

While much research has focused on NRSF and the development of the nervous system, NRSF 

has been increasingly linked to numerous diseases involving the brain. Given the central role that it 

plays in neural gene regulation, this is not surprising. NRSF overexpression has been linked to brain 

cancers where it appears to maintain stemness of the stem cell populations within tumors [12–15]. 

Additionally, NRSF appears to play an increasingly important role in neurodegenerative disease 

(which has been well reviewed in [16]). More recently, research has implicated NRSF as an effector 

in the possible epigenetic basis of neurological disease [17]. Upregulation of NRSF in response to 

brain insults, such as ischaemia [18], is believed to be neuroprotective [19] in the short term, but may 

leave long term epigenetic changes that underlie neuropathic pain, epilepsy, and contribute to 

neurodegeneration. As these molecular mechanisms begin to be resolved, it is becoming apparent 

that the use of epigenetic inhibitors to target NRSF and its effector chromatin modifiers opens up the 

possibility for new therapeutics.  

2. Structure and Function of NRSF 

The protein structure of NRSF is characterized and it has well defined functional domains. NRSF 

is a large, Kruppel-like transcription factor that contains nine zinc finger domains that control its 

DNA-binding specificity [3]. Being a transcription factor, the localization of NRSF/REST is important 

for its function. Characterization of the NRSF/REST zinc finger domains (ZFDs) revealed that in 

addition to DNA-binding, there is also a nuclear localization signal [20]. The generation of several 

deletion and truncated mutants of NRSF revealed that a nuclear localization signal (NLS) is present 

somewhere within the fifth N-terminal zinc finger domain. While ZFDs 6–8 appear to be most 

important for DNA binding, ZFD5 contains an NLS. Shimojo showed by deleting ZFD5 in 

NRSF/REST that REST4, which contains the first five ZFDs, is the only variant that is able to localize 

to the nucleus [21]. It had been suggested that amino acids 512–522 were an NLS, however, the 

deletion of this region formed a protein that could still localize to the nucleus. In addition to a NLS, 

control of nuclear import of NRSF is also dependent on the function of REST/NRSF-Interacting LIM 

Domain Protein, RILP [22,23].  

NRSF binds to a conserved 21-bp sequence, termed a Neuron Restrictive Silencer Element 

(NRSE). After binding to DNA, NRSF represses gene expression by recruitment of repressive 

chromatin modifiers. The N-terminal domain of NRSF recruits the corepressor mSin3 through its 

paired amphipathic helix (PAH1) domain [24]. mSin3 in turn recruits histone deacetylases (HDACs) 

to nucleosomes to promote a chromatin repressive environment through the deacetylation of histones 

[25]. Separately, the C-terminal domain recruits the major corepressor, REST corepressor 1 (CoREST) 

[26]. CoREST itself recruits chromatin modifying enzymes, including HDACs as well as histone 

methyltransferases. Additionally, CoREST contains two SANT domains that allow it to interact with 

histones [27]. Interestingly, this can allow for the recruitment of CoREST to areas of the genome 
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without NRSF or an NRSE and contribute to long term gene silencing, even in the absence of NRSF. 

Lastly, the expression of NRSF can be downregulated post-translationally through ubiquitination by 

B-Trcp [28]. Interaction with B-Trcp is mediated by two conserved DpSG sequences. Within this 

degron sequence are several critical serine residues (1024, 1027, and 1030), which, when 

phosphorylated, increase binding of B-Trcp to NRSF [28].  

3. REST-Interacting LIM Domain Protein  

While post-translational modifications can serve as quick on-off switches, they often enable 

other interactions with binding partners that modulate NRSF/REST. The most studied of these is the 

REST-interacting LIM domain protein (RILP). While the NRSF/REST protein levels can remain 

constant throughout the life of a cell, its activity is far from being dependent on expression levels. 

Being a transcription factor, nuclear localization of NRSF is required for its function. As far as current 

research is aware, RILP it is one of the chief nuclear importers of NRSF. RILP directly interacts with 

ZFD5 of NRSF and is required for the proper differentiation and maintenance of the neuronal 

phenotype [23].  

RILP is considered a nuclear envelope protein. At least three domains control this association. 

RILP contains a CIIS domain required for farnesylation [22,23]. Treatment of cells with farnesyl 

transferase inhibitor (FTI) prevents localization to the nuclear envelope. Additionally, RILP contains 

two domains that can be phosphorylated by PKA. Point mutations in critical phosphorylated residues 

also abolish RILP localization to the nucleus. Finally, RILP contains three separate NLS signals. The 

deletion of any single NLS abolishes localization to the nucleus, suggesting that they adapt a 

cooperative conformation [23]. It should be noted that one of the NLS motifs also overlaps with the 

phosphorylated residue of one of the PKA recognition domains.  

4. REST4 

NRSF/REST is subjected to several splice isoforms [29]. These are driven by multiple promoters 

within the gene that begin expression at different exons [30]. Although the mechanism is not entirely 

clear, it was shown that nsr100, an important neuronal activator, promotes alternative splicing of 

NRSF [31]. Additionally, characterization of the cholinergic gene locus in PC12 cells showed that PKA 

activity may also promote REST4 splicing [32], although it is still unclear if this is a pre- or post 

transcriptional event. Of these isoforms, REST4 is the most studied due to its ability to antagonize 

NRSF function [33]. REST4 contains the first 5 N-terminal ZFDs of full NRSF. These domains, 

especially ZFD5, contain enough of the NLS so that REST4 can efficiently localize to the nucleus [20]. 

REST4 retains some function of the original NRSF protein. Structurally, REST4 is a C-terminally 

truncated form of the NRSF full gene. Since the C-terminal end of NRSF is known to recruit CoREST, 

an important co-repressor for NRSF, it is easy to imagine how REST4 could competitively inhibit full 

NRSF and reduce its repressive function. Indeed, part of its repressive function may be due to its 

ability to heterodimerize with NRSF, resulting in a complex with reduced ability to recruit CoREST 

[34]. However, further work by Shimojo indicates that the sixth to eighth ZFD are critical for DNA-

binding. Deletion of ZFD7 plus either ZFD6 or 8 abolishes DNA-binding, implying that REST4 alone 

does not actually bind to DNA [21]. Since the NRSE is a 21-bp sequence and each ZFD should 

contribute 3bp worth of specificity, it can be logically concluded that the loss of any ZFD could 

decrease affinity for the NRSE. Nonetheless, despite lacking the C-terminal end, REST4 does retain a 

trace of its repressive function [35]. This is presumably due to the retention of the N-terminal region, 

which is still able to recruit mSin3.  

Alternative splicing of NRSF/REST is not comprehensively characterized. While several spliced forms 

have been observed, only REST4 seems to play a critical role in neural development. Inhibition of 

REST4 splicing leads to impairments of neurite growth and may contribute to Autism Sprectrum 

disorders [31]. Additionally, there are several pathologies that REST4 can be implicated in, including 

neuropathic pain [36], glioma [37], Parkinson’s Disease [38], and epilepsy [39]. Given the complex 

function of REST4 and its implication in various stages of neural development, it should not be 

surprising that the splicing event is also under complex regulation. 5. CoREST 



Brain Sci. 2018, 8, x FOR PEER REVIEW  4 of 13 

 

CoREST is a well-known co-repressor that associates with NRSF. CoREST interacts with NRSF 

through a single ZFD [26] and mutating this will abrogate gene repression. CoREST expands the 

number of gene targets that NRSF/REST regulates by several fold, in part because it is able to regulate 

many genes without an NRSE and regulates more genes that are not neuron-specific [40]. 

Additionally, CoREST contains a SANT2 [41] domain that can directly interact with histones. This 

allows for DNA-binding and transcriptional repression, even in the absence of a canonical NRSE/RE-

1 silencer element within the gene promoter. However, most of the known CoREST regulation 

comprises of gene networks that are involved in neural stem cell pluripotency and its de-repression 

occurs during differentiation. Additionally, differential REST/CoREST complexes are involved in the 

differentiation of different neuronal subtypes and also control the switch between glial and 

oligodendrocyte subtypes [42,43].  

CoREST is recruited to the C-terminal of NRSF/REST and it further recruits chromatin modifying 

enzymes, mainly HDACs and DNA methyltransferases [41], which repress gene expression. 

Differential expression of CoREST and NRSF/REST in the developing brain allows for another level 

of differential repression of neural genes [44]. More importantly, it appears that CoREST can form 

alternative NRSF/REST complexes that have different gene specificity as compared to NRSF/REST 

[45].  

6. NRSF Recruits Chromatin Remodelers 

REST4, RILP, and CoREST play important roles in the regulation of NRSF’s activity. However, 

the repressive function of NRSF is mediated by chromatin modifiers that leave repressive covalent 

modifications on histones and DNA. These modifications promote the formation of heterochromatin 

that obscures important cis-regulatory elements that are involved in gene transcription.  

To this end, NRSF relies on recruitment of HDACs, histone methyltransferases, and DNA 

methylases (Figure 1). NRSF recruits mSin3a to its N-terminal region [25]. From there, mSin3a itself 

recruits HDACs that are essential for gene repression [46]. Additionally, NRSF recruits the histone 

methyltransferase, G9a [47]. This interaction is indirect and it partly depends on NRSF’s recruitment 

of the chromodomain containing protein, chromodomain Y-like (CDYL) [48]. G9a seems to 

preferentially demethylate H3K9 [48], and this activity is non-overlapping with HDAC repression 

from either mSin3a or CoREST. Lastly, CoREST itself acts as a HDAC recruiter [41]. CoREST, through 

interactions with methyl CpG binding protein 2 (MeCP2) [49], may also mediate long-term gene 

repression by binding to methylated DNA.  
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Figure 1. Neuron Restrictive Silencer Factor (NRSF) recruits multiple chromatin modifiers. The major 

function of NRSF is to recruit chromatin modifiers to neural genes by recognizing NRSEs throughout 

the genome. At the N-terminal end, NRSF recruits mSin3 enabling recruitment of histone deacetylase 

activity. Further histone deacetylase activity is conferred through recruitment of the major 

corepressor, CoREST, at the C-terminal end. Additionally, REST corepressor 1 (CoREST) recruits the 

histone demethylase LSD1. NRSF can also recruit the histone methylation activity of G9a. This is 

indirect through recruitment of chromodomain containing protein, chromodomain Y-like (CDYL). 

7. NRSF-Related Diseases 

7.1. Epilepsy 

Epilepsy is a collection of seizure disorders characterized by uncontrolled electrical activity in 

the brain leading to confusion, loss of consciousness, and uncontrolled movements [50]. At least one 

connection from NRSF has a heritable genetic component. Mutation in RILP causes the 

mislocalization of NRSF in Progressive Myoclonus Epilepsy-Ataxia Syndrome [51]. In a study of 

myoclonus epilepsy-ataxia syndrome, it was found that several families had a mutation in the NRSF 

translocator, RILP (called PRICKLE1 in the study). When this mutation was cloned in vitro, it was 

found that it caused mislocalization of NRSF and kept it  nuclear instead of cytosolic. Mutations that 

interfere with the RILP-NRSF association underlie several brain pathologies. A mutation in RILP 

(R104Q) across three families with progressive myoclonus epilepsy (PME) was determined to be a 

founding mutation in all cases. This mutation prevents the association of RILP with NRSF allowing 

NRSF to accumulate in the nucleus. The dysregulation of NRSF seems to be implicated in epilepsy, 

however, specific mechanisms are still lacking. 

REST4 may have another indirect connection to epilepsy. During seizure, NRSF and REST4 are 

both upregulated. However, the expression of the proconvulsant gene, TAC3 (neurokinin B (NKB)) 

is upregulated [52]. It appears that the increase in REST4 expression may competitively inhibit the 

repression of NKB by NRSF. This effect is decreased if the anticonvulsant, carbamezapine, is 

administered. Taken together, this suggests that the disruption of the mechanisms that control NRSF 

can also underlie pathologies that are associated with NRSF.  

The expression of several ion channels and receptors have been identified to contribute to the 

aetiology of epilepsy. Not surprisingly, these channels are critical for electrical signaling between 

neural cells. In particular, the dysregulation of expression of Na+ and K+ channels is highly associated 

with epilepsy. The molecular mechanisms that underlie these changes in gene expression are still 
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under investigation, but it is clear from some studies that many of the genes can be directly regulated 

by NRSF [53]. Dysregulation of the ion channel genes SCN2A, potassium voltage-gated channel 

subfamily Q member 2 (KCNQ2), and KCNQ3 contribute to the progression of epilepsy in infants, 

but more interestingly, these are known to be repressed by NRSF [3,54]. Adding to this list, mutation 

in SCN1A and SCN1B contribute to an inherited form of febrile seizures in early childhood and are 

also direct targets for NRSF repression [55]. Another important factor for NRSF induced epilepsy is 

the regulation of potassium channels through epigenetic repression. Specifically, the DNA 

dimethylase G9a, has been shown to leave the repressive histone mark H3K9me2 on several genes 

for potassium channels [56] 

Aside from traumatic brain injury, seizure itself can promote epilepsy in adults. In both cases, 

injury causes the downregulation of expression of important genes that are implicated in epilepsy, of 

note, the hyperpolarization-activated cyclic nucleotide-gated ion channel gene, HCN [57,58]. This 

relationship between NRSF and epilepsy has also been established in in vivo models of epilepsy. 

Therapeutic targeting of NRSF to restore HCN expression can slow down the progression of epilepsy 

after injury [57] in mouse models.  

Interestingly, NRSF may play a role in diet-based resistance of epilepsy. In a dietary model of 

epilepsy treatment, the deprivation of glucose leads to reduced NADH activation of the chromatin 

modifier CtBP [59]. The effect reduced NRSF repression specifically of the BDNF gene.  

7.2. Neuropathic Pain 

Injury to nerves in the form of ischemia, crushing/mechanical, and inflammation often leave 

lasting symptoms. Nerve damage can result in neuropathic pain, a condition where pain thresholds 

to common stimuli are lowered and analgesic effects are attenuated [60]. Neuropathic pain decreases 

the quality of life of the injured and can lead to disability. At the cell biology level, neuropathic pain 

is linked to aberrant expression of ion channels and G-protein coupled receptors. Interestingly, many 

of these channels that are dysregulated in neuropathic pain are the same channels that are 

dysregulated in epilepsy [61–64], in particular, sodium and potassium channels. However, the 

expression pattern of these genes is very different as many of the changes occur in the peripheral 

nervous system. Additionally, some changes in gene expression are directly responsible for 

mediating the analgesic response. Most notably are changes in the mu-opioid receptor (MOR) [65,66]. 

Given the roles of these channels in nerve signaling and analgesia, respectively, these are logical 

targets for treatment. Common treatments for neuropathic pain are often tricyclic antidepressants, 

serotonin and norepinephrine reuptake inhibitors, gapabentin, and less commonly, opioids. These 

can lose their effectiveness over time as the user builds a tolerance and can carry a high risk for 

addiction.  

Downregulation of several types of ion channels that are commonly seen during nerve damage 

is confirmed in in vitro models. Additionally, other genes involved in maintaining analgesia, mainly 

the µ-opioid receptor are also affected and can contribute to pain. Expression of NRSF is upregulated 

during the same injuries that cause neuropathic pain [67]. Given its master role in regulating neural 

expression, it is not surprising that other laboratories have shown that the repressive effect of NRSF 

may be responsible for the downregulation of ion channels and analgesic promoting genes that 

underlie neuropathic pain. Work by Uchida et al. has shown that the sodium and potassium channels, 

sodium channel protein type 7 subunit alpha (SCN7A, aka Nav)2.1, and potassium voltage-gated 

channel subfamily D member 3 (Kv4.)3 [68] are downregulated in dorsal root ganglia after injury, 

possibly lowering the firing threshold for pain, while MOR expression can be directly repressed by 

NRSF [69,70], removing important analgesic relief. Damage to the C-fiber nerves is highly implicated 

in neuropathic pain and is attributed to NRSF repression of Nav1.8 and MOR genes. G9a also 

contributes to long-term pain through downregulation of potassium channels by methylation of 

histones [56]. Logically, NRSF itself can be recognized as a therapeutic target and in some pain 

models, since the direct inhibition of its activity has been shown to reduce symptoms [71]. Further 

study into the epigenetic mechanisms that are perturbed in neuropathic pain can provide more finely 
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resolved targets. In particular, targeting the co-repressors and epigenetic effectors that NRSF recruits 

during injury could better treat neuropathic pain and limit off target effects.  

8. Epigenetic Inhibitors  

Epigenetic treatments for disease are increasingly being investigated for a range of diseases. 

Valproic acid, an organic acid with pan-HDAC inhibiting function, is currently in use to treat seizure 

[72] and bipolar disorder [73]. However, due to its broad range, pan-HDAC inhibitors are associated 

with many side effects. Interestingly, HDAC inhibitors are being put forth as a new potential 

treatment for neuropathic pain [74]. These can effectively ameliorate symptoms of pain and show 

distinct epigenetic changes in gene regulation. Given the known regulation of ion channels and other 

pain receptors by HDAC recruitment of NRSF, one could hypothesize that the global use of HDAC 

inhibitors could be narrowed down to a subset of NRSF regulated genes. In order for this to be tested, 

further research should establish a more direct link between the HDAC recruitment ability of NRSF 

and neuropathic pain itself. The possibility that epigenetic changes specific to neuropathic pain and 

NRSF could help to narrow down therapeutic options from that of global HDAC inhibition to more 

targeted NRSF regulated genes is exciting and it could result in therapies with less off-target effects.  

Research on the mechanisms that show NRSF and its relationship to disease may offer the 

possibility to create better drugs that more precisely target the epigenetics in neural cells (Figure 2). 

Mimetics against NRSF are being constructed and tested in pain models. In particular, two mimetics 

that compete with the N-terminal end of NRSF have been synthesized under the PRISM model in 

Japan and tested in animals. Both mS-11 and C737 have been made to outcompete mSin3 and 

attenuate the repression of gene expression. In a mouse pain model for sciatic nerve injury, the 

administration of mS-11 was able to restore C-fiber pain stimulation threshold to basal levels [75]. In 

a cold stress model, shrews were subjected to depression via exposure to cold temperature. 

Administration of C737 therapeutically protected against cold stress-induced weight loss and 

performed even better when compared against the antidepressant agomelatine [76]. These mimetics 

highlight a new strategy where specific epigenetic effectors that associate with transcription factor 

activity can be inhibited. Although both seem promising, much more work with mimetics such as 

these needs to be performed to show that mimetics can restore homeostasis of gene expression 

underlying neuropathic pain. In addition to mimetics, the small quinolone-like compound 91 (C91) 

was tested and revealed to inhibit the NRSF-mSin3b interaction [77]. This was tested in a Huntingtin 

Disease model, where it was shown to restore expression of BDNF among other neural genes [77].  
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Figure 2. Inhibiting the Chromatin Modifying Effectors of NRSF. Inhibition of mSin3 recruitment by 

NRSF at the N-terminal end has been shown using molecules that mimic the helix structure of NRSF 

that recruits mSin3. At the C-terminal end of NRSF, small molecules against the major corepressor of 

NRSF, CoREST, can inhibit both deacetylase and demethylase activity. 

While mimetics have been synthesized that target the N-terminal domain of NRSF, small 

molecules have also been tested against the C-terminal domain’s interaction with CoREST. The small 

molecules 4SC-202 and SP2509 were able to inhibit the deacetylase and demethylase activity of the 

NRSF/REST-CoREST complex in medullablastoma cells, and they negatively affected cell viability 

[78]. The synthetic HDAC inhibitor, corin, was also shown to have dual inhibitory activity against 

the deacetylase and demethylase activity of the CoREST complex [79]. Interestingly, although each 

molecule inhibits HDAC1, they have differential affinity towards different HDAC1-containing 

complexes.  

9. Conclusion 

Decades of study of the master transcriptional regulator, NRSF, has highlighted its importance 

in neural development. NRSF controls one of the most complex expression programs in development. 

The number of binding partners and effectors that have been characterized as essential for its function 

speaks to its complexity. Its implication in a range of neurological diseases underscores how critical 

its tight regulation is for cellular homeostasis.  

However, the study of this transcriptional repressor is still incomplete and further elucidation 

of its functional mechanisms could provide new therapeutic windows into neural dysfunction and 

disease. Targeting NRSF activity with siRNA has been shown to induce differentiation and reduce 

tumor progression in glioblastoma models, however, this approach may be too broad for use under 

physiological conditions. Therefore, the study of the epigenetic regulators and co-repressors that 

NRSF utilizes could provide a higher level of resolution for more targeted treatments.  
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