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Vandermonde Factorization of Hankel Matrix for
Complex Exponential Signal Recovery—
Application in Fast NMR Spectroscopy

Jiaxi Ying , Jian-Feng Cai, Di Guo , Gongguo Tang , Member, IEEE, Zhong Chen , and Xiaobo Qu

Abstract—Many signals are modeled as a superposition of expo-
nential functions in spectroscopy of chemistry, biology, and medical
imaging. This paper studies the problem of recovering exponential
signals from a random subset of samples. We exploit the Vander-
monde structure of the Hankel matrix formed by the exponential
signal and formulate signal recovery as Hankel matrix completion
with Vandermonde factorization (HVaF). A numerical algorithm
is developed to solve the proposed model and its sequence con-
vergence is analyzed theoretically. Experiments on synthetic data
demonstrate that HVaF succeeds over a wider regime than the
state-of-the-art nuclear-norm-minimization-based Hankel matrix
completion method, while it has a less restriction on frequency sepa-
ration than the state-of-the-art atomic norm minimization and fast
iterative hard thresholding methods. The effectiveness of HVaF is
further validated on biological magnetic resonance spectroscopy
data.

Index Terms—Exponential signal, low rank, Hankel matrix com-
pletion, spectrally sparse signal, Vandermonde factorization.

I. INTRODUCTION

S IGNALS in many practical applications can be exactly or
approximately modeled as a superposition of a few com-

plex exponential functions. Examples include analog-to-digital
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conversion in electronic systems [1], antenna signals in tele-
communication [2], [3], images in fluorescence microscopy [4],
echo signals in medical imaging [5] and time domain signals in
nuclear magnetic resonance (NMR) spectroscopy [6]–[11]. The
signal of interest in these applications is a superposition of a
few complex sinusoids with or without damping factors:

y(t) =
R∑

r=1

cr e
(2πifr −τr )t , (1)

where fr ∈ [0, 1) is the normalized frequency, cr ∈ C is the
associated complex amplitude, R is the number of exponentials
and τr ∈ R+ is the damping factor. Particularly, when there is no
damping factor, i.e., τr = 0 for r = 1, . . . , R, y(t) is a spectrally
sparse signal which arises from, e.g., analog-to-digital conver-
sion [1]; otherwise, y(t) is a sum of damped complex sinusoids
that characters the time domain signal, e.g., the acquired signal
in biological NMR spectroscopy [6].

Throughout the paper, it is assumed that the frequencies
fr , r = 1, . . . , R, are distinct and normalized with respect to
Nyquist frequency, thus measurements are sampled at integer
values. Let y ∈ C2N−1 be the underlying uniformly-sampled
true signal y = [y(1) . . . y(2N − 1)]T .

In some circumstances, the measurements of the signal y
are incomplete due to high experimental cost, hardware lim-
itation, or other inevitable reasons. For example, to acceler-
ate data acquisition, non-uniform sampling is popular in NMR
spectroscopy [6]. In this paper, we aim to recover y from par-
tial measurements {yj , j ∈ Ω}, where Ω ⊂ {1, . . . , 2N − 1}
with |Ω| = M (M < 2N − 1) is the set of indices of the ob-
served entries. Since the number of degrees of freedom to de-
termine y is much smaller than the ambient dimension 2N − 1
if R� 2N − 1, it is possible to recover y from a small number
of measurements by exploiting its inherent structure.

One line of work tries to exploit sparsity of y in the fre-
quency domain. Spectrally sparse signals, i.e., sums of com-
plex sinusoids without damping factors, enjoy sparse represen-
tations in the discrete Fourier transform domain if frequencies
are aligned well with the discrete frequencies. In that case, the
signal can be recovered from a minimal number of samples by
using conventional compressed sensing [12]. However, true fre-
quencies often take values in the continuous domain, and the
resultant basis mismatch between the true frequencies and the
discretized grid [13] leads to loss of sparsity and hence degrades
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the performance of compressed sensing. Therefore, total varia-
tion or atomic norm [14] minimization methods were proposed
to address this problem by exploiting the sparsity of y with
continuous-valued frequencies [15], [16]. Exact recovery with
high probability is established for random sampling of very few
measurements, provided that the frequencies fr , 1, . . . , R, enjoy
good separations [15]. Several subsequent papers on this topic
include [17]–[21]. Yet, currently it is still unknown how to ex-
tend atomic norm minimization to recover damped exponential
signals.

Recently, the low rank structure of the Hankel matrix formed
by y is exploited to recover the signal [6], [22]–[31], and the
reconstruction problem can be formulated under the framework
of Low Rank Hankel Matrix Completion (LRHMC),

min
x

rank(H(x)), s.t. PΩ(x) = PΩ(y), (2)

where H(x) denotes a Hankel matrix arranged from x; PΩ is
the orthogonal projector onto the indices in Ω so that the j-th
element of PΩ(y) is equal to yj if j ∈ Ω and zero otherwise.

There are several existing algorithms in the literature to solve
LRHMC problem (2). In particular, nuclear norm minimization
is utilized as a convex relaxation for LRHMC and theoretical
recovery guarantees are established [25], [26]. This approach
was independently developed to recover time domain signals
in biological NMR spectroscopy [6], showing great potentials
to highly accelerate data acquisition with non-uniform sam-
pling. To design more efficient algorithms, some non-convex
algorithms for low-rank Hankel matrix completion were pro-
posed in [30], [31]. However, some critical issues remain to
be solved, e.g., the recovery is sensitive to frequency separa-
tion [30], [31] and the number of measurements are expected
to be further reduced in fast sampling [6], [25], [26]. In addi-
tion, low rank Hankel matrix formulation has been extended to
reconstruct higher-dimensional NMR spectroscopy with block
Hankel matrix [9], [10] and tensors [7]. Applications of low rank
Hankel matrix can also be found in magnetic resonance imaging
[32]–[35].

Note that the signal of interest in this paper is a special sig-
nal function discussed in the theory of finite rate of innovation
(FRI) [36]. The class of FRI signals includes a stream of (dif-
ferentiated) Diracs, non-uniform splines and piecewise smooth
polynomials. The conditions for perfect reconstruction from low
pass filtered observation were established under ideal low-pass
filters and gaussian kernels [36], or kernels satisfying Strange-
Fix conditions [37]. The reconstruction scheme estimates an
annihilating filter that annihilates the Fourier series coefficients
of an FRI signal at consecutive low frequencies. More recently,
a unified view for sampling and reconstruction in the frequency
domain was proposed [38] to deal with arbitrary sampling ker-
nels. Some robust methods were also developed to handle the
noisy situations [38]–[40]. However, these methods are not orig-
inally designed for missing data recovery and thus some modi-
fications are necessary in this situation.

In this work, we exploit the Vandermonde structure of Hankel
matrix to recover complex exponential signals. A new numerical

algorithm is developed to implement this approach and its con-
vergence properties are further analysed. The extensive simula-
tions demonstrate that, compared with state-of-the-art methods,
the new approach requires fewer measurements to recover sig-
nals. Moreover, signal parameters can be accurately estimated
through HVaF reconstruction even with a small frequency sep-
aration. The advantages of the proposed approach are further
validated on biological NMR spectroscopy data. A preliminary
account of this study was presented in a recent conference paper
[41].

It is worth noting that this paper focuses on signal recon-
struction rather than parameter estimation which actually is a
harmonic retrieval problem. To better clarify the contributions of
this work, the main differences between this work and the work
[7] are summarized here. First, the signal processing problem
to be solved and their applications are different. This work is
to improve the fundamental 1-dimensional complex exponential
signal reconstruction and is highly motivated by fast sampling in
2-dimensional NMR spectroscopy [6] while [7] was used in N -
dimensional (N ≥ 3) spectroscopy. In addition, the new method
may be extended to other applications such as magnetic reso-
nance imaging and hyperspectral imaging, where signals in one
dimension can be modelled as sum of exponentials. Second,
reconstruction models are different. This work first explores
Vandermonde structure of Hankel matrix in 1-dimensional ex-
ponential signal reconstruction, while the work [7] exploits the
natural tensor structures of the N -dimensional exponential sig-
nal. Third, this work makes new and important contributions
to signal processing. The new method achieves higher empiri-
cal phase transition and enjoys a less restriction on frequency
separation, compared with the state-of-the-art spectrally sparse
signal reconstruction methods [6], [15], [25], [30].

The rest of this paper is organized as follows. Section II
introduces notations. In Section III, we propose the recovery
method and a numerical algorithm to implement it. Section IV
presents the numerical results on both synthetic and biological
NMR spectroscopy data. Section V extends discussions on the
proposed method and Section VI finally concludes this work
and discusses future directions.

II. NOTATIONS

We first introduce the notation used throughout this paper. We
denote vectors by bold lowercase letters and matrices by bold
uppercase letters. The individual entries of vectors and matrices
are denoted by normal font. More explicitly, the j-th entry of a
vector x is denoted by xj ; the (i, j)-th entry of a matrix X is
denoted by Xij . The i-th row and j-th column of a matrix X
are denoted by X(i,:) and X(:,j ) , respectively. For any matrix
X , ‖X‖∗ and ‖X‖F denote nuclear norm and Frobenius norm,
respectively. The transpose of vectors and matrices are denoted
by xT and XT , while their conjugate transpose is denoted by
xH and XH . The Hadamard product (also known as entrywise
product) of two matrices A and B is [A�B]ij = AijBij .

Operators are denoted by calligraphic letters. Let R be a
Hankel operator which maps a vector x ∈ Cn to a Hankel matrix
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Rx ∈ Cn1×n2 with n1 + n2 = n + 1 as follows

R : x ∈ Cn1 +n2−1 	→ Rx ∈ Cn1×n2 , [Rx]ij = xi+j−1 , (3)

and the adjoint operatorR∗ ofR is given by

R∗ : X ∈ Cn1×n2 	→ R∗X ∈ Cn1 +n2−1 ,

[R∗X]k =
∑

i+j−1=k

Xij , (4)

for any i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}. In particular, we
denote the Hankel operator by H instead of R when n1 = n2 ,
i.e., constructing a square matrix.

We denote G = R∗R. Obviously, G is a diagonal operator
satisfying Gx = Wx, x ∈ Cn1 +n2−1 , where W is a diagonal
matrix and its element on the main diagonal is the number
of times that an entry of vector x is presented in the Hankel
matrix. The Moore-Penrose pseudoinverse of R is denoted by
R† = G−1R∗ which satisfiesR†R = I, where I is the identity
operator.

We also define another linear operator Qr which aims to
extract the r-th column from X . For a matrix X ∈ Cs1×s2 ,
specifically, we define Qr by

Qr : X ∈ Cs1×s2 	→ QrX = X(:,r) ∈ Cs1×1 , (5)

for any r ∈ {1, . . . , s2}.
Then the adjoint Q∗r of Qr is given by

Q∗r : x ∈ Cs1×1 	→ Q∗rx ∈ Cs1×s2 ,

[Q∗rx](:,k) =

{
x

0

k = r,

k �= r.
∀r ∈ {1, . . . , s2}. (6)

where [·](:,k) denotes the k-th column of a matrix, k = 1, . . . , s2 .
Thus we have

[Q∗rQrX](:,k) =

{
X(:,r)

0

k = r,

k �= r.
(7)

III. THE PROPOSED METHOD

In this section, we first propose a new approach for expo-
nential signal recovery. The proposed approach formulates the
reconstruction problem as Hankel matrix completion with Van-
dermonde factorization. Then we develop a numerical algorithm
to implement the new approach. Finally we analyse the conver-
gence properties of the algorithm.

A. Hankel Matrix Completion With Vandermonde
Factorization

Define zr = e(2πifr −τr ) for r = 1, . . . , R. It is observed that
the Hankel matrixHy ∈ CN×N formed by the signal of interest

y ∈ C2N−1 in (1) admits Vandermonde factorization

Hy =

⎡

⎢⎢⎢⎢⎢⎣

1 · · · 1

z1 · · · zR

...
...

...

zN−1
1 · · · zN−1

R

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

c1

. . .

cR

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎣

1 z1 · · · zN−1
1

...
... · · · ...

1 zR · · · zN−1
R

⎤

⎥⎥⎥⎦ = EΣET , (8)

where E is a Vandermone matrix and Σ is a diagonal matrix.
We rewrite (8) as a form of the product of two factor matrices

Hy = ELET
R , (9)

where EL = EΣL and ER = EΣR with ΣLΣT
R = Σ, and

ΣL and ΣR ∈ CR×R are both diagonal matrices. Clearly, (9)
can be easily converted to (8) by normalizing EL and ER .
Therefore, for ease of presentation in this paper, we also call
(9) as Vandermonde factorization and EL and ER are with
Vandermonde structure in this paper. In addition, structured
matrix factorization was also explored in applications such as
blind separations [42] and power spectra separations [43].

In this paper, we reconstruct complex exponential signal by
imposing Vandermonde factorization on Hankel matrix:

Find x,U ,V (10)

subject to U and V are of Vandermonde structure,

Hx = UV T , PΩ(x) = PΩ(y).

Specifically, (10) aims to find x, which is consistent with y in Ω
and the Hankel matrix formed by which can be factorized into
two matrices with Vandermonde structure. From (8), it is ob-
served that Vandermonde factorization is a special form of low
rank matrix factorization; the product of factor matrices from
Vandermonde factorization compose a low rank matrix, mean-
while they comply with Vandermonde structure. Therefore, (10)
imposes more constraints in recovery than LRHMC in (2) and
thus has a potential to achieve a better reconstruction.

Unfortunately, it is hard to directly impose Vandermonde
structure on U and V , since the set of all Vandermonde ma-
trices is non-convex and highly nonlinear, which may cause
the optimization problem to be computationally intractable. In
this paper, Vandermonde structure is expected by seeking each
column of the matrix to be an exponential function.

Note that rank(Ra) = 1 if a is a column of a matrix
with Vandermonde structure. Let A = [a1 , . . . ,aR ] ∈ CN×R

be a matrix without zero columns. It is obvious that R ≤∑R
r=1 rank(Rar ). More importantly, R =

∑R
r=1 rank(Rar )

if and only if A is Vandermonde. Therefore, minimiz-
ing

∑R
r=1 rank(Rar ) will favor A to be of Vandermonde
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structure. Based on this observation, we propose

min
U ,V ,x

R̂∑

r=1

(rank(RU (:,r)) + rank(RV (:,r))),

s.t. Hx = UV T ,PΩ(x) = PΩ(y). (11)

The objective function is to encourage U and V are with Van-
dermonde structure. However, due to the rank function involved,
it is hard to solve the above minimization. Here we relax rank
function by nuclear norm, and solve

min
U ,V ,x

R̂∑

r=1

(
∥∥RU (:,r)

∥∥
∗ +

∥∥RV (:,r)
∥∥
∗),

s.t. Hx = UV T ,PΩ(x) = PΩ(y). (12)

Here both R and H are defined to map a vector to a Hankel
matrix. By the operatorH, the 1-D exponential signal recovery
problem is reformulated as Hankel matrix completion which has
been explored in [6], [25], [27], [29], [30]. To further impose
the Vandermonde structure which is first explored in our paper,
we map each column of U and V to Hankel matrix by using
operatorR and then minimize the nuclear norm of each Hankel
matrix. Therefore, using two different notations helps present
our contributions more clearly.

We adopt the type of Hx = UV T rather than symmetrical
decomposition form, which is shown in (8), with using U only
due to the fact that the Hankel matrix may not be exactly square
when the dimension of x is even. Therefore, our proposed ap-
proach is not limited to odd dimensional signals. In addition,
using the former type can find the closed form solutions of U
and V directly but not for the latter.

A numerical algorithm is developed in the next subsection
and the effectiveness is verified by experiments on synthetic
data and realistic biological magnetic resonance spectroscopy
data in Section IV.

Note that the exact number of exponentials R is usually
unknown in practice especially in the case of non-uniform
sampling, hence our algorithm needs to preset the number of
exponentials. It will be shown in Section IV that the proposed
algorithm can succeed in recovering the signal with high
probability even when the preset number of exponentials R̂ is
greatly larger than R.

B. Numerical Algorithm

In this subsection, we develop a numerical algorithm to im-
plement the proposed method. Recall thatQr defined in (5). We
rewrite (12) as its equivalence

min
U ,V ,x

R̂∑

r=1

(‖RQrU‖∗ + ‖RQrV ‖∗),

s.t. Hx = UV T ,PΩ(x) = PΩ(y). (13)

To solve (13), we develop an algorithm based on half
quadratic methods with continuation [44], [45] for its advan-
tage in handling multi-variable optimization [46]. We introduce

the term
∥∥Hx−UV T

∥∥2
F

to keep Hx close enough to UV T

instead of the exact constraint Hx = UV T . Now, we have the
following optimization:

min
U ,V ,x

R̂∑

r=1

(‖RQrU‖∗+‖RQrV ‖∗) +
β

2

∥∥Hx−UV T
∥∥2

F
,

s.t. PΩ(x) = PΩ(y). (14)

When β →∞, the solution to (14) is approaching the one to
(13). The challenge in solving (14) is that the nuclear norm terms
are non-smooth and non-separable simultaneously. To decou-
ple the non-smoothness and the non-separability, we introduce
some auxiliary variables into (14) [47], and then reformulate the
problem (14) as the following equivalent form:

min
U ,V ,x,Br ,Cr

r=1,··· ,R̂

R̂∑

r=1

(‖Br‖∗ + ‖Cr‖∗) +
β

2

∥∥Hx−UV T
∥∥2

F
,

s.t. Br = RQrU , Cr = RQrV , r ∈ {1, . . . , R̂},
PΩ(x) = PΩ(y). (15)

In (15), the first two terms are non-smooth but separable, and
the other terms are smooth, which makes it easier to develop nu-
merical algorithms. With a fixed β, we use Alternating Direction
Method of Multipliers (ADMM) to solve (15).

In the following, we first present an overview of
the proposed algorithm, and then describe how to up-
date each variable of the algorithm in detail. Let B =
(B1 , . . . ,BR̂ ), C = (C1 , . . . ,CR̂ ), D = (D1 , . . . ,DR̂ ) and
M = (M 1 , . . . ,M R̂ ). The augmented Lagrangian function of
(15) is

Lμ(U ,V ,x,B,D, C,M) =
β

2

∥∥Hx−UV T
∥∥2

F

+
R̂∑

r=1

(
‖Br‖∗+〈Dr ,RQrU −Br 〉+ μ

2
‖RQrU −Br‖2F

)

+
R̂∑

r=1

(
‖Cr‖∗+〈M r ,RQrV −Cr 〉+ μ

2
‖RQrV −Cr‖2F

)
.

(16)

where Dr and M r are the Lagrange multipliers, r = 1, · · · , R̂.
We present an ADMM iterative scheme to successively min-

imize Lμ(U ,V ,x,B, C,D,M) as follows:

min
U
Lμk (U ,V k ,xk ,Bk , Ck ,Dk ,Mk ) (17)

min
V
Lμk (U k+1 ,V ,xk ,Bk , Ck ,Dk ,Mk ) (18)

min
x
Lμk (U k+1 ,V k+1 ,x,Bk , Ck ,Dk ,Mk ) (19)

s.t. PΩ(x) = PΩ(y).

min
B
Lμk (U k+1 ,V k+1 ,xk+1 ,B, Ck ,Dk ,Mk ) (20)

min
C
Lμk (U k+1 ,V k+1 ,xk+1 ,Bk+1 , C,Dk ,Mk ) (21)
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Dk+1
r = Dk

r + μk (RQrU
k+1 −Bk+1

r )

∀r ∈ {1, . . . , R̂}. (22)

M k+1
r = M k

r + μk (RQrV
k+1 −Ck+1

r )

∀r ∈ {1, . . . , R̂}. (23)

1) Update U and V
To update the variable U , the optimization problem (17) is

written as follows:

min
U

β

2

∥∥∥Hxk −U
(
V k

)T
∥∥∥

2

F

+
μk

2

R̂∑

r=1

∥∥RQrU −Bk
r + (μk )−1Dk

r

∥∥2
F
. (24)

Since (24) is a least square problem, its solution is obtained by
solving a system of linear equations as follows

μk
R̂∑

r=1

Q∗rR∗RQrU + βU(V k )T conj(V k )

=
R̂∑

r=1

μkQ∗rR∗
(
Bk

r −Dk
r /μk

)
+ β

(Hxk
)
conj(V k ),

(25)

where conj(·) denotes the conjugate of a matrix.
Similar to the case of U , we can update V by solving the

following equation

min
V

β

2

∥∥Hxk −U k+1V T
∥∥2

F

+
μk

2

R̂∑

r=1

∥∥RQrV −Ck
r + (μk )−1M k

r

∥∥2
F
, (26)

and its solution can be obtained by

μk
R̂∑

r=1

Q∗rR∗RQrV + βV (U k+1)T conj(U k+1)

=
R̂∑

r=1

μkQ∗rR∗
(
Ck

r −M k
r /μk

)
+ β

(Hxk
)T

conj(U k+1).

(27)

The specific closed-form solution of U and V are given in
Appendix.

2) Update x
We update the variable x by solving

min
x

∥∥∥Hx−U k+1(V k+1)T
∥∥∥

2

F
, s.t. PΩ(x) = PΩ(y). (28)

By introducing Lagrangian multiplier d for the constraint
PΩ(x) = PΩ(y), we write the Lagrangian function of (28) as
follows:

F (x,d)=
∥∥∥Hx−U k+1(V k+1)T

∥∥∥
2

F
+ 〈d,PΩ(x)− PΩ(y)〉.

(29)

By setting ∇(x,d)F = 0, we have the Karush-Kuhn-Tucker
(KKT) conditions

(
H∗Hx−H∗

(
U k+1 (

V k+1)T
))
− PΩ(d) = 0.

PΩ(x)− PΩ(y) = 0.

By deriving the KKT conditions simply, one has

xk+1 = PΩ(y) + PΩC

(
W−1

(
H∗

(
U k+1 (

V k+1)T
)))

.

(30)
where ΩC is the complement of Ω, i.e., the set of indices of the
unobserved entries, and W is a constant matrix as introduced
in Section II.

3) Update Br and Cr

To update Br , we solve the following sub-problem,

min
Br

‖Br‖∗ +
〈
Dk

r ,RQrU
k+1 −Br

〉

+
μk

2

∥∥RQrU
k+1 −Br

∥∥2
F

. (31)

Following [48], the closed-form solution of (31) is

Bk+1
r = S1/μk

(RQrU
k+1 + 1/μkDk

r

)
, (32)

where S is the soft singular value thresholding operator [48]
with threshold 1/μk . Similar to update Br , we can update Cr

by

min
Cr

‖Cr‖∗ +
〈
M k

r ,RQrV
k+1 −Cr

〉

+
μk

2

∥∥RQrV
k+1 −Cr

∥∥2
F

, (33)

and its solution is

Ck+1
r = S1/μk

(RQrV
k+1 + 1/μkM k

r

)
(34)

For a fixed nonzero β, the solution to (14) only yields an
approximation to the solution to (11). To obtain a better solu-
tion, we apply a continuation scheme in which we gradually
improve β to +∞. This algorithm can also be accelerated by
adaptively changing μ. An efficient strategy [49], [50] is to in-
crease μk iteratively by μk+1 = ρμk , where ρ ∈ (1, 1.1]. The
overall algorithm is summarized in Algorithm 1.

In real applications, the measurements are usually contam-
inated by Gaussian noise. To recover the signal from noisy
measurements, we propose the following optimization

min
U ,V ,x

R̂∑

r=1

(‖RQrU‖∗ + ‖RQrV ‖∗) +
β

2

∥∥Hx−UV T
∥∥2

F

+
λ

2
‖PΩ(x)− PΩ(y)‖22 . (35)

All the variables except x can be updated as above. We update
the variable x by

min
x

β

2

∥∥∥Hx−U k+1 (
V k+1)T

∥∥∥
2

F
+

λ

2
‖PΩ(x)− PΩ(y)‖22 ,
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Algorithm 1: Algorithm for Hankel Matrix Completion
With Vandermonde Factorization (HVaF).

1: Initialization: U , V , x=PΩ(y), β = 25 , βmax = 230 ,
μ0 = 10−2 , and ρ = 1.05.

2: while β ≤ βmax do
3: Update U , V by solving (25) and (27);
4: Update x by solving (30);
5: For r = 1 to R̂, update Br and Cr by solving (32)

and (34);
6: For r = 1 to R̂, update Dr and M r by solving (22)

and (23);
7: Update μ by μk+1 = ρμk ;
8: If ‖Δx‖=‖xlast−x‖/‖xlast‖>10−7 , xlast ← x,

go to step 3; otherwise, go to step 9;
9: β ← 2β;

10: end while

and thus

xk+1 = (βW + λP∗ΩPΩ)−1

(
β

(
H∗

(
U k+1 (

V k+1)T
))

+ λP∗ΩPΩ(y)
)

. (36)

The variable x is updated by (36) in recovering the realistic
biological NMR spectroscopy data as shown in Section IV-B.

C. Convergence Analysis

In this section, we analyse the convergence of Algorithm 1.
In Theorem 1, we show that the sequences {U k}, {V k}, {xk},
{Bk} and {Ck} generated by Algorithm 1 with fixed β converge.

Theorem 1: The sequences {U k}, {V k}, {xk}, {Bk} and
{Ck} generated by Algorithm 1 with fixed β are all convergent.

Before proving the convergence properties of the algorithm,
we first prove the boundedness of multipliers and some variables
generated by Algorithm 1.

Lemma 1: The sequences {Dk
r } and {M k

r }, r = 1, . . . , R̂,
are bounded, where Dk+1

r = Dk
r + μk (RQrU

k+1 −Bk+1
r )

and M k+1
r = M k

r + μk (RQrV
k+1 −Ck+1

r ).
Proof: The optimality condition of (31) gives

0 ∈ ∂
∥∥Bk+1

r

∥∥
∗ −Dk

r − μk (RQrU
k+1 −Bk+1

r ),

which combined with (22) implies

Dk+1
r ∈ ∂

∥∥Bk+1
r

∥∥
∗ .

According to [48], each element of the subgradient of the nuclear
norm is bounded by 1 in spectral norm. Therefore

∥∥Dk+1
r

∥∥
2 ≤ 1

and hence the sequence {Dk
r } is bounded for all r ∈ {1, . . . , R̂}.

The boundedness of {M k
r } can be proved similarly. �

Lemma 2: The sequences {U k}, {V k}, {xk}, {Bk} and
{Ck} produced by Algorithm 1 with fixed β are all bounded.

Proof: The augmented Lagrangian function satisfies

Lμk (U k+1 ,V k+1 ,xk+1 ,Bk+1 , Ck+1 ,Dk+1 ,Mk )

≤ Lμk (U k ,V k ,xk ,Bk , Ck ,Dk ,Mk )

= Lμk −1 (U k ,V k ,xk ,Bk , Ck ,Dk ,Mk−1)

+
R̂∑

r=1

〈
M k

r −M k−1
r ,RQrV

k −Ck
r

〉

+
μk − μk−1

2

∥∥RQrV
k −Ck

r

∥∥2
F

= Lμk −1 (U k ,V k ,xk ,Bk , Ck ,Dk ,Mk−1)

+
μk + μk−1

2(μk−1)2

R̂∑

r=1

∥∥M k
r −M k−1

r

∥∥2
F
.

Summing it over k gives

Lμk (U k+1 ,V k+1 ,xk+1 ,Bk+1 , Ck+1 ,Dk+1 ,Mk )

≤ Lμ0 (U 1 ,V 1 ,x1 ,B1 , C1 ,D1 ,M0)

+
k∑

j=1

⎛

⎝μj + μj−1

2(μj−1)2

R̂∑

r=1

∥∥M j
r −M j−1

r

∥∥2
F

⎞

⎠

≤ Lμ0 (U 1 ,V 1 ,x1 ,B1 , C1 ,D1 ,M0)

+

⎛

⎝
k∑

j=1

μj + μj−1

2(μj−1)2

⎞

⎠

⎛

⎝ k
max
j=1

R̂∑

r=1

∥∥M j
r −M j−1

r

∥∥2
F

⎞

⎠ .

(37)

Since {M k
r } is bounded, max∞j=1

∑R̂
r=1

∥∥M j
r −M j−1

r

∥∥2
F

is bounded. Furthermore, because of μk+1 = ρμk and ρ ∈
(1, 1.1],

∞∑

j=1

μj + μj−1

2(μj−1)2 =
ρ(ρ + 1)

2μ0(ρ− 1)
<∞.

Hence, {Lμk −1 (U k ,V k ,xk ,Bk , Ck ,Dk ,Mk−1)} is bounded.
Similarly, {Lμk −1 (U k ,V k ,xk ,Bk , Ck ,Dk−1 ,Mk−1)} is also
bounded. We further have that

β

2

∥∥∥Hxk −U k
(
V k

)T
∥∥∥

2

F
+

R̂∑

r=1

(
∥∥Bk

r

∥∥
∗ +

∥∥Ck
r

∥∥
∗)

= Lμk −1 (U k ,V k ,xk ,Bk , Ck ,Dk−1 ,Mk−1)

− 1
μk−1

R̂∑

r=1

(
〈Dk−1

r ,Dk
r −Dk−1

r 〉+ 1
2

∥∥Dk
r −Dk−1

r

∥∥2
F

)

− 1
μk−1

R̂∑

r=1

(
〈M k−1

r ,M k
r−M k−1

r 〉+ 1
2

∥∥M k
r −M k−1

r

∥∥2
F

)
.

Since all terms on the right hand side are bounded, the left hand
side is bounded. Thus, {Bk} and {Ck} are bounded.
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Finally, we have RQrU
k+1 = Bk+1

r + (Dk+1
r −Dk

r )/μk

andRQrV
k+1 = Ck+1

r + (M k+1
r −M k

r )/μk , r = 1, . . . , R̂.
Also, RQr is injective. Therefore, the sequences {U k} and
{V k} are also bounded. According to (30), {xk} is bounded,
too. �

Now we are ready to prove Theorem 1.
Proof of Theorem 1: The updating formula (22) and the op-

timality condition of (24) with respect to Uk+1 imply

R̂∑

r=1

(
μkQ∗rR∗RQrU

k+1 − μkQ∗rR∗Bk
r +Q∗rR∗Dk

r

)

+ βU k+1 (
V k

)T
conj(V k )− β(Rxk )conj(V k )

=μk
R̂∑

r=1

Q∗rR∗
(
RQr (U k+1−U k ) +

1
μk

Dk
r −

1
μk−1 Dk−1

r

)

+ μk
R̂∑

r=1

Q∗rR∗
(
RQrU

k −Bk
r +

1
μk−1 Dk−1

r

)

+ βU k+1 (
V k

)T
conj(V k )− β(Rxk )conj(V k ) = 0.

Since
∑R̂

r=1 Q∗rR∗RQr (U k+1 −U k ) can be denoted by T �
(U k+1 −U k ), where T is a constant matrix (the specific form
of T can be seen in the Appendix) and � denotes Hadamard
product, we have

T � (U k+1 −U k )

=
β

μk

(
(Rxk )conj(V k )−U k+1 (

V k
)T

conj(V k )
)

− 1
μk

R̂∑

r=1

Q∗rR∗((ρ + 1)Dk
r − ρDk−1

r ) :=
Gk

μk
.

By Lemma 2, the sequence {Gk} is bounded, and denote δ its
upper bound. We have ‖Gk‖F ≤ δ for all k. Then, for any m
and any n ≥ m,

‖T � (Un −Um )‖F ≤
∥∥T � (Un −Un−1)

∥∥
F

+
∥∥T � (Un−1 −Un−2)

∥∥
F

+ . . . +
∥∥T � (Um+1 −Um )

∥∥
F

=

∥∥Gn−1
∥∥

F

μn−1 +

∥∥Gn−2
∥∥

F

μn−2 + . . . +
‖Gm‖F

μm

≤ δ

μm

(
1

ρn−m−1 +
1

ρn−m−2 + . . . + 1
)
≤ δρ

μm (ρ− 1)
,

Since δρ
μm (ρ−1) → 0, {T �U k} is a Cauchy sequence. There-

fore, by the fact that T has no zero entry, {U k} is a Cauchy
sequence and hence convergent. Similarly, {V k} is also con-
vergent. With this, since by (30) xk is a continuous function of
U k and V k , the sequence {xk} is convergent.

It remains to show the boundedness of {Bk} and {Ck}.
By (22), we have Bk+1

r = RQrU
k+1 − (Dk+1

r −Dk
r )/μk .

Furthermore, {U k} is convergent, {Dk
r } is bounded, and

limk→∞ μk =∞. Therefore, {Bk
r } is convergent for each

r ∈ {1, . . . , R̂} and then {Bk} is convergent. Similarly, {Ck} is
also convergent. �

D. Computational Complexity

The main running time of the algorithm is dominated by
performing singular value decomposition (SVD) for the sin-
gular value thresholding operator. Consider to recover a sig-
nal x ∈ C2N−1 with the number of estimated exponentials R̂.
The SVD is performed on the Hankel matrix with the size of
0.5N × 0.5N , and thus the total time complexity of SVD in
each iteration is O(R̂N 3).

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
HVaF on synthetic data and realistic biological NMR spec-
troscopy data. For synthetic data, the HVaF is compared with
three state-of-the-art algorithms, ANM [15], EMaC [25], FIHT
[30]. ANM and EMaC are implemented using CVX [51]. For
the realistic NMR data, the HVaF is compared with the state-
of-the-art LRHM method [6]. All the compared methods are
conducted using publicly available codes with default parame-
ters. Here the comparisons with the method in [31] is omitted
because the method in [31] together with EMaC and FIHT still
belongs to the framework of LRHMC where the complex ex-
ponential signal recovery problem is formulated as low rank
Hankel matrix completion.

A. Synthetic Data

We conduct a series of numerical experiments to examine
the phase transition for exact recovery and estimate signal pa-
rameters. Superpositions of undamped and damped complex
sinusoids are used as test signals. We follow the setup in
[26], [30] to generate the test signals. Specifically, the true
signal y = [y1 , . . . , y127 ]T where yk =

∑R
r=1 cr e

i2πfr k and
yk =

∑R
r=1 cr e

(i2πfr −τr )k , k = 1, . . . , 127, for undamped and
damped complex sinusoids, respectively. Each frequency fr

is drawn from the interval [0, 1) uniformly at random, and
each complex amplitude cr is complex coefficients that sat-
isfies the model cr = (1 + 100.5mr )ei2πθr with mr and θr be-
ing uniformly randomly sampled from the interval [0, 1]. The
damping parameters τr follow the model τr = 1/(10 + 30nr ),
where nr are uniformly randomly drawn from the interval [0, 1].
The signal is normalized by dividing the maximum magnitude
of its entries. Then, M entries of the test signals are sam-
pled uniformly at random. For each (R,M ) pair, 100 Monte
Carlo trials are conducted. Each trial is declared successful if
‖x− y‖/ ‖y‖ ≤ 10−3 , where x and y are the true and recon-
structed signals, respectively.

We plot in Figs. 1 and 2 the rate of successful reconstruction
of undamped and damped complex sinusoids, respectively. The
black and white region indicate a 0% and 100% of success-
ful reconstruction, respectively, and a gray region between 0%
and 100%. The top four plots in Fig. 1 present the recovery
phase transitions where no separation of the frequencies is im-
posed, while the bottom four plots present the recovery phase



YING et al.: VANDERMONDE FACTORIZATION OF HANKEL MATRIX FOR COMPLEX EXPONENTIAL SIGNAL RECOVERY—APPLICATION 5527

Fig. 1. Phase transition of successful reconstruction on undamped signals. Top: no restriction on frequencies of test signals; Bottom: wrap-around distances
between frequencies are at least 1.5/(2N − 1). The length of the test signal 2N − 1 is 127.

Fig. 2. Phase transition of successful reconstruction on damped signals. The comparison with ANM is ignored since it is still unknown how to extend ANM to
recover damped signals. The length of the test signal 2N − 1 is 127.

transitions where the wrap-around distances between the ran-
domly drawn frequencies are greater than 1.5/(2N − 1).

Fig. 1 shows the empirical phase transitions of undamped
complex sinusoid recovery for the four compared algorithms.
The phase transition boundary of HVaF is significantly higher
than ANM, EMaC and FITH when no separation is imposed on
frequencies, implying that, for a fixed number of exponentials,
HVaF requires a smaller number of measurements for successful
reconstruction. While the frequencies of test signals are sepa-
rated, the phase transition boundaries of ANM and HVaF are
similar, slightly higher than FIHT and EMaC. Moreover, the
performance of ANM and FIHT degrades severely when the
separation condition is not met, while EMaC and HVaF can
still achieve good performance. Therefore, HVaF and EMaC
are less sensitive to the separation requirement. It is worth men-
tioning that the required separation condition cannot guarantee
to be satisfied in practice when the number of components R is
relatively high.

Fig. 2 illustrates the empirical phase transitions of damped
complex sinusoid recovery for EMaC, FIHT and HVaF. This
type of signals arise in NMR spectroscopy [6]. The compar-
ison with ANM is ignored since it is still unknown how to
extend ANM to recover damped signals. Fig. 2 indicates that
the phase transition of HVaF is much higher than EMaC and
FIHT.

We further evaluate the reconstruction performance in terms
of parameter estimation. In particular, we conduct the parameter
estimation on the signal with small frequency separation, con-
sidering it is still challenging in this case to retrieve true param-
eters through reconstructions. A synthetic experiment is con-
ducted on the signal with 5 peaks, as shown in Fig. 3 and ESPRIT
[52], [53] is used to estimate frequencies and amplitudes of the
reconstructed signals. The simulated signal includes two types
of frequency separations, 0.5/(2N − 1) and 1.5/(2N − 1). The
top and bottom three plots in Fig. 3 present the estimation of
signals recovered from 50 and 25 samples, respectively.
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Fig. 3. Parameter estimation of undamped signal recovery. (a), (b) and (c) are the estimation of recovery from 50 measurements, and (d), (e) and (f) are the
estimation of recovery from 25 measurements. The synthetic data is undamped complex exponential signal with 127 entries and 5 peaks. The frequencies of
peaks are 0.2 − 0.5/127, 0.2, 0.2 + 0.5/127, 0.25, 0.25 + 1.5/127, implying that the frequency separation of the three peaks in the left side and the two
peaks in the right side are 0.5/(2N − 1) and 1.5/(2N − 1), respectively. In addition, one peak is not drawn in (d) since its estimated frequency retrieved from
ANM reconstruction is beyond the scale of horizontal axis. Besides, estimation results for FIHT are omitted since the algorithm is not convergent in this specific
experiment. Here ρ in HVaF is 1.01.

Figs. 3(a) and (d) show that the amplitudes of the three peaks
on the left side, where the frequency separation is 0.5/(2N − 1),
are estimated much worse than these of the two peaks on the
right side, where the frequency separation is 1.5/(2N − 1). It
is observed that the true parameters with small frequency sep-
aration are not retrieved from ANM reconstruction. Figs. 3(b)
and (e) show that the parameters with small frequency separa-
tion can be estimated accurately through EMaC reconstruction
from 50 measurements, while estimation error increases when
the number of measurements decreases to 25, implying that a
relatively high sampling rate is necessary for EMaC to retrieve
true parameters. It is observed from Fig. 3(c) and (f) that HVaF
presents accurate parameter estimations in the case of small
frequency separation and low sampling rate.

We further conduct 100 Monte Carlo trials of parame-
ter estimation for the synthetic signal in Fig. 3 and each
trial is declared successful if

√∑ R
r=1 (f̂r −fr )2

/
√∑ R

r=1 f 2
r ≤ 10−3

and
√∑ R

r = 1 (|ĉr |−|cr |)2 /
√∑ R

r = 1 |cr |2≤10−3 are simultaneously sat-
isfied, where f̂ and ĉr are the estimated frequency and amplitude
of the true fr and cr . Fig. 4 shows that HVaF achieves higher
success rate of parameter estimation than ANM and FIHT when
frequency separation is small. Compared with EMaC, HVaF
requires less measurements to obtain successful parameter esti-
mation.

Fig. 5 evaluates the effect of preset number of exponentials R̂
on reconstruction. It is observed that HVaF can always achieve
high success rate as R̂ increases from 20 to 64, while the exact
number of exponentials is 20. This observation indicates that

Fig. 4. Success rate of parameter estimation of undamped signal recovery.
The success rate is calculated over 100 Monte Carlo trials.

Fig. 5. The success rate of reconstructions versus estimated rank of HVaF.
The exact number of exponentials R is 20 and the number of measurements M
is 80.
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TABLE I
COMPARISONS OF EMPIRICAL COMPUTATIONAL TIME (SEC)

Note: The synthetic undamped signal consists of 10 peaks. The length of the signal is
127 and the number of measurements is 64. The computational time is computed by
averaging 100 Monte Carlo trials. The numerical experiments are conducted on a Dell
PC running Windows 10 operating system with Intel Core i5 4570 CPU and 8-GB RAM.

HVaF may have great potential to reconstruct a signal even in
the case that a much larger R̂ than R is given. Thus, flexible
setting of R̂ is possible for the proposed HVaF.

Table I shows the average computational time of each method.
We can see the large estimated rank R̂ in HVaF will result
in the long computational time. Therefore, R̂ should not be
overrated too much considering the computational cost, though
the reconstruction results will not be degraded.

B. Real NMR Spectroscopy Data

NMR spectroscopy plays an important role in studying struc-
ture, dynamics and interactions of biopolymers in chemistry
and biology. The non-uniform sampling is popular to reduce the
number of measurements [6], [54]–[59] due to the long duration
of spectroscopy experiment.

The time domain signal of NMR is usually modelled as a
superposition of damped complex sinusoids [6], [60]. The ef-
ficiency of LRHM has been verified in NMR spectroscopy
[6], showing advantages in recovering broad peaks over l1
norm minimization on the spectrum [56]–[59]. However, LRHM
needs a relatively high sampling rate, for example 35% for the
following NMR spectrum [6], to obtain a reliable reconstruction.
In this section, we will compare HVaF with LRHM in recov-
ering realistic biological NMR spectroscopy data with a lower
sampling rate. The comparisons with ANM and FIHT are ig-
nored, since ANM is not available in recovering damped signals
and the number of exponentials in realistic NMR spectroscopy
cannot be exactly estimated for FIHT.

Here we apply HVaF to recover a 1H−15N spectrum from
Poisson-gap [54] non-uniformly sampled time-domain data.
The data compose a matrix X with the size 255× 116, where
columns and rows indicate 15N and 1H dimensions, respectively.
According to the principle of NMR experiments, each column
of the spectrum is non-uniformly sampled and can be recon-
structed individually. The spectrum is normalized by dividing
the maximum magnitude of its entries as pre-processing.

Fig. 6 shows the reconstructed spectra using a 22% sampling
rate, indicating that HVaF leads to a more faithful recovery of
the full sampled spectra than LRHM. As marked by the arrows
in Fig. 6, some peaks are underestimated severely in LRHM
reconstruction but not in HVaF. Here we compute the Relative
Least Normalized Error (RLNE) by

‖X − Y ‖F /‖Y ‖F , (38)

where X is the reconstructed 2D spectrum and Y is the fully
sampled 2D spectrum with noise. The reconstruction errors by
HVaF and LRHM are 0.1036 and 0.1127, respectively. But note

Fig. 6. The NMR spectra recovery under 22% non-uniform sampling. (a)
Fully sampled spectrum; (b) and (c) are the reconstructed spectra by LRHM
and HVaF, respectively. The ppm denotes parts per million by frequency, the
unit of chemical shift.

Fig. 7. One column of the reconstructed spectra by LRHM and HVaF. The
column spectrum is along the dimension of 15 N and are located at 8.35 ppm of
the dimension of 1 H. Note: The 1D spectrum are shifted for better visualization.

Fig. 8. Peak intensities correlation between the full sampled spectrum and the
reconstructed spectrum. (a) and (b) are correlation evaluation for LRHM and
HVaF, respectively. Note that the notation R2 denotes Pearsons linear correlation
coefficient of fitted curve. The closer the value of R2 gets to 1, the stronger the
correlation between the full sampled spectrum and the reconstructed spectrum
is. Here, 83 peaks are extracted and their intensities, obtained by finding the
local maximum within a spectrum region (three by three points), are adopted
in correlation analysis. Spectrum intensities that are smaller than the noise
level, 0.05 in this case, are treated as noise and will not be plotted or used for
correlation analysis.

that the reconstruction errors here are not very conclusive, since
the fully sampled spectrum is noisy. Therefore we further present
qualitative results and peak corrections. Fig. 7 illustrates one
column of the reconstructed spectra. It is observed that HVaF
achieves a reliable reconstruction while LRHM weakens the
marked peak and introduces some artifact peaks. Fig. 8 fur-
ther presents that the HVaF achieve higher accuracy of peak
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Fig. 9. RLNE versus parameters (a) λ, (b) β and μ0 under different noise levels. In (a), β and μ0 are 32 and 0.05, respectively; In (b), the λ is set as 200, 500
and 1000 under noise levels 10 dB, 15 dB and 20 dB, respectively. μ0 is 0.05; In (c), the setting of λ is the same with that in (b) and β is 32.

intensities. This observation is consistent with Fig. 2 show-
ing that a higher success rate is obtained with the proposed
approach under the same number of measurements. The advan-
tage of HVaF over LRHM implies a more significant reduction
in measurement time and thus HVaF will be valuable for the
biological NMR applications.

V. DISCUSSIONS

A. Parameter Setting in the Model and Algorithm

The proposed method includes the parameter λ in the math-
ematical model as well as β and μ0 in the numerical algorithm.
Fig. 9 shows the impact of λ, β and μ0 on the reconstruction
error, respectively. The synthetic signal in these experiments
consists of 5 complex exponentials and the number of observed
entries is 64. The measurements are corrupted by the noise

e = σ · ‖PΩ(y)‖ · w

‖w‖ , (39)

where ‖ · ‖ is �2-norm, y is the true signal, the entries of w are
i.i.d. standard Gaussian random variables and σ is referred to as
the noise level. The σ is set as 10−0.5 , 10−0.75 and 10−1 in ex-
periments, and the corresponding signal-to-noise ratios (SNR),
is 10 dB, 15 dB and 20 dB, where SNR is computed by

SNR = −10 log10
‖e‖2

‖PΩ(y)‖2 . (40)

Fig. 9(a) indicates that the available range, leading to the re-
construction error RLNE ≤ 0.1, turns narrowed when the noise
level increases. The optimal λ, which produces the lowest recon-
struction error, generally decreases as the noise level increases.
For example, as shown in Fig. 9(a), the optimal λ is 200, 500 and
1000 for noise levels of 10 dB, 15 dB and 20 dB, respectively.
This means that a smaller λ should be set for a higher noise
level. From Figs. 9(b) and 9(c), we can see the reconstruction
error is steady over a large range of choice of β and μ0 under
different noise levels.

B. Parameter Estimation of Damped Signal Recovery

Experiments on parameter estimation of damped signal re-
covery are conducted here.

It is observed that all of the compared methods, EMaC, FIHT
and HVaF, achieve accurate parameter estimation if sufficient
number of samples, 60 samples in the simulation, are available.
However, the performance of EMaC degrades severely when
the number of samples is reduced to 30 as shown in Table II,
while HVaF still obtains good performance. This observation
implies that HVaF requires fewer samples to achieve accurate
estimation than EMaC.

C. Frequency Identifiability

The results shown in Fig. 1 imply that the proposed method
achieved a better signal reconstruction performance when fre-
quencies were closer. A possible reason is that HVaF favors
deciding that there is a single one frequency component in
the case that two frequencies are extremely close with each
other.

This guess is further confirmed by the results shown in
Table III, indicating that the method is not able to distinguish fre-
quency components that are close together in the missing data re-
covery. Table III shows an experiment on two-component signal
reconstruction. Here we consider two cases of frequency sepa-
rations between the two frequency components, 0.01/(2N − 1)
and 1.5/(2N − 1). It is observed that, to obtain low reconstruc-
tion error (RLNE≤ 10−3), the signal with frequency separation
0.01/(2N − 1) requires less measurements than the signal with
separation 1.5/(2N − 1). Spectral parameter estimation on the
reconstructed signal shows that, the original two close peaks
are synthesized together since the magnitude of one spectral
peak has been reduced from 0.66 to 1.4× 10−4 . This observa-
tion implies that the rank of the Hankel matrix in the iterative
reconstruction may be reduced to 1. Thus, a small number of
measurements is possible in the reconstruction.

However, our method is intended to reconstruct the missing
data rather than estimate spectral parameters, and thus aims to
obtain a low signal reconstruction error. In summary, the pro-
posed HVaF has shown much better missing data reconstruction
performance than the compared methods. The HVaF still has
limitation on preserving very close frequencies in the case of
missing data, which is always very challenging and will be a
valuable future work.
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TABLE II
PARAMETER ESTIMATION COMPARISONS OF DAMPED SIGNAL RECOVERY

Note: The synthetic signal with 5 peaks is generated by yk =
∑ 5

r=1 cr e( i 2 π f r −τ r )k , k = 1, . . . , 127, where cr ,
fr and τr denote the complex amplitude, frequency and damping factor of the r th peak, respectively. The number of
samples is 30. ESPRIT [52], [53] is used to estimate the parameters of the reconstructed signals. The results of FIHT are
omitted since FIHT is not convergent in this case.

TABLE III
PARAMETER ESTIMATION UNDER DIFFERENT FREQUENCY SEPARATIONS

Note: The synthetic signal with 2 peaks is generated by yk =
∑ 2

r=1 cr e2 π i f r k , k = 1, . . . , 127, where cr and fr denote the complex amplitude, and frequency
of the r th peak, respectively. ESPRIT [52], [53] is used to estimate the parameters of the reconstructed signals.

VI. CONCLUSIONS

A new approach, HVaF, is proposed to reconstruct the expo-
nential signal by exploiting the Vandermonde factorization of
the Hankel matrix formed by the signal. To implement HVaF,
a numerical algorithm was developed and the sequence con-
vergence were analysed. Experiments on synthetic data demon-
strated that HVaF achieves higher empirical phase transition
than nuclear-norm based minimization and fast iterative hard
thresholding algorithm. Another advantage over state-of-the-art
atomic norm minimization and fast iterative hard thresholding
algorithm was empirically observed that HVaF can reconstruct
signals with small frequency separation. The proposed method
was further verified on reconstruction of fast sampled NMR
spectroscopy, implying that HVaF may serve as an effective
method for fast sampling of NMR spectroscopy in chemistry
and biology.

For future work, it is of great interest to develop more efficient
numerical methods to solve HVaF when the datasets are huge.
In addition, we can also introduce rank minimization [61], trun-
cated nuclear norm [62], or weighted nuclear norm [63] which
may achieve extra improvements in reconstruction, e.g., bet-
ter recovery of low intensity spectral peaks, since the low rank
property can be better approximated than the commonly used
nuclear norm.

APPENDIX

A. The Closed-Form Solutions of U and V

The closed-form solution of U can be obtained by solving
(25). According to definitions of the operators R and R∗, we
obtainR∗Rx = w � x, where w is a vector and its k-th element
wk is the number of elements in k-th anti-diagonal of the Hankel

matrix Rx. Here � denotes Hadamard product. In addition,
according to definitions ofQ andQ∗r , we have [Q∗rQrX](:,k) ={

X(:,r)
0

k = r,
k �= r.

Hence, for X ∈ CN×N , by combination we

get

R̂∑

r=1

Q∗rR∗RQrX = T �X,

where T is a constant matrix and each column of T is w.
Therefore, we rewrite (25) as

μkT �U + βU(V k )T conj(V k ) = Y .

where the right term of (25) is denoted by Y . Obviously, we
can obtain the closed-form solution of each row of U by

μkU (r,:)T r + βU (r,:)(V k )T conj(V k ) = Y (r,:) ,

and its solution is

U (r,:) = Y (r,:)(μkT r + β(V k )T conj(V k ))−1 .

where T r is a diagonal matrix and its main diagonal is T (r,:) .
Therefore we can update U by updating each row and it is

similar to update V .
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