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Abstract—The problem of decomposing a signal into compo-
nents of different structures arises in many applications of signal
processing and machine learning. In this paper, we study such a
signal demixing problem for airborne radar systems, where the
received signal consists of contributions from targets, jammers,
and clutter. We promote the structures of the target and jammer
components by designing two atomic norms, while we model
the clutter signal as lying in a known subspace. This allows the
formulation of a convex optimization that is able to separate these
components, enabling the localization of targets and jammers
as well as the supression of the clutter. Simulations show the
superior performance of our approach compared to the classical
space-time adaptive processing (STAP) technique.

I. INTRODUCTION

A. Airborne radar systems

Airborne radar systems are widely used in hazardous
weather detection, navigation aids, ground mapping and sea
searching [1], [2]. Its motion flexibility and capability of wide
range imaging provide enormous benefits in these applications.
This work focuses on systems with a pulse Doppler radar
mounted on an airborne platform. The pulse Doppler radar
utilizes the Doppler effect to determine the targets’ velocities
and the pulse delay ranging to measure the targets’ distances
[3]. The radar antenna is usually a linear array with uniform
spacing. During detection, the transmitter antenna sends out
pulses at a constant pulse repetition frequency (PRF) and the
returned data is collected over a coherent processing interval
(CPI). Within each pulse repetition interval (PRI), the receiver
samples the received data and a digital processor performs
signal processing to analyze the signal.

A target contributes to the received signal a componenet
that depends on the target’s azimuth, elevation and velocity
relative to the airborne platform and can be located by its
spatial and Doppler frequency. Besides the possible target
signal, several interferences, particularly those from clutter,
jammers, and noise, can be captured by the antenna [4].
The clutter signals are mainly caused by the earth surface
and may vary due to the specific surveillance environment.
Since the ground clutter covers all searching azimuths and
elevations, its pattern may spread over all the spatial and
Doppler frequencies [2]. For a stationary radar platform, the
clutter pattern is an edge occupying all spatial frequencies but
zero Doppler frequency, while for a moving radar platform,
the aircraft motion induces a linear relationship between the
Doppler frequency and the spatial frequency when the array
aligns with platform velocity. The barrage jamming is a tactical
artificial signal which distributes over all Doppler frequencies
with a fixed spatial frequency at a long range [2].

Space time adaptive processing (STAP), first proposed by
Brennan et al. [5], [6], is a well-known adaptive filtering
technique to demix the above signals. Based on the estimated
interference covariance matrices, STAP attempts to provide
high gain on the target spatial and Doppler frequencies while
nulling the interferences. Fully adaptive STAP weights all
elements and pulses adaptively but suffers from high com-
putational complexity. Alternatively, partially adaptive STAP
[7] is proposed to weight adaptively in a smaller manageable
space. However, besides the computational complexity, there
are other limitations of STAP. First, it is very challenging for
STAP to detect targets whose spatial and Doppler frequencies
overlap with those for jammers and the clutter. Second, esti-
mating the interference covariance matrices requires multiple-
snapshot training data, and the estimation error caused by
the sample support issue may lead to extremely small signal-
to-interference-plus-noise ratio (SINR) [2]. By leveraging the
knowledge of the signal structures, we propose an atomic norm
minimization based approach that is able to demix the target,
jamming, and clutter signals accurately and stably with single
snapshot observations.

B. Atomic norm minimization

Similar to `1 norm minimization, which promotes sparse
models in signal recovery problems, atomic norm minimiza-
tion promotes sparsity with respect to a dictionary, whose
elements (also known as atoms) are potentially indexed by a
continuous variable [8]. The flexibility in choosing dictionaries
allows the atomic norm minimization framework to model
and solve inverse problems involving different signal struc-
tures, usually in a statistically optimal way. For example, in
line spectral estimation, atomic norm minimization achieves
optimal sampling complexity up to logarithmic factors for
linear signal recovery [9], [10], has near minimax denoising
rate for noisy signal estimation [11], [12], produces frequency
estimators whose errors approach the Cramér-Rao lower bound
[13], and is able to correct the maximal number of outliers
[14], [15]. Moreover, it is also applied to super-resolution
problems [16], [17], [18], tensor inverse problems [19] and
modal analysis problems [20]. Since the received composite
signal consists of signals with known structures, atomic norm
minimization can also be applied naturally to the airborne
radar demixing problem with dictionaries consisting of target,
clutter and jamming atoms.

The paper is organized as follows. In Section II, we present
the signal model, formulate the atomic norm optimization
problem, and develop its dual problem. In Section III, we



reformulate the atomic norm minimization problem approxi-
mately as a semidefinite program (SDP) that can be solved
in polynomial time. Preliminary numerical simulations to
compare the performances of our approach and the STAP
method are presented in Section IV. Finally, we conclude in
Section V.

II. PROBLEM FORMULATION

The data collected by a pulse Doppler radar with an antenna
array in a CPI can be preprocessed and arranged into a radar
datacube, whose three axes are indexed respectively by the
range sample, the pulse number, and the antenna element.
Target bearing and velocity estimation within a range bin
requires applying signal processing techniques to a space-
time slice of the radar datacube with a fixed range gate.
The space-time snapshot from a CPI datacube is a matrix
whose (i, j)th entry corresponds to the data received by the
ith antenna element in the jth PRI [21]. So the column and
row contain spatial and temporal variations respectively. Let
N be the number of elements in the antenna array and M
be the number of pulses within each CPI. We vectorize the
space-time snapshot into a MN × 1 vector and model it as,

y = xT + xJ + xC, (II.1)

where xT, xJ, xC represent respectively contributions from
targets, jammers, and clutter.

By setting the first array element as the reference, we can
define the (normalized) spatial and temporal steering vectors
of the phase array respectively as [2], [21]:

aN (f) ,
1√
N

[
1, ej2πf , · · · , ej2πf(N−1)

]>
aM (f) ,

1√
M

[
1, ej2πf , · · · , ej2πf(M−1)

]>
,

where f is the spatial or normalized Doppler frequency of the
detected object. Spatial frequency is determined by the object’s
elevation and azimuth angles and the Doppler frequency is
determined by the object’s velocity relative to the airborne
radar. Throughout the paper, we use the subscripts “>”, “∗”
and “H” to denote “transpose”, “conjugate” and “conjugate
transpose”, respectively.

For a moving target with a specific angle of arrival and
velocity with respect to the airborne radar, the received tar-
get signal is correlated both spatially and temporally [21].
More precisely, the array response for a single target is the
Kronecker product of its spatial and Doppler steering vectors
up to a magnitude scaling. A jammer is spatially correlated
but temporally uncorrelated from the radar point of view [2],
contributing to the observation the Kronecker product of its
temporal samples and the spatial steering vector. In addition,
for a well aligned system, the clutter from all angles lies on
a linear ridge in the angle-Dopper plane and can be modelled
using a subspace, whose dimension P can be determined
using Brennan’s rule [22]. We assume this subspace is known
since it is determined by the platform motion parameters.
Let B ∈ CMN×P be a matrix whose columns form an

orthonormal basis for the clutter subspace, and let z ∈ CP×1
be the coefficient vector for the clutter signal component. In
sum, with K targets and L jammers, the target, jamming and
clutter signal components are given respectively as

xT =
K∑
k=1

ckaM (fTD

k )⊗ aN (fTS

k ),

xJ =
L∑
l=1

dlhl ⊗ aN (fJS

l ), and xC = Bz,

where ck, dl are complex scalar coefficients. Note that we
have used “T”, “J”, “C”, “D” and “S” to denote “Target”,
“Jamming”, “Clutter”, “Doppler” and “Spatial”, respectively.
For example, under this notation, fTD

k ∈ [0, 1) represents the
normalized Doppler frequency for the kth target. The vector
hl ∈ CM , scaled to have unit `2 norm, represents temporal
samples of the lth jammer.

Our goal in this work is to separate the target component
xT, the jamming signal xJ and the clutter contribution xC

from the received signal y as shown in (II.1), from which
we can further extract the target Doppler frequencies {fTD

k }
and spatial frequencies {fTS

k }, the jamming spatial frequencies
{fJS

l }, as well as the clutter coefficient vector z.
To exploit the target and jamming signals’ structures, we

define two atomic sets as follows:

AT ,
{
aM (fTD)⊗ aN (fTS) : fTD ∈ [0, 1), fTS ∈ [0, 1)

}
,

AJ ,
{
h⊗ aN (fJS) : fJS ∈ [0, 1), ‖h‖2 = 1

}
.

Then, the corresponding atomic norms are defined as [8]

‖xT‖AT
, inf

{∑
k

|ck| : xT =
∑
k

ckaM (fTD

k )⊗ aN (fTS

k )

}
,

‖xJ‖AJ
, inf

{∑
l

|dl| : xJ =
∑
l

dlhl ⊗ aN (fJS

l )

}
.

Note that both the target signal xT and jamming xJ are
linear combinations of a few atoms from the atomic sets AT

and AJ. Therefore, we employ the following atomic norm
minimization program to separate different signal components
from y (and recover the frequencies):

minimize
xT,xJ,z

‖xT‖AT
+ λ‖xJ‖AJ

subject to y = xT + xJ +Bz.
(II.2)

This formulation can be easily adapted to accommodate noise.
Define the real inner product as 〈q,y〉R , Re(〈q,y〉) =
Re(yHq). The dual atomic norms are defined as

‖q‖∗AT
, sup
‖x‖AT

≤1
〈q,x〉R

= sup
fTD ,fTS∈[0,1)

∣∣〈q,aM (fTD)⊗ aN (fTS)〉
∣∣ ,

‖q‖∗AJ
, sup
‖x‖AJ

≤1
〈q,x〉R

= sup
fJS∈[0,1)

∥∥(IM ⊗ aHN (fJS))q
∥∥
2
,



where IM is the identity matrix of size M ×M . Then, the
dual problem of (II.2) is given as

maximize
q

〈q,y〉R

subject to ‖q‖∗AT
≤ 1, ‖q‖∗AJ

≤ λ, BHq = 0.
(II.3)

III. SDP FORMULATION

In this section, we present an SDP approximation for the
atomic norm minimization program in (II.2). Define

XJ =
L∑
l=1

dlaN (fJS

l )h>l

as the reorganization of xJ into a matrix of size N × M
such that xJ = vec(XJ). Denote the atomic set for multiple-
measurement line spectral signals as [23]

ÃJ ,
{
aN (fJS)hH : fJS ∈ [0, 1), ‖h‖2 = 1

}
.

It follows that

‖xJ‖AJ
= ‖XJ‖ÃJ

,

implying that ‖xJ‖AJ
has an exact SDP representation [23]

‖xJ‖AJ
= inf

u∈CN

W∈CM×M

{
1

2
tr(Toep(u)) +

1

2
tr(W) :

[
Toep(u) XJ

XH
J W

]
� 0,xJ = vec(XJ)

}
,

where Toep(u) is a Toeplitz matrix with u being the first
column. We used tr(·) to denote the trace of a square matrix.

For ‖xT‖AT
, the authors of [24, Proposition 1] derived the

following SDP that produces a lower bound:

minimize
T∈C(8M+1)×(8M+1)

t∈R

{
1

2
tr(bkToep(T)) +

1

2
t :

[
bkToep(T) xT

xHT t

]
� 0

}
,

where bkToep(T) ∈ CMN×MN is a block Toeplitz matrix
generated by T. The SDP representation is exact if the optimal
bkToep(T) has a Vandermonde decomposition.

As a consequence, we can approximately solve the atomic
norm minimization program in (II.2) via the following SDP

minimize
xT,xJ,z
T,t,u,W

1

2
tr(bkToep(T)) +

1

2
t+

λ

2
tr(Toep(u)) +

λ

2
tr(W)

subject to

[
bkToep(T) xT

xHT t

]
� 0,

[
Toep(u) XJ

XH
J W

]
� 0,

y = xT + xJ +Bz.

IV. SIMULATIONS

In this section, we apply the atomic norm minimization
approach to target estimation for an airborne radar system
described in the previous sections and compare it with the
classsical STAP algorithm.

A. Experimental setup

The antenna array contains 8 uniform elements with half-
wavelength spacing. There are 8 RPI within each CPI so the
received signal y for a fixed range gate can be represented
by a 64× 1 vector. The received signal contains contributions
from targets, jammers, the clutter as well as noise.

The spatial frequency of half-wavelength spacing array
ranges from −0.5 to 0.5. Without loss of generality, we shift
the fTS range to [0, 1) to make it consistent with our model in
Section II, and similarly for the normalized Doppler frequency.
We set the radar antenna array to be aligned with the airborne
velocity and the ratio of the platform speed times PRI over
array elements spacing to 1

2 . In this case, the clutter appears
as a straight diagonal ridge from bottom left to top right on
the angle-Dopper plane [2] as shown in Fig. 1. In order to
demonstrate the influence of clutter and jamming on target
detection, some of target locations on the angle-Dopper plane
overlap with the interferences. To be specific, our targets are
located at (0.2, 0.8), (0.4, 0.1), (0.5, 0.5), (0.2, 0.2), (0.7, 0.4),
(0.7, 0.7), (0.9, 0.5), (0.7, 0.1), (0.9, 0.9), (0.4, 0.8) where the
first coordinates are the spatial frequencies and the second
are the normalized Doppler frequencies as shown in Fig. 2.
The jamming spatial frequencies fJS = {0.4, 0.7}. So all
targets with 0.4 and 0.7 spatial frequencies are interfered by
the jammer and all the targets on the diagonal line from bottom
left to top right are interfered by the clutter as shown in Fig. 3.
In addition, complex white noise with zero mean and standard
deviation 0.1 is also added.

Since this is a synthetic experiment and the ground-truth
frequency parameters of targets, clutter and jamming are
known, we can bypass the interference covariance estimation
step and compute it precisely. Therefore, the optimal fully
adaptive STAP is applied here [2]. However, it should be
noted that our atomic approach does not require knowledge of
interference frequencies as discussed in the previous sections.
The atomic norm minimization is implemented by solving its
SDP approximation using CVX [25], [26], an off-the-shelf
toolbox for solving convex optimizations.

B. Results and analysis

Ths STAP result is shown in Fig. 3 while the atomic norm
minimization demixing results for jamming and targets are
shown in Fig. 4 and Fig. 5, respectively. To better illustrate
the demixing performance, ground truth target parameters are
highlighted by red stars in all figures.

In Fig. 1, it can be seen that targets are buried in the
interference. To better examine the target signal magnitudes,
we show the ground truth spectral density in Fig. 2, from
which one can identify the locations of targets. As a variant
of matched filtering, STAP suppresses both the clutter and
jamming while enhancing the gain on the targets’ locations. In
Fig. 3, it can be seen that STAP recovers some of the targets
clearly. However, if the targets are interfered with jamming
or clutter, STAP can no longer recover them, which may
lead to severely low detection rate as demonstrated in our
experiment. Atomic norm minimization results are much more



promising. The jamming spatial frequencies are estimated
almost perfectly as shown in Fig. 4. Moreover, the targets
interfered by jamming are recovered successfully as shown in
Fig. 5, but we can not recover targets buried in the clutter
since they have the same structure.

We summarize our major empirical findings from all numer-
ical simulations we performed without presenting many of the
details of the experimental results due to space limitation. We
investigated four different experimental scenarios: (1) targets
have frequencies overlapped with both jamming and clutter, as
shown in Fig. 1, (2) targets have frequencies only overlapped
with jamming, (3) targets have frequencies only overlapped
with the clutter, and (4) all the frequencies in targets are
well separated from those in jamming and clutter. In all
of the above cases, the jamming and clutter signals overlap
with each other on the angle-Dopper plane. As a result, the
energy of the jamming signals will transfer to the clutter since
this will reduce the atomic norm of the jamming component
(note the clutter signal is modeled using a subspace and
is not penalized in any way). Therefore, we should expect
to identify the jamming frequencies accurately but not their
magnitude coefficients. In case (2), similarly, we can recover
the overlapped targets and jamming frequencies as shown
in Fig. 4 and Fig. 5 but not their magnitude coefficients
via atomic norm minimization. In case (3), since the clutter
signal can also be written as a linear combination of target
atoms, with special relations between the spatial and Doppler
frequencies, the targets overlapping with the clutter can not
be detected. The amount of energy transferred between target
and jamming depends on the regularization parameter λ and
in our experiment, the parameter in front of ‖xT‖AT

is eight
while it is two for ‖xJ‖AJ

. Finally, atomic norm minimization
can achieve perfect target recovery in case (4).

Fortunately, by recovering the target and jamming frequen-
cies, we can estimate the targets and suppress the jamming and
clutter signals as shown in Fig. 5 which is the most important
goal for an airborne radar system. Furthermore, the targets
overlapping with jamming signals can also be recovered via
atomic norm minimization which leads to a higher detection
rate and makes it more robust in strong jamming environments
compared to STAP.

V. CONCLUSION

We proposed an atomic norm minimization approach to
solve the airborne radar system demixing problem. We defined
two atomic norms that are able to exploit target and jammer
signal structures, and modeled the clutter as living in a known
subspace. This allowed the formulation of demixing as a
convex atomic norm regularization problem. We derived an
SDP to approximately solve the atomic norm minimization.
Compared to the fully adaptive STAP, our approach can
recover the targets that overlapped with jamming, which leads
to a higher detection rate without the need to estimate the
inference covariance matrix. Numerical simulation shows that
our approach outperforms STAP in several aspects. We leave
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Fig. 1. The spectrum of the composite received signal y which consists of
target, clutter, jamming and noise contributions. Both the target and clutter
signal coefficients are generated from complex standard normal distributions.
The jamming signal coefficients are generated by a real standard uniform
distribution random variable on the open interval (0, 5).
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Fig. 2. The spectrum of the targets-only signal (the ground truth) seen by
the airborne radar. Targets have varied signal amplitudes since the types of
targets may influence the echo signal strength in reality.

the development of theoretical performance guarantees for the
proposed approach to the future work.
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