Journal of the European Ceramic Society 39 (2019) 3513-3525

Contents lists available at ScienceDirect

Journal of the
European Ceramic Society

Journal of the European Ceramic Society

journal homepage: www.elsevier.com/locate/jeurceramsoc

Original Article

Ceramic materials and energy—Extended Coble’s model and fractal nature = M)

Check for
updates

Vojislav Mitic™”*, Goran Lazovic®, Vesna Paunovic®, Jih Ru Hwu“, Shwu-Chen Tsay",
Tsong-Ping Perng®, Sandra Veljkovic?, Branislav Vlahovic'

A University of NiS, Faculty of Electronic Engineering, Serbia

Y Institute of Technical Sciences of SASA, Belgrade, Serbia

¢ University of Belgrade, Faculty of Mechanical Engineering, Serbia

d Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300, Taiwan
€ Materials Science & Engineering Department, National Tsing Hua University, Hsinchu, 300, Taiwan

f North Carolina Central University, USA

ARTICLE INFO ABSTRACT

Keywords: The new frontiers open different directions within the higher and deeper knowledge structure using unemployed
Grains nano sizes domains. The BaTiO3 and other ceramic materials have fractal configuration nature based on three
Pores phenomena. First, ceramic grains have fractal shape looking as a contour in cross section or as a surface. Second,
Céramics . there is the so-called “negative space” made of pores and intergranular space. Third, there is fractal Brownian
EM;:;;;?]PMHY motion (fBm) within the material, during and after sintering, in the form of microparticle flow: ions, atoms, and
Energy electrons. Here, we took upon ourselves the task of extending Coble’s model, with already generalized Euclidean

geometries, by fractal nature correction. These triple factors make the very peculiar microelectronic environ-
ment electro-static/dynamic combination. The stress is here set on inter-granular micro-capacity in function of
higher energy harvesting and storage. Constructive fractal theory allows identifying micro-capacitors with
fractal electrodes. The method is based on the iterative process of interpolation which is compatible with the
grain model itself. Inter-granular permeability is taken as the fundamental thermodynamic parameter function of

temperature and enthalpy (Gibbs free energy), which are very important for a structure-energy relation.

1. Introduction

Ferroelectric materials, like BaTiO3 ceramic, have wide application
in various electronic devices such as: transducers, actuators, multilayer
capacitors, piezoelectric sensors, and memory. In the doped BaTiO3
ceramic, the influence of a certain dopant ion on electrical and di-
electric properties depends on the nature of the compensation me-
chanism and location substitution in the perovskite structure. The un-
doped and the doped ceramic barium titanate has attracted
considerable attention due to the possibilities of processing and design.

The main idea of this paper is to establish relations between the
corrected and extended Coble’s model of sintering and fractal nature
material analysis, on one hand, and the ceramic materials and energy,
on the other hand. So, we carefully develop the idea of the extended
Coble’s model. First, it is modelled on Euclidean geometry and, after-
wards, a fractal nature analysis on this corrected model is conducted.
All this is finalized with the fractal correction of temperature in the
Gibbs free energy thermodynamic function, which is basically very
important for new frontiers from the energy aspect in the ceramic

material science.
1.1. The Euclidean geometry approach

We have developed numerous methods for microstructure model-
ling grain geometry, grain boundary surface and contacts, which is
essential for the optimization of electric and other properties. Most of
these methods are based either on calculating contact surfaces in the
prescribed volume of the ceramic sample or on defining shape model-
ling and contact surfaces by calculating values of the assigned two-grain
model system geometry and the Euclidian geometry characterization.

1.1.1. The limitations of Euclidean geometry

The classic objects of Euclidean geometry are only idealized real-
world abstractions and their use in modelling real phenomena and
objects, which have a much more complex structure, are not always
adequate and do not yield good results. Some of the examples include
cloud formations, swirling water, the polarized light, the arrangement
of stars in galaxies, vegetation, irregular forms of relief, the contours of
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the coastline, alveolar configuration of the lung tissues. In addition to
the morphological sphere, noise in telecommunications, variation in
different plants biomass and animal species or statistical performance of
spoken language are functional sphere examples.

These objects, i.e. phenomena, have the following property in
common: their structure is replicated and we will call such objects
fractals. So, this is about the objects that possess the characteristic of
self-similarity, each part of them is similar to the whole. How to de-
scribe objects with such a complex structure in the finite way? One of
Euclidean geometry axioms states: The whole is greater than the part,
thus Euclidean geometry fails to describe fractals as they are the objects
whose proper part is equal (in some way) to the whole. Due to their
complexity fractal objects cannot be described successfully without
involving complexity.

However, some partial solutions appeared in the 1980s, these at-
tempts were systematized by Benoit Mandelbrot.

1.1.2. Coble’s model

The sintering consolidation is characterized by an extreme com-
plexity due to the simultaneous and successive action of elemental
mechanisms. Their qualitative and quantitative descriptions are very
difficult [1-3]. Grain contacts are essential for understanding the
complex electrodynamic properties of sintered materials [4]. The
BaTiO3 and other ceramic materials, observed by the SEM method, are
the characteristic example of complex shape geometry, which cannot be
easily described or modelled. A possible approach for describing con-
tact phenomena is the establishment of the grain contact models that
would show that they have the highest influence on the electrical
properties of the entire sample [5,6]. Intergranular contacts are formed
during the sintering when powder particles form a contact, interatomic
forces form a particle’s neck, and there is a potential increase in the
density of the aggregate. Transport mechanisms contribute to neck
growth and densification. A common driving force is the reduction in
the surface area and, thus, the surface free energy of the system re-
duction. A neck begins to grow controlled by different diffusion me-
chanisms (lattice and grain boundary diffusion, etc.) with the rates
determined by the total flux of atoms coming to the neck. One of the
goals of this paper is to establish the model of three or more spherical
grains or otherwise-shaped grains in contact as a base for calculating
possible contact area values in a given geometry configuration. This can
be used in two ways: first, the simulation of neck growth in time do-
main can be done by combining results for the contact surface values
with the kinetics of forming three or more contact areas; second, the
model of three or more grains in contact can be used for establishing the
equivalent electrical model of such grain clusters. A ceramic sample can
be modelled as impedance, containing two capacitors, an inductor, and
a resistor [7], and consists of numerous grains, organized in different-
sized clusters. It could be assumed that each cluster and even inter-
granular contacts within the cluster - aggregates, show similar beha-
viour. The dominant contribution to the equivalent impedance within a
wide frequency range comes from a capacitance [7]; intergranular
contact can be observed as an intergranular micro-capacitor. Thus, all
of these models and electrical contact surface processes are based on the
application of modelling and simulation methods. Most of the models
have used two spheres as the simplest, and, thus, the most convenient
for studying, elemental mechanisms responsible for the progress of
sintering process. Such an idealization of the particle geometry allows a
very detailed study of the physical processes active in the contact re-
gion. In this paper, the Coble's two-sphere model [8] is used as the
starting point for developing a new two-ellipsoid model that can ap-
proximate particles in a better way than the spherical one. The rela-
tions, connecting the geometric parameters of the ellipsoidal model
with the parameters-sintering time and the temperature, are estab-
lished. For the purpose of better understanding of intergranular pro-
cesses, Coble's model was generalized for other possible grain shapes
(sphere-polyhedron, polyhedron-polyhedron) and the new model
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results are compared with those obtained from the two-sphere model.
All calculations are valid for initial stage of the sintering process.

1.1.2.1. Modelling procedure.

e For spherical grain modelling the polyhedron-polyhedron model

system is used.

The surface of grain is represented by a series of polygons.

Also, the belonging function is used for the representation of grain.

It is a real function f(x, y, z) representing the grain as follows: an

arbitrary point M(x1, y1, z1) belongs to the interior of the grain if f

(x1, y1, z1) = 0, and it is outside the grain if f(x1, y1, z1) < 0.

e Two grains are fixed in space so that they can touch or intersect with
one another, and the third one is introduced along the determined
direction. We have observed the process from the moment the mo-
bile grain got into contact with one of the static grains until the
moment the two grains assimilated — the pore between them dis-
appeared.

e During the simulation, the area of each contact surface, distance

between each pair of grains, as well as the length of the pore formed

between the grains have been calculated.

The edge polygons are not treated due to their small influence on the

value of the total area (less than 10-4 for the approximation of grain

with 1,000,000 polygons) as well as considerable influence on the
simulation rate.

1.1.2.2. The sphere-sphere model. With the aim of explaining a two-
grain contact during sintering and better understanding of ceramic
electrical properties, we start with the Coble’s two-sphere model. In the
initial-stage sintering diffusion process, two grains, approximated by
spheres, penetrated each other slightly. The volume that fills the
intersection of the spheres (the distance between centers is smaller
than the sum of two radii) transforms into a neck (a kind of a collar that
circumscribes the contact area). The starting model for the densification
simulation during the initial sintering will be the Coble's two-sphere
model (Coble, 1973), considered to be the volume conservation
principle. According to the notation from the Fig. 2 a), we have
relations:
X X

=< =2 x =J2X
ar 2T AR, ! 'eh)

=
where p;, p2 — the heights of spherical caps (forming the common
volume of the sphere intersection), X; — radius of the common circle; X,
is the radius of the neck formed by diffusion in initial stage of sintering,
and R; and R, - radii of the two spheres.

In general case, the time dependent neck radius can be written in
the form x = g(t; T, A) , where T is sintering temperature, and A is
the system parameter vector:

A={a,D,Q,y, Tn Q, &},

where a is particle radius, D and Q are the diffusion coefficients vectors
and the activation energies of transport mechanisms, respectively, — the
boundary-free energy, — the melting temperature, * — the atom volume,
and - the effective grain boundary thickness.

The next assumptions are: (i), (ii) the volume conservation, (iii) the
center-to-center approach, and (iv) the straight-line neck geometry.
Densification will be the result of the action of two possible transport
mechanisms: the lattice and the boundary diffusion. For the model
system topology shown on Fig. 2 e) f), Chen and Johnson (1989) in
their extended model, equations for the lattice and the boundary dif-
fusion of the following type:

1 1 yQ
Yi 4+ Y5 = [Bit(— + —)]V?, B, = 8D, =
1 2 [L (Rl Rz)] 'L LkT (2)
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where and are the lattice and the grain-boundary diffusion coefficients,
respectively.

1.1.2.3. The ellipsoid-ellipsoid and the grain-contact model. The ceramic
sample grains can be approximated by ellipsoids scattered throughout
the material's volume. The ellipsoids can be seen as a model of grains in
contact. Actually, due to sintering pressure and sintering process, one
grain partly penetrates into another, forming a small contact area that
can be pretty accurately approximated by intersection of ellipsoids E;
and E,. Our aim is to determine the value of this area as the function of
the grains center distance Jg.

We assumed that the ellipsoidal axes are pairwise parallel and
lengths of the axes are proportional by the factor k. Consider two el-
lipsoids E; and E,, having centers at C; = (x1, y1, 21) and C2= (X2, ¥>,
2,) from R3, being coaxial (having parallel axes) with semi-axes a;, b;, c;
(i=1, 2) provided that a; > b; >c¢;, and ay/a;=bs/b;=cy/ci=k
(k > 0). Suppose that E; and E, approximate two neighbour grains in
sintered ceramic (Fig. 2. b)). Straightforward calculation gives that the
distance between C; and C, in the beginning of sintering (sintering time
7=0) is given by

80 = 1+k
cos?a cos2 cos2y
aZ b7 ? @

where (cos a, cos f3, cos v) is the unit vector of C;C,-segment. It is clear
that (1 + k)Cl = 6E° = (1 + k)al.

By the relations (1) from the Coble’s two-sphere model ([3]) the
difference between the grain center distances at the beginning and at
the end of sintering during the elapsed time 7 is given by

50,
] : ©)

The value of §(z) contains information about dynamics of the inter-
grain neck formation and we can express the neck radius via the pro-
portionality factor k as

X =2u ‘J‘( —l)k,
\ (6)

where p=R;-the radius of spherical grain corresponding to ellipsoidal
grain E;

The presented model is tested for the case of two grains shown in
Fig. 1b. According to the given micrograph ratio, the dimensions of
grains are as follows: a = 3.1 pym, b = 2.7 um, and ¢ = 1.3 pm. Since

X

4Rk

5(t)=60—&(1) = [1 +

50 — &5
B

q

Fig. 1. Diagram of X, via (d-R»)/R; and q.
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the ellipsoids are coaxial, it is possible to close a Cartesian coordinate
system having axes parallel to the axes of ellipsoids. Formula (3) can be
put in the more explicit form

J

If we apply the transformation inverse to (2) onto the circle of the
interspherical contact of Coble’s model we will get the elliptical area of
the intergrain neck with the semi-axes X5/b, Xo/a. The corresponding
area is A = X,%ma b~ L.

By the formula (2) X,=V2X;, where X; is given by

cos?a cos?y

[k8(2)

coszﬁ+
Vk+1

W —k.

X =2u 2 o)

dl

4

(R? — R3)?

ad? ,R<d<R +R,

2 )

where d is a distance between the sphere centers and Ry=R;. If we
denote q = R;/Ry, then, the neck radius will be given by

-1 ¢@-1
2¢2 2(s —1)2°

X(s) = Rz\/l +q

(€)]
where s=(d-R,)/R;. The formula (8) gives the relationship between the
neck radius and the center sphere distance d normalized on the unit
interval. The corresponding diagram is given in Fig. 1.

1.1.2.4. The sphere-polyhedron model. We suppose that a grain has
approximately spherical shape but the roughness of the surface
justifies replacing the spherical model with the polyhedral one. In
order to describe a constructive way of obtaining such a polyhedron we
will consider a specific subdivision procedure illustrated in Fig. 2d).
Replace a sphere by a regular polyhedron inscribed in the sphere.
Among five regular polyhedra, icosahedron is the best choice for two
reasons. First, it is the best approximation of the sphere; second, all its
faces are triangles which simplifies subdivision procedure.

Suppose that there are two grains, once approximated by an n-stage
polyhedron (inscribed into a sphere having radius R;) and another by a
sphere (radius = R,) (Fig. 2. e)); the two spheres penetrate each other
for the same spacings p; and p; as in Fig. 2. a). After this, we need to
evaluate the volume of the “cap” of n-stage polyhedron that contained
in the R, - sphere. For this purpose, we will use the cubic function that
shows the cap volume increase with the height p: V,p = & P(R - p/3).
Finally, we get an approximate formula

3.V, Iel
W = 2007 - £)
( n)Lap R13 P 1 3 (9)
_ n—1
where V, = 1} [1 +k+ kﬁ-%] -polyhedron volume after n-steps,
_ o« _4-m-3-J5)-5
B=manda=—_7-—-1

During the initial stage of the sintering process, two grains penetrate
each other and form a neck. The diameter of the neck is determined by
the volume conservation law.

1.1.2.5. The polyhedron-polyhedron model. The importance of this
model is in having a simple tool for manipulation and fast evaluation
in the situation when we have a huge number of grains to process. Also,
it can be used as a starting point for developing the fractal model of
intergrain configuration. Here, we start with two polyhedra, P, and P,,
obtained as an m-stage or n-stage output of the above described
procedure (Fig. 2. d)). So, we can use the formula (5) with R; and R,
as the corresponding radii of the circumscribed spheres. The neck
radius value depends on the parameters Vn, Ry, Ry, p, k, @, and f. Using
this procedure, the geometry of two-polyhedral grains in contact can be
successfully solved (Fig. 2. f)).

1.1.2.6. The spherical to ellipsoidal model transformation. The spherical
model can be successfully converted into the ellipsoidal one by
applying an affine transformation @: S— E of the form
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Fig. 2. a) The Coble’s two-sphere model; b) The neck growth of two ellipsoidal grains in sintering process; ¢) The ellipsoidal model presented in xOz plane; d) The
geometry of an icosahedron subdivision ellipsoid-polyhedron; e) The ceramic grains approximated by sphere-polyhedra penetration in sintering process; f) The

polyhedron-polyhedron model system.

X x/a
d’:[Y]—» /b |(a, b, ¢ > 0)
< z/c 10)

where a, b, and c are scaling parameters introduced in order to generate
ellipsoidal semiaxes a;, b;, and ¢; (i = 1, 2), while x, y, and z are local
variables. The main properties of this transformation are its non-
singularity (a, b, c #0) and continuity which induces topological
invariance. This means that the ratio conserving property of the
transformation (4) is of essential importance for deriving the
ellipsoidal model.

1.1.2.7. The new ellipsoidal model. Let E; and E, be two ellipsoids
obtained from spheres S; and S, by introducing an affine transform (10)
in the following way

R R
@:S,(R) — El(_l’ F, 4= Ei(a, by, 1)
Rz R
®:S,(R E = Ey(ay, by, C
2(Ry) = 2( b’ 2(az, by, ¢3) an

The beginning assumption is that ellipsoids are “geometrically si-
milar”, i.e. their corresponding axes are parallel. Furthermore, let the
centers C; and C, lie along the z-axis and C; # C,. In such a case,
transformation of the values p, and p, will be given as ®:0, — p,/c and
®:p, = p,/c (Fig. 2. c)).

After transform (11) is applied, the intersection circles of radii the
X; and X, in the spherical model will be converted into the ellipses of
the semi-axes A;, B; and A, B,, respectively. The semi-axes A; and A,
correspond to the x-axis, while B; and B, correspond to the y-axis. Thus,
the new relations are established
X
Fi 12)

In addition, we adopt Coble's model so that R, = kR, (k € R) which
gives the proportion

@ _b
=3

R

R a

c
=2 =k,
1

(k € R). a3)

Substituting the Egs. (11) and (12) in (2), the volume conservation
relations for ellipsoidal intersection are determined as:

C1A22
4a12

C]Azz

4ka}

H =

pp=Y= s Py =

(14)

or
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Similar expressions can be derived if coordinate system is set in a
different way, i.e. approaching of ellipsoids is along x- or y-axis.
Considering ellipsoidal model, relations for lattice and boundary
diffusion for approaching along z-axis, will be given now as

-1 L1

M+ Yo), = c [BL[(CC1 + ccz)] , 16
== 13

Y+ V), = [BBt( < + ccz)] an

Similar expressions can be generated for approaching along x- or y-
axis. By substituting relations (14) or (15) in (16) and (17) ellipsoidal
model for determination of grain growth kinetics during the initial
stage of sintering (A4, = f,(t, T) and B, = f; (¢, T)) are established.

1.1.2.8. The extended and corrected Coble’s model. Coble's model deals
with spherical approximations of grains. This model can be extended to
more natural models where two neighbour grains are replaced by two
ellipsoids E; and E, given by

x(6, ¢) X + aycosBcos¢

E [y(6,¢)| =RRyR;| y, + bicosbsing |,
z(6, ¢) Z1 + ¢;siné

x(6, ¢) X + a;cosfOcos¢

E, |y, ¢) | = R.(6DR, (Qy/)RZ ©)] y, + bycos6sing |.

z(6, ¢)

Z2 + ¢ 8in6

The simple geometric argument says that two ellipses will touch
each other provided that P = S and Q, R, T are collinear (Fig. 3. a)). The
distance between the ellipse centers represents the distance between
the grain centers at the beginning of the sintering, 6z (r = 0) and is given

by
)2

Sp(t=0)= |
E ( ) ( 20 2
S+ Uy — 2tw;

22
+( 2(1 — w3) )

After the sintering is completed, the grains partially penetrate each
other and the distance shrinks to dg(r # 0) (Fig. 3 b), ¢)).

s1+ U — 2t1w22
2(1 - w3)

[
(pp+h— 2q1w12

pz + n—- Zqzwlz
2(1 — wp)
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wy=0.43

Fig. 3. Ellipsoid cross section: a) Touch of two grains; b) grains partially merged;c) the touching surface and one of its linear dimensions.

1.2. Fractal intro

The most important term in the theory of fractals is first established
by Benoit Mandelbrot in [21,22]. The explanation of the role of fractal
dimension will be elaborated below.

The fractals are geometric objects of a broken, fragmented, wrin-
kled, or amorphous form or being highly irregular in some other way.
The standard Euclidean geometry fails to describe such objects so that
they are the subjects of fractal geometry. The term fractal, as a neolo-
gism derived from the Latin adjective word "fractus", is defined as a
broken or shattered stone. The more irregular the stone the higher the
fractal dimension. In fact, Hausdorff dimension or fractal dimension
DH is a real number to the contrast of usual notion of dimension which
is called topological dimension DT (DT = O for isolated points, DT = 1
for curves, DT = 2 for surfaces, DT = 3 for solids, etc.). So, Hausdorff
dimension 0 < DH; < 1 covers all objects that are more than a point but
less than a curve.

The typical example is the Cantor set with DH; = In2/In3 = 0.6309.
If 1 < DH; < 2 the object is something between the curve and the sur-
face, with famous Sierpinski triangle having fractal dimension
DH; = In3/In2 = 1.5849. However, the Cantor set and the Sierpinski
triangle are mathematical constructions. Direct analogy to the Cantor
dust is fine particle dust — the dust that floats in the air. Brian Kaye
devoted the whole part (Part 3.7 of [1]) to the fractality of different
dusts: mine dust, coal dust, fumed silica, shellac droplets, radioactive
dust, welding dust, and, finally, powders for ceramic industry. Speaking
of fractal objects with fractal dimension between 1 and 2, a nice ex-
ample are coastlines. The coastline of Ireland has been reported to have
fractal dimension of approximately 1.22, the coast line of Great Britain
is 1.25 and the coast line of Norway is the most irregular one with
DH; = 1.52. Since the maritime coasts are just level lines of geomorphic
relief formations, the same can be applied to ceramic grains. So, there is
a reason to study the contours of grains which are more or less com-
plicated lines. Finally, the BaTiOz-ceramic grains as 3D objects have
fractal surfaces which means that their fractal dimension is the real
number between 2 and 3. Theory shows that any surface generated by
regular Brownian motion has DH; = 2.5 which is the same as fractal
dimension of crumpled paper. Just for comparing, DH; for cauliflower
surface is 2.33, for human brain 2.79 and for human lungs 2.97.

The concept of Iterated Function System (IFS) and its affine in-
variant counterpart AIFS appear to play a crucial role in the con-
structive theory of fractal sets and in paving the way to having a good
modelling tools for such sets. If the collection of objects to be modelled,
besides fractals, contains smooth objects as well (polynomials, for ex-
ample), then, one needs to revisit classical algorithms for smooth ob-
jects generation and introduce the new one that is capable of creating
both the fractal and the smooth forms. In this light, and following the
problem from the Barnsley book [13], the purpose of this paper is to
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develop such algorithms for interpolating polynomials.
Let {w;, i=1,2,..,N}, N>2, be a set of contractive affine map-
pings defined on the complete Euclidian metric space (R™, dg)

wi(x)=Ax+b; xeR™ i=1,2,..,n

where A is an m X m real matrix and b is an m-dimensional real vector.

The mapping w is “contractive “if it maps the bounded original set
into set that is “smaller “in the sense of the Hausdorff metric. The fractal
A is a subset of the complete metric space, which is invariant in relation
to the union of contractive W mappings, i.e. W(A) = A. Thereupon, the
Hausdorff dimension of this subset DH(A), as a rule, is a noninteger real
number.

1.2.1. Intergranular connections

1.2.1.1. The fractal capacity corrected Heywang model. Grain contacts
are essential for understanding the complex electrodynamic properties
of sintered materials. BaTiOs-ceramic microstructures obtained by SEM
are typical examples of a complex shape geometry which cannot easily
be described or modelled. A possible approach for describing contact
phenomena is establishing the grain contact models. Our new approach
includes fractal geometry in describing the complexity of the
electroceramic grain spatial distribution. Modelling method allows
the presentation of grains in contact within the sphere, ellipsoid, and
polyhedron shape. In spherical and the ellipsoidal grain model systems
there is a possibility for the analytic expressions of grain shape and
contact surface, presented as the functions of distance between grains.
On the other hand, the polyhedron-polyhedron model presents the real
numerical procedure. Here, each grain is approximated by an ellipsoid.
Also, it can be expected that the contact zone has ellipsoidal geometry
as well. The contact surface between two grains must also inherit a
trace of ellipsoidal geometry. However, this surface can be
approximated by an ellipse having semi-axes X/b, XIa. This means
that the contact surface area between two grains, after sintering, should
be approximately

)

_ 4nR%
ab

6(@) _
o

S

(

Due to diffusional forces that appear in the sintering process we are
ready to believe that an approximate form of a contact surface is the
shape of a minimal surface — the surface with a minimal area size.
Nevertheless, the microstructure of the material makes this surface a
fractal locally (Fig. 4).

Considering that intergrain contact surface is the region where
processes occur at the electronic level within the electroceramic ma-
terial, structural complex grain contact-grain can be represented by an
electrical equivalent network consisting of three RC branches. The
contact between two grains is observed as planar microcapacitor. The
surfaces of capacitor plates correspond to the intersecting surface S of
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Grain 1

Fractal contact surface

Grain 2

Fig. 4. An intergrain contact surface has a fractal form.

two grains. By applying the fractal approach to the intergrain geometry,
the formula for the microcapacity of an intergranular condenser seen as
a planar condenser is given into the following form

C= EofB“; = EOEB(Nfz)k; 18)
where ¢, eg are dielectric constants in a vacuum and in BaTiOs-ceramic
material respectively; S — the area of the “plates” and the x — distance
between the condenser “plates”, i.e. the condenser thickness and
o = (NE?)K, is a correction factor obtained through a constructive ap-
proach to the fractal surface. This approach uses an iterative algorithm
that iterates the N self-affine mappings with a constant contractive
(Lipschitz) factor £] < 1 k-times®. The underlying theory and techniques
for choosing the appropriate mappings are given in the previous work.
Typically, « = D — Dy, where D = 2.08744 is the fractal (Hausdorff)
dimension of intergrain contact surface and Dr = 2 is the topological
dimension of the surface. As it is found, the ceramic contact surfaces are
of low-irregularity which is characterized by the small difference D-
Dr=0.08744.

The derived formula (18) indicates the increase of the value of
microcapacity when fractal approach is applied. Thus, a more accurate
calculation of microcapacitance generated in grain contact can be
carried out leading to a more exact estimation of dielectric properties of
the whole sample.

All this allowed us to consider the ceramic sample as a system with a
huge number of clustered grains that are in contact with one another.
For each of them, it is possible to establish the equivalent electrical
model and, for a defined set of input parameters, by using a symbolic
analysis, obtain the frequency diagram. However, the simple RC is not
sufficient to explain resonant behaviour of a ceramic sample. In order to
calculate the equivalent impedance for a wide frequency range, the
equivalent electrical circuit for a ceramic material can be introduced as
an impedance, containing two capacitances C and Cj, the inductance L,
and the resistance R. Therefore, it is more likely that the equivalent
circuit model of contacted grains has parallel and series branches as
presented in Fig. 6. Two grains in contact, approximated by ellipsoids,
are shown in Fig. 5.

In this way a ceramic sample can be considered as a huge heap of
randomly scattered ellipsoids throughout the sample volume. What is
interesting is to determine what the distribution of the intergranular

i) (b
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contacts looks like. Secondly, what is a more general formula for
evaluating the size of all contact patches in the ceramic volume unit.
Finally, the most complex question is that of the nature of intergrain
layers and their relationship with the microcapacitor distribution. Of
course, it must be kept in mind that all parameters mentioned are the
functions of sintering parameters (T, P and 7).

In the light of the geometric method explained above, we can extend
this approach from the case of the EE intersections to the case of the EP
and the EG intersections. In fact, the value of the two-grain contact area
is given by

A=fda
s

where S is a mathematical surface that will be described soon and do is
a usual differential element of the surface. For all three models the
surface S can be characterized in the unique way by the intersection of
the ellipsoidal surface with: 1. another ellipsoidal surface; 2. the poly-
hedron surface; and 3. the real grain surface that can be expressed in
terms of fractal functions. Even if the analytical method could be ap-
plied (EE), there would be no use for this because the evaluation
method of the above integral must be a numerical one. Consequently,
the method of two surface intersection is reasonable to be numerical, as
well. In all cases, it is enough to find discrete points along the inter-
section line. In the case of EE intersection the analytical solution of the
intersection is to be discretized which reduces the problem in the case
of the EP intersection. The method is as follows:

The polyhedron P can be regarded as the union of the vertices V and
the sides o. The set of vertices is divided by the ellipsoidal surface E in
two groups: V; — vertices inside of E including the surface; V5 — vertices
lay outside of E. These two groups of vertices divide the set of sides in
three groups: o 01 U 03 U 03, where 07 are the sides whose both
endpoints are in E; 03 are the sides outside of E; and o0, contains all sides
that connect the vertices from V; with the vertices from V. Each side
from 0, contains a unique point being characterized by the unique
parameter t, t € (0,1) so that (1-t)p; + tpz is a point on the ellipsoid. If
the ellipsoid has the semi-axes a, b, c and p; = (x1, ¥1, 21), P2 = (X2, Y2,
2,), the parameter t must obey the quadratic equation At> + Bt + C =
0, where A = (x;-x2)%/d® + (y1—y2)2/b2 + (2;-22)%/2, B = 2:-[(x1x2
X2/ + iyzy /b + (2122 219/, C = xi%/a + y 2/6%7 + 2.7/
- 1.

What we want to get is the ellipsoid-immersed P surface size value.
Let this surface be denoted by =, then Izl — the value we want — can be
approximated by the union of triangular elements. The size of each
triangle is given by the 1/2 of its sides’ vector product modulus.

As far as the EG contact is concerned, the calculation is a little bit
complex, mainly due to the fact that the fractal grain is defined by
recursive functions (the fractal structure of such contact is shown in
magnified detail in the scope of Fig. 6). However, using the binary tree
algorithm and the convex hull property of fractal algorithms, the in-
tersection of one meridian line in fractal grain with an ellipsoid is not
difficult to find. Actually, let Sy be a starting set in 3D space for the
recursive procedure of making the autocomposition of the Hutchinson
contractive operator. Then, a sequence of sets has been produced. Being
a union of smaller copies of the attractorlet from the previous stage, the

a9

()

Fig. 5. a) two-grain real microstructure contact, b) and ¢) two grains in contact according to the ellipsoid-ellipsoid model.
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Elipsoudal approx.

Polyhedral Approx

Contact zone

Fractal approwmation

Fig. 6. The Ee-Ep-Eg-Group of BaTiOs-ceramic grains and the fractal structure
of the contact zone electrical equivalent model of contacted grains.

actual attractorlet obeys the convex hull property which allowed to find
its intersection in any compact set in 3D. After the fractal intersection
contour is determined, its area can be estimated by using the suitable
numerical method.

The surface S that appears in the integral formula is the union of all
intergrain contact surfaces in the prescribed volume V of a ceramic
sample.

Let G be a contact zone between any two grains and

1, e€G . . .
Xe(x) = x . characteristic function of the set G. Define the
0, otherwise

following function
F(x,y,2) = x5, r=[x y z]' e R’

It is clear that F is a discontinued function defined over the volume
of the considered sample. Let VF be the usual gradient of the function F
with the convention that in the point of discontinuity ry, where the
limes of pregradient fraction goes to infinity, it will be taken that VF(r)
+ oo, It is easy to see that the set defined by 0G = {r: IVF(r)| > 1}
represents the surface of the A contact zone. In order to extend AG on
all contact surfaces it is enough to replace the function F defined above
by F1

Ry 2) = [[xa®

iel

where I is a subset of a natural numbers broad enough to number all
contact zones. The corresponding surface is S = dG; defined by

0G, = {r: IVF(r)| > 1}.

Therefore, the total contact area is given by
A= f do = f HXci('")dU~
S

v el
In the special case, when the grains are approximated by ellipsoids
with parallel axes, the formula for A becomes a finite sum of all contact
surfaces between grains. If two grains in contact are labelled by i and j,
with the analogue meaning of a;b,R; and k, as above, the contact
surface A; will be given by
1),

(

ar

a,‘bj

,max{a; b}

Y

HOM
o7

min {a;, b;}
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which reduces (19) to A = EU Ay ..
2. Experimental

The samples used in our paper were prepared using the conven-
tional solid-state reaction. As the starting powder it was used BaTiO;
(Murata) doped with different additives in concentrations ranging from
0.5 to 5.0 wt%. Starting powders were ball milled in ethyl alcohol,
drying for several hours, and pressed into pellets at pressures ranging
from 90 to 120 MPa. The pellets were sintered in air from 1,250 °C to
1,380 °C for 2 and 4 h. The microstructure was investigated using the
scanning electron microscope, JEOL, SEM-5300 equipped with the EDS
(Energy Dispersive Spectrometer) system. The electrical characteristics
were measured using LCR meter Agilent 4284 A. The microstructures
have been done with a selection of some grains and pores with
minimum five magnifications because of the fractal nature analysis.

2.1. The microstructure fractal dimension and analysis

Based on several microstructures (different pressure, sintering time,
and temperature) at different magnifications, we successfully per-
formed the perimeters and grain shape reconstruction using the fractal
nature analysis. Also, we are estimating the fractal dimension from
these microstructures (Figs. 7-11)

The microstructure fractal nature analysis evidently opens new
possibilities in the field of fractal microelectronics. In this sense, and
enlightened by fractals, the grains and pores, microsurfaces, and shapes
with their profiles are very important for developing new ideas for
further miniaturization where the supermicro fractal contacts from
different sides of each two grains are basic. The supermicro fractal
capacitors practically connect fractal microstructure characteristics
with electronic properties and also, even supermicro impedances,
which could set a course for new research.

3. Results and discussion
3.1. The grain shape and the fractal analysis

Electroceramics, especially BaTiOs-ceramic, are made out of very
fine powder having maximum Ferret diameter Dpy.x < 2pm. These
particles have such a high surface energy to fuse together and make
sintered ceramic. As Brian Kaye quotes in his pioneering book [1],
many powder materials also have fractal structure. In fact, since the
powder material is porous, there are two aspects of fractality: the po-
sitive space made of a grain collection and the negative space which is the
collection of holes and pores. The ceramic material, during sintering,
changes its inner morphology by shrinking pores and increasing its
solidity and compatibility. Nevertheless, it still contains residual pores
as it is also noticed in [1] where the sintered compact is shown to have
holes and fractal structure found as we can see from the illustration in
[2]. Researches concerning fractal properties of BaTiOs; were first
conducted in [3] and continued throughout a series of papers [3-19].
There, it was proven that several issues of fractality emerge in BaTiO3-
ceramic:

i The ceramic grain itself is a fractal object with irregular surface;

ii The intergranular zone with different levels of grain contacts;

iii The distribution of grains through the ceramic bulk also has a fractal
character;

iv The morphology of pores is a “negative space” fractal;

v The dynamics of particles, adatoms, flows in a liquid sintering
phase, and electrons behave as free particles performing Brownian
walk which is known as an example of authentic fractality.

First of all, these elements contribute in energy distribution and
energy transformation within the BaTiO3-ceramic and consequently in
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Fig. 7. The SEM sample (0.5 wt% Ho0203) A1l sintered on 1320 °C and its fractal dimenssion extracted by a gray level box (24/255) countingDH; = 1.7529.
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Fig. 8. The SEM of the sample (0.5 wt% Ho0203) A2 sintered on 1320 °C and its fractal dimension extracted by gray level (83/255) box counting DH; = 1.7449.
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Fig. 9. The SEM of the sample (0.5 wt% Ho203) B1 sintered on 1380 °C and its fractal dimension extracted by gray level (134/255) box countingDH; = 1.7899.
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Fig. 10. The SEM of the sample (0.5 wt% Ho203) B2 sintered on 1380 °C and its fractal dimension extracted by gray level (83/148) box countingDH; = 1.7955.
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Fig. 11. The SEM of the sample (0.5 wt% Ho203) B3 sintered on 1380 °C and its fractal dimension extracted by gray level (116/197) box counting DH; = 1.8025.

all dielectric, ferroelectric, PTCR, and piezoelectric phenomena. Recent
investigations of Zheng et al. in [20] clearly show that the dielectric
permittivity ¢ and the piezoelectric constant ds3, for both poled and
unpoled BaTiOs-ceramic, increase significantly at room temperature
with the reduction of the average grain size which is equivalent to the
increase of fractal dimension.

Here, we present the new results concerning the doped BaTiOs-
ceramic surface fractal dimension using the SEM micrographs. The
samples that are used are: Al and A2 and B1, B2, and B3, all at the same
pressure of 120 MPa and for 4 h.

The procedure used is as follows: the grey microphotographs are
converted to the black and white form using the given threshold or the
levels ranging from 1 to 256. For all the levels, the box counting method
is performed and the maximal result is set to output. The argument is
obvious. The level that gives maximal fractal dimension is the one that
reveals the most details. This means that we used modification of the
classic box counting and employed the formula
= 1 lim

In2

n— co

InNpax (27"
In 2"

lim

— o0

DH(©)= (% In Nmax(Z‘"))

(20)

where Ny (¢) denotes the maximum number of boxes that contain
black pixels upon the prescribed resolution ¢, with the usual setting
e = 27" where n is the picture subdivision degree. This means that for
n = 1 the picture rectangle is not yet subdivided. For n = 2, the rec-
tangle is subdivided into 4 similar subrectangles by two lines passing
through the middle points on the opposite sides. For n = 3, the same
subdivision is applied to each fourth of the rectangle, and so on. After n-
th subdivision, one has 2" subrectangles.

Also, on Fig. 12, we provide an example, for the sake of clarifica-
tion, the 3D surface representation as the application of the previously
described method. It is evident that 3D reconstruction of the grains and
pores, corresponds to the SEM results on Fig. 7.
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We strongly stress that the numerical result we may get using the
formula (20) is a dimension of the picture we got from the SEM and not
of the sample itself. So, it may differ from the real fractal dimension as
much as the picture differs from the original. Also, it must be taken into
account that the automatic counting boxes may also introduce some
“numerical noise” as well as that the last square approximation also has
its inherent error. However, in spite of this, the results are quite usable
for comparing two different samples and are not an obstacle in gaining
insight into the complicated processes of sintering and the electronic
properties of consolidated materials (Fig. 13).

Each figure Figs. 8-12., in its upper part, gives the data of the
sample and displays small diagram of grey levels. In the middle, the
grey-shaded SEM photo and its B/W version (max level) are displayed.
Finally, the lower part features numerical data obtained in box-
counting and the log-log last squares fitting line which contains the
approximate fractal dimension.

As it is evident from Table 1, the SEM microphotographs fractal
(Hausdorff) dimension differs significantly for the A and B samples.
Note that both the BaTiOs-ceramic samples were consolidated under
the same conditions (additives, pressure, and sintering time) but at
different temperatures. A higher temperature (1380°C) results in denser
ceramic that is supposed to have a bigger fractal dimension. Our ex-
periment confirms this statement. In fact, the temperature difference of
60°C results in the fractal dimension difference of 0.04407. Expressed in
percentage, the temperature increment for 4.3% yields the 2.45%
fractal dimension increment.

Looking back at our earlier research ([3-19]), we may observe
several BaTiOs-ceramic fractality “sources” as it is anticipated by the
points i. to v. in the section 3.1.

Also, it is worth mentioning that no research has been conducted in
regard to the estimation of fractality in the field of ceramics. So, bearing
in mind the mentioned limitations, this is what we now know about
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Fig. 13. SEM micrographs of 0.1 wt% Ho doped BaTiOz-ceramic sintered at
1380 °C.

Table 1

The calculated dimensions are summarized in Table 1.
The samples of sintered BaTiO3- Fractal dim. DHy Average
ceramic at 120 MPa for 4 hours dimension
doped with 0.5 wt%Ho0203 1 2 3
A 1320°C 1.7529 1.7499 1.75140
B 1380°C 1.7899 1.7955 1.8025 1.79597

different issues related to the fractal dimensions of the ceramic mate-
rials after the sintering process.

3.2. The inner fractality and the a-complex correction

Fractal dimension, typical DHj, is just slightly above the surface
topological dimension, Dy = 2. The difference DH; — Dr = DH; — 2 is
thereby supposed to be responsible for affecting a part of feroelectric
phenomena in barium-titanate ceramic that cannot be explained by the
purely grain-surface Euclidean geometry. It is suitable to introduce the
normalized surface fractality parameter ag, thus, satisfying the in-
equality
(1 — )min{DH; — 2} < ag < pmax{DH; —2},0< ¢ <1

which ensures the unit range of 0 < ag < 1.
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BaTiO3-ceramic is a porous material that corresponds to lacunar
fractal models. It introduces a new phenomenon. Namely, the solidifi-
cation of porous and “spongy” materials increases overall fractal di-
mension from (theoretically) 2 to full solid 3. In other words, fractal
dimension of a porous material, DH, satisfies 2 < DH, < 3. It causes
another correction factor ap = Dy — DHp, where Dy = 3 is dimension of
the space and DH, is the corresponding fractal dimension of a porous
configuration. Therefore, 0 < ap < 1. The dimensionless quantities ag
and ap will be called geometric fractality factors.

3.2.1. Temperature involvement

Arguing about the crystal surface "natural roughness" as a macro-
scopic step collection on the arbitrary crystal plane surface section, the
authors hypothesis [24-36] quotes an observation Frenkel [37] had
come forward with, that this roughness does not coincide with the
crystal faces atomic roughness, with small surface energy, which can
occur as a thermal fluctuation consequence at high temperatures. This
temperature consideration illustrates impact on dynamic processes
within the ceramic body. Such impact generates a motion inside the
ceramic crystals in the Fermi gas form, containing different particles
such as electrons (Bloch wave), atoms, atomic nuclei, etc.

We suggest the existence of the third factor a), caused by the in-
fluence of disorderly motion of particles, that is, the factor of fractal
motion. As it is known, there is a “cloud” of mobile particles in semi-
conductors (as well as metals) consisting of electrons in atoms with
large atomic numbers, nucleons in heavy atomic nuclei, and gases
consisting of quasi-particles with half-integral spin called Fermi gas and
obeys Fermi-Dirac statistics.

The classic Fermi gas theory assumes that (i) the interactions be-
tween the electrons are irrelevant and can be ignored; (ii) the electrons
move in a constant potential and we can ignore everything about the
structure of the material; (iii) The crystal comprises a fixed background
of N identical positively charged nuclei and N electrons, which can
move freely inside the crystal without seeing any of the nuclei
(monovalent case); and (vi) Coulomb interactions are negligible be-
cause the system is overall neutral.

Real Fermi gas dynamics impose the necessity of fractal correction
ayr inclusion, that makes the third factor, next to geometric ones ctg and
ap. Since particles have dynamics similar to 3D Brownian one, oy
should be a derivate of Hausdorf fractal dimension DH,, of a Brownian
3D space-filling curve. It is obvious that 1 < DH,, < 3. The lower limit,
min Dy, = 1, is imposed by the continuity of a particle trajectory. The
upper limit maxDHy, = 3, in turn, is the maximum of trajectory com-
plexity in 3D space. It is reasonable to normalize ay, by taking
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am = %(DHM -1,

which gives
0<ay<l.

In this way, three independent dimensionless fractality factors ag, ap
and ay; are introduced. These are real numbers from the open interval
(0,1).

Our hypothesis is that the ceramic working temperature must be
influenced by these three fractality factors, making the correction of
“theoretic” temperature T, to get the new “real” temperature Ty, which
is temperature affected by the inner fractality of the material T = T — /\T.
Obviously, Ty < T with the equality of no fractal structure of the S, P, or
M type is present.

AT

LR}

Now, by setting o =
Tr=aT,

one has

where, a is dependent on all three alpha-components, so,
a = d(as, ap, ) = U + Vap + Wty

where u, v, w> 0 are real coefficients satisfying u + v+ w = 1.
Now, by the Curie-Weiss law, the relative permittivity will be given
by
Ce
T -I

. CC —_—
ol — Ty

Ce
O(ay, ap,ay) T— Ty

& a =

where C, is the Curie constant.

Although we do not have knowledge of what might be the fractal
dimension of the ceramics volume, we can be pretty sure that it is be-
tween 2.5 and 3. In manuscripts [23], the authors introduce the for-
mulas for calculating fractal dimension DH;(t) as the function of sin-
tering time t in three phases, using the Frenkel formula for the sintering

initial phase,
)

ln(l/s)

(No © -

DH; ()= lim

=0

Scherer‘s formula for the intermediate stage
In(1/¢)

and Mackenzie-Shuttleworth for the final stage

) (7)) k)

In(1/¢)
where R(t) is the pore radius as a time function. Since this function is
decreasing the above formulas, it promises that the limiting value for
DH; (¢) at the end of sintering process will be close to 3. Theoretically,
lim,_, ,DH; (t) = 3. This means that intergranular contacts might have
dimension much lesser than 3, since it is the substructure of a 3D bulk.

The most important consequence of grain contacts spacious fractal
network opens a new viewpoint and the basis for future deeper level of
integration, which opens new perspectives to further miniaturization
within the electronic properties and functions in ceramic materials and
fractal electronics.

Regarding the fact that the previous modern microelectronics de-
velopment is based on the classic thermodynamic fundamental princi-
ples, it is challenging to extend research on these principles based on
fractal nature analysis. So, in this paper we open a new approach by
introducing fractal corrections in order to open new research perspec-
tives in this field.

Gibbs free energy G is a property that provides a convenient mea-
sure of the driving force of a reaction, and it may be used to define

y /3 (m— 4J2Ro)R; 23R (1)

(37— 82R0)?/3

In (NO (e) — @

)

7

DH; (1)= lim

yntl3
7

4
3

Lo
P

ln(No(e) -4 (

DH;()= lim
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thermodynamic stability. When we want to know whether a process is
energetically favorable, we have to determine the change in free energy
(AG) associated with that process. So for the oxidation processes in
ceramic forming, change in free energy is

AG = RT In Po2

In many processes, particularly those that occur in ceramic, there is
little, if any, volume change so PV = 0. Since the sign of AG is de-
pendent on temperature and pressure, a particular system, such as a
crystal structure, can be stable only within a certain range of P and T.
By varying P and/or T, AG eventually becomes negative relative to
some other structure and a phase transition occurs. This may be a
transition from one aggregate state to another (e.g. during sintering,
when we get grain growth and a reduction in the total grain boundary
area). Regarding sintering process, as temperature is influenced by
fractality factors ag, ap, and ay

Tf = Oth, aF = P (as, ap, ay)
corrected Gibbs free energy relation is as follows:
AG = RoyT In poy

If we take a normalized fractal dimension as the representation of a
fractal nature, the individual fractal corrections will be:

as = dim X1 (u, v)

m n sin ¢ sin 6
dim Y} Y7 (1 + Rl(g, 6))| cosgsin B (@B () =2, 0<as
i=1 j=1 cos 6
<1
ap = dimX2(u, v)
m n sin ¢ sin 6
= dim Z Z (1 + R2(¢g;, 6))| cospsin6 [BF (9)BY (6) =2, 0<ap
i=1j=1 cosf
<1
n
ay = dimX (¢) = dim ), X (6)B;() =1, 0 <oy <1
i=0
We suppose that these fractal corrections ag, ap and ay equally

participate in the overall fractal correction o i.e.

1 1 1
Olf = gO{S + —Qap + EOlM

3
1 m n sin ¢ sin 6
ap = —|dim )} D7 (1 + R1(p, 6))| cospsin 6 |B (#)BY (6) — 2
3 i=1j=1 cos6
1 m n sing sin 6
5 im )7 > (1 + R2(p, 6))| cosgsiné B (9)Bf (6) — 2
i=1j=1 cos 6

dim ZX(tl)B -1

i=0

(

Obviously 0 < ay < 1.

|

4. Conclusion

This scientific paper considers very complex relation between the
ceramic material structure, some sintering process phenomena and
fractal nature analysis, on one hand, and the energy, on the other hand.
Nowadays, that world needs for energy imposed the whole spectra of
technological challenges that further reflect on scientific tasks. Our
research has been focused on the consolidation of sintering process
ceramic material based primarily on Coble’s two-sphere model. We
extended this model to ellipsoidal Coble’s model within the framework
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of Euclidian geometry but, because of its limitations, we successfully
extended this model by fractal nature recognized in the ceramic
structures. Our results confirm, using the quite new understanding of
fractal application, the intergranular and pore relations as a super-
micro capacitors based on the fractal corrected Heywang model. This
new approach treats the intergranular contacts and the intergranular
neck as well as the related sintering processes in the light of the fractal
nature. This is also very important for energy harvesting and storage on
the micro level. In that sense, we successfully introduced fractal cor-
rection of temperature as thermodynamic parameter in Gibbs free en-
ergy (entropy) equation. From the scientific point of view, this is the
first time a relation between the ceramics structure, the extended
Coble’s sintering process model, the fractal nature, and the energy as
inside the structures up to the global level, was established in one
paper.

Here, we discuss the role of fractal geometry and the analysis in the
field of energy. Some of the early fractal applications have been used as
tools in energy research for diverse energy technologies, especially the
free energy stock location and conversion as well as the long-term en-
ergy storage. In this paper, we left open the possibility of a more flex-
ible, complex, and precise analysis of thermodynamic principles within
the microstructure morphology.

So, these intersections are new frontiers in fractal microelectronics
that open up new possibilities for further research.
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