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ABSTRACT

This work considers the minimization of a general convex
function f(X) over the cone of positive semi-definite ma-
trices whose optimal solution X? is of low-rank. Standard
first-order convex solvers require performing an eigenvalue
decomposition in each iteration, severely limiting their scal-
ability. A natural nonconvex reformulation of the problem
factors the variableX into the product of a rectangular matrix
with fewer columns and its transpose. For a special class of
matrix sensing and completion problems with quadratic ob-
jective functions, local search algorithms applied to the fac-
tored problem have been shown to be much more efficient
and, in spite of being nonconvex, to converge to the glob-
al optimum. The purpose of this work is to extend this line
of study to general convex objective functions f(X) and in-
vestigate the geometry of the resulting factored formulations.
Specifically, we prove that when f(X) satisfies the restricted
well-conditioned assumption, each critical point of the fac-
tored problem either corresponds to the optimal solution X?

or a strict saddle where the Hessian matrix has a strictly nega-
tive eigenvalue. Such a geometric structure of the factored
formulation ensures that many local search algorithms can
converge to the global optimum with random initializations.

Index Terms— Burer-Monteiro factorization, low-rank
matrix optimization, nonconvex optimization, strict saddle
property

1. INTRODUCTION

Consider a general semi-definite program (SDP) where a con-
vex objective function f(X) is minimized over the cone of
positive semi-definite (PSD) matrices:

minimize
X∈Rn×n

f(X) subject to X � 0. (1)

For this problem, even fast first-order methods, such as the
projected gradient descent algorithm [2], require perform-
ing an expensive eigenvalue decomposition in each iteration.
These expensive operations form the major computational
bottleneck of the algorithms and prevent them from scaling

Full version appears as [1]. This work was supported by NSF grant CCF-
1464205. Email: {qiuli, gtang}@mines.edu.

to scenarios with millions of variables, a typical situation
in a diverse of applications, including quantum state to-
mography [3], user preferences prediction [4], and pairwise
distances estimation in sensor localization [5].

When the SDP (1) admits a low-rank solutionX?, in their
pioneer work [6], Burer and Monteiro proposed to factorize
the variable X = UUT , where U ∈ Rn×r with r � n, and
solved a factored nonconvex problem

minimize
U∈Rn×r

g(U), where g(U) := f(UUT ). (2)

There, they dealt with standard SDPs with a linear objec-
tive function and several linear constraints, and argued that
when the factorization X = UUT is overparameterized, i.e.,
r > r? := rank(X?), any local minimum of (2) corresponds
to the solution X?, provided some regularity conditions are
satisfied. Unfortunately, these regularity conditions are gen-
erally hard to verify for specific SDPs arising in applications.
Our work differs in that the convex objective function f(X)
is generally not linear and there are no additional linear con-
straints.

The past few years have seen renewed interest in the
Burer-Monteiro factorization for solving low-rank matrix
recovery inverse problems. With technical innovations in
analyzing the nonconvex landscape of the factored objective
function, several recent works have shown that with exact
parameterization (i.e., r = r?) the factored objective function
g(U) in has no spurious local minima or degenerate saddle
points [7–12]. An important implication is that local search
algorithms, such as gradient descent and its variants, are
able to converge to the global optimum with even random
initialization [13].

We generalize this line of work by assuming a general
objective function f(X) in the optimization (1). Viewing
the factored problem (2) as a way to solve the convex opti-
mization (1) to the global optimum, frees us from rederiv-
ing the statistical performances of the factored optimization
(2). Instead, its performance inherits from that of the con-
vex optimization (1), whose performance can be developed
using a suite of powerful convex analysis techniques accumu-
lated from several decades of research. As a specific example,
the optimal sampling complexity [14] and minimax denoising
rate [15] need not to be rederived once one knows the equiv-
alence between the convex and the factored formulations.
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2. MAIN THEOREM

Before presenting our main result, we provide several neces-
sary definitions. We call a vector x a critical point of some
differentiable function f(·) if the gradient∇f(x) = 0.When
f(·) is twice continuously differentiable, a critical point x is
called a strict saddle or riddable saddle [16] if the Hessian
has a strictly negative eigenvalue, i.e., λmin(∇2f(x)) < 0. A
twice continuously differentiable function satisfies the strict
saddle property if every critical point is either a local mini-
mum or is a strict saddle [7].

Heuristically, the strict saddle property describes a geo-
metric structure of the landscape: if a critical point is not a
local minimum, then it is a strict saddle, which implies the
Hessian matrix at this point has a strictly negative eigenvalue.
Hence, we can continue to decrease the function value at this
point along the negative-curvature direction.

Theorem 1 (Local convergence [13,17,18]). The strict sad-
dle property allows many local search algorithms to escape
all the saddle points and converge to a local minimum.

Our governing assumption on the objective function f(X)
is the (2r, 4r)-restricted well-conditioned assumption:

m ≤ [∇2f(X)](D,D)/‖D‖2F ≤M with
M

n
≤ 1.5 (3)

for any D of rank(D) ≤ 4r and any PSD matrix X with
rank(X) ≤ 2r. Here, [∇2f(X)](D,D) is the directional
curvature alongD, defined as

∑
i,j,l,k

∂2f(X)
∂Xij∂Xlk

DijDlk. This
restricted well-conditioned assumption (3) is standard in ma-
trix inverse problem [19,20]. We show that if the original ob-
jective function f(X) is (2r, 4r)-restricted well conditioned,
then each critical point of the factored objective function g(U)
either corresponds to the low-rank global solution of the o-
riginal convex program or is a strict saddle where the Hes-
sian ∇2g(U) has a strictly negative eigenvalue. This implies
the factored objective function g(U) satisfies the strict saddle
property.

Theorem 2 (Global landscape). Suppose the function f(X)
in (1) is twice continuously differentiable and restricted well-
conditioned (3). Assume X? is an optimal solution of the
minimization (1) with rank(X?) = r?. Set r ≥ r? in (2). Let
U be any critical point of g(U) satisfying ∇g(U) = 0. Then
U either corresponds to a square-root factor of X?, i.e.,

X? = UUT ; (4)

or is a strict saddle of the factored problem (2):

λmin(∇2g(U)) ≤


−0.24mτ when r ≥ r?

−0.19mρ(X?) when r = r?

−0.24mρ(X?) when U = 0

(5)

with τ := min{ρ(U)2, ρ(X?)} and ρ(W ) denoting the small-
est nonzero singular value.

Remarks. First, the matrix D is the direction from the sad-
dle point U to its closest globally optimal factor U?R of
the same size as U . Second, our result covers both over-
parameterization where r > r? and exact parameterization
where r = r?. Third, this strict saddle property ensures
that many iterative algorithms, for example, stochastic gra-
dient descent [17], trust-region method [18], and gradient
descent with sufficiently small stepsize [13], all converge to a
square-root factor of X?, even with random initialization.

3. APPLICATIONS

Our main result only relies on the restricted well-conditioned
property. Therefore, in addition to the traditional low-rank
matrix recovery problems with a quadratic loss function, it
is also applicable to a lot of other low-rank matrix optimiza-
tion problems with possibly non-quadratic loss functions. We
compiled the following list of applications that are covered by
our theory.

Weighted PCA Problem. Formally, in the weighted-PCA
problem, given a pointwisely-weighted observation of a PSD
matrixX , i.e., Y =W�X where� is the Hadamard product
or its perturbed version with W being the sensing matrix, one
aims to recover the principle component U by minimizing the
nonconvex objective function g(U) = ‖Y −W � (UUT )‖2F .
The weighted-PCA problem has no known analytic solution
and it is shown to be NP-hard [21]. Fortunately, by defining
f(X) = ‖Y − W � X‖2F , we can compute its directional
curvature as [∇2f(X)](D,D) = ‖W �D‖2F . Hence, as long

as the weights have a smaller dynamic range:
maxW 2

ij

minW 2
ij
≤ 1.5,

it is guaranteed to recover U through local search algorithms.

Symmetric Robust PCA. In the symmetric variant of ro-
bust PCA, the observed matrix Y = X + S with S being
sparse and X being PSD. Traditionally, we recover X by
minimizing ||Y − X||1 =

∑
ij |Yij − Sij | subject to a PSD

constraint. However, this formulation doesn’t fit into our
framework naively due to the non-smoothness of the `1 norm.
An interesting bypass would be solving X by minimizing∑
ij ha(Yij − Sij) where ha(.) is chosen to be a convex

smooth approximation to the absolute value function. A pos-
sible choice is ha(x) = a log((exp(x/a) + exp(−x/a))/2),
which is shown to be strictly convex and smooth in [22, Lem-
ma A.1].

1-Bit Matrix Recovery. Given quantized measurements:
yj = bit(Aj • X?) where • denotes the inner produc-
t and bit(x) outputs 0 or 1 in a probabilistic manner, we
attempt to recover X? ∈ Rn×m by minimizing f(X) =
−
∑
j(yj log(σ(Aj•X))+(1−yj) log(1−σ(Aj•X))), where

σ(x) = ex

1+ex is the logistic regression function [23]. More-
over, the Hessian quadratic form of f(X) is [∇2f(X)](D,D)
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=
∑
j σ
′(Aj • X)(Aj • D)2. Then as long as the number

of Gaussian measurements is comparable to the degrees of
freedom in X? and the elements of Aj concentrate in a cer-
tain range (which ensures σ′(·) has small dynamic range),
1-bit matrix recovery fits into our framework. In particu-
lar, when we get full measurements, i.e., we have yij =
bit(Eij •X?),∀i ∈ [n], j ∈ [m] with Eij being the canonical
basic in Rn×m. For this special case, the Hessian quadrat-
ic form is given as [∇2f(X)](D,D) =

∑
ij σ
′(Xij)D

2
ij ,

so we have minij σ
′(Xij)‖D‖2F ≤ [∇2f(X)](D,D) ≤

maxij σ
′(Xij)‖D‖2F . Direct computations give that the

derivative σ′(x) has a smaller dynamic range for small x:
maxx∈[−1,1]σ′(x)
minx∈[−1,1] σ′(x)

≤ 1.27. Therefore, when we restrict the val-
ues |Xij | to be small: maxij |Xij | ≤ 1, 1-bit matrix recovery
fits into our framework. Such an constraint on maxij |Xij | is
also required in [23] to obtain an accurate estimate of X?.

Low-rank Matrix Recovery with Non-Gaussian Noise.
Consider a matrix sensing or PCA problem. When the noise
is from the normal distribution, the according maximum like-
lihood estimation (MLE) is the minimizer of a squared loss
function. However, in practice, the noise in data is often from
other distributions. In this case the resulting MLE is obtained
by minimizing the negative log-likelihood function, which is
not the square loss. Such a noise-adaptive estimator is more
effective than square-loss minimization. To have a strongly
convex and smooth objective function so that our theory can
apply, the noise distribution should be log-strongly-concave.
The reference [24] contains many examples of such distribu-
tions.

4. PROBLEM FORMULATIONS AND
PRELIMINARIES

This paper considers the problem (1) of minimizing a con-
vex function f(X) over the PSD cone. Let X? be an optimal
solution of (1) of rank r?. When the PSD variable X is repa-
rameterized as

X = φ(U) := UUT ,

where U ∈ Rn×r with r ≥ r? is a rectangular, matrix
square root of X , the convex program is transformed in-
to the factored problem (2) whose objective function is
g(U) := f(φ(U)). Inspired by the lifting technique in
constructing SDP relaxations, we refer to the variable X as
the lifted variable, and the variable U as the factored vari-
able. Similar naming conventions apply to the optimization
problems, their domains, and objective functions.

The nonlinear parametrization X = φ(U) makes g(U) a
nonconvex function and introduces additional critical points
(i.e., those U with ∇g(U) = 0 that are not global optima of
the factored optimization (2)). Our goal is to show that each
critical points either corresponds to X? or is a strict saddle
where the Hessian has a strictly negative eigenvalue.

4.1. Metrics in the Lifted and Factored Spaces

Since for any U , φ(U) = φ(UR) where R ∈ Or with Or be-
ing all r× r orthonormal matrices, the domain of the factored
objective function g(U) is stratified into equivalent classes
and can be viewed as a quotient manifold. The matrices in
each of these equivalent classes differ by an orthogonal trans-
formation (not necessarily unique when the rank of U is less
than r). One implication is that, when working in the factored
space, we should consider all factorizations of X? :

A? = {U? ∈ Rn×r : X? = φ(U?)}.

A second implication is that when considering the distance
between two points U1 and U2, one should use the distance
between their corresponding equivalent classes:

d(U1, U2) = min
R∈Or

‖U1 − U2R‖F . (6)

For any two matrices U1, U2 ∈ Rn×r, the following lem-
ma relates the distance ‖φ(U1)− φ(U2)‖F in the lifted space
to the distance d(U1, U2) in the factored space, with the proof
deferred to [1]:

Lemma 1. Assume that U1, U2 ∈ Rn×r. Then

‖φ(U1)− φ(U2)‖F ≥ min{ρ(U1), ρ(U2)}d(U1, U2).

5. PROOF: CONNECTING THE OPTIMALITY
CONDITIONS

The proof is inspired by connecting the optimality conditions
for the two programs (1) and (2). First of all, as a constrained
convex optimization, all critical points of (1) are global opti-
ma and are characterized by the necessary and sufficient KKT
condition [2]:

∇f(X?) � 0,∇f(X?)X? = 0, X? � 0. (7)

The factored optimization (2) is unconstrained, whose critical
points are specified by the zero gradient condition:

∇g(U) = 2∇f(φ(U))U = 0. (8)

To classify the critical points, we compute the Hessian
bilinear form [∇2g(U)](D,D) as:

[∇2g(U)](D,D) = 2〈∇f(φ(U)), DDT 〉
+ [∇2f(φ(U))](DUT + UDT , DUT + UDT ). (9)

For any critical point U of g(U), the corresponding lifted
variable φ(U) = UUT is PSD and satisfies∇f(φ(U))φ(U) =
0. On one hand, if φ(U) further satisfies∇f(φ(U)) � 0, then
in view of the KKT conditions (7) and noting rank(φ(U)) ≤
r, we must have φ(U) = X?, the global optimum of (1). On
the other hand, if φ(U) 6= X?, implying ∇f(φ(U)) � 0 due
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to the necessity of (7), then additional critical points can be in-
troduced into the factored space. Fortunately,∇f(φ(U)) � 0
also implies that the first quadratic form in (9) might be nega-
tive for a properly chosen direction D. To sum up, the critical
points of g(U) can be classified into two categories: the glob-
al optima in the optimal factor set A? with ∇f(φ(U)) � 0
and those with ∇f(φ(U)) � 0. For the latter case, by choos-
ing a proper direction D, we will argue that the Hessian
quadratic form (9) has a strictly negative eigenvalue, and
hence moving along D in a short distance will decrease the
value of g(U), implying that they are strict saddles and are
not local minima.

We argue that a good choice of D is the direction from
current U to its closest point in the optimal factor set A?.
Formally, D = U − U?R where R = argminR̃∈Or ‖U −
U?R̃‖F is the optimal rotation for the orthogonal Procrustes
problem. Plugging D into the first term of (9), we simplify it
as

〈∇f(φ(U)), DDT 〉
= 〈∇f(φ(U)), U?U?T − U?RUT − U(U?R)T + UUT 〉
= 〈∇f(φ(U)), U?U?T 〉
= 〈∇f(φ(U)), φ(U?)− φ(U)〉, (10)

where in the second equality the last three terms involving
U were canceled and in the last equality the term −UUT
was reintroduced both due to the critical point property
∇f(φ(U))U = 0. To build intuition on why (10) is neg-
ative while the second term in (9) remains small, we consider
a simple example: the matrix Principal Component Analysis
(PCA) problem.

Example 1. Matrix PCA Problem. Consider the PCA prob-
lem for symmetric PSD matrices:

minimize
X∈Rn×n

f(X) :=
1

2
‖X −X?‖2F subject to X � 0,

where X? is a symmetric PSD matrix of rank r?. Apparently,
the optimal solution is X = X?. Now consider the factored
problem:

minimize
U∈Rn×r

g(U) := f(φ(U)) =
1

2
‖φ(U)− φ(U?)‖2F ,

where U? ∈ Rn×r satisfies φ(U?) = X?. Our goal is to
show that any critical point U such that φ(U) 6= X? is a strict
saddle. Since ∇f(φ(U)) = φ(U) − φ(U?), by (10), the first
term of [∇2g(U)](D,D) in (9) becomes

2〈∇f(φ(U)), DDT 〉 = 2〈∇f(φ(U)), φ(U?)− φ(U)〉
= 2〈φ(U)− φ(U?), φ(U?)− φ(U)〉
= −2‖φ(U)− φ(U?)‖2F , (11)

which is strictly negative.

The second term [∇2f(φ(U))](DUT + UDT , DUT +
UDT ), essentially vanishes since we will see in the next that
DUT = 0 (hence UDT = 0). For this purpose, let X? =∑r?

i=1 λiqiq
T
i be the reduced eigenvalue decomposition of

X?, where qi’s are orthonormal and λi > 0. Similarly, let
φ(U) =

∑r′

i=1 µiviv
T
i be the reduced eigenvalue decompo-

sition of φ(U), where r′ = rank(U). The critical point U
satisfies −∇g(U) = 2(X? − φ(U))U = 0, i.e.,

0 = (X? −
r′∑
i=1

µiviv
T
i )vj = X?vj − µjvj , j = 1, . . . , r′

implying {µj ,vj}r
′

j=1 form eigenvalue-eigenvector pairs of
X? (so r′ ≤ r?). Then, by reordering the indices if necessary,

µj = λj and vj = qj , j = 1, . . . , r′.

Hence U = [
√
λ1q1 · · ·

√
λr′qr′ 0(r−r′)×n]V

T for some
orthonormal matrix V ∈ Rr×r. Without loss of generality,
we can choose U? = [

√
λ1q1 · · ·

√
λr?qr? 0(r−r?)×n]. By

the Procrustes Lemma in [25], we get R = V T . Finally,

DUT = UUT −U?RUT =

r′∑
j=1

λjqjq
T
j −

r′∑
j=1

λjqjq
T
j = 0.

Hence [∇2g(U)](D,D) is simply determined by its first
term (11):

[∇2g(U)](D,D) = −2‖φ(U)− φ(U?)‖2F
≤ −2min{ρ(U)2, ρ(U?)2}‖D‖2F
= −2ρ(X?)‖D‖2F ,

where the inequality follows from Lemma 1 and the last e-
quality holds since all eigenvalues of φ(U) come from those
of X?. This further implies λmin(∇2g(U)) ≤ −2ρ(X?).

This simple example is ideal in several ways, particular-
ly the gradient ∇f(φ(U)) = φ(U) − φ(U?), which direct-
ly establishes the negativity of the first term in (9); and by
choosing D = U − U?R and using DUT = 0, the second
term vanishes. Both are not true any more for general ob-
jective functions f(X). However, the example does suggest
that the direction D = U − U?R is a good choice to show
[∇2g(U)](D,D) ≤ −τ‖D‖2F for some τ > 0. For a for-
mal proof, we will also use the direction D − U − U?R to
show those critical points U not corresponding to X? have a
negative directional curvature for general factored objective
function g(U).

6. CONCLUSIONS

This work investigates the minimization of a convex function
f(X) over the cone of PSD matrices. To improve computa-
tional efficiency, we focus on the factored problem, and show
it has a benign landscape: each critical point is either a factor
of the globally optimal solution X?, or a strict saddle.
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