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Abstract

Natural disasters, such as hurricanes, earthquakes and large wind or ice storms, typically require
the repair of a large number of components in electricity distribution networks. Since power
cannot be restored before these repairs have been completed, optimally scheduling the available
crews to minimize the cumulative duration of the customer interruptions reduces the harm done
to the affected community. Considering the radial network structure of the distribution system,
this repair and restoration process can be modeled as a job scheduling problem with soft prece-
dence constraints. As a benchmark, we first formulate this problem as a time-indexed ILP with
valid inequalities. Three practical methods are then proposed to solve the problem: (i) an LP-
based list scheduling algorithm, (ii) a single to multi-crew repair schedule conversion algorithm,
and (iii) a scheduling algorithm based on p-factors which can be interpreted as Component Im-
portance Measures. We show that the first two algorithms are 4 and (2 — %) approximations
respectively. We also prove that the latter two algorithms are equivalent. Numerical results

validate the effectiveness of the proposed methods.
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1 Introduction

Natural disasters, such as Hurricane Sandy in November 2012, the Christchurch Earthquake of
February 2011 or the June 2012 Mid-Atlantic and Midwest Derecho, caused major damage to the
electricity distribution networks and deprived homes and businesses of electricity for prolonged
periods. Such power outages carry heavy social and economic costs. Estimates of the annual cost
of power outages caused by severe weather between 2003 and 2012 range from $18 billion to $33
billion on average [8|. Physical damage to grid components must be repaired before power can be
restored. [4] [16]. Hurricanes often cause storm surges that flood substations and corrode metal,
electrical components and wiring [28]. Earthquake can trigger ground liquefaction that damage

buried cables and dislodge transformers [13]. Wind and ice storms bring down trees, breaking



overhead cables and utility poles [11]. As the duration of an outage increases, its economic and
social costs rise exponentially. See [31] [22] for discussions of the impacts of natural disasters on
power grids and [30] [23] for its impact on other infrastructures.

It is important to distinguish the distribution repair and restoration problem discussed in this
paper from the blackout restoration problem and the service restoration problem. Blackouts are
large scale power outages (such as the 2003 Northeast US and Canada blackout) caused by an
instability in the power generation and the high voltage transmission systems. This instability is
triggered by an electrical fault or failure and is amplified by a cascade of component disconnec-
tions. Restoring power in the aftermath of a blackout is a different scheduling problem because
most system components are not damaged and only need to be re-energized. See [1] [2] for a
discussion of the blackout restoration problem and [27] for a mixed-integer programming ap-
proach for solving this problem. On the other hand, service restoration focuses on re-energizing
a part of the local, low voltage distribution grid that has been automatically disconnected fol-
lowing a fault on a single component or a very small number of components. This can usually
be done by isolating the faulted components and re-energizing the healthy parts of the network
using switching actions. The service restoration problem thus involves finding the optimal set
of switching actions. The repair of the faulted component is usually assumed to be taking place
at a later time and is not considered in the optimization model. Several approaches have been
proposed for the optimization of service restoration such as heuristics [29] [10], knowledge based
systems [15], and dynamic programming [18].

Unlike the outages caused by system instabilities or localized faults, outages caused by natural
disasters require the repair of numerous components in the distribution grid before consumers can
be reconnected. The research described in this paper therefore aims to schedule the repair of a
significant number of damaged components, so that the distribution network can be progressively
re-energized in a way that minimizes the cumulative harm over the total restoration horizon.
Fast algorithms are needed to solve this problem because it must be solved immediately after
the disaster and may need to be re-solved multiple times as more detailed information about
the damage becomes available. Relatively few papers address this problem. Coffrin and Van
Hentenryck |7] propose a technique to co-optimize the sequence of repairs, the load pick-ups and
the generation dispatch. However, the sequencing of repair does not consider the fact that more
than one repair crew could work at the same time. Nurre et al. [17] formulate an integrated
network design and scheduling (INDS) problem with multiple crews, which focuses on selecting a
set of nodes and edges for installation in general infrastructure systems and scheduling them on
work groups. They also propose a heuristic dispatch rule based on network flows and scheduling.
The rest of the paper is organized as follows. In Section 2, we define the problem of optimally
scheduling multiple repair crews in a radial electricity distribution network after a natural dis-
aster, and show that this problem is at least strongly AP-hard. In Section 3, we formulate the
post-disaster repair problem as an integer linear programming (ILP) using a multi-commodity
flow model, analyze its complexity, and present a family of valid inequalities. Subsequently, we
propose three polynomial time algorithms based on adaptations of known algorithms in parallel
machine scheduling theory, and provide performance bounds on their worst-case performance. A
list scheduling algorithm based on LP relaxation of the ILP model is discussed in Section 4; an

algorithm which converts the optimal single crew repair sequence to a multi-crew repair sequence



is presented in Section 5; and a heuristic dispatch rule based on p-factors, shown to be equivalent
to the conversion algorithm, is addressed in Section 6. In Section 7, we apply these methods to

several standard test models of distribution networks. Section 8 draws conclusions.

2 Problem formulation

A distribution network can be represented by a graph G with the set of nodes N and the set
of edges (a.k.a, lines) L. We assume that the network topology G is radial, which is a valid
assumption for most electricity distribution networks. Let S C N represent the set of source
nodes which are initially energized and D = N\ S represent the set of sink nodes where consumers
are located. An edge in G represents a distribution feeder or some other connecting component.
Severe weather can damage these components, resulting in a widespread disruption of power
supply to the consumers. Let L” and L/ = L\ L” denote the sets of damaged and intact edges,
respectively. Without any loss of generality, we assume that there is only one source node in G.
If an edge is damaged, all downstream nodes lose power due to lack of electrical connectivity.
Therefore, our goal is to find a schedule by which the damaged lines should be repaired such that

the aggregate harm due to loss of electric power is minimized. We define this harm as follows:

Z Wy T, (1)

nenN

where w,, is a positive quantity that captures the importance of the load at node n and T}, is
the time required to restore power at node n (or the energization time of node n). Of course,
the energization time of the source nodes is 0, i.e., T, = 0, Vn € S. The concept of node
energization time is critical and merits further elaboration. Consider, for example, a simple
3-node chain graph, i — j — k, where node ¢ is the source. Also, assume that the repair times
of the lines ¢ — j and j — k are 5 and 10 time units respectively. Suppose that we have only
one repair crew and that line j — k is repaired first, followed by ¢ — j. If the repair process
starts at time ¢ = 0, both nodes j and k can be energized at time ¢ = 15 because node k cannot
be energized until a path has been repaired from the source all the way to k.

The importance of a node depends on the amount of load connected to it as well as the type
of load served. For example, re-energizing a hospital would receive a higher priority than a
similar amount of residential load. These priority factors would need to be assigned by the
utility companies and their determination is outside the scope of this paper. In this paper, we
consider both the case where a single crew must carry all the repairs and the case where multiple
crews work simultaneously and independently on the repair of separate lines. Each line [ € L
is assumed to have a capacity f; and each damaged line I € L requires a repair time p; which
is determined by the extent of damage and the location of . We assume that all repair times
are integers and that it would take every crew the same amount of time to repair the same
damaged line. We also assume that crew travel times are minimal and can be either ignored
or factored into the component repair times. Instead of a rigorous power flow model, we model
network connectivity using a simple network flow model, i.e., as long as a sink node is connected
to the source, we assume that all the load on this node can be supplied without violating any

line capacity constraint. For simplicity, we treat the three-phase distribution network as if it



were a single phase system. Our analysis could be extended to a three-phase system using a
multi-commodity flow model, as in [34].

We construct two simplified directed radial graphs to model the effect that the topology of the
distribution network has on scheduling. The first graph, G’, is called the ‘damaged component
graph’. All nodes in G that are connected by intact edges are merged into a supernode in
G'. The set of edges in G’ is the set of damaged lines in G, LP. From a computational
standpoint, the nodes of G’ can be obtained by treating the edges in G' as undirected, deleting
the damaged edges/lines, and finding all the connected components of the resulting graph. The
set of nodes in each such connected component represents a (super)node in G'. The edges in
G’ can then be placed straightforwardly by keeping track of which nodes in G are mapped
to a particular node in G’. The direction to these edges can be assigned from a knowledge
of the direction of the power flow prior to the disaster. The second graph, P, called a ‘soft
precedence constraint graph’; is formally defined in Section 4.2. The nodes in this graph are
the damaged lines in G. An edge exists between two nodes if they share the same node in
G’. Computationally, the precedence constraints embodied in P can be obtained by finding
the shortest path (in a radial network, however, there is a unique path between any pair of
nodes) from the source to each leaf node in G and retaining only the damaged lines along
each such path. Consider, for example, the IEEE 13-node test feeder [12] shown in Fig. 1.
Assume that there are four damaged lines, 650 — 632, 632 — 645, 684 — 611 and 671 — 692.
The corresponding G’ and P are shown in Fig. 2. Following the procedure discussed above and
assuming that node 650 is the source, it can be verified that the precedence constraints are: (i)
(650 — 632) — (632 — 645), using the path from 650 to 646, (ii) (650 — 632) — (684 — 611),
using the path from 650 to 611, and (iii) (650 — 632) — (671 — 692), using the path from 650
to 675. While these constraints can be concatenated into one tree, as shown in Fig. 2 (b), it is
quite possible to end up with multiple disjoint trees (forest). For example, if the damaged lines
were 632 — 645, 645 — 646, 671 — 684, 684 — 611 and 684 — 652 instead, the precedence graph
would constitute of two disjoint trees, i.e., P = [Ty, T2], where T; = [(632 — 645) — (645 — 646)]
and T2 = [(671 — 684) — (684 — 652); (671 —684) — (684 — 611)]. If 645 — 646 is deleted from
the set of damaged lines, P = 75 effectively.
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Figure 1: IEEE 13 Node Test Feeder
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Figure 2: (a) The damaged component graph, G’, obtained from Fig. 1, assuming that the
damaged lines are 650 — 632, 632 — 645, 684 — 611 and 671 — 692. In this graph, the supernode
SN; comprises of the nodes {632,633,634,671,680,684,652}, SNy = {645,646}, and SN3 =
{692,675}. The set of edges in this graph is the set of damaged lines. (b) The corresponding
soft precedence graph, P. An edge exists between the nodes (650 — 632) and (684 —611) because
they share the same node, SNy, in G’. As this graph shows, line (650,632) must be repaired
first, allowing for node 632 to be energized. The next three lines that need to be repaired (in
any order, since there aren’t any precedence constraints among them) are the leaf nodes in the
graph, before power can be restored to nodes 645/646, 611 and 692/675.

2.1 Complexity Analysis

In this section, we study the computational complexity of the multi-crew repair scheduling prob-
lem and show that it is at least strongly NP-hard. We first state the following theorem [19] [6]:

Theorem 1. The job scheduling problem, where the weighted completion time is to be minimized

using P identical parallel machines, denoted by P || Zj w;Cj, is strongly N'P-hard.

Proof. We show that a specific instance of the multi-crew repair problem can be reduced to the
scheduling problem P || > ; w;C;. Consider a star network where the source (the ‘hub’ node, say,
a substation) is directly connected to n sink nodes (consumers), with w; denoting the weight of
node j, j = 1,...,n. Suppose the n edges between the source and the sinks are all damaged and m
repair crews are dispatched, m < n. Asillustrated in the paragraph immediately following eqn. 1,
generally speaking, a particular node, say k, cannot be deemed to be energized as soon as the
preceding line, say 7 — k, has been repaired. This is due to the electrical continuity constraint
which requires that a ‘repaired path’ exist from any source to node k before power can be restored
to this node. In the case of a star network, however, this constraint is redundant because any
of the sink nodes can be energized as soon as the edge connecting it to the source/hub node
has been repaired. Since the energization times of the sink nodes are now independent of the
availability of ‘paths’ from the source, as also the energization times of other nodes, minimization
of the total weighted completion time in this problem instance is analogous to P || Ej w;Cj,
with P = m, and is therefore strongly NP-hard. Consequently, the general multi-crew repair

scheduling problem is at least strongly NP-hard. O



3 Integer Linear Programming (ILP) formulation

We model the job sequencing using time-indexed decision variables, xf, where :1:’; = 1 if line
| is being repaired by a crew at time period ¢. Variable y! denotes the repair status of line [
where y! = 1 if the repair is done by the end of time period ¢ — 1 and ready to energize at time
period ¢. Finally, u! = 1 if node i is energized at time period ¢. Let T denote the time horizon
for the restoration efforts. Although we cannot know 7T exactly until the problem is solved, a
conservative estimate should work. Since T; = Y21 (1 — u}) by discretization, the objective

function of eqn. 1 can be rewritten as:

T
minimize Z Z w;i(1 — ub) (2)
t=14eN
This problem is to be solved subject to two sets of constraints: (i) repair constraints and (ii)
network flow constraints, which are discussed next. We mention in passing that the above time-
indexed (ILP) formulation provides a strong relaxation of the original problem [17] and allows
for modeling of different scheduling objectives without changing the structure of the model and

the underlying algorithm.

3.1 Repair Constraints

Repair constraints model the behavior of repair crews and how they affect the status of the
damaged lines and the sink nodes that must be re-energized. The three constraints below are
used to initialize the binary status variables ylt and u!. Eqn. 3 forces yf = 0 for all lines which
are damaged initially (i.e., at time ¢ = 0) while eqn. 4 sets yf =1 for all lines which are intact.
Eqn. 5 forces the status of all source nodes, which are initially energized, to be equal to 1 for all

time periods.

yt =0, VlelLP (3)
yh=1, VielL! Vte[l,T] (4)
ul =1, Vies, vtell,T] (5)

where T is the restoration time horizon. The next set of constraints is associated with the binary
variables xf Eqn. 6 constrains the maximum number of crews working on damaged lines at any

time period t to be equal to m, where m is the number of crews available.

Z xh <m, Vte[1,T] (6)
leLpP

Observe that, compared to the formulation in [17], there are no crew indices in our model. Since
these indices are completely arbitrary, the number of feasible solutions can increase in crew
indexed formulations, leading to enhanced computation time. For example, consider the simple
network ¢ — 5 — k — [, where node ¢ is the source and all edges require a repair time of 5
time units. If 2 crews are available, suppose the optimal repair schedule is: ‘assign team 1 to
1 — jat time t = 0, team 2 to j — k at t = 0, and team 1 to k¥ — [’ at t = 5. Clearly, one

possible equivalent solution conveying the same repair schedule and yielding the same cost, is:



‘assign team 2 toi¢ — jatt =0, team 1 toj — katt =0, and team 1 to k — [ at t = 5.
In general, formulations without explicit crew indices may lead to a reduction in the size of the
feasible solution set. Although the optimal repair sequences obtained from such formulations do
not natively produce the work assignments to the different crews, this is not an issue in practice
because operators can choose to let a crew work on a line until the job is complete and assign
the next repair job in the sequence to the next available crew (the first m jobs in the optimal
repair schedule can be assigned arbitrarily to the m crews).
Finally, constraint eqn. 7 formalizes the relationship between variables zf and y]. It mandates
that y} cannot be set to 1 unless at least p; number of z]’s, 7 € [1,¢ — 1], are equal to 1, where
p; is the repair time of line [.

=

yi <= aj, Vie LP, vt e [1,T] (7)

L

While we do not explicitly require that a crew may not leave its current job unfinished and take

up a different job, it is obvious that such a scenario cannot be part of an optimal repair schedule.

3.2 Network flow constraints

As mentioned previously, electrical continuity dictates that a sink node can be energized only
if there is a ‘repaired path’ from any source to that node. We use a modified form of standard
flow equations to impose this continuity requirement. Specifically, we require that the flows,
originating from the source nodes (eqn. 8), travel through lines which have already been repaired

(eqn. 9). Once a sink node receives a flow, it can be energized (eqn. 10).

Y fi=o, Vvt e [1,T], Vi€ S 8)
led, (i)
~Mxyt<fl<Mxyl, Vte[l,T),VlieL 9)
wl< > =, vte[LT)VieD (10)
1€65 (1) 1€ (i)

In eqn. 9, M is a suitably large constant, which, in practice, can be set equal to the number of
sink nodes, M = |D|. In eqn. 10, 6},(i) and d; (i) denote the sets of lines on which power flows

into and out of node ¢ in G respectively.

3.3 Valid inequalities

Valid inequalities typically reduce the computing time and strengthen the bounds provided by
the LP relaxation of an ILP formulation. We present the following shortest repair time path
inequalities, which resemble the ones in [17]. A node i cannot be energized until all the lines
between the source s and node 7 are repaired. Since the lower bound to finish all the associated
repairs is [ SRTP;/m|, where m denotes the number of crews available and SRT P; denotes the

shortest repair time path between s and i, the following inequality is valid:

> ui=0, VieN (11)
t=1



To summarize, the multi-crew distribution system post-disaster repair problem can be formulated

as:

minimize eqn. 2

subject to eqns. 3 ~ 11 (12)

4 List scheduling algorithms based on linear relaxation

A majority of the approximation algorithms used for scheduling is derived from linear relaxations
of ILP models, based on the scheduling polyhedra of completion vectors developed in [20] and [24].
We briefly restate the definition of scheduling polyhedra and then introduce a linear relaxation

based list scheduling algorithm followed by a worst case analysis of the algorithm.

4.1 Scheduling polyhedron

Let N denote a set of jobs to be scheduled, the ground set. For any A C N, define:

2
1 1 —
9(A) = 3 ij t3 ij (13)
JjeEA jEA
Theorem 2 (Wolsey, 1985 [32]; Queyranne, 1993 [20]). The supermodular polyhedron @ = {C €
RN . EjeA p;C; > g(A) VA C N} is the convex hull of the completion time vectors in general

single machine scheduling.

Similarly, define:

2
1 1
fA) == |D pi| +5> 7 (14)
2m \ “ 2 ¢
jeEA jeEA
where m denotes the number of identical machines (analogous to the number of repair crews in

our context).

Theorem 3 (Schulz, 1996 [24]). The supermodular polyhedron Q = {C € R¥ : > ieapiCj >
f(A) VA C N} is the conver hull of the completion time vectors in general parallel machine
scheduling.

4.2 Linear relaxation of scheduling with soft precedence constraints

A substantial body of research exists on scheduling with precedence constraints. In general,
precedence constraints mandate that a job cannot start until its predecessor is complete. Such
hard precedence constraints, however, are not applicable in post-disaster restoration. While it
is true that a sink node in an electrical network cannot be energized unless there is an intact
path (i.e., all damaged lines along that path have already been repaired) from the source (feeder)
to this sink node, this does not mean that multiple lines on some path from the source to the
sink cannot be repaired concurrently. Instead of explicit continuity constraints discussed in

Section 3.2, we adopt a set of soft precedence constraints in this section to ensure that a set of



lines, necessary to establish an intact path from the source, is repaired prior to the energization
of any sink node. As mentioned previously, we assume that the distribution network can be
modeled as a directed radial graph, which is usually the case in practice.

We keep track of two separate time vectors: the completion times of line repairs, denoted by
Cy’s, and the energization times of nodes, denoted by E,’s. While we have so far associated the
term ‘energization time’ with nodes in the given network topology, G, we now show that it is also
possible to define energization times on the lines. Consider the example in Fig. 2. The precedence
graph, P, requires that the line 650 — 632 be repaired prior to the line 671 — 692. If this (soft)
precedence constraint is met, as soon as the line 671 — 692 is repaired, it can be energized, or
equivalently, all nodes in SN3 (nodes 692 and 675) in the damaged component graph, G’, can
be deemed to be energized. The energization time of the line 671 — 692 is therefore identical to
the energization times of nodes 692 and 675. Before generalizing the above example, we need to
define some notations. Given a directed edge [, let h(l) and ¢(/) denote the head and tail node
of I. Let I = h(l) — t(I) be any edge in the damaged component graph G’. Provided the soft
precedence constraints are met, it is easy to see that £y = Ejy(;), where Ej is the energization time
of line [ and Ey; is the energization time of the node #(/) in G. Analogously, the weight of node
t(1), wy(p), can be interpreted as a weight on the line [, w;. The soft precedence constraint between
two lines ¢ and j, ¢ < 7, indicates that line j cannot be energized unless line ¢ is energized, in
which case, E; > E; must be true. Since the objective of the post-disaster repair and restoration
is to minimize the harm, quantified as the weighted energization time, we propose the following

LP relaxation:

mnar]rguze Z w; k) (15)
jeLP

subject to  Cj > pj;, Vj € P (16)
E; >0y, VjeLP (17)
Ej > Ej, V(Z — j) epP (18)

2
1 1

> piCy > % dopi| + 5 > pi, vACLP (19)
JEA JEA JEA

where P is the soft precedence graph discussed in Section 2 (see also Fig. 2). Eqn. 16 constrains
the completion time of any damaged line to be lower bounded by its repair time, eqn. 17 ensures
that any line cannot be energized until it has been repaired, eqn. 18 models the soft precedence
constraints, and eqn. 19 characterizes the scheduling polyhedron.

The above formulation can be simplified a bit, by recognizing that the C;’s are redundant inter-

mediate variables. Combining eqns. 17 and 19, we have:
2
ijEj > ZPJCJ Z 5 ij t3 ij, VACL (20)
JEA JEA jeEA JEA

which indicates that the vector of F;’s is in the same scheduling polyhedron as the vector of



Cj’s. After some simple algebra, the LP-relaxation can be reduced to:

minitize Z w; B (21)
jeLp

subject to  E; > pj, Vj € LP (22)
E;j>E;, Y(i—j)€P (23)

2
1 1

D piBi =g\ > pi| +5 ) pf, YACLP (24)
jEA JEA JjEA

We note that although there are exponentially many constraints in the above model, the sep-

aration problem for these inequalities can be solved in polynomial time using the ellipsoid

method [24].

4.3 LP-based approximation algorithm

List scheduling algorithms, which are among the simplest and most commonly used approximate
solution methods for parallel machine scheduling problems [21], assign the job at the top of a
priority list to whichever machine is idle first. An LP relaxation provides a good insight into the
priorities of jobs and has been widely applied to scheduling with hard precedence constraints. We
adopt a similar approach in this paper. Algorithm 1, based on a sorted list of the LP midpoints,

summarizes our proposed approach. We now develop an approximation bound for Algorithm 1.

Algorithm 1 Algorithm for single/multiple crew repair scheduling in distribution networks,

based on LP midpoints

Let ELP denote any feasible solution to the constraint eqns. 22 - 24. Define the LP mid points
to be M]LP = EjLP —-pj/2, Vj € LP. Create a job priority list by sorting the M]-LP s in an
ascending order. Whenever a crew is free, assign to it the next job from the priority list. The

first m jobs in the list are assigned arbitrarily to the m crews.

Lemma 1. Let SJH and C’]H denote the start time and completion time respectively of some line

j in the schedule constructed by Algorithm 1. Then:
St <aMMP vjelLP (25)
cfl <2E[", VjelLP (26)

Proof. Define M := [M]-LP =12,

LP ‘] Let M denote M sorted in ascending order, ij

denote the position of some line j € L? in M, and {k: I < fj, k # j} := R denote the set of

jobs whose LP midpoints are upper bounded by M]LP. First, we claim that SJH < % Y icrDi-
To see why, split the set R into m subsets, corresponding to the schedules of the m crews, i.e.,
R=Ui, RE. Since job j is assigned to the first idle crew and repairs commence immediately,

we have:

m
SJH:min Zpi:k:1,2,...m S%ZZM:%ZM, (27)

1ERF k=1ieRk 1€ER

10



where the inequality follows from the fact that the minimum of a set of positive numbers is upper

bounded by the mean. Next, noting that MJ-LP = EjLP — pj/2, we rewrite eqn. 24 as follows:

2
1
ZPJ’M]LPZ om ij ) VAcCLP (28)

jeA jeA

Now, letting A = R, we have:

2
1
LP LP
(S )art? = Swarrr = (500 2
i€ER i€ER i€ER

where the first inequality follows from the fact that M ]-LP > MiLP for any ¢ € R. Combining eqns.
27 and 29, it follows that S7 < 2MEP. Consequently, CH = SH +p; <2aMIP 4 p; =2EFP. O

Lemma 2. Let Df = E]H — CJH denote the delay in energization of line j after repairs have

been completed based on a schedule constructed by Algorithm 1. Then:
DI <2Ef”, VjelLP (30)

Proof. Let i < j denote that job i is a predecessor of j in the precedence graph P. First, we

observe that EJH = max;<; CH . since [ will be energized as soon as repairs on [ and all its

7

predecessors are complete. Now, using Lemma 1, we have:

cH —cll <cl <2pl" <2BIT, vi <, (31)

and consequently,
DI = Bl — Clf — maxClt — O < 264" )
O

Theorem 4. Algorithm 1 is a 4-approximation.
Proof. Noting that Df = EJH — CJH, and using eqns. 26 and 30, we have:
BN < 4Bt (33)

Let EY denote the energization time of line j in the optimal schedule. Then, with E]’;P being

the solution of the linear relaxation,
> wiE[T < Y wE; (34)
jeLb jeLb
Finally, from eqns. 33 and 34, we have:
> wiB <4 > w;E[" <4 Y w,E; (35)
jeLp jeLp jeLp

The lemma follows. O

11



5 An algorithm for converting the optimal single crew repair se-

quence to a multi-crew schedule

In practice, many utilities schedule repairs using a priority list [33]|, which leaves much scope
for improvement. We analyze the repair and restoration process as it would be done with a
single crew because this provides important insights into the general structure of the multi-crew
scheduling problem. Subsequently, we provide an algorithm for converting the single crew repair

sequence to a multi-crew schedule and analyze its worst case performance.

5.1 Single crew restoration in distribution networks

We show that this problem is equivalent to 1 | outtree | ) ; w;Cj, which stands for scheduling
to minimize the total weighted completion time of N jobs with a single machine under ‘outtree’
precedence constraints. Outtree precedence constraints require that each job may have at most
one predecessor. Given the manner in which we derive the soft precedence (see Section 2), it is
easy to see that the precedence graph P will indeed follow outtree precedence requirements, i.e.
each node in P will have at most one predecessor, as long as the network topology G does not

have any cycles.

Lemma 3. Given one repair crew, the optimal schedule in a radial distribution system must

follow outtree precedence constraints in the soft precedence constraint graph P.

Proof. Given one repair crew, each schedule can be represented by a sequence of damaged lines.
Let i — j and j — k be two damaged lines such that the node (j, k) is the immediate successor
of node (7,7) in the soft precedence graph P. Let m be the optimal sequence and 7’ another
sequence derived from 7 by swapping ¢ — j and j — k. Denote the energization times of nodes j
and k in 7 by E; and Ej, respectively. Similarly, let E; and Ej denote the energization times of
nodes j and k in 7', Define f:=3%" .y w,Ey.
Since node k cannot be energized unless node j is energized and until the line between it and
its immediate predecessor is repaired, we have E) = E; in 7" and Ej > E; in m. Comparing 7
and 7/, we see that node k is energized at the same time, i.e., E} = E}, and therefore, E; > Ej.
Thus:
f(@') = f(m) = (wi Ej + wiBy) — (w; Ej + wiEy)
= wj(E;- — Ej) + wk(E]; — Er) >0

Therefore, any job swap that violates the outtree precedence constraints will strictly increase the

(36)

objective function. Consequently, the optimal sequence must follow these constraints. ]

It follows immediately from Lemma 3 that:

Lemma 4. Single crew repair and restoration scheduling in distribution networks is equivalent
to 1| outtree | Zj w;Cj, where the outtree precedences are given in the soft precedence constraint
graph P.

5.2 Recursive scheduling algorithm for single crew restoration scheduling

As shown above, the single crew repair problem in distribution networks is equivalent to 1 |

outtree | Y - w,Cy, for which an optimal algorithm exists [3]. We will briefly discuss this
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algorithm and the reasoning behind it. Details and proofs can be found in [6]. Let J? C L?

denote any subset of damaged lines. Define:

w(IP) = 3w p(IP) = Y p a(J7) = l;((jj))

jeJb jeJb

Obviously, for some j € JP| the above definition reduces to ¢(j) = 1;—; Then, as shown in [6]:

Lemma 5. Let 7 be the optimal sequence and IP and JP represent two sets of damaged lines
in m, to be processed consecutively, such that IP is scheduled immediately before JP. If IP and
JP are disjoint and there is no precedence constraint between any i € I” and any j € JP, then
q(17) 2 q (J7).

Algorithm 2, adapted from [6] with a change of notation, finds the optimal repair sequence by
recursively merging the nodes in the soft precedence graph P. The input to this algorithm is the
precedence graph P. Let N(P) = {1,2,...|N(P)|} denote the set of nodes in P (representing
the set of damaged lines, L), with node 1 being the designated root. The predecessor of any
node n € P is denoted by pred(n). Lines 1 — 7 initialize different variables. In particular, we
note that the predecessor of the root is arbitrarily initialized to be 0 and its weight is initialized
to —oo to ensure that the root node is the first job in the optimal repair sequence. Broadly
speaking, at each iteration, a node j € N(P) (m could also be a group of nodes) is chosen to be
merged into its immediate predecessor i € N(P) if ¢(j) is the largest. The algorithm terminates
when all nodes have been merged into the root. Upon termination, the optimal single crew repair
sequence can be recovered from the predecessor vector and the element A(1), which indicates the
last job finished. For example, consider an arbitrary 5-job scheduling problem where A(1) = 3
and the predecessor vector is pred = [0,1,5,2,4]. The optimal repair sequence is therefore:
{pred(2) = 1 — pred(4) = 2 — pred(5) = 4 — pred(3) =5 — A(1l) = 3}. An illustrative
example is shown in Fig. 3. It is shown in Section 4.3.1 of [6] that the algorithm can compute
the optimal sequence in O(n logn)-time.

We conclude this section by noting that Algorithm 2 requires the precedence graph P to have
a defined root. However, as illustrated in Section 2, it is quite possible for P to be a forest,
i.e., a set of disjoint trees. In such a situation, P can be modified by introducing a dummy root
node with a repair time of 0 and inserting directed edges from this dummy root to the roots of
each individual tree in the forest. This fictitious root will be the first job in the repair sequence

returned by the algorithm, which can then be stripped off.

5.3 Conversion algorithm and an approximation bound

A greedy procedure for converting the optimal single crew sequence to a multiple crew schedule
is given in Algorithm 3. We now prove that it is a (2 — %) approximation algorithm. We start
with two lemmas that provide lower bounds on the minimal harm for an m-crew schedule, in
terms of the minimal harms for single crew and oo-crew schedules. Let H'*, H™* and H>*
denote the minimal harms when the number of repair crews is 1, some arbitrary m (2 < m < 00),
and oo respectively. In the proofs below, we will again associate the term ‘energization time’ with
lines, which, as discussed in Section 4.2, is equivalent to energization times of nodes, provided

the soft precedence constraints are met.
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Algorithm 2 Optimal algorithm for single crew repair and restoration in distribution networks.
The input to this algorithm is the precedence graph P. Let N(P) = {1,2,...|N(P)|} denote the

set of nodes in P, with node 1 being the designated root. The predecessor of any node n € P is

denoted by pred(n). Upon termination, the optimal repair sequence can be unraveled from the

predecessor vector {pred(n):n =1,2,...|N(P)|}, as discussed in the text.

1
2

10:
11:
12:
13:
14:
15:
16:
17:
18:

19

: w(l) < —oo;  pred(1) < 0O;
: for n =1 to |[N(P)| do
3:

A(n) <= n;  Bn<{n}; q(n) < w(n)/p(n);
end for
for n =2 to |[N(P)| do
pred(n) < parent of n in P;
end for
nodeSet + {1,2,--- | |N(P)|};
while nodeSet # {1} do
Find j € nodeSet such that ¢(j) is largest; % ties can be broken arbitrarily
Find ¢ such that pred(j) € B;, i = 1,2,...|N(P)|;
w(i) < w(i) +w(j);
p(i) < p(i) + p();
i) — w(i)/p();
pred(j) « A(i);
AG)  A();
B; < {B;,B;}; % ¢,” denotes concatenation
nodeSet < nodeSet \ {j};

. end while

Algorithm 3 Algorithm for converting the optimal single crew schedule to an m-crew schedule

Treat the optimal single crew repair sequence as a priority list, and, whenever a crew is free,
assign to it the next job from the list. The first m jobs in the single crew repair sequence are

assigned arbitrarily to the m crews.
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Figure 3: An example illustrating Algorithm 2. The dotted lines indicate which node is chosen
for merger at each iteration. For example, node 4 is merged into node 3 at iteration 1. The

optimal repair sequence for this example is [1, 6,2, 3,4, 5].

Lemma 6. H™* > % Hb*

Proof. Given an arbitrary m-crew schedule S™ with harm H™, we first construct a 1-crew repair
sequence, S*. We do so by sorting the energization times of the damaged lines in S™ in ascending
order and assigning the corresponding sorted sequence of lines to S*. Ties, if any, are broken
according to precedence constraints or arbitrarily if there is none. By construction, for any two
damaged lines ¢ and j with precedence constraint ¢ < j, the completion time of line ¢ must be
strictly smaller than the completion time of line j in S, ie., C} < C;. Additionally, C} =
because the completion and energization times of lines are identical for a 1-crew repair sequence
which meets the soft precedence constraints in P.

Next, we claim that EZ1 < mE", where EZ1 and E}" are the energization times of line ¢ in § L and

S™ respectively. In order to prove it, we first observe that:

—cl= Y < Y, (37)

(s EP<EP) {j: Cr<ERY

where the second equality follows from the manner we constructed S! from S™ and the inequality
follows from the fact that CJ’-” < E]m = {j: Ejm <E" C{j: C’Jm < E} for any m-crew
schedule. In other words, the number of lines that have been energized before line 7 is energized
is a subset of the number of lines on which repairs have been completed before line 7 is energized.
Next, we split the set {j : C7* < Ej"} := R (say) into m subsets, corresponding to the schedules
of the m crews in S™, ie., R =J{, RE, where R* is a subset of the jobs in R that appear in

the k' crew’s schedule. It is obvious that the sum of the repair times of the lines in each RF
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can be no greater than F;". Therefore,

m

BI< > = pi=> D> | <mE" (38)

{j: C<Em} jER k=1 \jeRk

Proceeding with the optimal m-crew schedule S™* instead of an arbitrary one, it is easy to see
that El1 < mEZn’*, where Eim’* is the energization time of line ¢ in $”"*. The lemma then follows

straightforwardly.

X 1 1 1 1
H™ = ) wiB 2 ) wi Bl= 0 ) Bl = L 2 D (39)

ic LD ic LD ic LD

O]

Before stating the next lemma, we provide an example which illustrates some of the ideas in
the proof of the previous lemma. Consider the graph G = (a — b — ¢ — d — €), where node
a is the source. From left to right, the lines are numbered 1, 2, 3, and 4, with repair times
10, 40, 20 and 30 respectively. Assume that all lines are damaged and m = 2. Suppose S? =
[(crew-1) : 1,3; (crew-2) : 2,4]. The energization and completion times of the four lines are: (i)
C? = E? =10, (ii) C3 = 40, E3 = 40, (iii) C2 = 30, EZ = 40, and (iv) C} = E7 = 70. Notice
that even though line 3 (c — d) is completed at time ¢ = 30, it can only be energized at time
t = 40 since that’s when repairs on line 2 (b — ¢) are completed. In fact, repairs on two lines
(a — b and ¢ — d) have been completed before time t = E3 = 40, but only one (a — b) has been
energized. The precedence graph for this example is P = (a —b) — (b—c¢) — (¢ —d) — (d —e).
Sorting the energization times in S? in ascending order, the 1-crew sequence is: S* = [1,2,3,4],
where we used P to break a tie between lines 2 and 3. It can be verified that the completion and

energization times of the lines are identical in S?.
Lemma 7. H™* > H*

Proof. This is intuitive, since the harm is minimized when the number of repair crews is at least
equal to the number of damaged lines. In the co-crew case, every job can be assigned to one
crew. For any damaged line j € LP, C%° = pj and E}® = max;<; C7° = max;<;p;. Also,

C’;n’* >pj = C'}?O and E;n’* = max;<; C'im’* > max;<; pi = E]Oo Therefore:

B = S s 3wyl = (0
jeLpb jeLpb

O

Theorem 5. Let E7" be the energization time of line j after the conversion algorithm is applied
to the optimal single crew repair schedule. Then, Vj € LP, E]m < % E;’* + %71 E;°7*.

Proof. Let S7" and C7" denote respectively the start and energization times of some line j € LP in
the m-crew repair schedule, S™, obtained by applying the conversion algorithm to the optimal 1-
crew sequence, S™*. Also, let Z; denote the position of line j in S¥* and {k : I, < Z;} := R (say)
denote the set of all lines completed before j in S™*. First, we claim that: S;-” < % > icr Pi-
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A proof can be constructed by following the approach taken in the proof of Lemma 1 and is

therefore omitted. Now:

= SI" +p; (41)
1
= E Zpi + pj (42)
1€ER
1 m—1
Loy ety (43
i€ERUj
1 1 m 1
- oy, (44)
and
Bl = max c (45)
1 ., -1
< max — C’il’ + max m i (46)
=i m =7 m
1 017* m—1 4
=5 +TI?§]XP¢ (47)
o 1 El,* m—1 Eoo,* 4
w T b 48)
O
Theorem 6. The conversion algorithm is a (2 — %)—approm'mation.
Proof.
H™ =Y w;E (49)
jeLP
< Lpte M= 1o ing Th 5 50
_ij —E; + o .-+ using Theorem (50)
JELP
1 Z gl m—1 Z > (51)
jeLb jeLb
1 1,% m—1 00, %
= —HY 4 —— H® (52)
m m
1 ™% m—1 m,* .
< — (mH™*)+ ——H™" ... using Lemmas 6 - 7 (53)
m m
1
= (2 - > Hm (54)
m
O

6 Heuristic dispatch rule

In this section, we develop a multi-crew restoration algorithm, proven to be equivalent to the
conversion algorithm discussed in the previous section, but from a different perspective. In
the process, we define a parameter, p(l), VI € LP. which can be interpreted as a ‘component
importance measure’ (CIM) in the context of reliability engineering. Towards that goal, we

revisit the single crew repair problem, in conjunction with the algorithm proposed in [9].
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Let S; denote the set of all trees rooted at node [ in P and s; € S; denote the minimal subtree

ZjEN(sl*) wj (ZjeN(sl) wj)

p(l) = =——— =max
ZjeN(sZ‘)pj s1€5; ZjGN(sl)pj

which satisfies:

(55)

where N(s;) is the set of nodes in s;. We define the ratio on the left-hand side of the equality in
eqn. 55 to be the p-factor of line I, denoted by p(l). According to Smith’s ratio rule [26], jobs are
sequenced in descending order of the ratio w;/p;, which indicates that jobs with a larger weight
and a smaller repair time have a higher priority. The parameter p(l), which is a generalization
of the ratio w;/p;, characterizes the repair priority of some damaged line [ in terms of its own
importance as well as the importance of all its successor nodes in P, and can be interpreted as a
component importance measure for line /. We refer to the tree s; as the minimal p-maximal tree
rooted at [, which resembles the minimal p-maximal initial sets discussed in [25]. An important
characteristic of the p-factors is that they can be used to solve the single crew repair scheduling

problem optimally, as stated in Algorithm 4 below, adopted from [9].

Algorithm 4 Algorithm for single crew repair scheduling in distribution networks

Whenever the crew is free, say at time t, select among the remaining candidate lines the one
with the highest p-factor. The candidate set comprises all lines which are connected to the set

of energized nodes at time t.

It has been proven in [3] that Algorithms 2 and 4 are equivalent. We now show that the p-factors
needed in Algorithm 4 can be calculated as a byproduct of Algorithm 2, thereby reinforcing the

equivalence of the two algorithms.

Lemma 8. There exists an optimal schedule such that all lines in the minimal p-mazimal tree

are repaired without interruption.

A rigorous proof can be constructed following the technique used to prove Lemma 3 in [25],
although the two lemmas are not exactly identical. Instead, we provide a more intuitive expla-
nation. We will prove Lemma 8 by contradiction. Assume that the optimal sequence within
some s; is S* = [l,---,1]. Suppose that this sequence is interrupted by some other line r
which has no precedence constraints between itself and any other node in s;, i.e., the new se-
quence is Sy =[l,--- ,k+1,{r}, k,--- ,1]. We compare this sequence with two other sequences,
So = [{r},l,---,1], and S = [1,---,[,{r}]. Let us assume that S; is better than S, in the
sense that pi(l) > pa(l), where:

wp+ o+ W1 Wy + W1 + - w1 w; + w1+ -+ wp
pr(l) = and po(l) =
F 20 e o N e o 0 o N T B 1 pLtpi-1t P

are the p factors of node [ in S7 and Ss respectively. It can then be shown that:

%>wl+wl,1+--~+w1 wy + wj—1 + -+ Wit
Dr pr+pi—1+--+p1 p+pi—1 o+ Dr1

pi(l) > pa(l) =

where the last inequality follows from the definition of the p-factor applied to node [ in S*.

Therefore
’ %>wl+wl_1+~-+wk+1

Dr pi+Dpi—1 o+ Perr
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which implies that Sy is better than S; (see Lemma 5), a contradiction. The same reasoning
holds if we assume that S is better than Ss. In other words, either Sy or Ss is always better
than S7, thereby establishing that all lines in the minimal p-maximal tree must be repaired
without interruption in an optimal schedule. The rigorous proof should consider the case when
the optimal sequence is interrupted multiple times. By comparing Lemma 8 and Algorithm 2,

we have the following result.

Theorem 7. The largest q(5) found in line 10 of Algorithm 2 is the p-factor of j, j € LP, and

Bj is the set of nodes in the minimal p-maximal tree rooted at j.

Proof. We prove this theorem by induction on the iterations of the loop. On the very first
iteration, the line j € LP with the largest wj/p; ratio is chosen, and trivially, this ratio is equal
to p(7). Suppose the theorem holds for iterations 1 through ¢. When analyzing iteration ¢ + 1,

we make the following claims.

e Claim 1: In any iteration, ¢(j) cannot decrease after node k is merged into node j. If ¢(j)
were to decrease, it must be true that ¢(j) > ¢(k) before the merger, which means that &

could not have been chosen for merger into j in the first place.

e Claim 2: Deleting a node or a group of nodes to B; cannot increase ¢(j). Referring to
Algorithm 2, let B} denote the set of nodes in B; at some iteration ¢. Pick some node
k € B;, where k is a successor of j in the precedence graph P. Let Al be any subset
of BZ, such that k € AZ. Suppose A}tC is deleted from the set Bjt-. For obvious reasons,
we need to only address the case where such a deletion does not violate the precedence
constraints in P (i.e., if k is removed, all its successors in P which also appear in B}, must
also be removed). Let ¢*(j) and ¢*(j) denote the p-factors of j before and after the deletion

operation. Clearly,

EieB§ Wi

Zz‘eB§ bi

Zie{B;\Ag} w;

and ¢'(j) = .
q'(j) e (ma) P

q'(j) =
Since the B;’s represent an ordered sequence of nodes (see line 17 in Algorithm 2), deletion
of the set A}; from B; implies that the last node in the residual sequence is the first node
which appears to the left of &k in B;. We first consider the case when this residual sequence
comprises j and at least one other node, i.e., there is at least one other node between j
and k in Bjt-. Assume that ¢'(j) > ¢'(j). If this is true, it can be shown that:

Zz‘e{B;.\A’,;} Wi ZieAZ W
> )
Zie{B}\Ag} Di ZieA; Di

implying that the algorithm should have first recursively merged all successors of node j
which are in the set {B}t \ A} into j, before merging the successors of k in Ag- into k. This
is a contradiction of the optimality of Algorithm 2, and therefore, it must be true that
q'(j) > G (j). If the residual sequence comprises j only (i.e., j is immediately to the left of
kin BY), ¢'(4) > ¢'(j) = Z—;, by Claim 1.
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e Claim 3: Adding a node or a group of nodes to B; cannot increase ¢(j). Note that not all
nodes are viable candidates for addition. Since the precedence graph is a directed tree and
the algorithm works up toward the root, the only node(s) which need to be considered are
successors of 7 in P which are not in B;. Let AE- be a subset of the set of successor nodes
of 7 in P, such that A; N B; = (). Suppose we add the nodes in A; to B;, without violating
any precedence constraint. Let ¢'(j) and ¢'(j) denote the p-factors of j before and after
the addition operation, i.e.,

Zz‘eB§ Wi

t/ - -
7(j)==—"— and ¢(j)=
ZieB§ bi

il U A}
Zie{By U A} P

Following a similar reasoning as in Claim 2, it can be shown that ¢'(j) > ¢*(j).

Combining Claims 2 and 3, we see that ¢(j) = p(j) in iteration t + 1, and therefore B; is
essentially the set of nodes in the minimal p-maximal tree rooted at j. This completes the

induction process. O

Algorithm 4 can be extended straightforwardly to accommodate multiple crews. However, in this
case, it could happen that the number of lines that are connected to energized nodes is smaller
than the number of repair crews. To cope with this issue, we also consider the lines which are
connected to the lines currently being repaired, as described in Algorithm 5 below. However, it

turns out, as in Theorem 8, that the candidate sets in both algorithms are actually identical.

Algorithm 5 Algorithm for multi-crew repair scheduling in distribution networks

Whenever a crew is free, say at time t, select among the remaining candidate lines the one with
the highest p-factor. The candidate set consists of all the lines that are connected to already

energized nodes, as well as the lines that are being repaired at time t.

Theorem 8. Algorithm 5 is equivalent to Algorithm 8 discussed in Section 5.

Proof. We first show that Algorithms 4 and 5 select the same job at each time step, as long as
ties, if any, are broken identically. This does not mean, however, that their schedules are identical
since Algorithm 4 is applicable to a single crew while Algorithm 5 is applicable for multiple crews.
The proof is by induction on the order of lines being selected. In iteration 1, it is obvious that
Algorithms 4 and 5 choose the same line for repair. Suppose this is also the case for iterations
2 to t — 1, with the lines chosen for repair being I, lo, I3, - -+, and l;_; respectively. Then, in
iteration ¢, the set of candidate lines for both algorithms is the set of immediate successors of
the supernode {l1, la, ---, ls—1}. Since ¢(j) = p(j) by Theorem 7, both algorithms will choose
job 7 in iteration t, thereby completing the induction process. Then Algorithm 5 converts the
sequence of Algorithm 4 into a multi-crew schedule and Algorithm 4 is equivalent to Algorithm 2,

therefore Algorithm 5 is equivalent to the conversion algorithm. O

Finally, we would like to mention that a more general method based on parametric minimum
cuts in an associated directed precedence graph is presented in [14]. This procedure also allows

for online computation of the repair schedule with periodic updates of the p-factors.
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7 Case Studies

In this section, we apply our proposed methods to three IEEE standard test feeders of different
sizes. We consider the worst case, where all lines are assumed to be damaged. In each case,
the importance factor w of each node is a random number between 0 and 1, with the exception
of a randomly selected extremely important node with w = 5. The repair times are uniformly
distributed on integers from 1 to 10. We compare the performances of the three methods, with
computational time being of critical concern since restoration activities, in the event of a disaster,
typically need to be performed in real time or near real time. All experiments were performed
on a desktop with a 3.10 GHz Intel Xeon processor and 16 GB RAM. The ILP formulation was

solved using Julia for Mathematical Programming with Gurobi 6.0.

7.1 IEEE 13-Node Test Feeder

The first case study is performed on the IEEE 13 Node Test Feeder shown in Fig. 1, assuming
that the number of repair crews is m = 2. Since this distribution network is small, an optimal
solution could be obtained by solving the ILP model. We ran 1000 experiments in order to
compare the performances of the two heuristic algorithms w.r.t the ILP formulation.

Fig. 4 shows the density plots of optimality gaps of LP-based list scheduling algorithm (LP) and
the conversion algorithm (CA), along with the better solution from the two (EN). Fig. 4a shows
the optimality gaps when all repair times are integers. The density plot in this case is cut off at 0
since the ILP solves the problem optimally. Non-integer repair times can be scaled up arbitrarily
close to integer values, but at the cost of reduced computational efficiency of the ILP. Therefore,
in the second case, we perturbed the integer valued repair times by 40.1, which represents a
reasonable compromise between computational accuracy and efficiency. The optimality gaps in
this case are shown in Fig. 4b. In this case, we solved the ILP using rounded off repair times, but
the cost function was computed using the (sub-optimal) schedules provided by the ILP model and
the actual non-integer repair times. This is why the heuristic algorithms sometimes outperform
the ILP model, as is evident from Fig. 4b. In both cases, the two heuristic algorithms can solve
most of the instances with an optimality gap of less than 10%. Comparing the two methods, we
see that the conversion algorithm (CA) has a smaller mean optimality gap, a thinner tail, and
a better worst case performance. However, this does not mean that the conversion algorithm is
universally superior. In approximately 34% of the problem instances, we have found that the
LP-based list scheduling algorithm yields a solution which is no worse than the one provided by

the conversion algorithm.

7.2 IEEE 123-Node Test Feeder

Next, we ran our algorithms on one instance of the IEEE 123-Node Test Feeder [12] with m = 5.
Since solving such problems to optimality using the ILP requires a prohibitively large computing
time, we allocated a time budget of one hour. As shown in Table 1, both LP and HA were able

to find a better solution than the ILP, at a fraction of the computing time.
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Harm Time(s)
ILP 3.0788 x 103 3600
Conversion Algorithm | 2.2751 x 103 <ls
Linear Relaxation 2.3127 x 103 24s

Table 1: Performance comparison for the IEEE 123-node test feeder

7.3 IEEE 8500-Node Test Feeder

Finally, we tested the two heuristic algorithms on one instance of the IEEE 8500-Node Test
Feeder medium voltage subsystem [5] containing roughly 2500 lines, with m = 10. We did not
attempt to solve the ILP model in this case and it took about 3 days to solve its linear relaxation
(which is reasonable since we used the ellipsoid method to solve the LP with exponentially many

constraints). The conversion algorithm actually solved the instance in 28s.

7.4 Discussion

From the three test cases above, we conclude that the ILP model would not be very useful for
scheduling repairs and restoration in real time or near real time, except for very small problems.
Even though it can be slow for large problems, the LP-based list scheduling algorithm can serve
as an useful secondary tool for moderately sized problems. The conversion algorithm appears to

have the best overall performance by far, in terms of solution quality and computing time.
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8 Conclusion

In this paper, we investigated the problem of post-disaster repair and restoration in electric-
ity distribution networks. We first proposed an ILP formulation which, although useful for
benchmarking purposes, is feasible in practice only for small scale networks due to the immense
computational time required to solve it to optimality or even near optimality. We then presented
three heuristic algorithms. The first method, based on LP-relaxation of the ILP model, is proven
to be a 4-approximation algorithm. The second method converts the optimal single crew sched-
ule, solvable in polynomial time, to an arbitrary m-crew schedule with a proven performance
bound of (2 — %) The third method, based on p-factors which can be interpreted as component
importance measures, is shown to be equivalent to the conversion algorithm. Simulations con-
ducted on three IEEE standard networks indicate that the conversion algorithm provides very
good results and is computationally efficient, making it suitable for real time implementation.
The LP-based algorithm, while not as efficient, can still be used for small and medium scale
problems.

Although we have focused on electricity distribution networks, the heuristic algorithms can also
be applied to any infrastructure network with a radial structure (e.g., water distribution net-
works). Future work includes development of efficient algorithms with proven approximation
bounds which can be applied to arbitrary network topologies (e.g., meshed networks). While we
have ignored transportation times between repair sites in this paper, this will be addressed in
a subsequent paper. In fact, when repair jobs are relatively few and minor, but the repair sites
are widely spread out geographically, optimal schedules are likely to be heavily influenced by the
transportation times involved instead of the repair times. Finally, many distribution networks
contain switches that are normally open. These switches can be closed to restore power to some
nodes from a different source. Doing so obviously reduces the aggregate harm. We intend to

address this issue in the future.
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