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Abstract—Distribution systems are often crippled by catas-
trophic damage caused by a natural disaster. Well-designed
hardening can significantly improve the performance of post-
disaster restoration operations. Such performance is quantified
by a resilience measure associated with the operability trajectory.
The distribution system hardening problem can be formulated
as a two-stage stochastic problem, where the inner operational
problem addresses the proper scheduling of post-disaster repairs
and the outer problem the judicious selection of components to
harden. We propose a deterministic single crew approximation
with two solution methods, an MILP formulation and a heuristic
approach. We provide computational evidence on various IEEE
test feeders which illustrates that the heuristic approach provides
near-optimal hardening solutions efficiently.

I. INTRODUCTION

NATURAL disasters have caused major damage to elec-
tricity distribution networks and deprived homes and

businesses of electricity for prolonged periods, for example
Hurricane Sandy in November 2012 [1], the Christchurch
Earthquake in February 2011 [2] and the June 2012 Mid-
Atlantic and Midwest Derecho [3]. Estimates of the annual
cost of power outages caused by severe weather between 2003
and 2012 range from $18 billion to $33 billion on average
[4]. Physical damage to grid components must be repaired
before power can be restored [1], [5]. On the operational side,
approaches have been proposed for scheduling the available
repair crews in order to minimize the cumulative duration of
customer interruption, which reduces the harm done to the
affected community [6]–[8]. On the planning side, Kwasinski
et al. [2] reported facilities that had been upgraded or hardened
in Christchurch, at a cost of $5 million, remained service-
able immediately after the September 2010 earthquake and
saved approximately $30 to $50 million in subsequent repairs.
Hardening minimizes the potential damages caused by dis-
ruptions, thereby facilitating restoration and recovery efforts,
and the time it takes for the infrastructure system to resume
operation [9]. However, as indicated in [10], the difficulty
of hardening does not lie in the design or construction of a
hardened system, rather in the ability to quantify the expected
performance improvement so that rational decisions can be
made regarding increased cost versus potential future benefit.
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A. Concept and quantification of resilience
Resilience in infrastructure systems under natural disas-

ters is an important current area of research. While sev-
eral definitions of resilience have been proposed [11]–[13],
infrastructure resilience is typically defined as the ability
to anticipate, prepare for, adapt to changing climate condi-
tions and withstand, respond to, and recover rapidly from
disruptions [14]. Resilience usually addresses the following
four aspects - preparedness, robustness, resourcefulness and
recovery, as illustrated in Fig. 1, which is adapted from the
‘Resilience Construct’ in [15]. Since resourcefulness mainly
depends on people instead of technology, the planning aspect,
preparedness, should be guided by the other two operational
aspects, robustness and recovery.

Robustness Resourcefulness

Fig. 1: Interactions between the four aspects of resilience

In the civil engineering context, resilience can be illus-
trated using the “operability trajectory”, Q(t), as shown in
Figure 2, adopted from [16]. The trajectory shows the increase
in infrastructure functionality over time and is an effective
visual indicator of the ‘goodness of the restoration process’.
Robustness is quantified by the depth of functionality drop
at time zero (without any loss of generality, we assume that
the the disaster occurs at time t = 0 and the restoration
process commences immediately afterward), while the quality
of the recovery process is quantified by the ramp up time of
the operability trajectory to full/satisfactory functionality, post
time zero. Obviously, we desire that an infrastructure system
exhibit a relatively small drop in functionality at time zero
and a quick ramp up time to full/satisfactory functionality,
post time zero. Consequently, the ideal operability trajectory is
defined by Qideal(t) = 1, ∀t ≥ 0, assuming that operability is
measured in fractional units instead of percentages. These two
metrics can naturally be combined into an unifying measure
of resilience [12]. Letting T be the restoration time horizon,
a resilience measure, R, can be defined as follows [16]:

R =

∫ T

0

Q(t)dt, (1)

The closer Q(t) is to Qideal(t), the greater is the area under
Q(t), and therefore the greater is the resilience measure.

Instead of maximizing the resilience measure defined
in eqn. 1, we could choose to minimize the quantity
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∫ T
0
Qideal(t)dt−

∫ T
0
Q(t)dt, which is the area over the Q(t)

curve, bounded from above by Qideal(t). This area, informally,
the ‘other side of resilience’, can be interpreted as a measure
of ‘aggregate harm’. In a power system, it can be shown using
the Lebesgue integral that minimizing this area is equivalent
to minimizing the quantity

∑
n wnTn, where wn can be

interpreted as the contribution of node n to the overall loss in
functionality of the system or the importance of node n and
Tn is the time to restore node n. Therefore, the objective for
operational problems is to minimize the measure

∑
n wnTn,

given a specific disaster scenario, while the objective for
planning problems is to minimize

∑
n wnTn in an expected

sense, where the expectation is over all possible disaster
scenarios.
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Fig. 2: Operability trajectory after Hurricane Katrina [16].

B. Literature review

Defending critical infrastructures at the transmission level
has been a major research focus over the past decade [17]–
[19]. In general, this research adopted the setting of Stack-
elberg game and formulated the problem with a tri-level
defender-attacker-defender model. Such a model assumes that
the attacker has perfect knowledge of how the defender will
optimally operate the system after the attack and the attacker
manipulates the system to its best advantage.

In recent years, several researchers have investigated dif-
ferent methods for distribution systems hardening, but most
focus solely on the robustness, i.e., worst-case load shedding
at the onset of disaster. Of note, a resilient distribution network
planning problem (RDNP) was proposed in [20] to coordinate
the hardening and distributed generation resource allocation. A
tri-level defender-attacker-defender model is studied, in which
the defender (hardening planner) selects a network hardening
plan in the first stage, the attacker (natural disaster) disrupts the
system with an interdiction budget, and finally, the defender
(the distribution system operator) reacts by controlling DGs
and switches in order to minimize the shed load. This model
is improved in [21] by considering the investment cost and by
eliminating the assumption that enhanced components should
remain intact during any disaster scenario. Another direction
of research enforces chance constraints on the loss of critical
loads and normal loads respectively [22], [23]. A two-stage
stochastic program and heuristic solution of hardening strategy

were proposed in [24], specifically for earthquake hazards,
under the assumption that the repair times for similar types of
components follow an uniform distribution, which simplifies
the problem to a certain extent.

C. Our approach

To the best of our knowledge, this paper is the first to
consider the restoration process in conjunction with hardening.
Our approach can be seen as a two-stage stochastic problem.
The first stage selects from the set of potential hardening
choices and determines the extent of hardening to maximize
the expected resilience measure R, while the second stage
solves the operational problem in each possible scenario by op-
timizing the sequence of repairs given the hardening results. In
the operational problem, we consider scheduling post-disaster
repairs in distribution network with parallel repair crews. This
issue will be discussed in more detail in Section VI. Since
an ideal formulation of the problem is hard to solve and
also turns out impractical, we developed a deterministic single
crew approximation with a heuristic approach to solve the
hardening problem. Wang et al. [25] make a distinction
between hardening activities and resiliency activities which
are focused on the effectiveness of humans post-disaster. By
using only one repair crew in the operational problem, we can
also focus on the effects of network structure and components,
and reduce the reliance on resourcefulness (i.e. the number of
repair crews available).

The rest of the paper is organized as follows. In Section II,
we briefly review the operational problem of scheduling post-
disaster repairs in distribution networks with multiple repair
crews and discuss an algorithm that converts an optimal single
crew repair schedule to an arbitrary m-crew schedule with
a proven performance bound. An MILP model for solving
the single crew repair sequencing problem is also discussed
in this section. In Section III, we formulate the problem of
distribution system hardening against natural disasters and
model it as a stochastic optimization problem, followed by
a deterministic reformulation (Section IV) and single crew
approximation (Section V). In Section VI, we motivate why
we believe it is important to consider the restoration process
(operational phase) in the hardening problem (planning phase)
and develop the so called ‘restoration process aware hardening
problem’. Two solution methods, an MILP formulation and an
iterative heuristic algorithm, are also discussed in this section.
The performance of these methods is validated by various case
studies on various standard IEEE test feeders in Section VII.

II. SCHEDULING POST-DISASTER REPAIRS IN
DISTRIBUTION NETWORKS

In this section, we briefly review the operational problem of
scheduling post-disaster repairs in distribution networks with
multiple repair crews. Further details can be found in [6].

A. Distribution networks modeling

A distribution network can be modeled by a graph G with
a set of nodes N and a set of edges L. Let S ⊂ N represent
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the set of source nodes which are initially energized and
D = N \ S represent the set of sink nodes where consumers
are located. An edge in G represents a distribution feeder
or some other connecting component. We assume that the
network topology G is radial, which is a valid assumption for
many electricity distribution networks. Instead of a rigorous
power flow model, we model network connectivity using a
simple network flow model, i.e., as long as a sink node is
connected to the source, we assume that all the loads connectd
to this node can be supplied without violating any security
constraint. For simplicity, we treat the three-phase distribution
network as if it were a single-phase system. Our analysis could
be extended to a three-phase system using a multi-commodity
flow model, as in [26].

B. Damage modeling

Let LD denote the set of damaged edges. Without loss of
generality, we assume that there is only one source node in G.
If an edge is damaged, all downstream nodes lose power due
to lack of electrical connectivity. Each damaged edge l ∈ LD
has a (potentially) unique repair time pl. At the operational
stage, we assume perfect knowledge of the set LD and the
corresponding repair times, while, at the planning stage, the
repair times are modeled as random variables following some
probability distribution.

C. Scheduling post-disaster repairs

Let wn be a nonnegative quantity that captures the im-
portance of the load at node n. The importance of a node
can depend on multiple factors, including but not limited to,
the amount of load connected to it, the type of load served,
and interdependency with other critical infrastructures. For
example, re-energizing a node supplying a major hospital
should receive a higher priority than a node supplying a similar
amount of residential load. Similarly, it is likely that a node
that provides electricity to a water sanitation plant would be
assigned a higher priority. These priority factors would need
to be assigned by the utility and their determination is outside
the scope of this paper. In this paper We assume that the wn’s
are known.

Based on conversations with an industry expert, we also
make the assumption that crew travel times in a typical
distribution network are small compared with the time required
for each repair. These travel times are therefore neglected
as a first order approximation. Additionally, since hardening
decisions are made at the planning stage, it is unrealistic to
expect an accurate prediction what travel times might be when
a disaster occurs. Within this framework, the operational goal
is therefore to find a schedule by which the damaged lines
should be repaired such that the aggregate harm,

∑
n∈N wnTn,

is minimized.
We construct two simplified directed radial graphs to model

the effect that the topology of the distribution network has
on scheduling. The first graph, G′, is called the ‘damaged
component graph’. All nodes in G that are connected by intact
edges are contracted into a supernode in G′. The set of edges
in G′ is the set of damaged lines in G, LD. The directions

to these edges follow trivially from the network topology. The
second graph, P , is called a ‘soft precedence constraint graph’,
and is constructed as follows. The nodes in this graph are the
damaged lines in G and an edge exists between two nodes in
this graph if they share the same node in G′. Such a graph
enables us to consider the hierarchal relationships between
damaged lines, which we define as soft precedence constraints.
See Fig. 4 for examples of P and G′.

Fig. 3: IEEE 13 Node Test Feeder

(a) G′ graph (b) P graph

Fig. 4: (a) The damaged component graph, G′, obtained from
Fig. 3, assuming that the damaged edges are 650−632, 632−
645, 684 − 611 and 671 − 692. (b) The corresponding soft
precedence graph, P .

Two different time vectors are of interest in the operational
problem: a vector of completion times of line repairs, denoted
by Cl’s, and a vector of energization times of nodes, denoted
by En’s. While we have so far associated the term ‘energiza-
tion time’ with nodes in a given network topology, G, it is
also possible to define energization times for the lines. Given
a directed edge l ∈ G′, let h(l) and t(l) denote its head and tail
nodes, i.e., l = h(l)→ t(l). Then, El = Et(l), where El is the
energization time of line l and Et(l) is the energization time
of the node t(l) in G. Analogously, the weight of node t(l),
wt(l), can be interpreted as a weight on the line l, wl. The soft
precedence constraints, i ≺S j, therefore implies that line j
cannot be energized unless line i is energized, or equivalently,
Ej ≥ Ei.
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D. Solution methods for optimal single crew repair sequenc-
ing

We begin with the following lemma, which connects the
problem defined above to a well studied problem in schedul-
ing theory, for which a polynomial time optimal algorithm
exists [27]. A proof of this lemma can be found in [6].

Lemma 1. Single crew repair and restoration scheduling in
distribution networks is equivalent to 1 | outtree |

∑
wjCj ,

where the outtree precedences are given in the soft precedence
constraint graph P .

The problem of 1 | outtree |
∑
wjCj can be solved in

polynomial time. Algorithm 1 shown below is based on the
algorithm in Chapter 4 of [28], which solves this problem in
O(n logn) time (see Theorem 4.8 in [28]). Additional details
and an example can be found in [6].

Algorithm 1 Optimal algorithm for single crew restoration in
distribution networks. The input to this algorithm is the prece-
dence graph P . The notation pred(n) denotes the predecessor
of any node n ∈ P .

1: w(1)← −∞; pred(1)← 0;
2: for n = 1 to |N(P )| do
3: A(n)← n; Bn ← {n}; q(n)← w(n)/p(n);
4: end for
5: for n = 2 to |N(P )| do
6: pred(n)← parent of n in P ;
7: end for
8: nodeSet← {1, 2, · · · , |N(P )|};
9: while nodeSet 6= {1} do

10: Find j ∈ nodeSet such that q(j) is largest;
% ties can be broken arbitrarily

11: Find i such that pred(j) ∈ Bi, i = 1, 2, . . . |N(P )|;
12: w(i)← w(i) + w(j);
13: p(i)← p(i) + p(j);
14: q(i)← w(i)/p(i);
15: pred(j)← A(i);
16: A(i)← A(j);
17: Bi ← {Bi, Bj}; % ‘,’ denotes concatenation
18: nodeSet← nodeSet \ {j};
19: end while

We also present an MILP formulation for determining
the optimal repair sequence. With only one repair crew, the
damaged components must be repaired one by one, so there
can be LD decisions to make, one at each time stage. The
duration of each stage depends on the repair time of the
component. We use two sets of binary decision variables. The
first set of decision variables is denoted by {xtl}, where xtl = 1
if edge l is repaired at time stage t and is equal to 0 otherwise.
The second set of decision variables is denoted by {uti}, where
uti = 1 if node i is energized at the end of time stage t and is
equal to 0 otherwise. Let T denote the restoration time horizon
and ht denote the harm till time stage t. The MILP model for

minimizing the aggregate harm is shown below:

min
x,u

T∑
t=1

ht (2a)

s.t. u0
i = 1, ∀i ∈ S (2b)
T∑
t=1

uti = 1, ∀i ∈ D (2c)∑
l∈LD

xtl = 1, ∀t ∈ [1, T ] (2d)

t−1∑
τ=0

uτi + utt(l) − 2xtl ≥ 0, l ∈ LD, i ∈ Ne(t(l)),∀t

(2e)

d0 = 0 (2f)

dt ≥ dt−1 + pl × xtl , ∀t ∈ [1, T ], ∀l ∈ LD (2g)
ht ≥ wjutjdt, ∀j ∈ D, ∀t ∈ [1, T ] (2h)

The first set of constraints binds the two sets of decision
variables. Constraints (2b) and (2c) specify that all source
nodes be energized initially and all sink nodes be energized by
time T . Constraint (2d) requires that only one damaged edge
be chosen for repair at any time stage. Constraint (2e) requires
that when an edge l ∈ LD is chosen for repair at time stage
t, i.e., xtl = 1, both utt(l) and

∑t−1
τ=0 u

τ
i must be equal to 1. In

other words, if the tail node of edge l, t(l), is to be energized
at time stage t, at least one of its neighbors in the damaged
component graph G′, denoted by Ne(t(l)), must have been
energized at some previous time stage. This constraint follows
directly from the outtree precedences in Lemma 1.

The second set of constraints connects the aggregate harm
with the decision variables. The intermediate variable dt

models the aggregate restoration time just prior to time stage
t. Constraint (2f) initializes the aggregate restoration time to 0
while constraint (2g) requires that the difference dt−dt−1, for
some t, be at least the repair time of the edge being repaired
at time t. Finally, constraint (2h) models the tth stage harm if
l is the edge being repaired at time stage t, whose tail node is
j. Note that constraint (2h) can be easily linearized using the
big-M method, details of which are omitted.

E. An algorithm for converting the optimal single crew se-
quence to an m-crew sequence

A greedy procedure for converting the optimal single crew
sequence to a multiple crew schedule is given in Algorithm 2.
Let H1,∗, Hm,∗ and H∞ denote the optimal harms when the
number of repair crews is 1, some arbitrary m (2 ≤ m <∞),
and ∞ respectively. Note that the case with infinite many
repair teams is trivial so we drop the superscript ∗ for
simplicity. Then, the following results hold:

Hm,∗ ≥ 1

m
H1,∗ (3)

Hm,∗ ≥ H∞ (4)

Due to space limitations, we omit additional details and instead
refer the reader to the proofs of Propositions 4 and 5 in Section
5.3 of [6]. Furthermore:
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Algorithm 2 Algorithm for converting the optimal single crew
schedule to an m-crew schedule

Treat the optimal single crew repair sequence as a priority
list, and, whenever a crew is free, assign to it the next job
from the list. The first m jobs in the single crew repair
sequence are assigned arbitrarily to the m crews.

Proposition 1. Let Hm be the harm corresponding to an m-
crew schedule, obtained by application of Algorithm 2 on an
optimal single crew sequence (which can be computed using
Algorithm 1). Then:

Hm ≤ 1

m
H1,∗ +

m− 1

m
H∞ (5)

Proof. See proof of Theorem 4 in Section 5.3 of [6].

Consequently,

Theorem 1. Algorithm 2 is a
(
2− 1

m

)
approximation. That

is:
Hm ≤

(
2− 1

m

)
Hm,∗

Proof. Follows straightforwardly from eqns (3) ∼ (5).

III. THE HARDENING PROBLEM: FORMULATION

A. Damage modeling

As mentioned above, damages are modeled by repair time
vectors associated with network components. Since no a
priori exact information about the damages is available at
the planning stage, we model the repair times as a random
vector ~P . The uncertainties are twofold: all possible natural
disasters that planners want to take into account and the
uncertain damages to components caused by a specific dis-
aster. The distribution of ~P can be a mixture of a Bernoulli
distribution which represents the probability of damage and
a (possibly) continuous distribution of repair time, such as
the exponential [29] or log-normal distribution [30]. Mixed
distributions, usually do not admit a closed-form expression of
their distribution functions. In our work, we do not assume any
knowledge of the distribution function, except for knowledge
of the first moment E[~P].

Some planners tend to use the sample average approxima-
tion (SAA) methods by considering a limited set of component
damage scenarios, which are either defined by users or drawn
from a probabilistic model, as in [22], [23]. It is known that
SAA methods converge to the optimal solution as the sample
size goes to infinity. However, SAA methods require that the
selected scenarios be typical and right on target, or the sample
averaging needs to be performed over a large number of cases.

B. Hardening options and costs

In practice, multiple hardening actions are usually available
for each network component. For example, hardening an edge
can involve some combination of vegetation management,
pole reinforcement, undergrounding, enhanced pole guying,

[21]. Typically, the goal of hardening a component is to
lower the probability of its failure in the event of a disaster.
However, since we are interested in maximizing the resilience
of the system, or equivalently, minimizing the aggregate harm,
simply lowering the probability of failure of a component
is not sufficient. Since the aggregate harm is a function of
the restoration times of the nodes, which in turn depend on
the repair times of the damaged components (and the repair
schedule), hardening a component can only be beneficial if it
leads to a corresponding reduction in the repair time of that
component.

In this paper, we assume that there is a finite set of hardening
strategies for each edge l, which we denote by Kl. Each
such strategy can be some combination of several disjoint
hardening actions. We require that the hardening process select
one strategy from the set Kl. Let ~p = {pl}, where pl is
the ‘expected repair time’ of component l before hardening,
∆~p = {∆plk}, where ∆plk is the ‘expected reduction in the
repair time’ of component l due to hardening strategy k ∈ Kl,
and clk be the cost of implementing hardening strategy k on
edge l. We make the following assumption on the relationship
between clk and ∆plk:

Assumption 1. For any two hardening strategies (k1, k2) ∈
Kl, if ∆plk1 < ∆plk2 , then clk1 < clk2 and vice versa.

Generally, the more a component is hardened, the greater
is the cost of hardening, but so is the reduction in repair
times. The reasoning behind Assumption 1 is similar to
that of Proposition 1 in [31]. If there exists two hardening
strategies (k1, k2) ∈ Kl which violate the assumption, i.e.,
∆plk1 > ∆plk2 is true while clk1 < clk2 , strategy k2 cannot
be part of the optimal hardening solution.

C. A stochastic programming model

Definition 1. Given a repair time vector ~p, the min-harm (or
equivalently, max-resilience) function, denoted by fm(·), is the

mapping ~p
fm(·)7−→ Hm,∗, where Hm,∗ is the harm when repairs

are scheduled optimally with m repair crews.

Let C denote the capital budget available for hardening, P
denote the repair time after hardening (modeled as a random
vector to account for different disaster scenarios), and ylk be
a binary variable which is equal to 1 if hardening strategy k is
chosen for edge l and 0 otherwise. A stochastic optimization
model for minimizing the expected aggregate harm assuming
m repair crews is shown below:

min
{∆pl},{ylk}

E[fm(~P)] (6a)

s.t. ~p−∆~p = E[~P] (6b)∑
k∈Kl

ylk ≤ 1, ∀l ∈ LD (6c)∑
l∈LD

∑
k∈Kl

clkylk ≤ C (6d)

∆pl =
∑
k∈Kl

∆plkylk, ∀l ∈ LD (6e)

ylk ∈ {0, 1}, ∀l ∈ LD, ∀k ∈ Kl (6f)
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where the expectation in eqn (6a) is over all disaster scenarios
as explained in Section III-A. While the notation LD denotes
the set of actual damaged edges in the context of the post-
disaster scheduling problem (operational phase), we interpret
it as the set of all edges which could potentially be damaged in
the event of a disaster, the worst case operational scenario, in
the context of the hardening problem. Eqn. (6b) is the mean-
enforcing constraint (which requires that we have knowledge
of the first moment of ~P), eqns. (6c) and (6f) force at most
one hardening strategy to be chosen per edge from the set
Kl, eqn. (6d) enforces the budget constraint, and eqn. (6e)
models the (possible) reduction in repair time of each edge
l due to hardening. Observe that the set of constraints (6c),
(6d) and (6f) mimics a 0-1 knapsack constraint since we are
essentially choosing a subset of hardening strategies from the
set of all hardening strategies over all edges, subject to a
budget constraint.

IV. DETERMINISTIC ROBUST REFORMULATION BY
JENSEN’S INEQUALITY

Unfortunately, the aforementioned stochastic program is
extremely difficult to solve, even with perfect knowledge of
the statistical distribution of ~P . This is due to two reasons.
First, it is almost impossible to know beforehand the explicit
form of fm(·), even when the operational problem is solv-
able in polynomial time for m = 1. Second, evaluation of
the objective function requires knowledge of the distribution
function of ~P , while at the same time, this distribution function
depends upon the decision variable (see eqns. 6a and 6b).
This circular dependency effectively rules out the applicability
of SAA methods. While metaheuristics such as simulated
annealing could be used to solve the above problem to (near)
optimality, doing so might require an inordinate amount of
computation time. We therefore propose a deterministic robust
reformulation in Section IV which is more computationally
tractable. We begin this section by showing that the min-harm
function fm(~p) is concave.

Theorem 2. The min-harm function fm(~p) is concave.

Proof. Let ~pi and ~pj be two different repair time vectors and
fm~pi (~pj) denote the harm evaluated by the optimal schedule
corresponding to ~pi when the actual repair time vector is ~pj .
Obviously, fm(~pj) = fm~pj (~pj). For some ~p0 6= ~p, we have:

fm~p0(~p)− fm~p0(~p−∆~p) =
∑
l∈LD

∆pl
∑
j∈Rl

wj , (7)

where Rl denotes the set of jobs assigned to the same crew
as l, scheduled no earlier than l in the optimal schedule
corresponding to ~p0. This shows that fm~p0(~p) is a linear function
of the pl’s in ~p0. And since fm(~p) is the optimal schedule,

fm(~p) = min
~p0

fm~p0(~p), (8)

which implies that fm(~p) is the point-wise minimum of a set
of affine functions and is therefore concave.

Since fm(~p) is concave, Jensen’s inequality [32] holds and
the objective function (6a) can be naturally upper bounded as
follows:

E[fm(~P)] ≤ fm(E[~P]) (9)

The preceding discussion motivates the following determin-
istic robust reformulation (note that constraint (6b) has been
wrapped into the objective function):

min
{∆pl},{ylk}

fm(~p−∆~p) (10)

s.t. (6c) ∼ (6f)

As will be apparent from Section VI, the above model is a
key development which allows for an integrated treatment of
the restoration process and the hardening problem.

We conclude this section with a note on the worst case
impact on the objective function caused by the upper bounding
by Jensen’s inequality. Assume that the support of ~P is
bounded, i.e., ~P ∈ [~0, ~pmax]. Then, it follows from Theorem
1 in [33] that:

fm
(
E[~P]

)
− E

[
fm(~P)

]
≤ fm (~pmax)− 2fm

(
~pmax

2

)
(11)

V. SINGLE CREW APPROXIMATION

While the stochastic model and its deterministic reformula-
tion discussed above are applicable for any value of m, for the
rest of the paper, we make the assumption that m = 1. That is,
the hardening decisions, which are made at the planning stage,
are based on an assumption of single crew repair sequencing
at the operational stage. The main motivation for making the
single crew assumption is that it is practically impossible
to know at the planning stage the actual number of repair
crews that will be available in the event of a disaster. While
hardening decisions based on an assumption of m1 repair
crews are most likely not the optimal decisions if the number
of crews is actually m2, a single crew assumption allows us to
factor in the restoration process in these hardening decisions,
without requiring a precise a priori knowledge of m or a
joint probability distribution on the type/magnitude/scale of
the disaster event and m.

We now provide a theoretical upper bound on the aggregate
harm during the operational stage, applicable for any arbitrary
value of m, even when hardening decisions have been made
based on m = 1. Consider two hardening strategies, A and B,
with corresponding expected reduction in repair time vectors,
∆~pA and ∆~pB . Suppose strategy A is obtained from the
minimization of the objective function (10) with m = 1 and
B is an arbitrary hardening strategy. For a strategy S, we
also define Hm,∗

S := fm(~p−∆~pS), the deterministic optimal
harm (i.e., the objective function function in eqn. 10) at the
operational stage with m repair crews and Hm

S denote the
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harm for an m-crew schedule computed using Algorithm 2
with repair time vector ~p−∆~pS . Then:

Hm,∗
B ≥ 1

m
H1,∗
B (12)

≥ 1

m
H1,∗
A (13)

≥ Hm
A −

(
m− 1

m

)
H∞A (14)

≥ Hm
A −

(
m− 1

m

)
H∞ (15)

where the first inequality follows from eqn. 3, the second
inequality follows from the fact that hardening strategy A is
by definition optimal when m = 1, the third inequality follows
from Proposition 1, and the fourth inequality follows from the
fact that the aggregate harm defined by any m after hardening
is upper bounded by the aggregate harm before hardening.
Rearranging terms, we have:

Hm
A ≤ H

m,∗
B +

(
m− 1

m

)
H∞ (16)

Since B represents any hardening strategy,

Hm
A ≤ min

B

{
Hm,∗
B +

(
m− 1

m

)
H∞

}
= Hm,∗

OPT +

(
m− 1

m

)
H∞, (17)

where Hm,∗
OPT represents the deterministic optimal harm when

a network has been hardened by minimizing objective function
(10), with perfect knowledge of m.

The implication of eqn. (17) is that, while hardening strategy
A may not be optimal for some chosen m > 1, the approxima-
tion gap between the harm when an m-crew schedule (obtained
by applying Algorithm 2) is used during the operational stage
and the harm corresponding to an optimal hardening strategy
for that specific value of m is at most

(
m−1
m

)
H∞. In practice,

the value of H∞ can be determined straightforwardly during
the planning stage. Clearly, the smaller H∞ is, the better the
single crew approximation is and an exact or probabilistic
a priori knowledge of m corresponding to different disaster
events may not even be necessary if H∞ is small enough.
Note that the H∞ term on the r.h.s of eqn. (17) could be way
smaller than Hm,∗

OPT . This is likely to be so when the hardening
budget is limited since the benefits of an infinite number of
repair crews will outweigh the benefits of hardening.

We wish to emphasize that our single crew approximation
during the planning stage does not prevent the network opera-
tor from deploying multiple crews during the operational stage
for post-disaster restoration. In fact, a network which has been
designed/hardened with an eye on the restoration process, al-
beit with one repair crew, will ensure a smaller aggregate harm
(or improved resilience) during the restoration process post-
disaster when additional repair crews might be available, as
opposed to a network which has been designed/hardened with
no consideration given to the restoration process. Simulation
results discussed in Section VII-C confirm this.

VI. RESTORATION PROCESS AWARE HARDENING
PROBLEM

Usually, the restoration problem and the hardening problem
are treated separately because the former is an operational
problem while the latter is a planning problem. However,
we argue that the two problems should not be treated in
isolation because hardening can affect the repair times, which
in turn, can influence the restoration times through the se-
quencing process and thereby the aggregate harm or resilience.
The model that we formulate is similar to single machine
scheduling with controllable processing times, which dates
back to the 1980s [34]. See Section 2 in [35] for a review
of recent advances. Our problem is more complicated in the
sense that the effect of hardening decisions (analogous to
‘costs of compression amount’ in the context of single machine
scheduling with controllable processing times) are not just
linear, instead they are embedded in the sequencing problem.

In this section, we discuss two solution approaches for
the so-called ‘restoration process aware hardening problem’
(RPAHP), first an MILP formulation, followed by a heuristic
algorithm framework inspired by a continuous convex relax-
ation, considering m = 1.

A. MILP formulation

In Section II-D, we developed an MILP model for opti-
mizing the repair schedule with one repair crew, while in
Section V, we developed a deterministic single crew ap-
proximation of the hardening problem , both with the same
objective, minimization of the aggregate harm. These two
models can be easily incorporated into an integrated MILP
formulation, as shown below:

min
~x,~u,∆~p,~y

T∑
t=1

ht (18)

s.t (2b) ∼ (2f)

dt ≥ dt−1 + (pl −∆pl)× xtl , ∀t ∈ [1, T ], ∀l ∈ LD
(19)

(6c) ∼ (6f)

Observe that the impact of hardening, ∆pl, is incorporated
into constraint (19). The product of ∆pl and xtl on the r.h.s
of eqn. (19) can be easily linearized using the big-M method,
details of which are omitted.

B. A continuous convex relaxation

For notational brevity, we define f(·) := f1(·). As stated
previously, the min-harm function fm(·) is concave piecewise
affine and so is f(·). In general, concave minimization prob-
lems are NP-hard [36]. In our case, there are at most n!
affine pieces, corresponding to n! number of affine possible
sequences, where n = |LD| is the number of damaged edges.

The RPAHP involves two types of decision variables, the
sequencing variables (the x’s and u’s) and the hardening
variables (the ∆p’s). Given the hardening variables, it is
straightforward to see that the joint optimization problem
reduces to the single crew sequencing problem, which can
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be solved optimally in polynomial time as stated previously
in Section II-D.

Now let us consider the case where the sequencing variables
are fixed. Let Ωl :=

∑
j∈Rl

wj , where Rl is the set of some
edges l ∈ LD and all its successors in the given sequence.
The quantity Ωl represents the reduction in aggregate harm per
unit decrease in pl. The objective function for the hardening
problem can now be recast as f(~p) =

∑
l∈LD Ωl pl, which

implies:

f(~p−∆~p) =
∑
l∈LD

Ωlpl −
∑
l∈LD

Ωl∆pl (20)

Since the first term on the r.h.s of eqn. (20) is a constant,
instead of minimizing f(~p − ∆~p), an equivalent formulation
is:

max
~y

∑
l∈LD

∑
k∈Kl

Ωl∆plkylk (21a)

s.t.
∑
k∈Kl

ylk ≤ 1 ,∀l ∈ LD (21b)∑
l∈LD

∑
k∈Kl

clkylk ≤ C (21c)

ylk ∈ {0, 1}, ∀l ∈ LD, ∀k ∈ Kl (21d)

This model is similar to that of the multiple choice knapsack
problem [31], where Ωl∆plk’s are the value coefficients and
clk’s are the cost coefficients. Since the multiple choice
knapsack is known to be NP-hard, we propose an algorithm
based on convex envelopes and LP relaxation, similar to [37].

Definition 2 (Convex envelope [38]). Let M ⊂ Rn be convex
and compact and let g : M → R be lower continuous on M .
A function ĝ : M → R is called the convex envelope of f on
M if it satisfies:

• ĝ(x) is convex on M ,
• ĝ(x) ≤ g(x) for all x ∈M ,
• there is no function h : M → R satisfying (1), (2) and
g(x0) < h(x0) for some point x0 ∈M .

Intuitively, the convex envelope is the best underestimating
convex function of the original function. Details of a polyno-
mial time algorithm for computing the convex envelope of a
piecewise linear function can be found in [37].

Given a discrete function of clk vs. ∆plk for some edge
l and a set of all hardening actions k ∈ Kl, we first
connect the neighboring points, starting from the origin, to
construct a continuous piecewise linear cost function Cl(∆pl),
where ∆pl is the relaxed continuous decision variable. It
follows from Assumption 1 that Cl is a strictly increasing
function. Let Ĉl denote the convex envelope of Cl and
K̂l = {1, 2, · · · , |K̂l|} denote the set of breakpoints/knots on
the convex envelope (excluding the origin) corresponding to
the hardening strategies in consideration, indexed in ascending
order of ∆plk. The linear relaxation of (21) based on the

convex envelope approximations, which we denote as (LP),
can then be formulated as:

max
∆~p

∑
l∈LD

Ωl∆pl (22a)

s.t. Ql ≥ max
k∈K̂l

[µlk (∆pl − αlk) + blk] , ∀l ∈ LD (22b)∑
l∈LD

Ql ≤ C (22c)

0 ≤ ∆pl ≤ ∆pl,|K̂l|, ∀l ∈ L
D (22d)

where µlk and blk are the slope and intercept of the kth piece
of Ĉl, αlk is the lower breakpoint of the kth piece of Ĉl,
and Ql is an intermediate decision variable which accounts
for the budget spent on edge l. This formulation is similar to
the conventional continuous knapsack problem, and it turns
out that the optimal values of ∆pl are always from the set
{0, some βlk, (αlk, βlk)}, where βlk is the upper breakpoint of
the kth piece of Ĉl. Furthermore, at most one ∆pl can have
an intermediate value in the range (αlk, βlk) in the optimal
solution. For some l and k > 1, the intercept parameter, blk, is:
blk = Ĉl (αlk) = Ĉl

(
βl(k−1)

)
. For k = 1, αlk = Ĉl (αlk) =

blk = 0.
The preceding LP relaxation (22) can also be solved op-

timally using a greedy algorithm by first sorting the ratios{
Ωl

µlk

}
in a descending order, and then choosing the compo-

nents (and the degree of hardening) based on that sorted list
iteratively, until the budget is exhausted. Ties, if any, during
the selection process, are broken arbitrarily. We use a ∆p
variable for each edge l and each segment k of Ĉl. All these
∆plk variables are initialized to 0. Once a selection is made
from the sorted list at any iteration T , say (lT , kT ), we set
∆plT kT equal to the maximum value possible within the range
[αlT kT , βlT kT ] such that the ‘cumulative budget’ at the end
of iteration T does not exceed C. Typically, this maximum
value will be at the upper breakpoint βlT kT , unless, doing
so results in a budget violation. In that case, a proper value
within the range (αlT kT , βlT kT ) is chosen such that the budget
is met exactly. At the end of every iteration, we evaluate the
expression of budget spent:

Λ =
∑
l∈LD

Ĉl

(
max
k∈K̂l

{∆plk}
)
, (23)

which represents the cumulative budget consumed till the
current iteration. The algorithm terminates when Λ = C. Upon
termination, the optimal ∆pl values can be obtained from the
∆plk values as follows:

∆pl = max
k∈K̂l

{∆plk} . (24)

The optimality of the greedy algorithm for solving the LP
relaxation (22) using the convex envelopes of the hardening
cost functions is proven in the appendix of [39].

C. An iterative heuristic algorithm

We now discuss an iterative heuristic algorithm for solving
the RPAHP. First, we note that the solutions obtained from the
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greedy algorithm used to solve the convex relaxation formu-
lation (22) may need to be rounded down to the nearest lower
breakpoints on the convex envelopes so that the hardening
strategy is feasible for each edge. However, after completion
of the rounding process, we may find that a portion of the
budget has been left unspent. We therefore incorporate a
backfill heuristic which iteratively solves LP relaxations of the
form (22) with the unspent budget from the previous iteration
and the remaining available hardening options, along with
updated convex envelopes, followed by a rounding down to
a feasible hardening strategy. The backfill process terminates
whenever the budget has been spent exactly, or, when no
further enhancement is possible on any edge without exceeding
the budget. Fig. 5 provides a flowchart of the iterative heuristic
algorithm for solving the restoration process aware hardening
problem. An illustrative example can be found in [39].

Calculate schedule 
by Algorithm 1 and 
Ω𝑙 ’s accordingly

Obtain(update) convex 

envelope ෡𝐶𝑙(∆𝑝𝑙) for 
each line 𝑙

Solve linear 
relaxation (LP) by 
greedy algorithm 

Round LP solution 
∆𝑝𝑙’s to nearest lower 

knot

Budget 
spent or 
actions  

depleted?

Solution
Yes

No

Update remaining 
budget 𝐶, available 

options ∆𝑝𝑙𝑘

Fig. 5: Flowchart of an iterative heuristic algorithm for solving
the RPAHP.

VII. CASE STUDIES

A. IEEE 13 node test feeder

We first tested the MILP and the heuristic approach dis-
cussed in the previous section on the IEEE 13 node test
feeder with randomly generated Cl’s and two different bud-
gets. Values of E[f(·)] in this section were computed using
Monte Carlo simulations assuming an independent geometric
distribution for each pl. With a budget of C = 20, hardening
actions did not result in different repair schedules and both
the MILP and heuristic approaches yielded identical results.
With a budget of C = 60, even though the hardening actions
suggested by the MILP and heuristic approaches differ for
two edges, as shown in Table I, the objective values obtained
from the greedy algorithm, both for E[f(·)] and its upper
bound f(E[·]), are very close to those provided by the MILP
formulation. In fact, the ratios of the f(E[·]) measure from

the greedy algorithm to the E[f(·)] measure from the MILP
algorithm are both approximately 1.04 for C = 20 and C = 60
(note that this ratio captures the worst case performance loss,
including the effect of upper bounding the true objective
function using Jensen’s inequality).

TABLE I: Comparison of hardening results on the IEEE 13
node test feeder with a budget of C = 60.

Edge l ∆pl by MILP ∆pl by heuristic
671-684 0.2 0.4
645-646 0 0.4
632-645 0.5 0.8
632-671 5.3 3.5
f(E[·]) 14.411 14.520

E[f(·)] 13.987 14.146

We then varied the hardening budget from 0 to 50. Fig. 6
shows the aggregate harm as a function of the budget for
m = 1. The MILP and the heuristic produced almost identical
results when using the f(E[·]) measure so that their plots
almost overlap. The plots corresponding to the E[f(·)] measure
are also very close, considering the errors introduced by Monte
Carlo simulations. The gap between the true objective and the
deterministic objective, E[f(·)]−f(E[·]), is fairly constant for
both the MILP and the heuristic. As expected, the aggregate
harm decreases (resilience increases) as the hardening budget
increases.
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Fig. 6: Aggregate harm vs. hardening budget for the IEEE 13
node test feeder.

Finally, in Fig. 7, we compare the pre-hardening sequencing
decisions with the post-hardening decisions calculated using
the MILP for the same case study as in Table I. In these
Gantt charts, each ‘box’ represents the repair of a line and
the width of each ‘box’ is proportional to the repair time,
appropriately scaled for better visualization. Observe that the
two sequences differ by the relative locations of lines (632,
645), (645, 646) and (632, 633). This confirms the interaction
between sequencing and hardening decisions. Finally, we want
to emphasize that these sequencing decisions are abstract
constructs that only serve to model operational decisions at
the planning stage.

B. IEEE 37 node test feeder

Next, we ran our algorithms on one instance of the IEEE
37 node test feeder [40]. Since the running time of the MILP
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(633,634)(692,675)(671,680)(671,692)(684,652)(684,611)(671,684)(632,671)(632,633)(645,646)(632,645)(650,632)

(a) Gantt chart of sequencing decisions before hardening

(633,634)(692,675)(671,680)(671,692)(684,652)(684,611)(671,684)(632,671)(645,646)(632,645)(632,633)(650,632)

(b) Gantt chart of sequencing decisions after hardening (MILP)

Fig. 7: Comparison of optimal single crew repair schedules before and after hardening.

formulation increases exponentially with network size, we
allocated a time budget of 10 hours. In contrast, the heuristic
algorithm yielded a solution within seconds. Table II shows
the edges for which the MILP and heuristic approach produced
different hardening results, along with the objective function
values.

TABLE II: Comparison of hardening results, ∆pl’s, on the
IEEE 37 node test feeder with C = 200.

Edge l ∆pl by MILP(10 hours) ∆pl by heuristic
744-729 0.8 0
708-733 0 0.3
702-705 2.1 0.4
708-732 0 0.2
734-710 0.1 1.4
f(E[·]) 843.08 842.04

E[f(·)] 672.21 667.35

Analogous to Fig. 6, Fig. 8 shows a plot of the aggregate
harm vs. the hardening budget for m = 1. Due to the
inordinate amount of time required to solve the MILP, we
show results only for the heuristic. Unlike the 13 node feeder,
the aggregate harm in this case exhibits a steep drop initially
before gradually tapering off. This tapering off reflects the fact
that our cost functions were so chosen that no line could be
hardened enough to reduce its repair time to zero; i.e., for
every line l, we ensured that pl −∆pl > 0.
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Fig. 8: Aggregate harm vs. hardening budget for the IEEE 37
node test feeder.

C. IEEE 8500 node test feeder

Finally, we tested the performance of the heuristic algorithm
on one instance of the IEEE 8500 node test feeder medium

voltage subsystem [41] containing roughly 2500 edges. We
did not attempt to solve the ILP model in this case, but
the heuristic algorithm took just 9.36 seconds to solve this
problem.

Analogous to Figs. 6 and 8, Fig. 9 shows a plot of the
aggregate harm vs. the hardening budget for m = 1. Due to
issues with computational time, we chose to plot the f(E[·])
measure only as a function of the budget using the heuristic
algorithm.
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Fig. 9: Aggregate harm vs. hardening budget for the IEEE
8500 node test feeder.

Even if hardening decisions at the planning stage are made
based on single crew operational scheduling, the resilience of
the system would still improve if multiple crews are deployed
at the operational stage. To emphasize this aspect, Fig. 10
shows the normalized improvement in harm,

β :=
Hm −Hm

A

Hm
(25)

for different values of m. The reduction in the repair time
vector due to hardening, ∆~pA, was obtained using the iterative
heuristic algorithm with a budget of C = 2000. For m > 1,
the aggregate harms before and after hardening, Hm and
Hm
A , were determined from m-crew schedules obtained using

Algorithm 2. The normalized improvement in harm shows a
slight decrease (note the scale on the y-axis). This generally
decreasing trend is understandable since the improvement
in system resilience due to the availability of an increasing
number of repair crews will gradually outweigh the improve-
ment in resilience due to hardening with a limited budget.
Nevertheless, even for m = 50, we can observe that the
normalized improvement in harm due to hardening remains
above 8%, even though the hardening decisions were made
considering m = 1.
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Fig. 10: Normalized improvement in harm, β (see eqn. 25),
as a function of the number of repair crews, m, for the IEEE
8500 node test feeder.

VIII. CONCLUSIONS

In this paper, we investigated the problem of strategically
hardening a distribution network to be resilient against natural
disasters. Motivated by research on resilient infrastructure sys-
tems in civil engineering, we proposed an equivalent definition
of resilience with a clear physical interpretation. This allows
us to integrate the post disaster restoration process and the
planning stage component hardening decision process into one
problem, which, we argued, is necessary since both aspects
ultimately contribute to system resilience. This is a major
departure from most current research where the two aspects
of resilience are treated separately. We first modeled the
restoration problem as an MILP and the hardening problem as
a stochastic program, which was reformulated using Jensen’s
inequality and approximated by single crew for computational
tractability. Finally, we unified the sequencing and hardening
aspects and proposed an integrated MILP model as well
as an iterative heuristic algorithm. The expected component
repair times are used to generate an optimal single crew
repair sequence, based on which hardening decisions are made
sequentially in a greedy manner. Simulations on IEEE standard
test feeders show that the heuristic approach provides near-
optimal solutions efficiently even for large networks.
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