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Recently there has been a surge of new experimental proposals to search for ultralight axion dark matter
with axion mass,ma ≲ 1 μeV. Many of these proposals search for small oscillating magnetic fields induced
in or around a large static magnetic field. Lately, there has been interest in alternate detection schemes
which search for oscillating electric fields in a similar setup. In this paper, we explicitly solve Maxwell’s
equations in a simplified geometry and demonstrate that in this mass range, the axion-induced electric
fields are heavily suppressed by boundary conditions. Unfortunately, experimentally measuring axion-
induced electric fields is not feasible in this mass regime using the currently proposed setups with static
primary fields. We show that at larger axion masses, induced electric fields are not suppressed, but
boundary effects may still be relevant for an experiment’s sensitivity. We then make a general argument
about a generic detector configuration with a static magnetic field to show that the electric fields are always
suppressed in the limit of large wavelength.
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I. INTRODUCTION

Starting about 104 years after the big bang and lasting
1010 years after, the gravitational evolution of the Universe
was driven mostly by dark matter (DM). But despite the
wealth of compelling evidence for DM, we have not yet
understood it on a particle level or determined how it fits
next to the Standard Model (SM) of particle physics. In
fact, the field of possible explanations for DM is so broad as
to incorporate masses from ∼10−22 eV to ∼100 M⊙.
One of the leading candidates to explain the DM

abundance is the axion. It was originally proposed to solve
the strong-CP problem in QCD [1–3], but its weak
interaction strength with SM particles and an elegant
production mechanism in the early Universe make it a
promising candidate to explain DM as well [4–6].
Unlike the more thoroughly constrained DM candidate,

the weakly interacting massive particle (WIMP), the axion
is expected to be extremely light with mass 10−14 ≲ma ≲
1 eV (see Refs. [7–9] for a recent review). This implies that
unlike WIMP DM, which would have a few particles per
cubic meter, axion dark matter (aDM) would have a very
high number density and behave like a coherent field. In
this case, the DM energy density is better thought of as the

kinetic and potential energy of a classical field rather than a
dilute gas of individual particles.
If produced by the misalignment mechanism [4,5], the

time evolution of the axion field is expected to be given by

aðx; tÞ ¼ a0 cosðωat − x · kDÞ; ð1Þ
where the frequency of oscillation is approximately equal
to the axion mass ωa ¼ ma and has an arbitrary overall
phase. If aDM is responsible for the observed DM density,
we can relate a0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
=ma, where ρDM is the local DM

density of ∼0.3 GeV=cm3 [10]. Though aDM is extremely
cold, it is expected to have a very small velocity spread
due to gravitational effects. In the potential well of the
Milky Way we expect a typical local velocity spread of
vDM ∼ 220 km=s. This results in a small spread in oscillation
frequency due to Doppler shifting, Δωa=ωa ∼ v2DM ≈ 10−6,
aswell as small spatial gradients on the scale of thedeBroglie
wavelength, λD ¼ 2π=jkDj.
Experiments searching for aDM often leverage the fact

that the axion couples to the photon and thus creates a small
modification to electromagnetism. The axion—or any
axion-like particle for that matter—will create a modifica-
tion to the electromagnetic Lagrangian, that can be written
in terms of the Maxwell field tensor Fμν, electric current Jμe,
and axion field a:

LEM ¼ JeμAμ −
1

4
FμνFμν −

1

4
gaγγaFμνF̃μν; ð2Þ

where F̃μν ¼ εμνσρFσρ, and gaγγ is an unknown, but very
small, coupling between the axion and photon.
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The aFF̃ term can be treated as an axion-to-two-photon
coupling which converts photons into axions and vice
versa, as in light-shining-through-wall [11] and axion
helioscope [12,13] experiments. However, since aDM
would imply a high occupation number for the field a,
an alternate approach is to write the “axion current,”

Jμa ¼ gaγγðB · ∇a;−E × ∇aþ ∂taBÞ; ð3Þ

which can then be easily incorporated into a modified form
of Maxwell’s equations [14]

∇ ·E ¼ ρ − gaγγB · ∇a; ð4aÞ

∇ · B ¼ 0; ð4bÞ

∇ × E ¼ −
∂B
∂t ; ð4cÞ

∇ × B ¼ ∂E
∂t þ J − gaγγ

�
E × ∇a −

∂a
∂t B

�
: ð4dÞ

A fifth equation describes the evolution of the axion field;
however, we will neglect it throughout this work as it only
introduces corrections of order gaγγ2 or higher.1

A common type of axion haloscope experiment works by
creating a strong static B field and looking for small AC
fields driven at the frequency of the axion, ωa. As we will
see below, the exact implications of these additional terms
for an experiment will depend strongly on the relative size
of the detector to the oscillation wavelength λa ¼ 2π=ωa.
Because for aDM, the oscillation wavelength is almost
exactly equal to the Compton wavelength, we will find that
detectors searching for aDM in different axion mass ranges
will need to search for different electromagnetic effects
corresponding to different oscillation wavelength limits.
Experiments like ADMX [15–17], HAYSTAC [18], and

others [19–21] utilize resonant cavities to probe axionmasses
in the rangema ∼ 10−6–10−5 eV. In this range, the axion has
a Compton wavelength, and therefore λa, of order 6–60 cm,
comparable to the physical size of the detector. Practical
considerations limit the range of masses that can be probed
with detectors comparable in size to λa. At shorter wave-
lengths, λa ∼ 1 mm, experiments likeMADMAXpropose to
manipulate electric fields using arrays of dielectric plates [22]
to coherently add effects over many Compton wavelengths
within their detector. Recently, several experiments have
been proposed to search for aDMwithmuch lowermasses of
10−14–10−6 eV and therefore Compton wavelengths much
larger than the detector. These include experiments like

ABRACADABRA [23], DM Radio [24], BEAST [25] and
others [26–29].
In the limit of large λa, the typical approach is to build

a detector with a strong DC magnetic field and search for
an induced AC B field. Experiments like those in
Refs. [23,24,26], work in the magnetoquasistatic (MQS)
regime, which is equivalent to assuming that the displace-
ment current in Eq. (4d) is small. The axion term can then
be treated as an effective current Jeff that sources a real B
field, which can be detected. However, Ref. [25] proposed
an alternate approach, utilizing the displacement currents to
measure an induced AC field E ¼ −gaγγaB in a strong DC
B field. This has caused disagreement in the community
about whether the axion-induced electric field would be
large enough to be observable or whether it is significantly
suppressed, specifically whether the electric field is given
by E ¼ −gaγγaB, or whether it is suppressed by powers of
1=λa. This has prompted new interpretations of the effect of
the axion field in the presence of electromagnetic fields
[30]. This debate has been further clouded by an old paper
that directly calculated the induced Lorentz force on a test
charge in the presence of aDM [31] and appears to support
the results in Ref. [30]. However, the calculation in that
paper implicitly assumes a homogeneous B field, and
neglects momentum transfer from virtual photons in the
magnetic field and so is not so easily connected to a
realistic experimental setup.
In Sec. II, we outline the field expansion approach wewill

use throughout this paper, andwrite down themodifiedwave
equations in the presence of an axion field. In Sec. III, we
explicitly solve themodifiedMaxwell’s equations in the case
of an infinite solenoid without assuming the MQS approxi-
mation and demonstrate explicitly that the electric field is
suppressed in the large-λa limit. In Sec. IV, we generalize this
conclusion and show that for a broad class of detectors, the
MQS approximation is always valid in the large-λa limit and
that the suppression of the electric field is a generic quality.
From this we conclude that in this mass regime, an experi-
ment with a static B field will always be more sensitive to
axion-inducedmagnetic fields over electric fields. It is worth
mentioning that this argument does not hold for experiments
with time-varying primary fields, such as in recently pro-
posed detection schemes based on interferometry [27–29].
Finally, in Sec. V, we discuss the alternate—but completely
equivalent—approach outlined in Ref. [30], and the physical
intuition it can provide.
As is common, we will assume that the spatial gradients

of the axion field are negligible, ∇a ≈ 0. This is because the
de Broglie wavelength is about 3 orders of magnitude larger
than the oscillation wavelength (λD ≈ 103λa), and thus
spatial gradient terms are suppressed.

II. FIELD EXPANSIONS

Our general approach throughout this paper will be to
first Taylor expand E and B in powers of gaγγ and then

1This is valid whenever gaγγE·B
ma

ffiffiffiffiffiffi
ρDM

p ≪ 1, which is the case for the
majority of axion haloscope proposals. Though it is interesting to
consider the case where it is not.
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convert Eqs. (4a)–(4d) into wave equations which can then
be grouped into like powers of gaγγ .
We consider a detector with primary fields driven by a

static current JeðxÞ and charge distribution ρeðxÞ. For
example, these can be thought of as currents driving a
magnet or producing an electric field and driven externally
by a power supply. For simplicity, we calculate only the
behavior of the vacuum E and B fields in response to
JeðxÞ, ρeðxÞ and the axion field a. However, it is straight-
forward to include the response of free or bound charges
through the usual use of additional ρ, J terms or using the
macroscopic D and H fields.
Because gaγγ is expected to be very small, we can

expand2 theE andB fields into terms of equal order in gaγγ:

Eðx; tÞ ¼ E0ðx; tÞ þ E1ðx; tÞ þOðg2aγγÞ; ð5aÞ

Bðx; tÞ ¼ B0ðx; tÞ þ B1ðx; tÞ þOðg2aγγÞ; ð5bÞ

where E1 and B1 will be proportional to gaγγ .
We can take the time derivative of Eq. (4d), and group

equations in constant powers of gaγγ to get

∇2E0ðx; tÞ ¼
∂2E0ðx; tÞ

∂t2 þ ∇ρeðxÞ; ð6aÞ

∇2E1ðx; tÞ ¼
∂2E1ðx; tÞ

∂t2 þ gaγγ
∂2a
∂t2 B0ðx; tÞ; ð6bÞ

where we have taken advantage of the fact that

−∇ × ð∇ ×EÞ ¼ ∇2E − ∇ð∇ ·EÞ ¼ ∇2E − ∇ρe; ð7Þ

and assumed that ρe and Je are constant in time. We have
also dropped the terms of order gaγγ2 or higher.
Similarly, we could take the time derivative of Eq. (4c)

and group in like powers of gaγγ, to get

− ∇2B0ðx; tÞ þ ∇ × JeðxÞ ¼ −
∂2B0

∂t2 ðx; tÞ ð8aÞ

−∇2B1ðx; tÞ þ gaγγ
∂a
∂t ∇ ×B0ðx; tÞ ¼ −

∂2B1ðx; tÞ
∂t2 :

ð8bÞ

Combining these equations, we are left with the wave
equations to solve:

∇2E0ðx; tÞ −
∂2E0ðx; tÞ

∂t2 ¼ ∇ρeðxÞ; ð9aÞ

∇2B0ðx; tÞ −
∂2B0ðx; tÞ

∂t2 ¼ −∇ × JeðxÞ; ð9bÞ

∇2E1ðx; tÞ −
∂2E1ðx; tÞ

∂t2 ¼ gaγγ
∂2a
∂t2 B0ðx; tÞ; ð9cÞ

∇2B1ðx; tÞ −
∂2B1ðx; tÞ

∂t2 ¼ gaγγ
∂a
∂t ∇ ×B0ðx; tÞ: ð9dÞ

To reiterate, at this point we have assumed only that the
primary fields E0 and B0 are static, i.e., that ρe and Je are
constant in time. We have also neglected the gradient of the
axion field. Below, we use this expansion to examine the
effect of the axion field on particular choices of geometry.

III. AXION DARK MATTER AND THE
INFINITE SOLENOID

The simplest geometry to consider is the case of the
infinitely tall solenoid. Of course, in practice this geometry
is not physically achievable. A physical solenoid will have
a finite extent and thus returning fields outside the winds of
the solenoid. But in many experimental setups, these fringe
fields are small compared to the field inside the solenoid
and lead to subdominant corrections. An infinite solenoid is
a useful example with which to see the major effects.
Assume we have an infinitely tall solenoid of radius R

pointing along the ẑ direction. In cylindrical coordinates
ðρ;ϕ; zÞ, the current density along the walls is

Je ¼ B0δðρ − RÞϕ̂; ð10Þ

such that the unmodified Maxwell’s equations would lead
to the solution

B0 ¼
�
B0ẑ ρ < R;

0 ρ > R:
ð11Þ

See Fig. 1. Further, let us assume that current cannot flow
along the solenoid walls in the ẑ direction. For instance, we
can take this to be a densely packed set of current-carrying
loops that only carry current in the ϕ̂ direction. Further we
assume ρe ¼ 0, such that E0 ¼ 0.
In this geometry, Eqs. (9a) and (9b) reproduce the

classical result to zeroth order in gaγγ , given in Eq. (11).
We can then rewrite Eqs. (9c) and (9d) as

∇2E1 −
∂2E1

∂t2 ¼
�
gaγγ

∂2a
∂t2 B0ẑ ρ < R;

0 ρ > R;
ð12aÞ

∇2B1 −
∂2B1

∂t2 ¼ −gaγγ
∂a
∂t B0δðρ − RÞϕ̂: ð12bÞ

It is clear from these equations that the only nontrivial
solutions will be for Ez and Bϕ. The other components are

2In fact, we utilize the fact that Jμa ≪ Jμe to Taylor expand the
effects of the axion-induced E and B about the primary fields.
But we can use gaγγ to keep track of the order of the expansion.
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not affected by the axion field at leading order. Since the
axion field is nicely decomposable into frequency modes,
we will move into frequency space and drop transient
solutions.Because of the symmetry,wepropose the solutions

E1zðρ; tÞ ¼ ψEðρÞeiωat; ð13aÞ

B1ϕðρ; tÞ ¼ ψBðρÞeiωat: ð13bÞ

A. The B field solution

Plugging Eq. (13b) into Eq. (12b) and performing a
change of variables to ρ0 ¼ ωaρ, we get the Bessel equation
with a boundary condition at ρ ¼ R:�
∂2
ρ0 þ

1

ρ0
∂ρ0 þ

�
1 −

1

ρ02

��
ψB ¼ −igaγγa0B0δðρ0 − ωaRÞ:

ð14Þ

The solutions to this are Bessel functions of order 1, with
boundary conditions at ρ0 ¼ 0 and ρ0 ¼ ωaR:

ψBðρ0Þ ¼
�
aBJ1ðρ0Þ ρ0 < ωaR;

bBH
þ
1 ðρ0Þ ρ0 > ωaR:

ð15Þ

Here, we required that for ρ0 < ωaR the diverging N1ðρ0Þ
solution is suppressed, and for ρ0 > ωaR we have an
outward-traveling wave given by the Hankel function,
Hþ

1 ðρ0Þ. [An inward-traveling wave, H−
1 ðρ0Þ, is also a

correct solution; however it would imply power flowing
into the oscillating axion field from infinity rather than out
of it.]

We can now find the full solution, by requiring con-
tinuity of Bk across the boundary, and a step discontinuity
in ∂ψB∂ρ0 as required by the δ function (remember that we
specified that current could not flow along ẑ)

aBJ1ðωaRÞ − bBH
þ
1 ðωaRÞ ¼ 0; ð16aÞ

ðbB∂ρ0H
þ
1 ðρ0Þ−aB∂ρ0Jaðρ0ÞÞjρ0¼ωaR

¼−igaγγa0B0: ð16bÞ

This can then be solved further to yield

aB ¼ −
π

2
gaγγa0B0ωaRH

þ
1 ðωaRÞ; ð17aÞ

bB ¼ −
π

2
gaγγa0B0ωaRJ1ðωaRÞ; ð17bÞ

where we have leveraged Abel’s identity to simplify the
Wronskian of Bessel functions as

WðJ1; Hþ
1 Þ ¼ J1

∂Hþ
1

∂ρ0 −
∂J1
∂ρ0 H

þ
1 ¼ 2i

πρ0
: ð18Þ

This fully specifies the solution of the B field driven by the
axion at leading order in gaγγ . Figure 2 shows the behavior
of B1ϕ for various values of R=λa.

B. The E field solution

Returning to the E1z component, we can plug Eq. (13a)
into Eq. (12a) and perform a change of variables to get
another Bessel equation:

�
∂2
ρ0 þ

1

ρ0
∂ρ0 þ 1

�
ψE ¼

�−gaγγa0B0 ρ0 < ωaR;

0 ρ0 > ωaR;
ð19Þ

which has solutions

ψEðρ0Þ ¼
�
aEJ0ðρ0Þ − gaγγa0B0 ρ0 < ωaR;

bEH
þ
0 ðρ0Þ ρ0 > ωaR:

ð20Þ

Again, we have required that ψEðρ0Þ be finite at ρ0 ¼ 0, and
that we have an outward-traveling wave for ρ0 > ωaR.
Here, the boundary conditions require that Ez and its

derivative be continuous across the boundary. The former
condition can be seen by integrating ∇ × E around a small
contour just inside and outside of the solenoid; the latter can
be seen by integrating Eq. (19) between ½ωaR − ε;ωaRþ ε�
as ε → 0,

aEJ0ðωaRÞ − gaγγa0B0 ¼ bEH
þ
0 ðωaRÞ; ð21aÞ

aEJ1ðωaRÞ ¼ bEH
þ
1 ðωaRÞ: ð21bÞ

We can again simplify this further to

FIG. 1. Diagram of a simplified geometry with an infinite
solenoid pointing along the ẑ direction. The solution without an
axion is identically B0ẑ inside and 0 outside.
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aE ¼ iπ
2
gaγγa0B0ωaRH

þ
1 ðωaRÞ; ð22aÞ

bE ¼ iπ
2
gaγγa0B0ωaRJ

þ
1 ðωaRÞ; ð22bÞ

where we have taken advantage of the Bessel function
property that 2∂ρ0Ων ¼ Ων−1 − Ωνþ1 and that Ω−ν ¼
ð−1ÞνΩν for Ων ⊂ ½Jν; Hþ

ν �. These equations fully specify
the E field solution.
Putting these together with the solutions for the B field

yields a nice compact form

0
BBB@

aE
bE
aB
bB

1
CCCA ¼ πgaγγa0B0ωaR

2

0
BBB@

iHþ
1 ðωaRÞ

iJ1ðωaRÞ
−Hþ

1 ðωaRÞ
−J1ðωaRÞ

1
CCCA: ð23Þ

The solutions for E1z and B1ϕ are plotted together in Fig. 2
for various values of R=λa. It is worth pointing out that this

is in fact the solution to an infinite wire with an “effective
current” given by Jeff ¼ gaγγ

∂a
∂t B0ẑ.

C. The long-wavelength limit

Thevariable ρ0, is actually the ratio of the radial coordinate
scaled by the oscillation wavelength of the axion ρ0 ¼
2πρ=λa. Not surprisingly, this marks this wavelength as
the relevant length scale of the problem. If R ≪ λa, we will
get one type of behavior, as compared to R ∼ λa or R ≫ λa.
This can be seen in Fig. 2.
In the long-λa limit, R ≪ λa (or equivalently ρ0 ¼

ωaR ≪ 1), both sides of the solenoid can be thought of
as “oscillating in phase” and the fields add coherently over
the relevant distance scales. This is the limit relevant for
experiments like ABRACADABRA [23], DM Radio [24],
BEAST [25] and other LC-resonator searches [26].
We can take the asymptotic limits of the Bessel functions

to see how the field near the solenoid behaves. Equation (15)
becomes

FIG. 2. Analytic solutions for the field strengths for the infinite solenoid configuration. The E1z and B1ϕ field strengths are plotted in

units of gaγγa0B0

2R for several values of R=λa. The only approximation is that these are to first order in gaγγ .
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ψBðρ0Þ ≈
( aB

2
ρ0 ρ0 < ωaR;

−i 2bBπρ0 ρ0 > ωaR;
ð24Þ

with the coefficients given by

aB ¼ igaγγa0B0; ð25aÞ

bB ¼ −
πgaγγa0B0ω

2
aR2

4
: ð25bÞ

Inserting this into Eq. 24 and converting back to ρ, yields the
radial behavior

ψBðρÞ ≈
( i

2
gaγγωaa0B0ρ ρ < R;

i
2
gaγγωaa0B0

R2

ρ ρ > R:
ð26Þ

The factor of i simply indicates a π
2
-phase shift from the axion

field. This is expected since the B field in Eq. (9d) is driven
by ∂a

∂t.
Plugging this back into Eq. (13b), we have our full

solution for the axion-induced B field to first order in gaγγ
and in the limit of ρ; R ≪ λa:

B1ðx; tÞ ≈
(

1
2
gaγγ

∂a
∂t ρϕ̂ ρ < R;

1
2
gaγγ ∂a∂t

R2

ρ ϕ̂ ρ > R:
ð27Þ

Here, we have summed over axion frequency modes ωa to
convert iωaa0eiωat back into ∂a

∂t to make the solution true for
arbitrary aðtÞ.
It should be noted, that this is exactly the result that we

would expect from taking the MQS approximation as was
done in Refs. [23,24,26].
Looking at the electric field behavior in the long-wave-

length limit, Eq. (20) becomes

ψEðρ0Þ ≈
(
aEð1 − ρ02

4
Þ − gaγγa0B0 ρ0 < ωaR;

bE
2i
π γ

0ðρ0Þ ρ0 > ωaR;
ð28Þ

where we defined the function γ0ðxÞ ¼ lnðx=2Þ þ γ − iπ=2,
where γ is the Euler-Mascheroni constant (γ ≈ 0.5772…),
and the coefficients are given by

aE ¼ gaγγa0B0 −
gaγγa0B0ω

2
aR2

2

�
γ0ðωaRÞ −

1

2

�
; ð29Þ

bE ¼ iπgaγγa0B0ω
2
aR2

4
: ð30Þ

Expanding this out, and dropping terms of order
ðωaRÞ2ðωaρÞ2, we can write

ψEðρÞ ¼ −
1

2
gaγγa0B0ðωaRÞ2

×

� ðγ0ðωaRÞ − 1
2
Þ þ ρ2

2R2 ρ < R;

γ0ðωaρÞ ρ > R:
ð31Þ

This implies that, to first order in gaγγ and for ρ; R ≪ λa,
electric fields are suppressed by ðRλaÞ2 lnðRλaÞ ≪ R

λa
. This

behavior can be seen in Fig. 2.
This is in direct contrast with the argument set forth in

Ref. [25], which searched for an axion-induced electric
field in the long-oscillation-wavelength limit inside the
solenoid. This conclusion is reached here using a particular
geometry, but the conclusion is a lot more general, as we
will show in the next section. It is worth noting that the E
field solution proposed in that work, E ¼ −gaγγaB0,
does appear in the solution to Maxwell’s equations as
the ρ0-independent term in Eq. (20). But in the large-λa limit
it is canceled by the other term in the full solution given
in Eq. (29).
In the short-oscillation-wavelength limit, the field E ¼

−gaγγaB0 appears as an offset to the oscillating Bessel
function: Ez ¼ ðaEJðωaρÞ − gaγγa0B0Þeiωat. When the
Bessel function has many oscillations within 0 < ρ < R,
the spatial average approaches −gaγγa0B0eiωat. This can be
seen in the lower panel of Fig. 2 as the offset between the
solid and dotted red lines.
An experimental setup with a capacitor inside the

solenoid (similar to Ref. [25]) would in fact see charges
displaced by the oscillating axion-induced E field. But this
would only be a measurable effect in the R≳ λa limit
[i.e., for frequencies ωa=ð2πÞ ≳ 300 MHz]. This is akin to
the microwave cavity designs used in Refs. [15–21], but
without the resonator cavity. Interestingly, there are other
recent proposals for the R ∼ λa regime using this type of
detector, but with all resonant enhancement moved into
electronics [32]. At shorter wavelengths still, other exper-
imental techniques have been proposed which rely on
manipulating the E field with dielectric plates [22]. These
latter approaches, where R≳ λa, are not incompatible with
the results presented here.

IV. DEMONSTRATING THE MQS
APPROXIMATION FOR
A GENERIC DETECTOR

The argument in the previous section can be made much
more general by directly demonstrating that the MQS
approximation holds in the presence of an oscillating axion
field in the large-λa limit. In the following argument, we
will make two assumptions:
(1) Our detector is composed of a collection of time-

independent charges and currents, ρe and Je.
(2) Our detector fits into some box with a diagonal size

L. Thus both the ρe and Je used to create our primary
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fields and whatever apparatus we use to detect axion-
induced fields are contained within jx − x0j < L.

The precise shape of the box in the second assumption is
irrelevant; it only establishes a characteristic size for our
detector. To begin, we will make no assumptions about the
configuration of the currents and charges within the box.
We first convert the right-hand sides of Eqs. (9a)–(9d) to

include only terms of ρe and Je instead of E0 and B0.
This is because, while the latter two fields can extend
beyond the box, the second assumption above constrains
the charges and currents to be inside the box and therefore
implies that they are zero on the surface [of the box].
At this point, it is clear that the primary fields E0 and B0

(which are solutions to the axion-free equations) will be
independent of time. We can then Fourier decompose E1

and B1 in the frequency domain,

E1ðx; tÞ ¼ E1ðxÞeiωat; ð32aÞ

B1ðx; tÞ ¼ B1ðxÞeiωat; ð32bÞ

and write the following wave equations:

∇2E0ðxÞ ¼ ∇ρeðxÞ; ð33aÞ

∇2B0ðxÞ ¼ −∇ × JeðxÞ; ð33bÞ

∇2E1ðxÞ þ ω2
aE1ðxÞ ¼ −gaγγω2

aa0B0ðxÞ; ð33cÞ

∇2B1ðxÞ þ ω2
aB1ðxÞ ¼ igaγγωaa0∇ × B0ðxÞ: ð33dÞ

We can trivially rewrite the rhs of Eq. (33d) in terms of Je
using Eq. (33b). Focusing on Eq. (33c), we can split E1ðxÞ
into E1ðxÞ ¼ E1

0ðxÞ − gaγγa0B0ðxÞ, and get an equation
for E1

0

∇2E0
1ðxÞ −

∂2E0
1ðxÞ

∂t2 ¼ gaγγa0∇2B0ðxÞ
¼ gaγγa0∇ × JeðxÞ: ð34Þ

At this point, we can use the retarded Green’s functions
to solve for our fields:

E0ðxÞ ¼
1

4π

Z
∇ρe

jx − x0jd
3x0; ð35aÞ

B0ðxÞ ¼
1

4π

Z
∇ × Jeðx0Þ
jx − x0j d3x0; ð35bÞ

E1ðxÞ ¼
gaγγa0
4π

Z
eiωajx−x0j − 1

jx − x0j ∇ × Jeðx0Þd3x0; ð35cÞ

B1ðxÞ ¼
igaγγωaa0

4π

Z
eiωajx−x0j

jx − x0j Jeðx
0Þd3x0: ð35dÞ

Notice that the −1 in Eq. (35c) came from solving for E1
0

and substituting Eq. (35b) in for the offset term, −gaγγa0B0.
We point out that ρe does not appear in our axion-induced

fields. This is because in the limit that∇a is small, we cannot
use static electric fields alone to detect axions, regardless of
their shape. This is evident from Eqs. (4a)–(4d).
At this point our solution is very general. It is worth

noticing the similarity between the solutions for E1 and B1

and the solutions for a multipole antenna. Equations (35c)
and (35d) are exactly the solutions to a current excitation of
the form Ja ¼ gaγγ∂taB0, thus justifying the treatment of
the axion-induced effects as an effective current to leading
order in gaγγ.
Up to now, we have only used the first assumption that

our charges and currents are constant in time. We use the
second assumption to examine what happens in the limit of
L ≪ λa. Notice that our solutions are completely in terms
of charges and currents, which are completely contained
within our box of size L, as opposed to fields, which can
extend outside of the box.
If both x and x0 are within our box then jx − x0j ≤ L.

And now we examine the behavior of the axion-induced
electric fields by Taylor expanding Eq. (35c) in the limit of
ωaL ≪ 1, and keeping terms of first order:

E1ðxÞ≈
gaγγa0
4π

Z
iωajx−x0j þOððωaLÞ2Þ

jx−x0j ∇×Jeðx0Þd3x0

¼ gaγγa0ωa

4π

Z
∇× Jeðx0Þd3x0 þOððωaLÞ2Þ

¼ gaγγa0ωa

4π

Z
S
n̂× Jeðx0ÞdA0 þOððωaLÞ2Þ

¼OððωaLÞ2Þ ðL≪ λaÞ; ð36Þ

where the surface integral vanishes due to the fact that our
current is contained within S and so is equal to zero at the
surface.
Of course, a similar process can be done for Eq. (35d),

but it is easy to see that the relevant difference between
this equation and Eq. (35c) is the −1 in the numerator.
The leading term remains and the result is not suppressed
by additional powers of λa.
This conclusion is very general and does not depend on

the precise details of our detector. We only assumed that 1)
the currents and charges that drive our primary fields are
constant in time, and 2) our detector is of characteristic
size L ≪ λa. Under these assumptions we have shown that
axion-induced electric fields are always suppressed. We
have actually just shown that the MQS approximation
continues to hold in the presence of an oscillating axion
field with large λa.
An interesting thing worth noting is that in this calcu-

lation we have neglected terms proportional to ∇a as they
are suppressed by factors of λa=λD ∼ 10−3. However, when
L=λa ≲ 10−3, it is possible for electric fields generated by
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the ∇a · B term in Eq. (4a) to dominate over the electric
fields generated by the ∂a

∂t B term in Eq. (4d).
Finally, it is worth describing the behavior of E1 and B1

in the limit that λa is small compared to all other length
scales. In this limit, the exponentials in Eqs. (35c) and (35d)
oscillate very rapidly and will cause the integrals to average
to zero. All that will remain is

E1ðxÞ ≈ −
gaγγa0
4π

Z
∇ × Jeðx0Þ
jx − x0j d3x0 ðL ≫ λÞ; ð37Þ

which is exactly the −gaγγaB0 term.
From this, we conclude that if 1) our currents and charges

are independent of time and 2) we make reasonable assump-
tions about how rapidly our current distributions vary on
length scales∼λa ≪ L, the effect of the axion can begivenby
Eaðx; tÞ ¼ −gaγγaB0. However, this is not the limit pro-
posed for axion searches in the mass range ma ≲ 1 μeV.
It is worth pointing out that the infinite solenoid of

Sec. III does not satisfy the second assumption made here,
and is therefore not a special case of this discussion. Rather
the infinite solenoid is a particularly germane demonstra-
tion of the conclusions reached here in a geometry which
can be easily solved with all the important effects repro-
duced in a single dimension.

V. ALTERNATE APPROACH USING
POLARIZATION

In the previous sections, we haveworked with the vacuum
fieldsE andB; however, we can extend the entire discussion
to the macroscopic formulation using D andH fields in the
usual way. In this section, we address an approach that
incorporates the axion-induced effects as a type of vacuum
polarization, similar to the polarization of materials. This
approach was originally proposed in Refs. [25,30]; however
those works reached incorrect physical conclusions as the
analogy betweenmaterial and axion-induced polarizations is
subtle and the correct boundary conditionsmust be enforced.
Nevertheless, this approach is perfectly consistent with the
approach in the previous sections.
Following Refs. [25,30], we can reformulate Eqs. (4a)–

(4d) in terms of the macroscopic fields D and H:

∇ ·D ¼ ρe þ ρf þ gaγγB · ∇a; ð38aÞ

∇ ·B ¼ 0; ð38bÞ

∇ ×E ¼ −
∂B
∂t ; ð38cÞ

∇ ×H ¼ Je þ Jf þ
∂D
∂t − gaγγ

�
E × ∇aþ ∂a

∂t B
�
: ð38dÞ

These equations are of course identical to Eqs. (4a)–(4d),
but they are more common when including the response of

media. Also note that we have explicitly included the
response of free charges in the form of ρf and Jf, while
implicitly including the response of bound charges ρb and
Jb in D and H. In the approach of Refs. [25,30] however,
we further rewrite this in terms of a set of modified fields

Da ¼ D − gaγγðaBÞ; ð39aÞ

Ha ¼ Hþ gaγγðaEÞ; ð39bÞ

with which we can write an analogous set of macroscopic
Maxwell’s equations with no axion modification terms

∇ · Da ¼ ρf; ð40aÞ

∇ ·B ¼ 0; ð40bÞ

∇ × E ¼ −
∂B
∂t ; ð40cÞ

∇ ×Ha ¼ Jf þ
∂Da

∂t : ð40dÞ

In four-vector notation, what we have done here is to
envelope the axion current of Eq. (3) into a redefinition of
the electromagnetic field tensor Fμν → Fμν

a ¼ Fμν − Pμν
a ,

where

∂μP
μν
a ¼ Jνa: ð41Þ

We can see that Pμν
a should be given by

Pμν
a ¼ gaγγaF̃μν

¼ gaγγa

0
BBB@

0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

1
CCCA: ð42Þ

And of course, the continuity equation follows trivially
from the fact that

∂μJ
μ
a ¼ gaγγ∂μ∂νaF̃μν ¼ 0; ð43Þ

because the derivatives are symmetric under interchange of
μ and ν and F̃μν is antisymmetric.
This entire approach is completely analogous to the way

the macroscopic form of Maxwell’s equations splits the
electric current into Jμbound and Jμfree and inserts the former
into a redefinition of Fμν → Gμν ¼ Fμν − Pμν

bound, where
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Pμν
b ¼

0
BBB@

0 Px Py Pz

−Px 0 Mz −My

−Py −Mz 0 Mx

−Pz My −Mx 0

1
CCCA; ð44Þ

for a material polarization P and magnetization M, such
that ∂μP

μν
b ¼ Jνb. In each of these steps, our equations of

motion remain completely unchanged and the continuity
equation is always satisfied. We are simply moving terms
around:

∂μF
μν
a ¼ Jνf; ð45aÞ

∂μGμν − ∂μP
μν
a ¼ Jνf; ð45bÞ

∂μFμν − ∂μP
μν
b ¼ Jνf þ Jνa; ð45cÞ

∂μFμν ¼ Jνf þ Jνa þ Jνb: ð45dÞ

This appears to be a tidy reformulation of Eqs. (4a)–(4d);
however, it must be emphasized that the physics is
completely unchanged from the previous sections.
Further, great care has to be taken when using these Da
and Ha fields, as the simplicity of Eqs. (40a)–(40d) can be
deceptive. The reason is that the Lorentz force has not been
changed, f ¼ ρeEþ Je ×B. In other words, charges and
currents still rearrange themselves in response to E and B
fields. Therefore boundary conditions must still be placed
on E and B rather than on Da and Ha.

The purpose of this approach, however, is to continue
the analogy, and to write a set of axion polarization and
magnetization fields:

Pa ¼ −gaγγðaBÞ; ð46aÞ

Ma ¼ gaγγðaEÞ: ð46bÞ

But this is where the subtleties become critical. For
instance, one must keep in mind that

∇ · Pa ¼ −gaγγ∇ · ðaBÞ
¼ −gaγγ½∇a · Bþ a∇ ·B�
¼ −gaγγ∇a · B

∼OðgaγγvDMÞ: ð47Þ

In other words, in the limit of small spatial gradients in
a, the axion “bound charge density” is suppressed.
Substituting this into Eq. (4a) tells us that Pa does not
create an E field directly. We often intuitively think that
an electrically polarized material has an associated electric
field. However, this field comes from bound surface
charges at the edge of the polarized material. For instance,
a dielectric material must be cut to be placed inside of a
capacitor, and it is at the boundaries of the dielectric that we
have nonzero ∇ · P [see Fig. 3(a)]. But Eq. (47) indicates
that no such boundary for Pa exists and so ∇ · Pa is
suppressed by vDM [see Fig. 3(b)]. So while it might
naively appear that an electric field must be present due to
the axion polarization, it is not.

FIG. 3. (a) A polarized material like a dielectric (in yellow), placed between two conducting planes. Within the bulk of the material the
bound electric dipoles pair off and produce no net field since ∇ · P ¼ 0. At the surfaces, we have a discontinuity in P resulting in an
overall field and a buildup of charge on the conductors. (b) A virtual axion-induced polarization Pa (red) from a magnetic field (blue)
from a solenoidal current (black). The divergence of the magnetic field everywhere is zero, so ∇ · P can only be proportional to the
gradients of the axion field. Even when a conductor is placed in the field, the B field and thus P are divergenceless (up to terms
proportional to ∇a).
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Instead a time-varying Pa generates a time-varying
magnetic field and that time-varying magnetic field can
generate time-varying electric fields. Stepping back to our
example of the infinite solenoid, we can easily calculate
the polarization and magnetization to first order in gaγγ
(neglecting terms proportional to ∇a):

Pa ¼
�−gaγγaB0ẑ; ρ < R;

0 ρ > R;
ð48aÞ

Ma ¼ 0 everywhere: ð48bÞ

The intuition would be to view this as a time-varying
electric field inside our solenoid. But there is no divergence
in P to generate such an electric field. Instead we note that
Pa varies in timewith a and plug these values into Eq. (40d)
and recover Eq. (4d). This will recover the result in Sec. III.
This underlines the fact that an axion polarization with no

space-time derivatives cannot have any physical manifes-
tations. This is also evident in the Lagrangian, as the aFF̃
term becomes a total derivative in the limit that ∂μa ¼ 0. An
analogous argument can be made about magnetization-
induced magnetic fields. Despite our intuition otherwise,
the magnetization, Ma, alone cannot generate a physically
observable magnetic field, but only when ∇ ×Ma ≠ 0.
The approach of calculating axion-induced polarization

and magnetization is completely equivalent to the approach
outlined in the first part of this paper. But great care must be
taken when using this approach, because subtleties in the
application of boundary conditions and physical intuition
can conspire to produce physical effects where they should
be suppressed.

VI. CONCLUSION

In this work, we have worked through the calculation of
the axion-inducedE andB fields in the presence of a strong
magnetic field in an infinite solenoid. We showed that the
solution E ¼ −gaγγaB is part of the full solution of the
modified Maxwell’s equations; however by itself it does not
satisfy the required boundary conditions. Instead the full
solution is equivalent to that of a multipole antenna with a
current excitation Ja ¼ gaγγ∂taB0. We then showed that in
the large-λa limit, the full solution suppresses vacuum
electric fields everywhere by ðRλaÞ2.

We then laid out the generic derivation of the MQS
approximation in the presence of an axion field and
demonstrated that, in any experimental setup with a time-
independent charge and current distribution, the axion-
induced vacuum E fields are always suppressed relative
to the axion-induced vacuum B fields in the large-λa limit.
The conclusions of this work directly contradict the argu-
ments outlined in Refs. [25,30], and this implies that
the limits shown in Ref. [25] are too strong by ∼6.5 orders
of magnitude. However, it is equally important to point out
that the∇a effects, whichwere ignored in this work, are only
suppressedby3orders ofmagnitude. The approach proposed
in Refs. [25,30] may be a useful technique to search for
axion-induced effects through the ∇a term, and therefore
could make a powerful axion wind search.
Finally, it should be noted that these conclusions are

based on the vacuum solutions of the E andB fields. These
fields can be further shaped through the placement of
conductors and free charges, which can mix these fields.
For example, placing an inductor in a time-varying B field
will produce an E field in the inductor in the usual way,
which will not be suppressed by additional powers of λa.
This also underscores the need for all axion haloscopes to
carefully analyze the effect of the boundaries of their fields.
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Note added.—A recent paper [33] redid the calculation
from Ref. [31] without assuming a homogeneous B field.
The results in that paper agree with the results presented
here, but were achieved with an elegant field theory
approach. Another paper [34] has performed a similar
Taylor expansion of the fields to calculate solutions inside
conducting cavities.
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