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Abstract Interest in ligand binding kinetics has been
growing rapidly, as it is being discovered in more and
more systems that ligand residence time is the crucial
factor governing drug efficacy. Many enhanced sampling
methods have been developed with the goal of predict-
ing ligand binding rates (kop) and/or ligand unbinding
rates (kog) through explicit simulation of ligand bind-
ing pathways, and these methods work by very different
mechanisms. Although there is not yet a blind chal-
lenge for ligand binding kinetics, here we take advan-
tage of experimental measurements and rigorously com-
puted benchmarks to compare estimates of Kp calcu-
lated as the ratio of two rates: kog/kon- These rates were
determined using a new enhanced sampling method
based on the weighted ensemble framework that we call
“REVO”: Reweighting of Ensembles by Variance Op-
timization. This is a further development of the WEx-
plore enhanced sampling method, in which trajectory
cloning and merging steps are guided not by the defini-
tion of sampling regions, but by maximizing trajectory
variance. Here we obtain estimates of ko, and ko that
are consistent across multiple simulations, with an av-
erage logl0-scale standard deviation of 0.28 for on-rates
and 0.56 for off-rates, which is well within an order of
magnitude and far better than previously observed for
previous applications of the WExplore algorithm. QOur
rank ordering of the three host-guest pairs agrees with
the reference calculations, however our predicted AG
values were systematically lower than the reference by
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an average of 4.2 kcal/mol. Using tree network visu-
alizations of the trajectories in the REVO algorithm,
and conformation space networks for each system, we
analyze the results of our sampling, and hypothesize
sources of discrepancy between our Kp values and the
reference. We also motivate the direct inclusion of kqpn
and kog challenges in future iterations of SAMPL, to
further develop the field of ligand binding kinetics pre-
diction and modeling.

1 Introduction

Binding affinity has long been seen as the crucial pa-
rameter for drug discovery, as it determines the propor-
tion of drug that is bound to a receptor in solution. A
wide variety of methods have emerged to predict both
absolute and relative binding affinities, each with its
own domain of applicability, and tradeoff between ef-
ficiency and accuracy [1, 2]. The SAMPL challenge is
playing an important role to compare tools that pre-
dict affinities using blind predictions [3]. Importantly,
errors can arise from both the physical model used to
describe the system (e.g. forcefield, thermostat, dynam-
ics engine), and from the sampling methodology used.
The SAMPLing challenge, described in this issue, thus
serves an important role in comparing the accuracy of
computational methods that all employ the same phys-
ical model [4].

While the binding affinity is all that is needed to de-
scribe the action of a ligand at equilibrium, the on- (kop)
and off-rates (kof) are necessary to model drug action
in general [5]. For instance, in many systems it has been
observed that drug residence time (RT = 1/kog) is the
critical factor governing efficacy in living cells [6]. This
is due to the number of factors that drive the system out
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of equilibrium, such as drug metabolism and elimina-
tion, the turnover of target protein, and the periodic na-
ture of drug administration. Although Kp = kog/kon,
and lower Kp can be correlated to lower kg, this re-
lationship is governed by the free energy curve of the
ligand binding pathway, particularly the ligand binding
transition state, which is the highest point in free energy
between the bound and unbound states [7]. The binding
rate, koy, has an upper bound of 109 M—! s—1, which
corresponds to the “diffusion limit”, binding rates of lig-
ands to the same target have been shown to vary over
4 orders of magnitude, which disrupts the correlation
between Kp and kog [8].

Prediction of kg and kgy, is challenging, as they are
not state functions: they depend fundamentally on the
transition path ensemble between the bound and un-
bound states. Computational sampling of these transi-
tion paths is in general a great challenge for molecular
dynamics due to the long timescales of ligand bind-
ing and release, although in recent years, a variety of
enhanced sampling methods have rose up to meet this
challenge [9]. The trypsin-benzamidine system has served
as a common benchmark application for enhanced sam-
pling methods such as Adaptive Multilevel Splitting
[10], SEEKR [11], adaptive [12] and traditional [13, 14]
Markov state modeling, funnel metadynamics [15], as
well as the WExplore method developed by our group
[16]. Recently these efforts have been expanded to more
challenging systems such as the unbinding of inhibitors
from c-Src kinase [17] and p38 MAP kinase [18] using
metadynamics, and the unbinding of the TPPU ligand
from the target soluble epoxide hydrolase with WEx-
plore [19]. The diversity of computational approaches to
handle long timescale ligand binding and release events
is a promising sign for the field, but comparison of
methodologies is complicated — even for applications
to the same system — due to differences in forcefields,
boundary conditions, and integrators.

As a step toward the robust comparison of differ-
ent computational methods for simulation of binding
pathways, we participated in the SAMPLing challenge
for the prediction of binding affinities. The SAMPLing
challenge required participants to compute free energies
as a function of simulation time, to compare the conver-
gence properties and relative computational cost of dif-
ferent free energy calculation methods. Instead of com-
puting free energies through alchemical perturbation,
here achieve this by explicitly simulating the binding
and release processes, determining the absolute rates
kon and kog, and computing the binding affinity as the
ratio kyg/kon- We calculate the binding free energy us-
ing the binding affinity, or K by:

ko
AG =kT ]n(—cof ) (1)

where kT = 0.597 kcal /mol corresponding to a temper-
ature of 300 K and Cj; is the reference concentration of 1
mol/L. As we broadly sample unbinding pathways from
multiple starting points, we can also synthesize these re-
sults and examine how these poses are connected in the
binding network.

We efficiently determine unbinding and binding rates
using a further developed variant of the WExplore sam-
pling method [20]. This is the first application of this
new method, which we call “Reweighting of Ensem-
bles by Variance Optimization”, or REVO. This new
method is also based in the weighted ensemble frame-
work [21], where trajectories are merged and cloned,
but it is the first to completely eschew the idea of di-
viding a space into a set of sampling regions (the pos-
sibility has previously been recognized however [22]).
REVO instead directs merging and cloning operations
by maximizing trajectory variance that describes the
instantaneous spread of the ensemble of trajectories,
which is described in the Methods section below. We
visualize our REVO simulations using a branching tree
network diagram, whose layout uses an energy function
that takes into account the distances between the tra-
jectories. This allows for the easy visualization of the
correlation of exit point ensembles within a weighted
ensemble simulation. We compare our binding affinities
to computational reference values, and observe that the
affinities from REVO are systematically tighter than
the reference. We conclude the manuscript with a dis-
cussion of possible sources of error.

2 Methods
2.1 Host-guest systems

The host-guest systems were selected from the main
SAMPLG6 challenge. One system is a cucurbit[8]uril (CB8)
host [23, 24], using quinine as a guest ligand (Figure 1).
The host is a ring-shaped structure, with 8-fold rota-
tional symmetry about the vertical axis, and two-fold
symmetric about the horizontal axis. There are thus 16
symmetry-equivalent atom mappings that we make use
of in our distance calculations. The second and third
systems both use a Gibb deep cavity cavitand, referred
to as “Octa Acid” (OA), as a host [25]. Here there is
only 4-fold symmetry about the vertical axis. Binding
and release of two ligands is examined: 5-hexenoic acid
and 4-methyl pentanoic acid, referred to as OA-G3 and
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OA-G6, respectively. Both of these ligands carry an ex-
plicit negative charge.
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Fig. 1 Structure of the ligands used in this study. (Top)
Quinine, referred to herein as CB8-G3. (Middle) 5-hexenoic
acid (deprotonated form), referred to herein as OA-G3. (Bot-
tom) 4-methyl pentanoic acid (deprotonated form), referred
to herein as OA-G6.

2.2 Dynamics Setup

The fifteen initial configurations (five for each host-
guest system) were used as prepared by the organizers
of the SAMPLing challenge without modification. The
two OA systems had a cubic box with a box length of
45 A solvated with 2586 water molecules, and contained
12 sodium ions and 3 chloride ions to neutralize the sys-
tem. The CB8 system had a cubic box with a box length
of 42.5 A solvated with 2149 water molecules, and con-
tained 6 sodium ions and 6 chloride ions to neutralize
the system. OpenMM v7.1.1 [26] was used to run dy-
namics on the CUDA v8.0 platform. We use a Langevin
integrator, with a thermostat at 300 K, a friction co-
efficient of 1.0 ps~!, a Monte Carlo barostat to keep
pressure constant at 1 atm, and a timestep of 2 fs. The
non-bonded forces, including electrostatics, had a cutoff
of 1 nm, and were calculated using partial mesh ewald.
The simulation temperature differs slightly from that
used to calculate the reference free energies (298.15 K),
although we expect the resulting differences in free en-
ergy will be negligible.

2.3 Reweighting of Ensembles by Variance
Optimization

To encourage the sampling of rare events, we devel-
oped a method based on the Weighted Ensemble (WE)
framework [21] that we call “Reweighting of Ensem-
bles by Variance Optimization”, or REVO. WE meth-
ods use an ensemble of trajectories (called “walkers”)
that are each assigned a statistical weight, and enhance
sampling through the introduction of cloning and merg-
ing steps. Initially the weights of all the walkers are
equal, and are defined as 1/Nyaik, where Nya is the
total number of walkers. When walkers are cloned, their
weight is divided among the progeny. The cloned tra-
jectories are identical replicas of the original, with the
same atomic positions and velocities. This is typically
done in under-sampled regions of space, in order to
boost the probability of observing rare events in the
simulation. Walkers are also merged together, and their
summed weight is given to the resulting merged walker.
In practice, merging walkers A and B is accomplished
by choosing a survivor (walker A is chosen with proba-
bility -24—), and discarding the other walker. Merg-
ing is typically done in over-sampled regions, with walk-
ers that can be seen as “redundant”. The trajectory
weights are only changed due to merging and cloning
operations.

Previous applications of the weighted ensemble meth-
ods, proceed by constructing a set of sampling regions,
determining their occupancies, and using cloning and
merging operations to make the occupancies as even as
possible. In general, the free energy landscapes of in-
terest are inherently high-dimensional, which makes it
difficult to construct an appropriate set of regions. For
this reason we were motivated to discard the notion

of “regions” entirely, and direct cloning and merging
operations instead by the optimization of a variance
measure, V'

V= Z Vi= Z Z(dsj)pwswj (2)

where the double sum is over all pairs of walkers, d;; is
a distance metric, p is a parameter set here to 4, and
wg is a weighting function for walker a:

wq = log(100 * wa /Pmin) (3)

where w, is the weight of trajectory a, and pyi, is the
lowest probability attainable by a walker, set here to
be 10~ !2. The weighting function w was designed to be
largest for high w,, and to smoothly decay to a low
value as w, approaches pyip-

The structure of the REVO “resampling” algorithm
proceeds as follows (see also Fig. 2). Eq. 2 is used to
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Fig. 2 The REVO algorithm. Each cycle begins by run-
ning an ensemble of walkers forward in time using unbiased
dynamics. The distances between the walkers are used to cal-
culate a variance (Eg. 2). In the resampling loop (blue), cou-
pled cloning and merging operations are proposed, and they
are accepted only if they result in a higher V. If the proposed
V is lower, the resampling loop is terminated and dynamics
are continued for the next cycle.

compute the variance function, and the walker with the
highest (“H”) and lowest (“L”) contributions to the
variance are identified (e.g. with the highest and lowest
V; values). The closest walker to “L.” is identified, called
“C". A coupled cloning and merging event is proposed,
where “C” and “L” would be merged and “H” would be
cloned. Eq. 2 is again used to recompute the variance,
and this coupled cloning and merging move is only ac-
cepted if V increases. Further moves are proposed after
recomputing “H”, “L” and “C”, and the process con-
tinues until V' decreases, and the move is rejected. This
way, the algorithm automatically determines the opti-
mal number of cloning and merging events. In fact, if
the system is already in an optimal configuration, no
further cloning and merging operations will take place,
and REVO will skip to the next dynamics step.

As in previous WExplore applications [19], a mini-
mum and maximum walker weight was enforced (pmin
and pmax, respectively). Note that only walkers which
will not violate the walker probability boundaries (ppin
and pp,..) are eligible to be chosen as walkers “H”,
“L” and “C”. In these simulations, pmin, = 10~'2 and
Pmax = 1071, following previous work.

This process is general to any dynamics engine, and
to any form of the distance function d;;. Here we use
two different distance functions to describe the unbind-
ing and rebinding processes. For unbinding, dg; is de-
fined as the root mean square deviation (RMSD), in
A, of the guest ligand between structures 7 and j, after
aligning to the host. As mentioned in Section 2.1, there
are multiple symmetry-equivalent mappings of the host

atoms. We thus compute this distance after alignment
of j to each symmetry-equivalent mapping of host i,
and use the smallest such value as dg For rebinding,
dg is computed using the RMSD of both 7 and j to the
reference starting structure:

1/d5| (4)

where dJ, is the distance from walker a to the reference
structure. The difference between the inverse of these

diy = [1/dig —

two quantities is used to highlight differences between
small values of this quantity (e.g. between RMSD = 1.5
A and RMSD = 2.0 A).

2.4 Calculating rates by ensemble splitting

REVO, like other weighted ensemble methods, can cal-
culate kinetic quantities on the fly, through a technique
we call “ensemble splitting” [27, 28] (also referred to
as “tilting” [29], or “coloring” [30, 31]). An equilibrium
ensemble is split into two non-equilibrium ensembles
by defining two basins, in this case the “bound” basin
and the “unbound” basin (Fig. 3). The unbinding en-
semble is defined as the set of trajectories that have
most recently visited the bound basin, and the rebind-
ing ensemble is the set of trajectories that have most
recently visited the unbound basin. The unbound basin
is the set of structures where the closest host-guest in-
teratomic distance exceeds 10 A, as in previous work.
The bound basin is defined as the set of structures with
guest RMSD < 1.0 A, computed after aligning to the
host. Note that a sweep over symmetry-equivalent atom
mappings of the host was again conducted, so a binding
event can be registered by binding to either the top or
bottom of the CB8 host, for example.

In this work, REVO simulations are conducted ex-
plicitly either in the unbinding ensemble, or the rebind-
ing ensemble. After each dynamics step, any walker that
has exited its ensemble (by entering the opposite basin)
is identified. Its weight is recorded, and its structure is
“warped” back to the starting structure. The structure
recorded before warping is known as an exit point. This
means the atomic coordinates and velocities of the tra-
jectory return to the starting structure. The weight of
the trajectory does not change as a result of warping.
In the unbinding ensemble, the starting structure is the
initial bound pose. In the rebinding ensemble, the start-
ing structures are exit points that were generated by the
unbinding simulations. The rates are simply calculated

using the flux of trajectories (sometimes referred to as
the Hill relation [32, 30]) that leave the ensemble:

_ 2 wy
ko = = (5)
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Fig. 3 Ensemble splitting. An equilibrium host-guest bind-
ing system is split into two nonequilibrium ensembles for
the calculation of on and off rates. This is done by defining
“bound” and “unbound” basins (left and right of each ensem-
ble). The “unbinding” ensemble (top) is the set of trajectories
that have most recently visited the bound basin. The “bind-
ing” ensemble (bottom) is the set of trajectories that most
recently visited the unbound basin. The on and off rates are
directly computed using the time averaged trajectory flux (¢
or q_ﬁu) between the ensembles.

R
; W,
kon = E(;T (6)

where T is the elapsed time, and the sums are over the
set of exit points observed before time T', and C is the
concentration of the ligand, computed as 1/V where V'
is the box volume.

2.5 REVO simulation details

Unbinding REVO simulations were run for 2000 cycles,
with 48 walkers run for At = 20 ps each cycle. The exit
points registered after 1000 cycles were used to initialize
the rebinding REVO simulations. In some cases, fewer
than 48 exit points were obtained at this point, and
the walkers were randomly cloned in order to create a
full set of 48 walkers. The rebinding REVO simulations
were run for 200 cycles, with At = 200 ps per cycle.
Five simulations were run from each starting pose (see
Figure S1-S3 for starting poses). In aggregate, we ran
1.92 us for each of the unbinding and rebinding simu-
lations, 3.84 us for each starting pose, or 57.6 us over
the entire set of results presented here.

2.5.1 Note about CB8-G3-0 and CB8-G3-4

After the conclusion of the SAMPLing challenge we
found an error in the weight normalization procedure
that was used to initialize the weights of the rebinding

walkers when fewer than 48 exit points were observed.
This affected only two simulations: CB8-G3-0 and CB8-
G3-4, where only 5 and 7 exit points were observed,
respectively, in the first 1000 cycles of the unbinding
simulation. Due to an error, the initial weights in these
rebinding simulations summed to a value greater than
1, and while this could be accounted for in the rate
calculations, it was compounded by the fact that no
walker in these simulations had a weight value less than
Pmax = 0.1, and thus no cloning/merging moves could
occur.

Surprisingly, this did not affect the calculation of the
binding rate. Although the number of binding events
observed in CB8-G3-0 and CB8-G3-4 (32 and 25, re-
spectively), was much lower than the number observed
in CB8-G3-1, CB8-G3-2 and CB8-G3-3 (289, 427 and
190), the total amount of wegiht that exited was com-
parable (0.62, 0.43, 0.66, 0.14, 0.50, for starting poses
0 through 4). This goes to show the downhill nature
of binding in host-guest systems, as confirmed by the
almost diffusion-limited ko, (see Table 1. The calcu-
lated mean first passage time (MFPT) of binding for
the CB8-G3 system was 91 ns, which is well within
the aggregate sampling time of each rebinding simula-
tion (1.92 us), again indicating why a group of straight-
forward trajectories was able to produce over two dozen
binding events each.

2.6 Visualization of trajectory trees

We visualize cloning events in a tree graph, where each
node represents a walker at a given time point and the
edges indicate how walkers are connected through time
as can be seen in Figure 7. Each level (y-position) on
the tree represents walkers at the same time step. The
initial horizontal placement (z-position) of each node
is a direct result of its parent’s position in the previous
time step. If no cloning events occurred for that walker,
then the node is placed directly above its parent. If
the parent was cloned, then the walkers are spread out
in a fan pattern. Once the nodes are initially placed,
their z-positions are minimized with a steepest descent
algorithm using the following energy function:

al— :)2

Z Erep

N2+ cwi(zh)?

E= Z (zt —:c
(7)

where z} and x} are the positions on the tree of walk-
ers i and j at time ¢, $§_1 is the position of the parent
at the previous time step, and w; is the walker weight
obtained from the simulation. The variables b, ¢, ry are
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parameters set here to 0.01, 5 and 1000 respectively.
The first term causes the nodes to stay close to their
parent’s position, allowing trajectories to be visually
tracked through the tree more easily. The second term
encourages the higher weight trajectories to stay close
to £ = 0. The third term is a pairwise repulsion term,
which gives the nodes a “radius” of rg, and is scaled by
a repulsion energy (E;;”) that takes into account the
molecular distance between the walkers in the simula-
tion (d;):

E{:p =a* ma.x(O, dij - dﬂ) (8)

where a and dj are parameters set here to 2.5 and 2.0.
d;;j can refer to either dg- or dg when making trees of
unbinding and rebinding simulations respectively. How-
ever, only trees generated from unbinding simulations
are shown here. The parameters for Eq. 7 were selected
to keep the branches generated by cloning events in
the same region on the tree, as well as to keep larger
weighted walkers towards the center. It is important
to note that this energy minimization only affects the
z-position of each node. The y-position is determined
by the timestep and is not used in the steepest descent
algorithm. The graphs were made using NetworkX 2.2
library [33] and visualized using Gephi 0.9.2 [34].

2.7 Clustering and visualization of conformation space
networks

All of the trajectory frames for the five starting poses
of each system were clustered together using the MSM-
Builder 3.8.0 library [35]. The clustering was done on a
featurized space defined by the Canberra distance de-
fined as:

Z ||p1 q: (9)

pz|+|9'z

where p and q are vectors at different frames con-
taining the distances between all the guest atoms and
all the host atoms and n is the total number of distance
pairs. These vectors contain 7056, 3128, and 3496 dis-
tances for the CB8-G3, OA-G3 and OA-G6 systems,
respectively. A k-centers clustering algorithm was used
to generate 1000 clusters using the featurized space and
assign each frame of the trajectories to a cluster. A
count matrix describing the cluster-cluster transitions
was calculated. This corresponds to a Markov state
model with a lag-time equal to the cycle length At = 20
ps.

We then construct Conformation Space Networks
(CSNs) from the count matrices, which are graphical

models of the transition matrix, with a node repre-
senting each row, and edges representing non-zero off-
diagonal elements using CSNAnalysis [36]. Gephi 0.9.2
was used to visualize the CSN. The size of each node
is proportional to the statistical population of the clus-
ter. The smallest node was 20 times smaller than the
largest node. The topology of the network was deter-
mined using a force minimization algorithm, Force At-
las, included in Gephi [37]. This algorithm includes re-
pulsive forces for nodes that are not connected and at-
tractive forces proportional to the weight of the edges.
The directed edge weights were values between 0.1 and
100 as determined by w;; = 100p;; where p;; is the tran-
sition probability of cluster i transitioning to cluster j.
Undirected edge weights were then determined as the
average between the two directed edge weights. Force
Atlas was applied twice, first without adjusting for node
sizes which enabled the nodes to overlap, and then a
second minimization adjusted for node size which pre-
vented overlap. For visualization, all edge weights were
given a uniform value. A CSN of each system is shown
in Figure 8.

3 Results
3.1 Warped walkers

For each host-guest system we run both unbinding and
rebinding REVO simulations originating from five dif-
ferent starting poses (Figure S1-S3), making 30 sim-
ulations total. All of these REVO simulations gener-
ated a substantial number of warping events. In gen-
eral these are distributed across a wide range of weight
values (Figure 4). For all systems it is observed that
rebinding can occur with very high probability walkers
(p > 0.1), but that unbinding occurs with much lower
probability. Indeed it is the probability of the unbind-
ing warped walkers that largely governs differences in
K p and kg between the systems. The minimum weight
that is achievable by a walker, pmin, wWas set to 10—12
in all cases. As shown in Figure 4, this could be in-
creased substantially (e.g. to 10~3) in the rebinding case
to avoid the integration of low-weight trajectories that
will not meaningfully contribute to the binding flux.

The warping points for the unbinding simulation
are shown in Figure 5, again using color to indicate
the starting pose. Although they exhibit some strong
correlation within a REVO run, together they com-
prise a broad distribution. For CB8-G3, both upward
and downward exit pathways are sampled with roughly
equal frequency, whereas for the Octa-Acid systems, the
exit points are clustered towards the top of the cavi-
tand.
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Fig. 4 Weights of warped walkers. Weights of warping events for the unbinding (top row) and rebinding (bottom row)
simulations. In both cases the points are colored according to the index of the corresponding starting pose (0, blue; 1, red; 2,

yellow; 3, green; 4, brown).

3.2 Kinetics and free energies

The binding and unbinding rates are calculated using
sum of the weights of the warped walkers, divided by
the elapsed time (see “Calculating rates by ensemble
splitting” in Methods). The binding rate is calculated
by dividing the binding trajectory flux by the concen-
tration of the guest in mol/L, calculated as C' = ﬁ,
where V' is the box volume. The concentration ranged
from 0.021 M for OA-G6 to 0.025 M for CB8-G3 and
0OA-G3, resulting from unit cells with side-length rang-
ing from 4.1 nm to 4.3 nm. Running estimates of kg,
and kyg are shown individually for each REVO simu-
lation in Figure 6, along with their average, which is
calculated by averaging the trajectory flux over the set
of five simulations. Large, upward jumps are observed
in the rate curves whenever an exit point is recorded
that has a higher weight than was previously observed.

The final average rate values, as well as the corre-
sponding mean first passage times, are given in Table
1. The uncertainties of kon and kog (don and o) are
determined using the standard error across the five tra-
jectories. The uncertainties in the mean first passage
times (MFPT) of binding and unbinding are calculated
as 0o, /Ck2, and 6, /k2g, respectively. Finally, the un-

certainty in AG is as follows:

_ 6|:|ff ? 6011 ?
s =i () 4 (=) (0

The MFPT of unbinding demonstrate the power
and scope of the REVO method: we estimate that the
CB8-G3 system has an average ligand residence time
of 860 seconds, and we obtain multiple ligand release

events for each of the five starting poses. In total, we
used 9.6 us of sampling in the CB8-G3 unbinding en-
semble, resulting in an acceleration factor of ~ 9 x 107.

With kyg and koy, in hand, the binding affinity is cal-
culated using Eq. 1. This binding affinity is compared
to both the experimentally measured binding affinity
[38], and a computational reference computed using al-
chemical free energy calculations with YANK (see [4]
for more details). As shown in Figure 6, the host-guest
affinity calculated by the rate ratio in REVO is system-
atically too tight when compared both the experimental
and reference values. This is possibly due to finite box
size effects, which is discussed further in the Discussion
and Conclusions section.

Moderate variation in ko and kg is observed across
the sets of simulations for each host-guest system, which
contributes to some uncertainty in the predicted rates
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Fig. 5 Spatial distribution of warped walkers. Structures of warping events for the unbinding simulations viewed from the
front and back. Guest ligands are colored according to the index of the corresponding starting pose (0, blue; 1, red; 2, yellow;

3, green; 4, brown).

Table 1 Pose-averaged rates and affinities

kogr (57 1) MFPTost (s) | kon (571 M—I) MFPT,, (ns) | AG (calc.) AG (ref)) [4] | AG (exp.) [38]
CB8-G3 | 0.0012 & 0.0003 860+230 | 4.7+0.8 x 10% 92+16 | —16.0+0.2 | —10.90+0.16 —6.45 £ 0.06
OA-G3 1604+ 110 0.0064 4 0.0044 | 1.240.2 x 109 36+6 —9.5+0.4 —6.70 £ 0.02 —5.18 +£0.02
OA-G6 0.48 £0.11 21405 | 2.84+1.0x 108 150 +£50 | —12.14+0.3 —7.18+0.05 —4.97+0.02

and affinities. However, the average standard deviation
in the logl0 final rates (log10(k)) is 0.28 for on-rates
and 0.56 for off-rates, both well under an order of mag-
nitude. This compares very favorably with recent stud-
ies using WExplore [9, 19], where rates from individual
simulations varied over several orders of magnitude.

3.3 Trajectory trees reveal correlation between exit
points

Rates are derived from exit points, and while points
from different starting poses are guaranteed to be inde-
pendent, it is unclear how correlated the observations

are within a given REVO simulation. We can use a tree
network to observe the entire set of merging and cloning
events that occur during a simulation, and to deter-
mine how closely related walkers are to one another.
Additionally, one can visualize the state of the walk-
ers through coloring the tree based on physical proper-
ties observed during the simulation, such as the solvent
accessible surface area (SASA) of the guest molecule,
which can help evaluate how close the guest is to un-
binding from or rebinding to the host. Using this color-
ing, and how closely related walkers are to one another,
we can visualize the correlation between a set of un-
binding or rebinding events.
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Fig. 6 Predicted kinetics and free energies. The calculated free energies (top), off-rates (middle), and on-rates (bottom)
are shown as a function of simulation time for each starting pose in each host-guest system. The curves are colored according
to the index of the starting pose as in Figures 5 and 4. The calculated binding free energies are compared with experimental
measurements (horizontal red line) [38], and the computational reference (dashed black line) for each system.

Figure 8 shows a trajectory tree for the OA-G3-
0 unbinding simulation. From the tree it is clear that
the majority of sampling time is spent sampling the
bound state (dark green structures). However, the top
inset shows that this sampling is still very active, with
outliers being detected and cloned nearly every cycle,
although the vast majority of these clones are merged
one or two cycles later, which implies that the outlying
property corresponded to a fast degree of freedom. The
middle inset shows a breakout event that led to a series
of exit points. The vertical “branches” show individual
trajectories. Termination of a branch with high SASA
(orange) correspond to exit points.

The OA-G3-0 simulation generated 966 exit points,
534 of which can be seen in Figure 7, which captures
only the first 1329 cycles. From the tree it can be seen
that many of these exit points are correlated, as they
were recently cloned from common ancestors. Using the
tree analysis one can observe that there are likely at
least seven distinct groups of exit points that can be
treated as independent observations of unbinding path-
ways.

In the bottom inset we see a trajectory that demon-
strates transient rebinding behavior. That is, the SASA
goes high (=~ 320, orange), to medium (= 160, light
green), back to high again. This behavior results from
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Fig. 7 Trajectory trees show all cloning and merging events in a simulation. The trajectory tree for the first 1329 cycles
of the OA-G3-0 unbinding simulation is shown. Each horizontal row in this tree represents a cycle, and the placement of all 48
nodes in the row is determined by minimizing an energy function (see “Visualization of trajectory trees” in Methods). SASA
is used to color the nodes, with blue and dark green indicating bound structures, and yellow to orange indicating unbound.
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a transient, loose association with the exterior of the
host molecule. This trajectory is shown as Supporting
Movie 1.

3.4 Conformation space networks reveal connection
between starting poses

Here we obtain combined estimates of k., k5 and K p
by averaging the transition flux from simulations with
different starting poses, and in the case of the rebind-
ing simulations, different boundary conditions. This is
only appropriate if the five starting poses are all part
of the same basin of attraction, and can interconvert
on timescales much faster than the unbinding process.
If two poses form distinct basins of attraction, then we
cannot expect that the poses will have the same kqg,
kon, or Kp. To examine the connectivity of starting
poses, we use the REVO trajectory segments to con-
struct a Markov state model. We then visualize con-
formation space networks (CSNs) to examine how the
starting poses are connected, whether they are in the
same basin of attraction, and whether they share the
same (un)binding pathways.

Figure 8 shows CSNs for the unbinding simulations
of all three host-guest systems. For both OA systems
a large, densely-connected ensemble of bound states
is observed. As the entire set of host-guest distances
was used to featurize our dataset, this heterogeneity
arises from motions of the flexible chemical groups on
the bottom and around the rim of the Octa acid host
molecule. Starting structure 3 in CB8-G3 is bound in
the opposite orientation from the others (see Figure
S1), although the host-molecule is symmetric to inver-
sion about the horizontal plane. While this did not af-
fect the kinetic measurements (which took into account
symmetry-equivalent atom mappings of the host), in
the CSN it forms a distinct basin from the other starting
poses. This allows us to observe that the ligand cannot
flip between these two structures inside the host, and
instead converts between the two poses only through
the quasi-bound and unbound states (yellow and or-
ange). Although here we conclude that all structures
are part of the same (or symmetry-equivalent) fast-
interconverting bound ensemble, this type of analysis
is useful to reveal the interconversion of binding poses,
and whether we should expect them to have the same
calculated residence times.

4 Discussion

Although we obtained much information about the bind-
ing and release processes of these host-guest systems,

our predicted AG values were systematically lower than
those of a reference calculation employing the same
forcefield (average 4.2 kcal/mol). These reference AG
values were themselves systematically lower than the
experimentally calculated dissociation constants (aver-
age 2.7 kcal/mol), likely arising from inaccuracies in
the forcefield. The nature of the SAMPLing challenge
gives us a unique opportunity to isolate these differ-
ent sources of error. Below we discuss different possible
sources of error in light of the analyses presented above.

In weighted ensemble simulations that calculate ki-
netic quantities, convergence is often the first question.
Here we devoted the same amount of sampling time to
the binding and unbinding processes (1.92 us per sys-
tem per starting pose). This is more than sufficient to
capture the binding process, which has a mean first pas-
sage time ranging from 36 to 160 ns. The unbinding pro-
cess was much more challenging, and it is possible that
longer simulations would have captured higher weight
walkers exiting from the bound state. This would in-
crease our kyg estimates, and Kp as well. Significantly
extending the unbinding simulations and monitoring
their exit rates could provide additional insight.

We also have concerns related to the size of the sim-
ulation box. This was chosen to be appropriate for stan-
dard alchemical free energy perturbations, and not for
simulations of full unbinding and binding pathways. A
more accurate determination of the binding rate could

be obtained with the Northrup-Allison-McCammon (NAM)

method, which combines the rate of first hitting points
with a committor probability to determine the binding
rate [39]. Diffusion at long distances is typically effi-
ciently simulated using Brownian dynamics. This ap-
proach has been used successfully to determine binding
rates with both the weighted ensemble method [40, 41],
and the SEEKR method (Simulation Enabled Estima-
tion of Kinetic Rates) [11].

An important point is that although the reference
calculations were performed with the same forcefield,
the rates can sensitively depend on aspects of the force-
field that are not relevant to alchemical measurements
of the affinity. As an example, in OA-G3 unbinding tra-
jectory trees we observe long “tendrils” of unbound tra-
jectories that are stuck in intermediate SASA values,
where the guest ligand is bound to the outer surface of
the host. The strength of these interactions can signifi-
cantly affect our calculations of k.g, although they will
not affect the alchemical Kp calculations.

In general, to successfully predict ko and kg will
require optimizing the ligand forcefield terms that gov-
ern interactions that occur along binding pathways. By
analogy, it is known that protein forcefields that are
only trained on folded protein structures have difficul-



12

Tom Dixon et al.

I 600

&
=< 300
<<
2
w
0

160

SASA (A2)

&
§ 166
2
w
0

Fig. 8 Conformation space networks for the unbinding simulations. Each node in a CSN represents a cluster of host-guest
structures. Edges in the networks connect clusters that are seen to interconvert in the REVO simulations. The size of each
node is proportional to the number of times it was observed in the unbinding simulations. Nodes are colored according to the
solvent accessible surface area of the guest molecule, as shown in the color-bars on the right. The clusters corresponding to

the starting poses are labeled in each network.
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ties representing unfolded and intrinsically disordered
structures. As a community we must take care not to
over-emphasize the ligand bound state in forcefield de-
velopment. An extension of the SAMPL challenge to
include the prediction of kinetic quantities would thus
be tremendously valuable to the development of both
sampling methodologies and forcefields.
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