
FPGAs with Reconfigurable Threshold Logic Gates

for Improved Performance, Power and Area

Ankit Wagle†, Jinghua Yang†, Aykut Dengi, Sarma Vrudhula†

School of Computing, Informatics and Decision Systems Engineering

Arizona State University Tempe AZ 85281

Abstract—This paper proposes an alternative FPGA tile struc-
ture that consists of three traditional LUTs combined with a new
reconfigurable threshold logic cell (TLC). The TLC requires only
7 SRAM cells and can be configured to implement one of several
threshold functions. The proposed architecture is implemented in
a 28nm FDSOI process, and is evaluated on standard benchmark
circuits and several large complex function blocks. The results
demonstrate an average reduction of 8.9% in register count,
15.4% in multiplexer count, 7% average reduction in Basic Logic
Element (BLE) area, and 8.2% average reduction in BLE power,
with a maximum decrease in register count up to 64%, BLE
multiplexer count up to 68%, BLE Area up to 51.6% and BLE
power up to 61.6% without loss in performance. We also show
a reduction of 21% in the area of a tile.

Index Terms—Threshold Logic, FPGA, Reconfigurable, FD-
SOI, 28nm, PNAND, Low Power, Low Area, High Performance

I. INTRODUCTION

Implementation of LUTs in an FPGA comes at the heavy

cost of area, power and performance. In this paper, a new

FPGA named Threshold Logic FPGA (TLFPGA) is proposed.

It uses a novel tile architecture (shown in Fig. 1b) consisting

of a cluster of LUTs and Threshold Logic Cells (TLCs). Both

LUTs and TLCs are BLEs capable of implementing Boolean

functions. Compared to a standard LUT cell, the proposed

TLC has smaller overall delay, area and power consumption

when implementing the same function. A TLFPGA imple-

mentation shows significant improvement in area and power

without sacrificing performance, as compared to a standard

FPGA implementation.

The main contributions of this paper are as follows:

1) A new FPGA architecture called TLFPGA is proposed

which integrates a TLC with a conventional FPGA Tile.

2) Based on the TLFPGA performance, a heuristic al-

gorithm is proposed to perform the Threshold Logic

mapping. As a result, a near optimal mapping solution

with minimum number of tiles is achieved.

3) The effects of pipelining stages on the area, delay,

and power are studied after mapping to the proposed

architecture.

The paper is organized as follows: Section II gives a brief

explanation about Threshold Logic and sequential Threshold

Logic Element. Section III describes the basic architecture

†We gratefully acknowledge the National Science Foundation for sup-
porting this work under NSF PFI award no. #1701241.

LUT-K

LUT-K

LUT-K

CONFIGURATION
REGISTERS

INTER-TILE
INTER-

CONNECT
RESOURCES

INTRA-TILE
INTER-

CONNECT
RESOURCES

FPGA TILE CLUSTER

LUT-K

(a) LUT-K FPGA Tile

LUT-K

LUT-K

LUT-K

CONFIGURATION
REGISTERS

INTER-TILE
INTER-

CONNECT
RESOURCES

INTRA-TILE
INTER-

CONNECT
RESOURCES

TLFPGA TILE CLUSTER

TLC

(b) LUT-K TLFPGA Tile

Fig. 1: Tile structure for a) FPGA Tile and b) TLFPGA Tile. For
TLFPGA tile, one LUT is replaced with one TLC.

G1 = C | D

F1 = A & B

A
B

Threshold Function

Q=F1 & G1
D Q

CK

C
D

Q=A & B & (C | D)

TLC
CK

I1
I2
I3
I4

A
B
C
D

Q

Fig. 2: Example of Threshold Cell Mapping

required to build an FPGA and the proposed TLFPGA Archi-

tecture. Section IV describes the design flow and the heuristic

algorithm needed to perform the threshold logic based map-

ping. Section V shows experimental results of mapping, and

the corresponding reduction in Basic Logic Elements (BLE)

area and power. Section VI concludes the paper.

II. BACKGROUND

A threshold function is a Boolean function that can be

described by a predicate involving a weighted linear form

of binary variables. A Boolean function f(x1,x2,...,xn) is a

threshold function of there exists weights w1,w2,...,wn and a

threshold T such that

f(x1, x2, · · · , xn) =

⎧

⎨

⎩

1 if
n
∑

i=1

wixi ≥ T

0 otherwise.
(1)

256

2018 International Conference on Field-Programmable Logic and Applications

978-1-5386-8517-4/18/$31.00 ©2018 IEEE
DOI 10.1109/FPL.2018.00051

TABLE I: Delay and Power for LUTs (without flip-flops) and TLC

BLE
Type

Config
Regs.

Config MUXes
/XORs

Delay (ps)
Power
(µW)

LUT-4 16 15 220 33.2
LUT-5 32 31 226 64.0
LUT-6 64 63 294 125.0
LUT-7 128 127 331 248.0
TLC 7 7 109 22.8

TABLE II: Tile Area of FPGA vs. TLFPGA. Replacement of a large
LUT with a small TLC helps shrink the tile size.

K LUT-K FPGA (µm2) LUT-K TLFPGA (µm2)

4 192 176

5 272 236

6 428 353

7 780 617

Threshold functions have been known to reduce the gate

count, area, power and increase the performance of a standard

Boolean logic implementation [1] [2]. The differential thresh-

old gate, presented in [2] is used for implementing threshold

logic functions. These gates have bounded fan-in.

III. THRESHOLD LOGIC CELL

The circuit design of a TLC is described in Ref. [3], which

can be viewed as a multi-input edge triggered flip-flop. The

output of a D flip-flop is f(x)=x on a clock edge, whereas the

output of a TLC is a threshold function f(x1,x2,...,xn), on a

clock edge (See Fig. 2). Note that a TLC can realize a set of

Boolean functions, determined by what signals are assigned to

the inputs [2]. Table I provides delay and power numbers for

LUTs of various input sizes and a TLC in a 28nm FDSOI

Process. TLCs are smaller and faster, and consume lower

power than LUTs. The structures of a standard FPGA tile and

the proposed TLFPGA tile are shown in Fig. 1. For studying

the effects of LUT size on area, power, and performance,

TLFPGA tiles with 4, 5, 6 and 7-input LUTs are used. Table

II shows the area requirement of a standard FPGA tile versus a

TLFPGA tile. In the table, LUT-K type FPGA tile consists of

4 LUT-Ks and LUT-K Type TLFPGA tile consists of 3 LUT-

Ks and one TLC. Tiles are implemented using 28nm FDSOI

Technology Cells using a standard ASIC flow. TLFPGA tile

requires significantly smaller area than a standard FPGA

tile, as there are fewer BLE configuration registers and BLE

MUXes in a TLC than an LUT. Signals are assigned to the

TLC using a signal assignment procedure described in [3],

which helps us attain maximum speed, and makes the inputs of

the Threshold Cells positionally equivalent. The programming

for the TLCs in the design can be done while programming

LUTs. Since an LUT has more configuration bits than a

TLC, the overall time required to program the BLE(s) can

be reduced.

IV. DESIGN FLOW FOR TLFPGA

The flow shown in Fig. 3 is used to generate the final

architecture and bitstream file for the TLFPGA. This flow is a

modified version of the OpenFPGA [4] flow. Threshold logic

Fig. 3: Modified Design Flow for TLFPGA

Fig. 4: Reduction in Circuit Implementation Cost in TLFPGA as
compared to FPGA

technology mapping is done on a gate level netlist followed

by LUT mapping using ABC [5]. The former is not included

in a conventional FPGA Flow [6]. The bitstream generator is

modified to support bit programming for TLCs.

Threshold Cell Mapping (TCM) in Fig. 3 is implemented

by applying Algorithm 1 on a gate level netlist. TCM replaces

selected flip-flops and part of the input logic cone that feeds

those flip-flops with threshold cells. This process is called

logic absorption. A threshold cell is able to absorb a limited

number of logic cells depending on the structure of input logic

cone.

Fig. 4 illustrates how the LUT count is reduced by TCM.

The cone of logic feeding each D flip-flop is searched for an

appropriate threshold function, and the corresponding logic

and the flop-flop are replaced by a single TLC. The original

LUT mapping in the example requires 3 LUTs to implement

the subcircuit shown. After performing TCM, 2 LUTs and a

TLC is required. Since the cost of implementing a TLC is

significantly lower than implementing an LUT, the area and

power is reduced. Algorithm 1 is used to perform the TCM for

the entire circuit. When the Algorithm 1 completes, we get an

enhanced netlist with TLCs mapped to the circuit. The result

of the TCM algorithm is a modified netlist with the same D

flip-flops and parts of their fanin cone replaced by a TLC.

The threshold function mapping for a particular register FFi

is based on the logic cells at the fanin cone of FFi. Algorithm

1 performs the mapping at the register location FFi by per-

forming cuts which ensure that the function at TLGi ∈ TLC’s

function set. Each ILCi can be transformed into a group

of logic cells feeding a linear threshold function TLGi(See

Algorithm 1 line 2). The new graph is called ILC Thi. This

representation is generated by absorbing the maximum number

of logic gates feeding FFi into the threshold function at FFi.

257

Algorithm 1 Pseudo Code for Threshold Cell Mappin

• G: Directed cyclic graph representation of the original netlist
containing nodes for N flip-flops and Logic Gates.

• GTh : Directed cyclic graph; Original netlist containing nodes
for flip-flops, Simple Logic Gates and Threshold Logic Gates

• FFi: i
th Flip-Flop in the circuit

• ILCi: Input logic cone of FFi

• TLGi: Threshold function mapped at Flip-flop FFi for Maxi-
mum Logic Absorption

• ILC Thi: Input logic cone of threshold function at FFi

• Gi: Circuit representation with the threshold logic transforma-
tion till FFi

• N LUTi: LUT Count required to implement circuit with thresh-
old logic transformation till FFi

Input: G;G = G0

Output: GTh

1: for FFi in FFset; i=1 to N, do
2: TLGi = Best cut at ILCi for maximum logic absorption, with

following fanout constraints:

1) Fanout = 1: Consider logic cell for cut
2) Fanout = 2: Replicate logic cell and consider that cell for

cut
3) Fanout ≥ 3: Do not absorb these logic cells in the cut

3: Gi = TLGi applied to Gi−1

4: Perform low effort trial LUT mapping on Gi to get N LUTi

5: if N LUTi ≤ N LUTi−1 then
6: Gi = Gi

7: else
8: Gi = Gi−1

9: end if
10: end for
11: GTh = Gi

12: return GTh

For a logic cell to be eliminated, it has to be absorbed by the

threshold functions at its fanouts. Logic replication [7] is also

supported by the algorithm. Each time we replicate logic for

absorption, we reduce the fanout of the original logic cell by

1. If the logic cell fanout goes to 0, then that logic cell can

be eliminated. LUT mapping is more efficient if the logic cell

fanout is 1.

Based on experiments, it has been observed that logic cells

with fanout greater than 2 rarely get eliminated. To reduce the

complexity of the algorithm, logic cells with fanout greater

than 2 are excluded from threshold logic cuts. Also, decom-

position of complex non-threshold logic cells to threshold

logic cells leads to inefficient LUT mapping, and is therefore

avoided. Decomposition of complex function cells into a group

of threshold functions may sometimes lead to the addition of

signals with a fanout of 2, or more. Addition of such signals

leads to an inefficient TCM for the decomposed threshold

functions.

The tile structure shown in Figure 1 consists of one TLC

and three conventional LUTs. This is because commonly used

cluster sizes start at 4 BLE(s) per tile [8]. However, there are

no restrictions on the BLE clustering. In LUT mapping, the

output of conventional LUTs can be both combinational and

sequential, whereas TLC output can only be sequential. As

a result, more LUTs are required than TLCs. Therefore, the

-5.0%
0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%

1 2 3 4 5 6 7 8 9R
ed

uc
tio

n
in

 C
on

fig
ur

at
io

n
R

eg
is

te
rs

(%
)

Pipeline Stages

LUT-4 LUT-5 LUT-6 LUT-7

Fig. 5: Average reduction in BLE configuration register count in
TLFPGA as compared to FPGA for varying LUT sizes and pipeline
stages

-5.0%
0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%

1 2 3 4 5 6 7 8 9R
ed

uc
tio

n
in

 C
on

fig
ur

at
io

n
M

ux
es

(%
)

Pipeline Stages

LUT-4 LUT-5 LUT-6 LUT-7

Fig. 6: Average reduction in BLE multiplexers count in TLFPGA as
compared to FPGA for varying LUT sizes and pipeline stages

proposed structure was chosen to maximize the tile-utilization

and the inter-tile routing. For optimal tile utilization, this

algorithm can be easily modified to generate the desired LUT

to TLG ratio.

V. EXPERIMENTAL RESULTS

For evaluating the TLFPGA architecture, ISCAS-85 and

ISCAS-89 benchmark circuits are used. TCM is relevant only

to sequential circuits, as the TLC is a flip-flop with embed-

ded logic. Since ISCAS-85 circuits are strictly combinational

circuits, we added additional pipeline stages by retiming the

circuits. For studying the effect of pipeline stages on the TCM,

1 to 9 pipeline stages were added to all the 10 ISCAS-85

benchmark circuits, which gives us 90 circuits. The pipeline

stages in ISCAS-89 circuits are not changed. The total number

of circuits used for TLFPGA evaluation is 115 circuits. The

logic depth of the test circuits vary between 2 to 12. Simulation

corner is Slow/Slow 0.9V V DD 125◦C.

For analyzing the effect of pipelining on various parameters,

pipelined ISCAS-85 benchmark circuits are used. Fig. 5, 6, 7

and 8 show the percentage reduction in the BLE Configu-

ration Registers (Config Regs), BLE MUXes (MUX Count),

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

1 2 3 4 5 6 7 8 9R
ed

uc
tio

n
in

 C
LB

 A
re

a(
%

)

Pipeline Stages

LUT-4 LUT-5 LUT-6 LUT-7

Fig. 7: Average reduction in BLE area in TLFPGA as compared to
FPGA for varying LUT sizes and pipeline stages

258

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

1 2 3 4 5 6 7 8 9R
ed

uc
tio

n
in

 C
LB

 P
ow

er
(%

)

Pipeline Stages

LUT-4 LUT-5 LUT-6 LUT-7

Fig. 8: Average reduction in BLE Power in TLFPGA as compared
to FPGA for varying LUT sizes and pipeline stages

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

1 2 3 4 5 6 7 8 9

Im
pr

ov
em

en
t i

n
O

pe
ra

tin
g

Fr
eq

ue
nc

y(
%

)

Pipeline Stages

LUT4 LUT5 LUT6 LUT7

Fig. 9: Average gain in frequency in TLFPGA as compared to FPGA
for varying LUT sizes and pipeline stages

BLE Area (Area) and BLE Power (Power) respectively in

TLFPGA as compared to FPGA. Improvement in technology

independent parameters such as Config Regs and MUX Count

indicates that the TLFPGA can potentially offer benefits in

other technology nodes as well. The Config Regs, MUX

Count, Area and Power drop as the number of pipeline stages

increases. More pipeline stages give more opportunities to the

TCM to map TLCs. These experiments clearly indicate that

TLFPGA is better suited for designs with deep pipelining.

Since the logic depth of the circuit is not affected much during

the TCM, the operating frequency in FPGA vs TLFPGA does

not fluctuate much. This can be seen in Fig. 9.

Another observation that can be drawn from Fig. 5, 6, 7

and 8 is that the percentage reduction in configuration regis-

ters, MUX Count, Area and Power in TLFPGA as compared

to FPGA increases with increase in the LUT size. This is

because the number of configuration registers and MUX count

for a BLE increase exponentially with an increase in LUT

size, whereas the configuration registers and XORs in a TLC

stay the same. As a result, TLFPGA provides more significant

improvements when large LUTs are used.

Table III shows the average, maximum and minimum per-

centage reduction for configuration registers, MUX count, area

and power, and percentage improvement in the operating fre-

quency, over ISCAS-85 and ISCAS-89 circuits. Results show

that the maximum improvement that we get for configuration

registers, MUX count, area and power are far greater than

the maximum degradation that we get when we map the

circuit to TLFPGA. From the table, we can also see that all

the parameters improve on an average. The average routing

resources needed for the circuits are slightly reduced. These

improvements can be easily carried over to more practical

circuits such as filter and multiplier as well.

Though very little work has been done in the integration

TABLE III: Improvements in TLFPGA as compared to standard
FPGA over ISCAS-85 and ISCAS-89 circuits

Parameter Average Maximum Minimum

BLE Config Regs 8.9% 64.5% -7.2%
BLE MUXes 15.4% 68.6% -7.1%

BLE Area 7.0% 51.6% -7.3%
BLE Power 8.2% 61.6% -8.7%
Frequency 5% 165.5% -33.1%

Routing Area 2.2% 51.5% -58.5%
Routing Power 0.7% 75.2% -51.7%

of threshold functions in a standard FPGA structure, a lot of

work has been done on the implementation of efficient LUT

structures and reconfigurable threshold logic arrays. Work on

alternate LUT structures can be found in Ref. [9] and Ref.

[10]. More information on commercial FPGAs can be found

in Ref. [11], [12], and [13].

VI. CONCLUSION

Threshold logic based FPGAs proposed in this paper can

be used to reduce the number of BLE configuration registers,

multiplexers, area and power for most of the circuits we tested

without compromising performance. The best results were

obtained for deeply pipelined circuits where the percentage

improvement increased with an increase in the number of

pipeline stages and LUT size.

REFERENCES

[1] Kai-Yeung Siu, Vwani Roychowdhury, and Thomas Kailath. Discrete

Neural Computation: A Theoretical Foundation. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1995.

[2] N. Kulkarni, J. Yang, J. S. Seo, and S. Vrudhula. Reducing power,
leakage, and area of standard-cell asics using threshold logic flip-flops.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24(9):2873–2886, Sept 2016.

[3] N. Kulkarni, J. Yang, and S. Vrudhula. A fast, energy efficient, field
programmable threshold-logic array. In 2014 International Conference

on Field-Programmable Technology (FPT), pages 300–305, Dec 2014.
[4] Hao Jun Liu. Archipelago - an open source fpga with toolflow support.

In Thesis, Berkeley, CA, 2014. UC Berkeley.
[5] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-

strength verification tool. In Proceedings of the 22Nd International

Conference on Computer Aided Verification, CAV’10, pages 24–40,
Berlin, Heidelberg, 2010. Springer-Verlag.

[6] Zied Farooq, Umerand Marrakchi and Habib Mehrez. FPGA Architec-

tures: An Overview, pages 7–48. Springer New York, New York, NY,
2012.

[7] G. Beraudo and J. Lillis. Timing optimization of fpga placements by
logic replication. In Proceedings 2003. Design Automation Conference

(IEEE Cat. No.03CH37451), pages 196–201, June 2003.
[8] G. Zgheib and P. Ienne. Evaluating fpga clusters under wide ranges

of design parameters. In 2017 27th International Conference on Field

Programmable Logic and Applications (FPL), pages 1–8, Sept 2017.
[9] Sayak Ray, Alan Mishchenko, Niklas Een, Robert Brayton, Stephen

Jang, and Chao Chen. Mapping into lut structures. In Proceedings

of the Conference on Design, Automation and Test in Europe, DATE
’12, pages 1579–1584, San Jose, CA, USA, 2012. EDA Consortium.

[10] Wenyi Feng, Jonathan Greene, and Alan Mishchenko. Improving fpga
performance with a s44 lut structure. In Proceedings of the 2018

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, FPGA ’18, pages 61–66, New York, NY, USA, 2018. ACM.
[11] Xilinx 7 Series FPGAs Configurable Logic Block User Guide.
[12] Cyclone V Device Overview.
[13] Polarfire FPGA Fabric User Guide.

259

