2018 International Conference on Field-Programmable Logic and Applications

FPGAs with Reconfigurable Threshold Logic Gates
for Improved Performance, Power and Area

Ankit Waglef, Jinghua Yang', Aykut Dengi, Sarma Vrudhulaf

School of Computing, Informatics and Decision Systems Engineering
Arizona State University Tempe AZ 85281

Abstract—This paper proposes an alternative FPGA tile struc-
ture that consists of three traditional LUTs combined with a new
reconfigurable threshold logic cell (TLC). The TLC requires only
7 SRAM cells and can be configured to implement one of several
threshold functions. The proposed architecture is implemented in
a 28nm FDSOI process, and is evaluated on standard benchmark
circuits and several large complex function blocks. The results
demonstrate an average reduction of 8.9% in register count,
15.4% in multiplexer count, 7% average reduction in Basic Logic
Element (BLE) area, and 8.2% average reduction in BLE power,
with a maximum decrease in register count up to 64%, BLE
multiplexer count up to 68%, BLE Area up to 51.6% and BLE
power up to 61.6% without loss in performance. We also show
a reduction of 21% in the area of a tile.

Index Terms—Threshold Logic, FPGA, Reconfigurable, FD-
SOI, 28nm, PNAND, Low Power, Low Area, High Performance

I. INTRODUCTION

Implementation of LUTs in an FPGA comes at the heavy
cost of area, power and performance. In this paper, a new
FPGA named Threshold Logic FPGA (TLFPGA) is proposed.
It uses a novel tile architecture (shown in Fig. 1b) consisting
of a cluster of LUTs and Threshold Logic Cells (TLCs). Both
LUTs and TLCs are BLEs capable of implementing Boolean
functions. Compared to a standard LUT cell, the proposed
TLC has smaller overall delay, area and power consumption
when implementing the same function. A TLFPGA imple-
mentation shows significant improvement in area and power
without sacrificing performance, as compared to a standard
FPGA implementation.

The main contributions of this paper are as follows:

1) A new FPGA architecture called TLFPGA is proposed
which integrates a TLC with a conventional FPGA Tile.
Based on the TLFPGA performance, a heuristic al-
gorithm is proposed to perform the Threshold Logic
mapping. As a result, a near optimal mapping solution
with minimum number of tiles is achieved.

The effects of pipelining stages on the area, delay,
and power are studied after mapping to the proposed
architecture.

2)

3)

The paper is organized as follows: Section II gives a brief
explanation about Threshold Logic and sequential Threshold
Logic Element. Section III describes the basic architecture

Twe gratefully acknowledge the National Science Foundation for sup-
porting this work under NSF PFI award no. #1701241.

978-1-5386-8517-4/18/$31.00 ©2018 IEEE
DOI 10.1109/FPL.2018.00051

256

INTER-TILE INTER-TILE
INTER- INTER-
CONNECT CONNECT
RESOURCES RESOURCES
INTRA-TILE INTRA-TILE
FPGA TILE CLUSTER | |nTER- TLFPGA TILE CLUSTER | |nTER.
CONNECT CONNECT
CONFIGURATION | | pecources CONFIGURATION | | pecources
REGISTERS REGISTERS

(a) LUT-K FPGA Tile (b) LUT-K TLFPGA Tile

Fig. 1: Tile structure for a) FPGA Tile and b) TLFPGA Tile. For
TLFPGA tile, one LUT is replaced with one TLC.

Threshold Function

—_——— —

- ~ _Q=A&B&(C|D)
A ~
B
A—n
» iz 1€ a—e
c—3
C pD—14 CK
D I
NSGi=c|p -

Fig. 2: Example of Threshold Cell Mapping

required to build an FPGA and the proposed TLFPGA Archi-
tecture. Section IV describes the design flow and the heuristic
algorithm needed to perform the threshold logic based map-
ping. Section V shows experimental results of mapping, and
the corresponding reduction in Basic Logic Elements (BLE)
area and power. Section VI concludes the paper.

II. BACKGROUND

A threshold function is a Boolean function that can be
described by a predicate involving a weighted linear form
of binary variables. A Boolean function f{z1,x9,...,x,) iS a
threshold function of there exists weights wj,ws,...,w, and a
threshold T such that

n
i=1
0 otherwise.

()]

f($1:x27”' 71'71)

TABLE I: Delay and Power for LUTs (without flip-flops) and TLC

BLE Config | Config MUXes Delay (ps) Power
Type | Regs. /XORs clay s |)
LUT4 16 15 220 332
LUT-5 32 31 226 64.0
LUT-6 64 63 294 125.0
LUT-7 128 127 331 248.0
TLC 7 7 109 22.8

TABLE II: Tile Area of FPGA vs. TLFPGA. Replacement of a large
LUT with a small TLC helps shrink the tile size.

K | LUT-K FPGA (um?) | LUT-K TLFPGA (um?)
4 192 176
5 272 236
6 428 353
7 780 617

Threshold functions have been known to reduce the gate
count, area, power and increase the performance of a standard
Boolean logic implementation [1] [2]. The differential thresh-
old gate, presented in [2] is used for implementing threshold
logic functions. These gates have bounded fan-in.

III. THRESHOLD LoGic CELL

The circuit design of a TLC is described in Ref. [3], which
can be viewed as a multi-input edge triggered flip-flop. The
output of a D flip-flop is f{x)=x on a clock edge, whereas the
output of a TLC is a threshold function f{zi,zs,...,xy,), On a
clock edge (See Fig. 2). Note that a TLC can realize a set of
Boolean functions, determined by what signals are assigned to
the inputs [2]. Table I provides delay and power numbers for
LUTs of various input sizes and a TLC in a 28nm FDSOI
Process. TLCs are smaller and faster, and consume lower
power than LUTs. The structures of a standard FPGA tile and
the proposed TLFPGA tile are shown in Fig. 1. For studying
the effects of LUT size on area, power, and performance,
TLFPGA tiles with 4, 5, 6 and 7-input LUTs are used. Table
II shows the area requirement of a standard FPGA tile versus a
TLFPGA tile. In the table, LUT-K type FPGA tile consists of
4 LUT-Ks and LUT-K Type TLFPGA tile consists of 3 LUT-
Ks and one TLC. Tiles are implemented using 28nm FDSOI
Technology Cells using a standard ASIC flow. TLFPGA tile
requires significantly smaller area than a standard FPGA
tile, as there are fewer BLE configuration registers and BLE
MUXes in a TLC than an LUT. Signals are assigned to the
TLC using a signal assignment procedure described in [3],
which helps us attain maximum speed, and makes the inputs of
the Threshold Cells positionally equivalent. The programming
for the TLCs in the design can be done while programming
LUTs. Since an LUT has more configuration bits than a
TLC, the overall time required to program the BLE(s) can
be reduced.

IV. DESIGN FLow FOR TLFPGA

The flow shown in Fig. 3 is used to generate the final
architecture and bitstream file for the TLFPGA. This flow is a
modified version of the OpenFPGA [4] flow. Threshold logic

257

BEHAVIORAL NETLIST

SYNTHESIS

GATE LEVEL NETLIST

AREA, POWER
AND MAPPING
REPORTS

VPR PLACE AND ROUTE
LT

MAPPED
NETLIST

THRESHOLD CELL MAPPING

(TLFPGA ONLY) MODIFIED OPENFPGA

FPGA GENERATION

MODIFIED OPENFPGA
BITSTREAM GENERATION

TLFPGA VERILOG FILE DESIGN BITSTREAM FILE

Fig. 3: Modified Design Flow for TLFPGA

GATE LEVEL NETLIST WITH
THRESHOLD LOGIC CELLS

THRESHOLD

NEW CIRCUIT

MAPPING MAPPING WITH
THRESHOLD

LOGIC

OLD CIRCUIT COST=3"LUT

' 4
ORIGINAL CIRCUIT MAPPING ' e
I ———’L———’ TLC |
LUT BOUNDARY — 0 c« 1,

B 0D FUNCTION = _J NEW CIRCUIT COST= 2°LUT +
THRESHOLD LOGIC CELL

Fig. 4: Reduction in Circuit Implementation Cost in TLFPGA as
compared to FPGA

technology mapping is done on a gate level netlist followed
by LUT mapping using ABC [5]. The former is not included
in a conventional FPGA Flow [6]. The bitstream generator is
modified to support bit programming for TLCs.

Threshold Cell Mapping (TCM) in Fig. 3 is implemented
by applying Algorithm 1 on a gate level netlist. TCM replaces
selected flip-flops and part of the input logic cone that feeds
those flip-flops with threshold cells. This process is called
logic absorption. A threshold cell is able to absorb a limited
number of logic cells depending on the structure of input logic
cone.

Fig. 4 illustrates how the LUT count is reduced by TCM.
The cone of logic feeding each D flip-flop is searched for an
appropriate threshold function, and the corresponding logic
and the flop-flop are replaced by a single TLC. The original
LUT mapping in the example requires 3 LUTs to implement
the subcircuit shown. After performing TCM, 2 LUTs and a
TLC is required. Since the cost of implementing a TLC is
significantly lower than implementing an LUT, the area and
power is reduced. Algorithm 1 is used to perform the TCM for
the entire circuit. When the Algorithm 1 completes, we get an
enhanced netlist with TLCs mapped to the circuit. The result
of the TCM algorithm is a modified netlist with the same D
flip-flops and parts of their fanin cone replaced by a TLC.

The threshold function mapping for a particular register F'F;
is based on the logic cells at the fanin cone of F'F;. Algorithm
1 performs the mapping at the register location F'F; by per-
forming cuts which ensure that the function at TLG; € TLC’s
function set. Each ILC; can be transformed into a group
of logic cells feeding a linear threshold function T'LG;(See
Algorithm 1 line 2). The new graph is called ILC_Th;. This
representation is generated by absorbing the maximum number
of logic gates feeding F'F; into the threshold function at F'F;.

Algorithm 1 Pseudo Code for Threshold Cell Mappin

o G: Directed cyclic graph representation of the original netlist
containing nodes for N flip-flops and Logic Gates.

e G : Directed cyclic graph; Original netlist containing nodes
for flip-flops, Simple Logic Gates and Threshold Logic Gates

« FF;: i*" Flip-Flop in the circuit

« ILGC;: Input logic cone of F'F;

o TLG;: Threshold function mapped at Flip-flop F'F; for Maxi-
mum Logic Absorption

o ILC_Th;: Input logic cone of threshold function at F'F;

o Gi: Circuit representation with the threshold logic transforma-
tion till FF;

o N_LUT;: LUT Count required to implement circuit with thresh-
old logic transformation till F'F;

Input: G;G = Gy
Output: Grp,
1: for F'F; in FFse; i=1 to N, do
2: TLG; = Best cut at [LC; for maximum logic absorption, with
following fanout constraints:

1) Fanout = 1: Consider logic cell for cut

2) Fanout = 2: Replicate logic cell and consider that cell for
cut

3) Fanout > 3: Do not absorb these logic cells in the cut

3: G = TLG; applied to G;—1

4: Perform low effort trial LUT mapping on G; to get N_LUT;
50 if N_LUT; < N_LUT;_, then

6: Gi=G;

7: else

8: Gl = Gifl

9: end if

10: end for

11: G = G5

12: return Gt

For a logic cell to be eliminated, it has to be absorbed by the
threshold functions at its fanouts. Logic replication [7] is also
supported by the algorithm. Each time we replicate logic for
absorption, we reduce the fanout of the original logic cell by
1. If the logic cell fanout goes to 0, then that logic cell can
be eliminated. LUT mapping is more efficient if the logic cell
fanout is 1.

Based on experiments, it has been observed that logic cells
with fanout greater than 2 rarely get eliminated. To reduce the
complexity of the algorithm, logic cells with fanout greater
than 2 are excluded from threshold logic cuts. Also, decom-
position of complex non-threshold logic cells to threshold
logic cells leads to inefficient LUT mapping, and is therefore
avoided. Decomposition of complex function cells into a group
of threshold functions may sometimes lead to the addition of
signals with a fanout of 2, or more. Addition of such signals
leads to an inefficient TCM for the decomposed threshold
functions.

The tile structure shown in Figure 1 consists of one TLC
and three conventional LUTs. This is because commonly used
cluster sizes start at 4 BLE(s) per tile [8]. However, there are
no restrictions on the BLE clustering. In LUT mapping, the
output of conventional LUTs can be both combinational and
sequential, whereas TLC output can only be sequential. As
a result, more LUTs are required than TLCs. Therefore, the

35.0%

s mLUT-4 mLUT-5 mLUT-6 =LUT-7

£ 30.0%

E’\? 25.0%

=S o

£F 20.0%

O g 15.0%

c.2

= '3 10.0%

€@

o
g |

2 0.0% = -

£ 5.0% 1 2 3 4 5 6 7 8 9

Pipeline Stages

Fig. 5: Average reduction in BLE configuration register count in
TLFPGA as compared to FPGA for varying LUT sizes and pipeline
stages

35.0%
30.0%
25.0%
$20.0%

15.0%
10.0%
5.0% I
0.0% - 1 1
3 4 5 6 7 8 9

5.0% 1 2

mLUT-4 mLUT-5 mLUT-6 =LUT-7

Reduction in Configuration
Muxes(%|

Pipeline Stages

Fig. 6: Average reduction in BLE multiplexers count in TLFPGA as
compared to FPGA for varying LUT sizes and pipeline stages

proposed structure was chosen to maximize the tile-utilization
and the inter-tile routing. For optimal tile utilization, this
algorithm can be easily modified to generate the desired LUT
to TLG ratio.

V. EXPERIMENTAL RESULTS

For evaluating the TLFPGA architecture, ISCAS-85 and
ISCAS-89 benchmark circuits are used. TCM is relevant only
to sequential circuits, as the TLC is a flip-flop with embed-
ded logic. Since ISCAS-85 circuits are strictly combinational
circuits, we added additional pipeline stages by retiming the
circuits. For studying the effect of pipeline stages on the TCM,
1 to 9 pipeline stages were added to all the 10 ISCAS-85
benchmark circuits, which gives us 90 circuits. The pipeline
stages in ISCAS-89 circuits are not changed. The total number
of circuits used for TLFPGA evaluation is 115 circuits. The
logic depth of the test circuits vary between 2 to 12. Simulation
corner is Slow/Slow 0.9V VDD 125°C.

For analyzing the effect of pipelining on various parameters,
pipelined ISCAS-85 benchmark circuits are used. Fig. 5, 6, 7
and 8 show the percentage reduction in the BLE Configu-
ration Registers (Config Regs), BLE MUXes (MUX Count),

s uLUT-4 mLUT-5 mLUT-6 =LUT-7
T 25.0%

< 20.0%

2]

3 15.0%

E 10.0%

o

2 5.0%

S ooy | | I
K 0.0% = - -

€ 1 2 3 4 5 6 7 8 9

Pipeline Stages

Fig. 7: Average reduction in BLE area in TLFPGA as compared to
FPGA for varying LUT sizes and pipeline stages

@
S
2
B

mLUT-4 mLUT-5 mLUT-6 =LUT-7

25.0%
20.0%
15.0%
10.0%
5.0%
0 " |
0.0% = . . - -
-5.0%

Reduction in CLB Power(%)

Pipeline Stages

Fig. 8: Average reduction in BLE Power in TLFPGA as compared
to FPGA for varying LUT sizes and pipeline stages

20.0%
mLUT4

1 2

LUTS

3 4 5 6 7 8

Pipeline Stages

LUT6 LUT?

15.0%

A
=4
2
5

5.0%

Frequency(%,

0.0%

Improvement in Operating

-5.0%

Fig. 9: Average gain in frequency in TLFPGA as compared to FPGA
for varying LUT sizes and pipeline stages

BLE Area (Area) and BLE Power (Power) respectively in
TLFPGA as compared to FPGA. Improvement in technology
independent parameters such as Config Regs and MUX Count
indicates that the TLFPGA can potentially offer benefits in
other technology nodes as well. The Config Regs, MUX
Count, Area and Power drop as the number of pipeline stages
increases. More pipeline stages give more opportunities to the
TCM to map TLCs. These experiments clearly indicate that
TLFPGA is better suited for designs with deep pipelining.
Since the logic depth of the circuit is not affected much during
the TCM, the operating frequency in FPGA vs TLFPGA does
not fluctuate much. This can be seen in Fig. 9.

Another observation that can be drawn from Fig. 5, 6, 7
and 8 is that the percentage reduction in configuration regis-
ters, MUX Count, Area and Power in TLFPGA as compared
to FPGA increases with increase in the LUT size. This is
because the number of configuration registers and MUX count
for a BLE increase exponentially with an increase in LUT
size, whereas the configuration registers and XORs in a TLC
stay the same. As a result, TLFPGA provides more significant
improvements when large LUTs are used.

Table III shows the average, maximum and minimum per-
centage reduction for configuration registers, MUX count, area
and power, and percentage improvement in the operating fre-
quency, over ISCAS-85 and ISCAS-89 circuits. Results show
that the maximum improvement that we get for configuration
registers, MUX count, area and power are far greater than
the maximum degradation that we get when we map the
circuit to TLFPGA. From the table, we can also see that all
the parameters improve on an average. The average routing
resources needed for the circuits are slightly reduced. These
improvements can be easily carried over to more practical
circuits such as filter and multiplier as well.

Though very little work has been done in the integration

259

TABLE III: Improvements in TLFPGA as compared to standard
FPGA over ISCAS-85 and ISCAS-89 circuits

Parameter Average | Maximum | Minimum
BLE Config Regs 8.9% 64.5% -1.2%
BLE MUXes 15.4% 68.6% -71.1%
BLE Area 7.0% 51.6% -71.3%
BLE Power 8.2% 61.6% -8.7%
Frequency 5% 165.5% -33.1%
Routing Area 2.2% 51.5% -58.5%
Routing Power 0.7% 75.2% -51.7%

of threshold functions in a standard FPGA structure, a lot of
work has been done on the implementation of efficient LUT
structures and reconfigurable threshold logic arrays. Work on
alternate LUT structures can be found in Ref. [9] and Ref.
[10]. More information on commercial FPGAs can be found
in Ref. [11], [12], and [13].

VI. CONCLUSION

Threshold logic based FPGAs proposed in this paper can
be used to reduce the number of BLE configuration registers,
multiplexers, area and power for most of the circuits we tested
without compromising performance. The best results were
obtained for deeply pipelined circuits where the percentage
improvement increased with an increase in the number of
pipeline stages and LUT size.

REFERENCES

Kai-Yeung Siu, Vwani Roychowdhury, and Thomas Kailath. Discrete
Neural Computation: A Theoretical Foundation. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1995.

N. Kulkarni, J. Yang, J. S. Seo, and S. Vrudhula. Reducing power,
leakage, and area of standard-cell asics using threshold logic flip-flops.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
24(9):2873-2886, Sept 2016.

N. Kulkarni, J. Yang, and S. Vrudhula. A fast, energy efficient, field
programmable threshold-logic array. In 2014 International Conference
on Field-Programmable Technology (FPT), pages 300-305, Dec 2014.
Hao Jun Liu. Archipelago - an open source fpga with toolflow support.
In Thesis, Berkeley, CA, 2014. UC Berkeley.

Robert Brayton and Alan Mishchenko. Abc: An academic industrial-
strength verification tool. In Proceedings of the 22Nd International
Conference on Computer Aided Verification, CAV’10, pages 24—40,
Berlin, Heidelberg, 2010. Springer-Verlag.

Zied Farooq, Umerand Marrakchi and Habib Mehrez. FPGA Architec-
tures: An Overview, pages 7-48. Springer New York, New York, NY,
2012.

G. Beraudo and J. Lillis. Timing optimization of fpga placements by
logic replication. In Proceedings 2003. Design Automation Conference
(IEEE Cat. No.03CH37451), pages 196-201, June 2003.

G. Zgheib and P. Ienne. Evaluating fpga clusters under wide ranges
of design parameters. In 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), pages 1-8, Sept 2017.
Sayak Ray, Alan Mishchenko, Niklas Een, Robert Brayton, Stephen
Jang, and Chao Chen. Mapping into lut structures. In Proceedings
of the Conference on Design, Automation and Test in Europe, DATE
*12, pages 1579-1584, San Jose, CA, USA, 2012. EDA Consortium.
Wenyi Feng, Jonathan Greene, and Alan Mishchenko. Improving fpga
performance with a s44 lut structure. In Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA 18, pages 61-66, New York, NY, USA, 2018. ACM.
Xilinx 7 Series FPGAs Configurable Logic Block User Guide.
Cyclone V Device Overview.

Polarfire FPGA Fabric User Guide.

=
“

9

—

[10]

(11]
[12]
[13]

