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Abstract—Plug-and-play priors (PnP) is a powerful framework
for regularizing imaging inverse problems by using advanced
denoisers within an iterative algorithm. Recent experimental
evidence suggests that PnP algorithms achieve state-of-the-art
performance in a range of imaging applications. In this paper,
we introduce a new online PnP algorithm based on the proximal
gradient method (PGM). The proposed algorithm uses only
a subset of measurements at every iteration, which makes it
scalable to very large datasets. We present a new theoretical
convergence analysis, for both batch and online variants of
PnP-PGM, for denoisers that do not necessarily correspond
to proximal operators. We also present simulations illustrating
the applicability of the algorithm to image reconstruction in
diffraction tomography. The results in this paper have the
potential to expand the applicability of the PnP framework to
very large datasets.

Index Terms—Regularized image reconstruction, plug-and-
play priors, regularization by denoising, iterative thresholding,
alternating minimization, stochastic optimization.

I. INTRODUCTION

The reconstruction of an unknown image € R" from
a set of noisy measurements y € R™ is one of the most
widely studied problems in computational imaging. The task
is frequently formulated as an optimization problem

x=argmin{f(x)} with f(x)=d(z)+r(x), (1)
zeRN
where d is the data-fidelity term that penalizes the mismatch
to the measurements and r is the regularizer that imposes prior
knowledge regarding the unknown image. Some popular imag-
ing priors include nonnegativity, transform-domain sparsity,
and self-similarity [1]-[4].

Over the past two decades, a substantial effort has been
devoted to combining the best regularizers with efficient opti-
mization algorithms. The large dimensionality of the imaging
data and nondifferentiability of many regularizers has led to
the widespread adoption of proximal algorithms [5], such
as variants of proximal gradient method (PGM) [6]-[9] and
alternating direction method of multipliers (ADMM) [10]-
[13]. These algorithms avoid differentiating the regularizer

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1813910. (Corresponding author: Ulug-
bek S. Kamilov.)

Y. Sun is with the Department of Computer Science & Enginnering,
Washington University in St. Louis, MO 63130, USA.

B. Wohlberg is with Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM 87545 USA.

U. S. Kamilov (email: kamilov@wustl.edu) is with the Department of
Computer Science & Engineering and the Department of Electrical & Systems
Engineering, Washington University in St. Louis, MO 63130, USA.

by using a mathematical concept known as the proximal
operator, which is itself an optimization problem equivalent
to regularized image denoising.

The mathematical equivalence of the proximal operator to
denoising has recently inspired Venkatakrishnan et al. [14]
to introduce the powerful plug-and-play priors (PnP) frame-
work for image reconstruction. The key idea in PnP is
to replace the proximal operator in an iterative algorithm
with a state-of-the-art image denoiser, such as BM3D [15],
WNNM [16], or TNRD [17], which does not necessarily have
a corresponding regularization objective. This implies that
PnP methods generally lose interpretability as optimization
problems. Nonetheless, the framework has gained in popularity
due to its effectiveness in a range of applications in the
context of imaging inverse problems [18]-[26]. In particular,
the effectiveness of PnP was demonstrated beyond the original
ADMM formulation [14] to other proximal algorithms such as
primal-dual splitting and PGM [24]-[26].

All current PnP algorithms are iterative batch procedures,
which means that they use the full set of measurements at
every iteration. This effectively precludes their application to
very large datasets [27] common in three-dimensional (3D)
imaging or in imaging of dynamic objects [28], [29]. In this
paper, we address this limitation by proposing a new online
extension called plug-and-play stochastic proximal gradient
method (PnP-SPGM). By using only a subset of the measure-
ments at a time, the proposed algorithm scales to datasets that
would otherwise be prohibitively large for batch processing.
More specifically, our key contributions are as follows.

o« We present a detailed theoretical convergence analysis
of batch PnP-PGM under a set of explicit assumptions.
Our analysis complements the recent theoretical results
on PnP-ADMM by Sreehari et al. [18] and Chan et
al. [19] in two major ways. We show that for PnP-
PGM the symmetric gradient assumption from [18] is
not necessary, while the bounded denoiser assumption
from [19] is not sufficient to establish the convergence.

« We extend the traditional batch PnP framework with our
novel online algorithm PnP-SPGM. We prove the theoret-
ical convergence of the algorithm to the same set of fixed
points as batch PnP-PGM and PnP-ADMM. This makes
PnP-SPGM a powerful and theoretically sound alternative
for large-scale image reconstruction. We also illustrate
its applicability with several numerical simulations on
image reconstruction problems encountered in diffraction
tomography [30].
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Algorithm 1 PGM/APGM

1: input: z0 = s € R™, v > 0, and {gj }xen
2: for k=1,2,... do
3 2k« Pl —4Vd(skT)
4: xk proxw(zk)

k k _ k _ k-1
5 8" " + ((qr—1 — 1) /qu) (2" — ")
6: end for

Algorithm 2 ADMM

1: input: 2° € R", s° =0, and v > 0
2. for k=1,2,... do

3 ZF  prox g(xh 1 — sh1)

4 @k prox (28 + 571

5 sk sFTl 4 (28 — F)

6: end for

II. BACKGROUND

In this section, we provide the background material that
forms the foundation to our contributions. We first review
the problem of regularized image reconstruction and then
introduce more recent results related to the PnP algorithms.

A. Inverse problems in imaging

Consider the linear inverse problem
2

where the goal is to recover £ € R" given the measurements
y € R™. Here, the measurement matrix H € R™*™ models
the response of the imaging system and e € R™ represents
the measurement noise, which is often assumed to be inde-
pendent and identically distributed (i.i.d.) Gaussian. When the
inverse problem is nonlinear, the measurement operator can be
generalized to a more general mapping H : R” — R™ with
y=H(xz)+e.

Practical inverse problems are often ill-posed, which often
leads to the formulation in (1). In such cases, one of the most
popular data-fidelity terms is least-squares

y=Hx +e,

1
d(z) = 5|ly — Hall3, 3)

which imposes an ¢2-penalty on data-fit. Similarly, two com-
mon regularizers for images include the spatial sparsity-
promoting penalty r(z) = \||z||; and total variation (TV)
penalty 7(x) = \||Dx||;, where A\ > 0 is the regularization
parameter and D is the discrete gradient operator [1], [31]—
[33].

Many popular regularizers, such as the ones based on the
£1-norm, are nondifferentiable. Two common algorithms for
working with such regularizers are PGM and ADMM summa-
rized in Algorithm 1 and 2, respectively (see Appendix B for
a review). The key step for handling nonsmooth regularizers
is the proximal operator [34]

1
prox.,.(z) £ argmin {2||a: —z|5 + fyr(:n)} L@
TER™

According to definition (4), the proximal operator corresponds
to an image denoiser formulated as regularized optimization.
Note also that when the values for {¢x} in Algorithm 1 are

adapted as )
qke§(1+./1+4q,’§_1) )

the algorithm corresponds to the accelerated variant of PGM,
known as accelerated PGM (APGM) [35]. On the other hand,

when ¢, = 1 for all k£ > 1, then one recovers the traditional
PGM. In this paper, we will use the sequence {qr} as a
mechanism for switching between the methods.

A careful inspection of PGM and ADMM reveals a funda-
mental conceptual difference between the algorithms in their
treatment of the data-fidelity. While PGM relies on the gradient
Vd, ADMM relies on the proximal operator prox. .. For a large
class of linear and nonlinear inverse problems, the gradient
of the data-fidelity is significantly easier to evaluate than its
proximal operator. As an example, for least-squares we have

Vd(z) = H' (Hz — y) (6)

and
_ . 1 2 7 2
prox.;(x) = argminq |z —z|3 + = [|Hz — y||5 (7a)
K z€R”™ 2 2

=[I+yH H| Y(x+~vH"y). (7b)

The matrix inversion in (7) can make ADMM updates com-
putationally expensive for problems where the measurement
matrix is not easily invertible. On the other hand, ADMM
is known to be fast for matrices that can be inverted effi-
ciently [36]-[38].

The theoretical analysis in this paper is closely related to
the convergence results established for first-order methods by
Nesterov [39] and Beck and Teboulle [35]. In particular, our
work is related to inexact proximal-gradient optimization that
has been extensively investigated by several researchers [40]-
[47]. We extend this prior work beyond traditional optimiza-
tion, where denoising operators do not necessarily correspond
to proximal operators of a given objective. To achieve this, we
adopt the monotone operator theory [48], [49], which enables a
unified analysis of PnP methods by expressing them as finding
zeros of an operator.

B. Using denoisers as priors

Both PGM and ADMM have modular structures in the
sense that the prior on the image is only imposed via the
proximal operator. Additionally, since the proximal operator is
mathematically equivalent to regularized image denoising, the
powerful idea of Venkatakrishnan et al. [14] was to consider
replacing it with a more general denoising operator denoise, ()
of controllable strength o > 0. For compatibility with the
traditional optimization formulation, this strength parameter
is often set as 0 = /A, where v > 0 is the optimization
algorithm step-size, and A > 0 is the regularization parameter.

While the original formulation of PnP [14] relies on
ADMM, it has recently been shown that it can be as effective
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Algorithm 3 PnP-PGM/PnP-APGM

1: input: z°=3s"€R", v >0, 0 >0, and {qx }ren
2: for k=1,2,... do

3 2k« sF=1 —4Vd(sk1)

4 x¥ < denoise, (z*)

s: s e xF 4 (g1 — 1) /qr)(xF —F1)

6: end for

Algorithm 4 PnP-ADMM

1: input: 2° € R", s°=0,7>0,and 0 >0
2. for k=1,2,... do

3: ZF  prox g(xh! — k1)
4 x¥ + denoise, (z* + sk~ 1)
5: sk sFTl 4 (28 — k)

6: end for

when used with other proximal algorithms [24]-[26], or with
another class of algorithms known as approximate message
passing (AMP) [50]-[52]. AMP-based algorithms have been
shown to be effective for problems where H is large and
random [53], [54], but are also known to be unstable for
general matrices H [55]-[57]. Therefore, in this paper, our
focus will be exclusively on the variants of PnP based on PGM
and ADMM, summarized in Algorithm 3 and 4, respectively.

Several recent publications have analyzed the theoretical
convergence of PnP algorithms [18], [19], [23], [25]. Sreehari
et al. [18] have established the convergence of PnP-ADMM
to the global minimum of some implicitly defined objective
function. Specifically, by building on the theoretical analysis
by Moreau [34], they show that denoise, is a valid proximal
operator of some implicit regularizer if it is nonexpansive and
Vdenoise, () is a symmetric matrix for all € R™. Chan
et al. [19] have proved a fixed-point convergence of PnP-
ADMM for bounded denoisers, which are defined as denoisers
satisfying

®)

for any = € R™, where ¢ > 0 is a constant independent of n
and 0. Meinhardt et al. [25] have shown that for continuous
denoisers several PnP algorithms admit an equivalent fixed-
point iteration. More recently, Teodoro et al. [23] considered
a special class of denoisers based on Gaussian mixture models
(GMMs) and showed that PnP-ADMM converges when the
GMM denoiser is simplified to be a linear function of its input.

A different but related approach to denoiser-driven regular-
ization was recently proposed by Romano er al. [58]. They
proposed the regularization by denoising (RED) framework,
in which an explicit regularizer is constructed as

E||denoiseg(w) —z|2 < o?c,

r(x) = le(m — denoise, ().

€))

Remarkably, they also showed that under some conditions, the
gradient of the regularizer has a very simple expression. More
recently, Reehorst and Schniter [59] have provided additional
insight into RED by establishing conditions for the existence
of explicit regularizers based on denoising operators. The key
difference between PnP and RED is that the former does
not seek to define an explicit regularization functional, but
relies on the fixed points of a given denoising operator for
regularization. This generality of the PnP framework makes
it widely applicable, but also substantially complicates its
theoretical analysis.

Another recent related framework is the consensus equi-
librium (CE) by Buzzard et al. [60]. Given multiple sources

of information (defined via image denoisers or other similar
mappings), CE proposes to fuse them by computing a specific
equilibrium point. The CE framework extends the traditional
consensus optimization [13] to operators that are not neces-
sarily proximal operators and formulates a new variant of PnP
that can handle multiple denoising functions. In this paper, we
will restrict our attention to the traditional PnP formulation
under PGM-based optimization.

III. BATCH ALGORITHM

In this section, we present a detailed theoretical convergence
analysis of batch PnP-PGM. The results are based on the fixed
point analysis of Algorithm 3 and rely on basic convex and
monotone analysis, summarized in Appendix A.

The central building block of PnP-PGM is the following
denoiser-gradient operator

P(x) £ denoise,(x —yYVd(x)), (10)

which first computes the gradient-step with respect to the
function d and then denoises the result with a given denoiser.
Throughout this paper, we assume that the function d is convex
and has a Lipschitz continuous gradient with constant L > 0.
We are interested in convergence of Algorithm 3 to the set of
fixed points of the operator P

fix(P) £ {x € R": x = P(x)}. (11)

Note that when denoise, is the proximal operator of a convex
function, fix(P) coincides with the set of solutions of (1).

Proposition 1. Let denoise, (-) = prox.,,.(-) for v, > 0. Then
x* € fix(P) if and only if it minimizes f = d+r.

Proof. See Appendix C. O

Our central goal, however, is to generalize denoise, beyond
proximal operators. The key assumption that we adopt for our
analysis is that the denoiser is averaged (see Appendix A).

Definition 1. Consider an operator denoise, and a constant
6 € (0,1). denoise, is G-averaged if and only if the operator
(1 — 1/0)1 + (1/6)denoise,, where | denotes the identity
operator, is nonexpansive.

The class of averaged operators is a superset of proximal
operators and a subset of nonexpansive operators. In fact, the
proximal operator is an averaged operator with § = 1/2.
Note that given any nonexpansive denoiser, it is always
possible to make it averaged by defining a damped operator
D £ (1 — 6)l 4 Odenoise,, with § € (0,1), which has the
same set of fixed points as denoise, [5].



Assumption 1. We analyze PnP-PGM under the following
assumptions:

(a) The function d is convex and differentiable with a Lips-
chitz continuous gradient of constant L > 0.

(b) denoise, is 0-averaged with 0 € (0, 1) for any o > 0.

(c) There exists x* € R™ such that x* € fix(P).

We can then establish the following convergence result.

Proposition 2. Run PnP-PGM for t > 1 iterations under
Assumption 1 with step-size v € (0,1/L] and q =1 for all
ke {1,...,t}. Then, for any x* € fix(P), we have that

t
1 _ _ 2/1+80 .
3t et i < 2 (155 e - a7
k=1
Proof. See Appendix D. O

The direct consequence of Proposition 2 is that

min {1 =P[5} = 0(1/1),

12
ke{1,..., (12)

that is under Assumption 1, the iterates of PnP-PGM can get
arbitrarily close to the set of fixed points fix(P) with rate
O(1/t). This result is different from the traditional monotonic
O(1/t) convergence of PGM to the minimum of an objective
function [35]. The convergence in (12) is not monotonic and
is expressed in terms of the smallest distance to = P(x) in
the window of ¢ > 1 previous iterations. This is because PnP-
PGM is not necessarily minimizing any objective function. On
the other hand, the result still guarantees that, given a sufficient
number of ¢t > 1 iterations, the iterates of PnP-PGM can get
arbitrarily close to the set fix(P).

Recently, Meinhardt et al. [25] have showed that for con-
tinuous denoisers, the fixed-points of several PnP algorithms
coincide. The following proposition is a minor variant of their
result tailored for PnP-ADMM.

Proposition 3. Under Assumption 1, the set of fixed-points of
PnP-ADMM coincides with fix(P).

Proof. See Appendix E. O

In the context of the work by Sreehari et al. [18], the propo-
sitions above indicate that the symmetric gradient assumption
is not necessary for the convergence of PnP-PGM. Since the
symmetry of Vdenoise,(x) in [18] ensures that the denoiser
is an implicitly defined proximal operator, the results here
provide a generalization of the convergence beyond proximal
operators. Moreover, both PnP-PGM and PnP-ADMM are
equivalent in the sense that they have the same set of solutions
specified by fix(P).

The bounded denoiser assumption (8) is a more relaxed
assumption on the denoising operator and was used to analyze
PnP-ADMM. However, we argue that it is not sufficient
to guarantee the convergence of PnP-PGM. The following
proposition builds on a specific counter example.

Proposition 4. There exists a function d that is convex and has
a Lipschitz continuous gradient of constant L, and a denoiser
denoise, that satisfies (8), such that PnP-PGM with the step
v€(0,1/L), qx =1 for all k € N, and o > ~/+/c diverges.
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Algorithm 5 PnP-SPGM

I input: z°=35"cR", v>0,0>0, {gz}, and B> 1
2. for k=1,2,... do

3 Vd(s*~1) < minibatchGradient(s*~!, B)

4 28 1 AVd(sh )

5: xF « denoise, (2¥)

o 8t abt (o — 1)/an) (@ — o)

7: end for

Proof. See Appendix F. O

Definition 1 makes verifying that a denoiser is averaged
equivalent to verifying nonexpansiveness of some operator.
As was argued in several recent publications [18], [19], [23]
the task is more difficult for some denoisers than it is for
others and there exist denoisers for which this condition does
not hold. However, all recently designed denoisers for PnP
from [18], [23] satisfy our assumptions. In fact, the denoisers
that satisfy conditions outlined in [18] correspond to implicit
proximal operators, which implies that they are § = 1/2
averaged operators. For example, the modified nonlocal means
(NLM) filter specifically designed in [18] is by definition an
averaged operator.

IV. ONLINE ALGORITHM

We now introduce our second key contribution: the new
online variant of PnP-PGM called PnP-SPGM. We additionally
prove its convergence for averaged denoisers.

In many imaging applications, the data-fidelity term d
consists of a large number of component functions

I

where each d; typically depends only on the subset y; of
the measurements in y. For example, in tomographic imaging
each y; corresponds to a single projection of an object along
a specific angle [30]. Note that in equation (13), the expec-
tation is taken over a uniformly distributed random variable
i €{1,...,I}. The computation of the gradient

1
1
=1

scales with the total number of components I, which means
that when the latter is large, the memory requirements or
computation time of the classical batch PnP algorithms may
become impractical. The central idea of PnP-SPGM, summa-
rized in Algorithm 5, is to approximate the gradient at every
iteration with an average of B < I component gradients

d(x) = Eld;(x)] = (13)

~l =

Vd(x) = E[Vd;(x)] = (14)

B
Vd(z) = % >V, (x), (15)
b=1

where i1,...,tp are independent random indices that are
distributed uniformly over {1,...,I}. The minibatch size
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parameter B > 1 controls the number of gradient components
used at every iteration.

Assumption 2. We analyze PnP-SPGM under the following
assumptions:
(a) The functions d; are all convex and differentiable with
the same Lipschitz constant L > 0.
(b) denoise, is 0-averaged with 6 € (0, 1) for any o > 0.
(c) There exists x* € R™ such that x* € fix(P).
(d) At every iteration, the gradient estimate is unbiased and

has a bounded variance:
2

E[Vd(2)] = Vd(@) and E[|Vd(z)-Vd@)|}}] < =,

for some constant v > 0.

Note that Assumption 2(a) implies that the complete data-
fidelity term d is also convex and has a Lipschitz contin-
uous gradient of constant L. The key difference between
Assumption 1 and Assumption 2 is the last condition. The
fact that the minibatch gradient is unbiased is the direct
consequence of (15). The bounded variance assumption is
a standard assumption used in the analysis of online and
stochastic algorithms [46], [61], [62].

Proposition 5. Run PnP-SPGM for

t > 1 iterations under
Assumption 2 with step-size v € (0,1/L]
),

and qi, = 1 for all

ke {1,...,t}. Then, for any x* € fix(P), we have that
1
E [t S et - Pt
k=1
14+60\ [v?v? 2y |2 — =*||3

<o Mg+ 1 — T 12

< (1—9)[3 +\FH:C — x|z + ;
where P(-) is given by (10).
Proof. See Appendix G. O

This result shows that the convergence in expectation of
PnP-SPGM to an element of fix(P) is proportional to the step-
size v and inversely proportional to the mini-batch size B. By
controlling these two parameters, we can obtain the following
convergence rates.

Corollary 1. Consider Proposition 5 with the following fixed
(i.e., independent of iteration k) parameters.
(a) For v =1/(L\/t) and B = 1, we have that

t
1
E : ; l£F~1 — P(xh

(b) For v =1/L and B =t, we have that

DIz

IN

B

t
1
E(; Y et - Pt 3| <

and B = t, we have that

<=

<

= [

Fig. 1. Test images used. Top row from left to right: Barbara, Boat, Foreman,
House. Bottom row from left to right: Lenna, Monarch, Parrot, Peppers.

Corollary 1(c) implies the worst-case convergence rate

{l=*= = P@* I3} =

which means that under Assumption 2 and with a particular
selection of parameters B and -, the iterates of PnP-SPGM
(in expectation) can get arbitrarily close to fix(P) as O(1/t).

E| min O(1/t), (16)

V. NUMERICAL SIMULATIONS

We now empirically validate PnP-SPGM in the context of
diffraction tomography (DT) using three popular denoisers:
TV [1], BM3D [15], and TNRD [17]. Our goal is not to
justify the PnP framework, as its benefits have been well
illustrated in prior work [14], [18], [26], but to focus on the
aspects that relate to online processing of data. Therefore, we
first discuss empirical convergence of PnP-SPGM, and then
highlight the benefit of using it for processing a large number
of measurements.

A. Diffraction tomography

DT is a technique used to form an image of the distribution
of dielectric permittivity within an object from multiple mea-
surements of light it scatters [30], [63]. This problem is com-
mon in a number of applications—including ultrasound [64]
and optical microscopy [65]—and is known to be highly
data-intensive. A typical reconstruction task uses hundreds or
thousands of measurements for forming a single image. As is
common in DT, we adopt the first-Born approximation [63],
which leads to the linear inverse problem formulation of image
reconstruction.

Note that PnP-SPGM is applicable beyond DT and our
choice of the latter is only due to the fact that image recon-
struction in DT requires the processing of a large number of
distinct measurements. Additionally, our focus is not on the
experimental application of DT, but rather on the demonstra-
tion of our online algorithm for image reconstruction. Hence,
we restrict our study here to image reconstruction from purely
simulated DT data, which enables optimal parameter tuning
and quantitative comparisons.

Consider an object with the permittivity distribution e(7)
within a bounded domain © C R? with a background medium
of permittivity €,. The object is illuminated with a monochro-
matic and coherent incident electric field w;,(r) emitted by
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Fig. 2. Tllustration of the influence of the step-size v on the convergence of PnP-SPGM with BM3D as the denoiser. The distance to a fixed point is plotted
against the iteration number for 3 distinct step-sizes for both accelerated (solid) and basic (dashed) variants of PnP-SPGM for B = 30. The dotted line at
the bottom shows the minimal distance to a fixed point attained by the algorithm. This plot illustrates that the empirical performance of PnP-SPGM under
BM3D is consistent with Proposition 5, where the accuracy improves with smaller ~.
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Fig. 3. Illustration of the influence of the minibatch size B on the convergence of PnP-SPGM with BM3D as a denoiser. The distance to a fixed point

is plotted against the iteration number for 3 distinct minibatch sizes for both accelerated (solid) and basic (dashed) variants of PnP-SPGM for v = 1/L.
The dotted line at the bottom shows the minimal distance to a fixed point attained by the algorithm. This plot illustrates that the empirical performance of
PnP-SPGM using BM3D is consistent with Proposition 5, where the accuracy improves with larger B.

100 [
i
= y=1/L
R accelerated
E‘L 107 v=1/4L
«
8 7y =1/16L

min = 1.84 x 1076
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) B=10
°‘- e B =20
e O N el
B min = 4.35 x 10~ B =30

107 :
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k

Fig. 4. Illustration of the influence of the step and minibatch sizes on the
convergence of PnP-SPGM with TV as the denoiser. The dotted line at the
bottom shows the minimal distance to a fixed point attained by the algorithm.
A proximal operator is (1/2)-averaged, which means that it perfectly satisfies
the assumptions of Proposition 5.

one of N transmitters. The incident field is assumed to be
known both inside € and at the sensor domain I' C R?. The
measurements correspond to the field scattered by the object
recorded by M receivers located within I". Under the first-

Born approximation, the measurement matrix for a single
illumination can be represented as H = Sdiag(u,), where
u, € CV is the input field u, inside Q, and S € CM*V s
the discretization of the Green’s function evaluated at I" [66].
In practice, the image reconstruction relies on the set of
illuminations {u/ };c1,.... 1}, with each individual illumination
resulting in a measurement y° € CM and a distinct measure-
ment matrix H;.

The objects we reconstruct correspond to the eight standard
grayscale images shown Fig. 1. The physical size of an image
is set to 18 cm x 18 cm, discretized to a grid of 256 x 256.
The wavelength of the illumination was set to A = 0.84
cm and the background medium was assumed to be air with
€, = 1. We additionally set the number of transmitters to
N = 60, distributed uniformly along a circle of radius 1.6
meters, and for each illumination, the corresponding scattered
field is measured by M = 360 receivers around the object.
The simulated measurements were additionally corrupted by
an additive white Gaussian noise (AWGN) corresponding to
40 dB of input signal-to-noise ratio (SNR). The quantitative
evaluation of the experimental results is also provided in terms
of SNR defined as

SNR (dB) £ 10log,, (A”x”%2> :
|z — |3

where  and x are the reconstructed and the ground truth
images, respectively. We use the term average SNR to indicate
the SNR averaged over all the test images. In each experiment,
all algorithmic hyperparameters were optimized for the best
SNR performance with respect to the ground truth test image.
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TABLE I
MINIMAL DISTANCE AVERAGED OVER THE TEST IMAGE SET

Denoiser Step-size () Mini-batch size (B)
1/L 1/4L 1/16L | 10 20 30
TV 4.35e-4  2.86e-5 1.84e-6 | 4.14e-3 1.20e-3  4.35e-4
BM3D 4.08¢-4 1.0le-4  3.46e-5 2.88¢-3  9.92e-4  4.08¢-4
TNRD 1.19e-1 2.20e-2  3.14e-3 7.50e-1 3.07e-1 1.19-1
35
g |
z
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0= :
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Fig. 5. Comparison between the batch and online PnP algorithms for a fixed
reconstruction time. SNR (dB) is plotted against the time in seconds for three
algorithms: PnP-SPGM, PnP-APGM, and PnP-ADMM. Both PnP-APGM and
PnP-ADMM use the full set of 60 illuminations at every iteration, while
PnP-SPGM uses a random subset of 10 or 30 illuminations. This lower per-
iteration cost, leads to a substantially faster convergence of PnP-SPGM.

B. Convergence of PnP-SGD

One of the key conclusions of Proposition 5 is that the final
accuracy of PnP-SPGM to a fixed point is proportional to the
step-size and inversely proportional to the minibatch size. In
order to numerically evaluate the convergence, we define the
distance to fix(P) at the kth iteration as

dist(z*) £ ||lz* — P(z")|3 , (17)

where P is given by (10). As the sequence {x*} approaches
fix(P), dist(z*) approaches zero.

Fig. 2 and Fig. 3 empirically evaluate the evolution of the
distance to a fixed point for different step and minibatch
sizes, respectively. PnP-SPGM, with BM3D as a denoiser,
is run until convergence with v € {1/L,1/(4L),1/(16L)}
and B € {10,20,30}. Here, the quantity L > 0 denotes
the Lipschitz constant, which, for linear inverse problems,
corresponds to the squared largest singular value of the mea-
surement matrix [35]. We show the performance of both basic
and accelerated variants of PnP-SPGM, where the latter is
obtained by setting {qi} as in (5). The plots clearly illustrate
the improvement in final accuracy for smaller v and larger
B, which is consistent with Proposition 5. Additionally, they
indicate that the convergence is significantly improved when
using the accelerated variant of the algorithm. Note that our
theoretical analysis does not predict monotonic reduction of
the distance, which also seems to be consistent with the
empirical performance of PnP-SPGM. In Fig. 4, we provide a
reference plot showing the performance of PnP-SPGM under
TV, which is a valid proximal operator and hence is known
to be a 1/2-averaged operator. We can again observe that
the convergence behavior of PnP-SPGM is consistent with
Proposition 5. Finally, the summary in Table I, highlights the

SNR (dB)

SNR (dB)

)
=
-
z P
ZENY

H — PnP-SPGM

H PnP-APGM

iJ ........ PnP_ADMM

ol
0 250

Fig. 6. Comparison between the batch and online PnP algorithms under a fixed
measurement budget. SNR (dB) is plotted against the number of iterations for
three algorithms: PnP-SPGM, PnP-APGM, and PnP-ADMM. From the top to
the bottom, figures show the performance when the budget is 10, 20, and 30
illuminations, respectively. The plot illustrates that for the same per iteration
cost, PnP-SPGM can significantly outperform its batch counterparts.

same convergence trends for all three algorithms, where both
~ and B control the accuracy of PnP-SPGM.

C. Benefits of online processing

We now highlight the higher efficiency of PnP-SPGM
against PnP-PGM and PnP-ADMM for larger number of mea-
surements. Specifically, we consider two scenarios where: (a)
the total time budget is fixed; (b) the number of measurements
is fixed. While we use BM3D as our plug-in operator of
choice, we note that our observations here directly generalize
to any other denoiser.

Fig. 5 compares the average reconstruction SNR of
PnP-SPGM, PnP-APGM, and PnP-ADMM for a fixed run-
time. The batch algorithms use the full 60 illuminations at
every iteration, while PnP-SPGM uses 10 and 30 illuminations
per iteration. This gives PnP-SPGM a significantly lower per
iteration cost compared to the batch algorithms. Specifically,
the average per iteration time for PnP-SPGM using B = 10,
PnP-SPGM using B = 30, PnP-APGM, and PnP-ADMM
was 8.86 seconds, 22.10 seconds, 44.94 seconds, and 382.83
seconds, respectively. The higher cost of PnP-ADMM is the
result of the forward model inversion in (7). The figure
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23.65 dB

il 26.38 aB

Fig. 7. Visual illustration of the reconstructed Monarch and Parrot images obtained using PnP-SPGM, PnP-APGM, and PnP-ADMM, all under BM3D. The
original images are displayed in the first column. The second and the third columns show the results of PnP-APGM and PnP-ADMM with the budget of 30
illuminations, and the fourth and the fifth columns present the results of the PnP-SPGM with the budget of 10 and 30 illuminations. Visual differences are
highlighted using the rectangles drawn inside the images. Each reconstruction is labeled with its SNR (dB) value with respect to the original image.

illustrates that, in practice, the solution of PnP-SPGM is close
to that of the batch algorithm with the final SNRs for B = 10
and B = 30 being within 0.2 dB and 0.01 dB, respectively,
from that of PnP-APGM. Additionally, PnP-SPGM achieves
a significant speedup due to the reduction in per-iteration
complexity. This indicates to the potential of the algorithm
for efficient image reconstruction from a large number of
measurements.

Fig. 6 compares the average reconstruction SNR of
PnP-SPGM, PnP-APGM, and PnP-ADMM for a fixed per-
iteration measurement budget. The batch algorithms are al-
lowed to use only 10 (top figure), 20 (middle figure), or 30
(bottom figure) uniformly distributed illuminations. Conver-
gence of each algorithm was observed in 1000 iterations,
and the figure displays the average SNR within the first
250 iterations since PnP-SPGM has already converged in all
three plots. Similarly, PnP-SPGM uses the same number of
illuminations per iteration, but randomly cycles through all the
measurements. This means that in each figure both PnP-SPGM
and PnP-APGM have the same per-iteration computational
complexity. The computational complexity of PnP-ADMM is
higher due to the need to invert the measurement matrix.
Table II shows the final SNR obtained by all three algorithms
on each individual image in the dataset. Additionally, two
visual illustrations on Monarch and Parrot are shown in Fig. 7.
The two rectangles under each image show areas rich in texture
that were selected to highlight the visual differences in the

results. As expected, PnP-SPGM achieves dramatically higher
SNR compared to batch algorithms, since it makes use of the
full set of measurements. Additionally, we note the comparable
final SNR performance of PnP-SPGM with B = 10 and
B = 30, with the latter leading to a faster convergence speed.
These results again highlight the potential of PnP-SPGM for
large-scale PnP image reconstruction.

The simulations in this section highlight the benefit of
PnP-SPGM in tomographic imaging, where each measurement
contains information from a large portion of the object. PnP-
SPGM leverages this setting to improve the computational and
memory efficiency of processing a large number of measure-
ments. Whether this benefit of using PnP-SPGM would persist
in other imaging problems — such as inpainting or deblurring,
where the information on the unknown is heavily localized in
the measurements — is still an open question and a potential
avenue of future research.

To conclude this section, let us put the results here in the
context of our theoretical analysis. Proposition 5 reveals that
PnP-SPGM converges to the same set of fixed points fix(P) as
PnP-PGM and PnP-ADMM, up to a term that depends on the
minibatch size B > 1. Larger B leads to a higher accuracy
of PnP-SPGM with respect to fix(P), which was empirically
confirmed in Fig. 3. The SNR results here additionally reveal
that even with a relatively small B, PnP-SPGM is accurate
in terms of image quality. For example, in Table II, we can
observe that the average SNR difference between PnP-SPGM
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TABLE 11
INDIVIDUAL RECONSTRUCTION SNRS FOR EACH IMAGE.

Images PnP- PnP- PnP- PnP- PnP- PnP- PnP- PnP- PnP-

ADMM ADMM ADMM APGM APGM APGM SPGM SPGM SPGM

(10) (20) (30) (10) (20 (30) (10 (20 (30)
Barbara 15.62 19.16 21.18 13.32 16.60 2021 23.61 23.79 23.90
Boat 15.94 19.82 23.10 13.69 18.40 22,01 24.87 25.05 25.15
Foreman 23.10 27.27 29.19 18.46 26.64 28.61 29.61 29.91 29.80
House 19.23 23.46 26.43 15.68 25.36 26.79 28.29 27.84 28.41
Lenna 15.52 20.32 23.17 13.49 20.57 22,91 25.30 25.35 25.38
Monarch 11.46 15.82 19.66 8.80 17.38 20.69 23.51 23.50 23.65
Parrot 17.29 21.49 24.05 13.73 2229 2432 26.38 26.38 26.47
Pepper 15.49 20.46 22.90 11.67 20.89 22.96 24.92 24.82 25.15
Average 16.71 20.98 23.71 14.26 21.02 23.73 25.85 25.83 26.04

with B = 10 and B = 30 is within 0.2 dB of each means that the composition of two nonexpansive operators is

other. Additionally, in Fig. 5, we observe that the batch and
online algorithms approximately achieve the same final SNR
performance. These observations suggest that while there is an
order of magnitude difference in accuracy between B = 10
and B = 30 when measured in terms of the distance to a
fixed point (see Fig. 3), the difference is relatively mild when
measured in terms of image quality (see Fig. 7), with smaller
B nearly matching the image quality of the batch algorithm.

VI. CONCLUSION

The online PnP algorithm developed in this paper is bene-
ficial in the context of large-scale image reconstruction, when
the amount of data is too large to be processed jointly. We have
presented an in-depth theoretical convergence analysis for both
batch and online variants of PnP-PGM. Our work represents
a substantial extension of the current convergence theory of
PnP-algorithms for image reconstruction. Related experiments
are also presented to empirically confirm the proposed propo-
sitions and to elucidate the higher efficiency of PnP-SPGM in
different representative situations. Future work will aim to
apply the algorithm to other image reconstruction tasks, relax
some of the assumptions, and extend the theoretical results in
this paper to ADMM and APGM.

APPENDIX
A. Review of Averaged Operators

We start by reviewing the key concepts useful for our
analysis. A more complete description of these ideas can be
found in literature [5], [48], [49].

We will represent denoisers as functions D, : R — R"
that depend on o > 0. We will also use a shorthand notation
G, £ | — 4Vd to denote the gradient-step operator, where |
denotes the identity operator. We will assume that all operators
are defined everywhere on R".

Definition 2. An operator F is Lipschitz continuous with a
constant L > 0 if

[F(z) = F(y)ll2 < Lz — yll2,

When L =1, F is said to be nonexpansive.

Ve, y € R™. (18)

It is straightforward to show that given two operators F; and
Fo with Lipschitz constants L, and Lo, respectively, the com-
position F £ Fy 0 Fy has Lipschitz constant L = Lq Ls. This

also nonexpansive.

Definition 3. We say that ** € R” is a fixed point of F if
x* = F(x*). We denote the set of fixed points of an operator
Fas fix(F) £ {x eR" : x = F()}.

Note that the iteration of a nonexpansive operator does not nec-
essarily converge. To see this consider a nonexpansive operator
F = —I, where | is the identity. However, the Krasnosel’skii-
Mann theorem (see Theorem 5.15 in [48]) states that the
iteration of the damped operator D £ (1 — )l + aF, for o €
(0,1), will converge to fix(F). This idea is further formalized
with the definition of the following class of operators.

Definition 4. For a constant o € (0,1), we say that the
operator D is «-averaged, if there exists a nonexpansive
operator F such that D = (1 — a)l + oF.

An important result from convex analysis is that the proximal
operator is (1/2)-averaged (see p. 132 in [5]). Similarly,
when d is convex and has a Lipschitz continuous gradient of
constant L, the gradient-step operator G, is (yL/2)-averaged
for any v € (0,2/L) (see p. 17 in [49]). As stated next, the
composition of two averaged operators is also averaged.

Proposition 6. Let F1 be ay-averaged and Fo be aia-averaged.
Then, the composite operator F 2 FyoF; = FoFq is

a 01+ a2 — 20100

19)

1— 19
averaged operator.

Proof. See Proposition 4.44 in [48]. O

The direct consequence of this theorem, is that the composition
of the proximal operator and the gradient-step is also an
averaged operator. The following classical result was used in
Definition 1 and is central for our subsequent analysis.

Proposition 7. For a nonexpansive operator D and a constant
a € (0,1), the following are equivalent:

(a) D is a-averaged.

(b) (1 —1/a)l+ (1/a)D is nonexpansive.

(c) For all x,y € R", we have that

ID(x) — D(w)l3

1—«
sw—yll%—(

) &~ D() — y + D(y)|3



Proof. See Proposition 4.35 in [48]. O

B. Proximal Optimization Algorithms

PGM, its accelerated variant APGM, and ADMM are some
of the most widely used algorithms in image reconstruction.
They have been extensively discussed and analyzed in liter-
ature [5], [13], [67]. In this section, we briefly review their
formulation leading directly to Algorithms 1 and 2.

To understand PGM and APGM, consider the optimization
problem (1), where both d and r are convex, but where 7 is
possibly non-differentiable. The iterates of PGM can then be
expressed as

xk prox,yr(:ck*1 —AVd(z" 1)) (20)

where v > 0 is the step-size. Hence, PGM first computes a
gradient-descent step with respect to d and then evaluates the
proximal operator of r defined in (4). When Vd is Lipschitz
continuous with constant L > 0, PGM can be shown to
converge for any v € (0,1/L] to a minimizer of the objective
function with rate O(1/t), where ¢ > 1 is the number of PGM
iterations [68]. APGM is an extension of PGM that includes
an additional extrapolation step in each iteration

(21a)
21b)

xb pro><w(sk_1 —yVd(sF71))
s* — af 4 B (xF — 2k,

where 8, € [0,1) is an extrapolation parameter. It is clear that
when 8, = 0 for all £ > 1, PGM and APGM are perfectly
equivalent. On the other hand, when {8} are selected in
specific ways, one can accelerate the convergence of the
algorithm [68]. In such accelerated settings, it is possible to
show that APGM converges to the minimizer of the objective
function f with rate O(1/t?) for any step-size v € (0,1/L].

To develop ADMM, we consider the following optimization

problem over (x, z) equivalent to (1)
minimize d(z) + r(x) subject to z = x. (22)

This process of introducing an additional variable z is known
as variable splitting. To solve this constrained optimization
problem, we form the augmented Lagrangian [69]

L’Y(zv x7u‘)

:d(z)+r(:c)+uT(z—m)+%Hz—m”% (23a)

1 Y
= d(2) +r(@) + gollz — @+ ul; - Fllulz,  @3b)

where v > 0 is a parameter and g € R™ is the dual variable.
We can re-write the augmented Lagrangian by introducing the
scaled dual variable s 2 ~p, which leads to

1 1
Ly(z 2, 5) = d(Z)+7"(w)+gllz—w+8H§—EIIS\@ (24)
This optimization problem can be solved via the method of
multipliers [69] that has the following form for £ > 1
(2", ") « argmin {L,(z,z,s" 1)} (25a)
T,z

k k)
)

sP st 14 (2F -2 (25b)

ONLINE PLUG-AND-PLAY

starting from s” = 0. Note, however, the difficulty of running
this algorithm due to the need to jointly minimize over both
z and . ADMM precisely circumvents this issue by splitting
this step into two as follows

2" « argmin {L,(z,z" 1, s 1)} (26a)
z€R™

x® < argmin {Lv(zk,w, sk_l)} (26b)
TER™

sk sty (zk — mk), (26¢)

which directly leads to Algorithm 2.

C. Proof of Proposition 1

Proposition 1 is a direct consequence of the well-known
fixed-point interpretation of PGM (see p. 150 in [5]). We
provide the proof here for completeness by using the following
characterization of the proximal operator

zZ—X

x = prox.,.(z) & € or(x), (27)
valid for all z € R™, where Or(x) is the subdifferential of r
at  [70]. Let denoise, (-) = prox.,,.(-) and * € fix(P). Then,

from (27), we have that
x* = P(z") = prox,,.(z* — yVd(z"))
& —=Vd(x*) € or(x")
& 0eVd(a")+or(x"),

which establishes the desired result.

D. Proof of Proposition 2

As mentioned in Appendix A, the iterative application of
an averaged operator is well known as Krasnosel’skii-Mann
iteration [71], [72] and its convergence has been extensively
discussed in literature [48], [49], [60]. Below, we use this
theory to establish a novel convergence result for PnP-PGM.

From our assumptions, the denoiser D, is #-averaged and
the gradient-step operator G is (yL/2)-averaged for any y €
(0,2/L). From Proposition 6, we have that their composition
P=D,0G, is
0+ —0yL

_ 0L
2

o =
averaged. Consider a single iteration £ = P(x), then we have
for any * € fix(P) that

lz* — 2|3 = [IP(x) — P(z)[13

<o — a3 - ( ) e — P(a) - 2 + P(a")|

N l1-a
—lle -l - (152 le - P@IB,

where we used Proposition 7(c) and the fact that * = P(x*).
By considering the iteration £ > 1 and rearranging the terms,
we obtain

lz*=t = P13

(6% _
<(12) Bl = el - ot~ 2713).

l—«
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By averaging this inequality over ¢ > 1 iterations and dropping
the last term ||z! — x*||%, we obtain

t
1
>l - Pt I < 5 (1) la? - o
k=1 @

To obtain the result that depends on 6 € (0, 1), we note that
for any v € (0,1/L], we can write

2L _ 1
a 0+ 9Wf Seif §2(1+6>. 28)
l—a (1-00-2%) - L2 1-6

To express the result as in (12), simply take the minimum of
l£*—1 — P(2*~1)||2 over a window of past t > 1 iterations
out of the sum to form a lower bound. The desired result is
obtained by rearranging the terms.

S

E. Proof of Proposition 3

Proposition 3 is a variant of the result in [25]. For complete-
ness, we provide a proof based on the fixed-point interpretation
of ADMM (see p. 157 in [5]).

First note that both D, and prox,, are continuous (since
they are nonexpansive). Fixed points x*,z* s* of PnP-
ADMM satisfy

2" = prox, (z* — s¥) (29a)
¥ =D,(z" + s%) (29b)
s*=s"+2"—x". (29¢)

*

From (29c), we conclude that z* = =z*. By using the
smoothness of d and the characterization (27) in (29a), we
obtain

-8 —2"=Vd(z") = s"=-—Vd(z").
Finally, by using this in (29b), we obtain
¥ =D,(x* —yVd(zx")) = P(z"),

which means that z* = z* € fix(P) and completes the proof.

E. Proof of Proposition 4

We prove by providing a specific counter example. For
simplicity, we assume n = 1, but the same example can be
generalized for any n € N. Consider the data fidelity given by
the Huber function

1a? if 2| <1
|| — 5 if 2] > 1"

This function is convex and has a Lipschitz continuous gradi-
ent with constant L =1

o) = {sgn(w)

where sgn(-) denotes the sign function. We also consider the
denoiser defined as

Do(2) £ 2+ ov/esgn(2),
where ¢ > 0 is some constant independent of o > 0. Since

Dy (z) — 2|? = o ¢, (33)

d(z) £ (30)

if 2] < 1

: 31
if |z| > 1 Gh

(32)

this denoiser satisfies the definition of boundedness in (8).
Then, for q; = 1, a single iteration of PnP-PGM can be re-
written as

x=Dy(2) = z+ oy/csgn(z)

2t = —d(z) = (1=7)e
7 (@) {x’ysgn(:r)

if 2] <1
if 2| > 17

where we assume any v € (0,1). By combining these
equations, we obtain

if |2] <1—o0yc

e {(1 — (|2l + o v/e)sen(2)
if |z] > 1—0v/c,

(Iz] + ove = 7)sgn(2)

where we used the fact that sgn(x) = sgn(z) and expressed
z = |z|sgn(z). For |z| <1 — 04/c, we have that

|2 = (1 =)(|2| + 0 Ve)

— |2 + 0 Ve — 3]z - yo /e

> [zl +ove—y(l—ove)—qoye

=|z| +oVc—1.
On the other hand, for |z| > 1 — o /¢, we have that

[2F] = |zl + o Ve—r.
This means that the iterates of PnP-PGM satisfy
|2 > 20|+ t(eve—7), VteN.

Therefore, for any o > +/,/c and any 2" € R, the sequence
{2'}+en generated by PnP-PGM diverges. Since the denoiser is

bounded, this implies that the sequence {z!};cn also diverges.
This completes the proof.

G. Proof of Proposition 5

We define the full proximal-gradient operator

P(x) £ Dy(z —yVd(z)) (34)
and its online variant over a minibatch of size B > 1
P(x) £ Dy(z —yVd(x)), (35)

where Vd denotes the minibatch gradient. The variance bound
in Assumption 2(d) implies that for all x € R", we have that

E [|P(@) - P()]3]
=E [||Dg(:c —yVd(z)) — Do (z — Wd(m)w%}
<E [||a,- —Vd(z) — @ + Wd(w)lli]

721/2

B )

< VE || V() - Vd(@) 3] < (36)
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TABLE III
LIST OF OPTIMAL o VALUES FOR EACH TEST IMAGE.

Images PnP- PnP- PnP- PnP- PnP- PnP- PnP- PnP- PnP-

ADMM ADMM ADMM APGM APGM APGM SPGM SPGM SPGM

(10) (20) (30) (10) (20 (30) (10 (20 (30)

Barbara 8.13e-4 7.26e-4 9.62e-4 2.78e-2 8.83¢-4 1.66e-3 5.74e-4 8.71e-4 1.11e-3
Boat 1.02e-3 1.17e-3 1.19¢-3 5.74e-2 2.00e-3 1.62e-3 7.03e-4 9.74e-4 1.28e-3
Foreman 1.82e-3 1.32e-3 1.07e-3 1.72e-2 1.74e-3 1.83e-3 7.40e-4 1.05e-3 1.32e-3
House 2.68e-3 2.58e-3 1.71e-3 4.35e-2 1.72e-3 2.03e-3 6.97e-4 1.12e-3 1.32e-3
Lenna 1.27e-3 1.18e-3 9.60e-4 1.66e-3 2.14e-3 1.65e-3 6.30e-4 9.45¢-4 1.17e-3
Monarch 1.32e-3 2.20e-3 1.77e-3 6.20e-2 2.13e-3 1.85e-3 6.61e-4 9.45e-4 1.23e-3
Parrot 1.69¢-3 1.38e-3 1.64e-3 6.94e-2 2.16e-3 1.76e-3 6.19¢-4 8.63e-4 1.19¢-3
Pepper 8.98e-3 1.35e-3 1.11e-3 3.84e-2 1.60e-3 1.79-3 6.61e-4 9.74e-4 1.19e-3

where in the third row we used the nonexpansweness of D,.
Consider a single iteration x* = P( 1), then we have for
any a* € fix(P) that

~

lz® — 23 = [P(=""") — A
=||P(wk:1)—P(w )||2+|P(wk = PEMY3
+2(P(ah) — P(z*1)T(P ( ")~ P(x"))

. — _
< |l=* 1—w*||§—( ) Pla* )|

+|[P(a*") - P(a*
+2||P(ak ) —

(w’“_ )Ilz [IP(z"1) = P(a")]2,
where we used Proposition 7(c) and the Cauchy-Schwarz
inequality. Note that due to nonexpansiveness of the operator
P, we have that

IP(z"~") = P(x)[l2 < [l2*~! — 2" < [|2° — "> (38)
Additionally, by applying Jensen’s inequality to (36), we
conclude that for all x € R”

E[IP@) - Ple)ls] 2| VIP@ - Pal] @)

< \[E[Ip@) - P@)] < 22

By taking a conditional expectation of (37) and using these
bounds, we obtain

(40)

E [lz* — 2|3 — [|lz* ! — a*|3 | 1]
-1
< (Ut pat g
«
2vy 2,2
+ e =+
which can be rearanged into
=~ = Pl
2
a ¥ v? 2yv «
< —
<(1%) 55+ e -k
L R e I

By averaging the inequality over ¢ > 1 iterations, taking the
total expectation, and dropping the last term, we obtain

1 t
;ZII “Hl3
k=1
__«a ['ﬁv ZWH s+ [|® — w*ll%}
“1l1-a| B \F t ’

where we used the law of total expectation. By using the
inequality (28), we can rewrite this expression as

t

1 _ _
E ZZHwk L PEY3
k=1
1+60\ [22 2w [2° —2*||3
<2 —— — * = = "z
< <1_9>{ 5 +\FHCC —xz"[]2 + ;

Note that to obtain the results in Corollary 1, simply replace
given values for v and B into the inequality, and use the
following bounds that are valid for any ¢ € N

1 < 1 d 1 < 1

- <— and — < -.

t TVt 2 "t

This establishes the desired results.

H. List of Selected Hyperparameters

We optimized the algorithmic hyperparameters of
PnP-SPGM, PnP-APGM, and PnP-ADMM for each
DT reconstruction with the fixed per-iteration budget of
measurements. The v > 0 was empirically evaluated at 300
iterations by using APGM with the backtracking selection of
step-size. The parameter p > 0 of PnP-ADMM is fixed to
1 x 1072 in favor of a better searching range of o > 0, which
controls strength of denoising. Table III lists the optimal o
for each algorithm for the reconstruction of every test image.
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