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Abstract
A robust framework is proposed, based on polynomial spline estimation technique, for
the estimation of the mean function of dense functional data, together with a simul-
taneous confidence band for the mean function. The robust simultaneous confidence
band is also extended to the difference of mean functions of two populations. The
performance of the proposed robust methods is evaluated with the simulation study
and real data examples.

Keywords Confidence band · Functional data analysis · Least absolute deviation ·
Robust statistics
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1 Introduction

Advancements in modern technology have enabled the collection of complex, high-
dimensional data sets, such as curves, 2D or 3D images, and other objects living in a
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functional space, thus boosting the investigation of function data. This phenomenon
affects all thefields involving applied statistics such asGeophysics (Ferraty et al. 2005),
Environmetrics (Febrero et al. 2008), Ecology (Embling et al. 2012) and others. A
general overview of functional data analysis (FDA) and an extensive list of references
can be found in the seminal work of Ramsay and Silverman (2005) and Ferraty and
Vieu (2006). Recent studies by Aneiros et al. (2017), Cuevas (2014) and Goia and
Philippe (2016) contain latest advances in the FDA field. In addition, there are two
excellent references by Hsing and Eubank (2015) and Horváth and Kokoszka (2012)
which provide the coremathematical concepts related to the theoretical development of
FDA and inferential methods such as statistical hypothesis tests for various functional
data analytic settings.

Last two decades, many FDA techniques have been developed as extensions of
multivariate data analysis techniques, such as regression, classification, clustering.
However, themajority of these FDAmethods require the homogeneity of data, i.e., free
of outliers. It is well known that these methods are not robust in the presence of outlier
curves. Although robustness has been studied extensively in multivariate data analysis
framework, this has not been the case in the FDA. Only recently, there have been some
studies of outlying-resistant methods for various FDA problems. Fraiman and Muniz
(2001) propose trimmed mean to measure the centrality of a given curve within a
group of curves based on data depth and Cuevas et al. (2007) study robust estimation
and classification method for functional data via the notion of projection-based depth.
Then, Gervini (2008) proposes an R-estimator for the location parameter and robust
functional principal components based on the spherical principal components. López-
Pintado andRomo (2009) propose depth-based approaches for themedian and trimmed
mean functions as well as a rank test for the problem of testing whether two groups of
curves come from the same population. Recently, an R-estimator (robust estimator)
of the median in Hilbert spaces is also proposed by Cardot et al. (2013).

Also, Bali et al. (2011) and Lee et al. (2013) propose R-estimators for the func-
tional principal components. Kraus and Panaretos (2012) study the R estimation of
the dispersion operator containing influential observations. More recently, Maronna
and Yohai (2013) and Shin and Lee (2016) propose alternative R-estimators for the
regression coefficient functions in functional linear regression models.

In this work, our objective is to develop outlying-resistant methods that can provide
valid statistical inference even in the presence of a significant proportion of outlier
curves. In particular, outlier-resistant simultaneous inference for the location function
will be studied.

There are some studies discussing robust confidence intervals for the location
parameter in the finite-dimensional setting, such as Du Mond and Lenth (1987) and
Fraiman et al. (2001). In addition, Adrover et al. (2004) define globally R confidence
intervals and p values for the location and simple linear regression models.

In the presence of outlier curves, the estimate of the functional mean, and there-
fore simultaneous confidence band (SCB), may be affected poorly which would yield
misleading statistical conclusions. Further, the presence of outliers is amplified by
the inherent complexity of functional spaces. This may lead to arising different types
of outlier curves which add further complication to estimating functional mean and
constructing SCB for the functional mean. It is of particular interest in data analysis
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to build SCB for the mean function instead of point-wise confidence intervals and to
develop global test statistics for the general hypothesis testing problem on the location
functions. For example, Cao et al. (2012a, b) construct asymptotic SCB for the mean
and derivative functions in FDA without considering any outliers. However, all the
existing literature on constructing SCB for the mean function assume that observed
functional data are free of outlier curves. To develop the R simultaneous inference for
functional responses, we encounter many new challenges. First, the greater technical
difficulty is to formulate SCB for a mean function of infinite-dimensional functional
response and establish their theoretical properties. Second, unlike the scenarios con-
sidered in the classical FDA literature, in our settings, however, there is complex and
unknown outlier structure.

In this paper, our main contribution is to construct R simultaneous confidence band
(RSCB) based on R-estimators of the mean function and covariance function using
the least absolute deviation and spline smoothing methods. We note that all currently
available methods cannot be immediately used for constructing an R version of SCB
for mean functions. We further extend the simultaneous inference to the two-sample
case and evaluate the equality ofmean functions from two groupswhen atypical curves
exist. Our Monte Carlo results show that the proposed bands are superior to existing
classical methods which do not account for atypical curves. As this paper is the first
attempt to provide RSCB for functional data, there are some limitations. First, we
only provide the asymptotic consistency of the proposed estimator. The theoretical
justification of the proposed RSCB is a promising future work. Second, due to the
richness of the types of functional outliers that may occur in functional data, it may
not be possible to obtain onemethod thatworks for all. Therefore, the proposedmethod
also needs careful inference under certain types of outliers, for example, the random
bumps outlier (see the Supplement file).

The paper is organized as follows:We first introduce an FDAmodel in Sect. 2. Then
we propose an R-estimator for the mean function when the functional data contain
outliers. The RSCB based on the proposed R-estimators of the mean and covariance
functions will be derived in Sect. 3. In addition, we extend this method to form the
RSCB for the difference of mean functions of two populations. In Sects. 4 and 5, the
performance of the proposed R methods and their robustness is demonstrated with
simulation and real data examples. Finally, we conclude our paper with a discussion.
Appendix contains technical proofs and additional simulation results.

2 Model

Afunctional data set can be defined as a collection of i.i.d. random samples, {ηi (x)}ni=1,
where i is the subject index, from a smooth and square integrable random function
η(x) ∈ L2, with unknown mean function, E[η(x)] = m(x), and unknown covariance
function G(x, x ′) = cov[η(x), η(x ′)]. For simplicity reasons, the domain of η(·) is
assumed as [0, 1]. In this paper, we assume an equally spaced dense design, that is,
each random curve ηi (·) is measured at the points Xi j = j/N , 1 ≤ j ≤ N , 1 ≤ i ≤ n,
where N goes to infinity when sample size n goes to infinity. Then, the j th observation
for the i th subject can be written as
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Yi j = ηi ( j/N ) + σεi j , (1)

where errors εi j ’s are independent and assumed to satisfy E(εi j ) = 0 and E(ε2i j ) = 1,

and the stochastic process E
∫
[0,1] η

2(x)dx < ∞.

The process η(x) can be written, based on Karhunen–Loève L2 representation, as
η(x) = m(x) + ∑∞

k=1 ξkφk(x), where ξk’s are uncorrelated random coefficients with
mean zero and variance one, and φk(x) = √

λkϕk(x). Here, {λk}∞k=1 and {ϕk(x)}∞k=1
are the eigenvalues and eigenfunctions, which form an orthonormal basis of L2, of the
covariance function G(x, x ′). We assume that φk(·)’s are kept in a descending order
of λk’s, i.e., λ1 ≥ λ2 ≥ · · · ≥ 0. Assume that λk = 0 for k > κ , where κ is a positive
integer or ∞. This implies that the eigenvalue decomposition of G(x, x ′) is

G(x, x ′) =
κ∑

k=1

λkϕk(x)ϕk(x
′) =

κ∑

k=1

φk(x)φk(x
′). (2)

With this representation, we rewrite model (1) as

Yi j = m ( j/N ) + ei j , (3)

where ei j = ∑κ
k=1 ξikφk( j/N ) + σεi j , 1 ≤ i ≤ n, 1 ≤ j ≤ N . Although the

existence of {λk}κk=1 and {φk}κk=1, and the random coefficients {ξik}κk=1 are guaranteed
mathematically, they are unknown and unobservable.

3 Method

3.1 The classical estimation of themean function

We first review an estimation procedure that approximates the mean function by poly-
nomial splines. Let t1−p = · · · = t0 = 0 < t1 < · · · < tNm < 1 = tNm+1 =
· · · = tNm+p be equally spaced points over [0, 1], called interior knots, in which
tJ = Jhm , 0 ≤ J ≤ Nm , and hm = 1/ (Nm + 1) is the distance between neighboring
knots. Denote by H(p−2) the pth-order spline space, i.e., p − 2 times continuously
differentiable functions on [0, 1] that are polynomials of degree p − 1 on [tJ , tJ+1],
J = 0, . . . , Nm .

Cao et al. (2012b) propose to approximate the mean function m(·) by a linear
combination of spline basis: m̂(x) = ∑Nm

J=1−p β̂J BJ ,p(x), where BJ ,p be the J th B-

spline basis of order p defined in deBoor (2001), and the coefficients {β̂1−p, . . . , β̂Nm }T
are the solutions of the following least squares problem

{
β̂1−p, . . . , β̂Nm

}T = argmin
{β1−p,...,βNm }∈RNm+p

n∑

i=1

N∑

j=1

⎧
⎨

⎩
Yi j −

Nm∑

J=1−p

βJ BJ ( j/N )

⎫
⎬

⎭

2

.
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Let Ȳ = (Ȳ·1, . . . , Ȳ·N )T, where Ȳ· j = 1/n
∑

i=1 Yi j , j = 1, . . . , N . One advantage
of the least square estimator is the existence of a closed-form solution. Indeed, applying
elementary algebra, one obtains

m̂ (x) = Bp(x)
(
BTB

)−1 BTȲ, (4)

where Bp(x) = (B1−p,p(x), . . . , BNm ,p(x)) and B = (BT
p(1/N ), . . . ,BT

p(N/N ))T is
the design matrix.

3.2 The robust estimation of themean function

The ordinary least square (OLS) estimation, used in Eq. (4), is susceptible to the
presence of outliers. To circumvent this non-robustness, we propose to replace the
OLS by the least absolute deviation (LAD). The mean function is estimated by a
linear combination of spline basis,

m̃(x) =
Nm∑

J=1−p

β̃J BJ ,p(x), (5)

where

{
β̃1−p, . . . , β̃Nm

}T = argmin
{β1−p,...,βNm }∈RNm+p

n∑

i=1

N∑

j=1

∣
∣
∣
∣
∣
∣
Yi j −

Nm∑

J=1−p

βJ BJ ,p ( j/N )

∣
∣
∣
∣
∣
∣
.

LAD gives equal emphasis to all observations, in contrast to OLS which, by squaring
the residuals, gives more weight to large residuals. This is helpful in studies where
outliers do not need to be given greater weight than other observations. In this work,
we use cubic spline (p = 4) basis and the number of interior knots Nm is taken to
be [2n1/9] and [a] denotes the integer part of a, which is according to the following
Assumption (A3) and the recommendation in Cao et al. (2012b).

For any r ∈ (0, 1],we denoteCq,r [0, 1] as the space ofHölder continuous functions

on [0, 1], Cq,r [0, 1] =
{

φ : supt �=s,t,s∈[0,1]
∣
∣φ(q)(t)−φ(q)(s)

∣
∣

|t−s|r < +∞
}

. The following

technical assumptions are needed by the following Theorem 1.

(A1) The regression function m ∈ C p0−1,1[0, 1]. The spline order in estimating m
satisfies p ≥ p0.

(A2) The standard deviation σ > 0 and for any k = 1, 2, . . . κ , φk (x) ∈ C p,1 [0, 1]
and minx∈[0,1] G (x, x) > 0;

(A3) The number of knots Nm satisfies Nm ∼ n1/(2p+1) and the number of observation
N satisfies N ∼ n.

(A4) Let fi j be the density function of ei j .Uniformly over i and j , fi j (0) is bounded
from infinity, and it is bounded away from zero and has a bounded first derivative
in the neighborhood of zero. In model (1), for any i and j , the measurement
errors εi j have a symmetric distribution and are independent of ηi .
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Assumptions (A1)–(A3) are standard in the spline smoothing and FDA literature;
see Cao et al. (2012b), for instance. In particular, (A1) guarantees the orders of the bias
terms of the spline smoothers form(x). Assumption (A2) ensures the covariance func-
tion is a uniformly bounded function. Assumption (A3) implies the number of points
on each curve N diverges to infinity as n goes to infinity, which is a well-developed
asymptotic scenario for dense functional data. The smoothness of our estimator is con-
trolled by the number of knots, which increases to infinity as specified in (A3). This
increasing knots asymptotic framework guarantees the richness of the basis. Assump-
tion (A4) is a standard assumption in quantile regression; see Theorem 1 inWang et al.
(2009), for example. Note that if εi j ’s have different distributions across individuals,
then the statement on Assumption (A4) does not depend on i .

In the following theorem, we show that the proposed R-estimator, m̃(x), is a consis-
tent estimator of the true mean function, m(x). The proof of this theorem is provided
in Appendix.

Theorem 1 Under Assumptions (A1)–(A4), one has

1

N

N∑

j=1

{m̃( j/N ) − m( j/N )}2 = OP (n−2p/(1+2p)).

3.3 The RSCB for themean function

In the following, we mimic the construction of SCB procedure in Cao et al. (2012b)
to obtain the RSCB for the mean function. Namely, first we obtain an estimator of the
(1 − α)100% quantile, Q1−α , of the absolute maxima distribution for a standardized
Gaussian process ζ(x), with E[ζ(x)] = 0, and E[ζ 2(x)] = 1, and covariance function
E

[
ζ(x)ζ(x ′)

] = G(x, x ′)
{
G(x, x)G(x ′, x ′)

}−1/2. For any α ∈ (0, 1), we denote
Q1−α the 100(1 − α)th percentile of the absolute maxima distribution of ζ(x), i.e.,
P(supx∈[0,1] |ζ(x)| < Q1−α) = 1 − α, 0 < α < 1. This can be done using a Monte

Carlo simulation, that is, we first simulate ζl(x) = G̃(x, x)−1/2 ∑κ
k=1 Zk,l

√
λ̃k ϕ̃k(x),

where G̃(x, x) is an R-estimator of covariance function G and Zk,l follows i.i.d.
standard normal distribution, 1 ≤ k ≤ κ , l = 1, . . . , L , and L is a large positive
integer, say 1000. We provide the definition of G̃(x, x) in the next section. Next, we
choose the number κ of eigenfunctions by using the following standard “fraction of
variation explained”, i.e., select the number of eigenvalues that can explain, say, 95%
of the variation in the data. Then an estimator for Q1−α , Q̂1−α , is obtained as the
empirical (1 − α) quantile of the set {supx∈[0,1] |ζl(x)|, l = 1, . . . , L}.

Similar to the SCB investigated in Cao et al. (2012b), RSCB for the mean function
may be calculated as m̃(x) ± n−1/2G̃(x, x)1/2 Q̂1−α . However, simulations and real
examples show that the RSCB does not have consistent coverage rates for relatively
small sample sizes. To solve this problem, we propose the (1−α)100% RSCB for the
mean function as

m̃(x) ± c(n) · n−1/2G̃(x, x)1/2 Q̂1−α,
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where c (n) is a finite-sample correction factor and depends on sample size n (Pison
et al. 2002; Wilcox 2005). In order to determine the value of c(n), we conduct a
simulation study and discuss it in Sect. 4.2.

Theorem 1 is only a first step toward a theoretical justification of the proposed
methodology. The asymptotic theory of the confidence bands based on m̃ is indeed
a challenging work. First, the explicit formula for m̃ is not available. Thus, it is not
possible to obtain an estimate for the covariance function of m̃ and the error decompo-
sition. Hence, the strong approximation used in Cao et al. (2012b) cannot be applied
directly here. Second, the asymptotic distribution of the LAD estimator depends on the
value of the error density at 0. Due to its infinite-dimensional structure, an analogous
assumption for the process η(x) is not feasible.

3.4 The robust estimator for the covariance function

In order to construct anR confidence band for themean function,we also need to obtain
an R-estimator for the covariance function, G(x, x ′). The covariance function defined
in (2) can be recovered if the eigenfunction/eigenvalue decomposition is known. A
popular estimator for the eigenfunctions and eigenvalues is derived from the eigenvalue
decomposition of the empirical or the smoothed covariance matrix. Such method has
been widely used in FDA (Yao et al. 2005; Cao et al. 2012b). However, this estimator
is sensitive to the presence of outliers.

An alternative R-estimator, the spherical principal components, is proposed in
Locantore et al. (1999). The first step in this method is to normalize each sample
curve to mitigate the effect of outliers. That is, the covariance function is replaced by
the normalized covariance function, i.e.,

ρ(x, x ′) = E

{
[η(x) − m(x)][η(x ′) − m(x ′)]

‖η(·) − m(·)‖22

}

,

where ‖ · ‖2 is the usual L2-norm. We can then find the eigenfunction/eigenvalue
decomposition of this new operator, leading to eigenfunctions ϕ∗

k and eigenvalues λ∗
k .

When κ < ∞ and {ξk}κk=1 has a symmetric and interchangeable marginal distribution,
Gervini (2008) has shown that ϕ∗

k = ϕk , that is, the eigenfunctions of the covariance
operator are the same as the eigenfunctions of normalized one, and they are in the same
order. However, the corresponding two types of eigenvalues are not necessarily be the
same. These R-estimators are generally more robust to outliers than the commonly
used sample mean and principal components. Moreover, Boente et al. (2014) extend
the above results to the case of κ = ∞.

Since it is impossible to have the entire stochastic process and the truemean function
in the practice, we use the discretized sample version of the normalized covariance
function,

ρn( j/N , j ′/N ) = 1

n

n∑

i=1

(Yi j − m̃( j/N ))(Yi j ′ − m̃( j ′/N ))

‖Yi · − m̃(·)‖22
, 1 ≤ j, j ′ ≤ N , (6)
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where ‖Yi · − m̃(·)‖22 = 1/N
∑N

j=1

(
Yi j − m̃( j/N )

)2 and m̃(·) is the proposed R-
estimator of the mean function, defined in (5). Similarly to the population version,
we can find the eigenvector decomposition {ϕ∗

k ( j/N )}κk=1 for the sample version of
the normalized covariance function and the eigenfunctions, ϕ∗

k are called spherical
principal components (Locantore et al. 1999) as ρn is the sample covariance function
of the centered curves projected on the unit sphere.

The presence of measurement errors in our model adds a layer of contamination
to the calculation of (6), but due to the aforementioned robustness of the spherical
principal components, if the measurement errors are not excessive, ϕ∗

k will be close to
the actual ϕk . In order to reduce the effects of measurement errors further, we smooth
each ϕ∗

k using the B-splines which yield the smoothed eigenfunctions ϕ̃k(·).
To estimate the covariance function in (2), we need to recover the eigenvalues

λk . Notice that the kth eigenvalue is the variance of the projection of the centralized
stochastic process on the kth eigenfunction, that is λk = Var ( 〈η(·) − m(·), ϕk(·)〉 ) .

Adapting this to our model, we can use the proposed R-estimator m̃ and the R-
estimator of the eigenfunctions ϕ̃k to obtain λ̃k as the square of the R-estimator of
the scale of 〈Yi · − m̃(·), ϕ̃k(·)〉. Having estimated the eigenvalues and eigenfunc-
tions, we can recover the R-estimator of the covariance function as G̃(x, x ′) =∑κ

k=1 λ̃k ϕ̃k(x)ϕ̃k(x ′). The R estimation of the covariance function can be summa-
rized in the following steps.

Step 1. Estimate eigenfunction ϕ̃k(·).
Apply the spline smoothing ϕ̃k(x) = Bp(x) (BTB)−1 BTϕ∗

k , where ϕ∗
k =

(ϕ∗
k (1/N ), . . . , ϕ∗

k (N/N ))T, k = 1, 2, . . . , N , are the eigenvectors of the
sample normalized covariance matrix ρn in (6).

Step 2. Estimate eigenvalue λ̃k .
Using an R scale estimator of the projection of the centralized data onto ϕ̃k .
The chosen R-estimator is the Huber’s M-estimator (Huber and Ronchetti
2009), i.e., the solution of the equation

H(σ ) = 1

n

n∑

i=1

ργ

(
1
N

∑N
j=1(Yi j − m̃( j/N ))ϕ̃k( j/N )

σ

)

= 0.5,

where ργ (u) = ρ(u/γ ), γ > 0, and ρ is the Tukey’s bisquare function.
This choice guarantees that the scale estimators of i.i.d. observations has 1/2
breakdown point.We use γ = 1.5 in the following numerical studies, which is
the suggested value inHuber andRonchetti (2009). This leads to the estimators
λ̃
1/2
k . Squaring these values results in the estimator λ̃k of the eigenvalues.

Step 3. Recover the R covariance estimator G̃(x, x ′).
Define G̃(x, x ′) = ∑N

k=1 λ̃k ϕ̃k(x)ϕ̃k(x ′), x, x ′ ∈ [0, 1].

3.5 The RSCB for the difference of twomean functions

The framework proposed here to obtain a RSCB for themean function can be extended
to obtain a RSCB for the difference of the mean functions of two populations. Denote
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for d = 1, 2 the samples coming from each population, satisfying the model defined
in (3)

Ydi j = md ( j/N ) +
κd∑

k=1

ξdikφdk ( j/N ) + σd ( j/N ) εdi j , 1 ≤ i ≤ nd , 1 ≤ j ≤ N ,

with covariance function Gd(x, x ′) = ∑κd
k=1 φdk(x)φdk(x ′), respectively. Define the

ratio of two-sample sizes as r̂ = n1/n2 and assume that limn1→∞ r̂ = r > 0. For
each group, we can obtain the R-estimator for the mean function as described in
Sect. 3.2.

Following the procedure in Sect. 3.4, we can obtain the R-estimators for
the covariance function of each group, G̃d(·, ·), d = 1, 2, then proceed as
Sect. 3.3, by first defining ζ12(x), x ∈ [0, 1] the Gaussian process with zero
mean, E[ζ12(x)] = 0, unit variance E[ζ 2

12(x)] = 1, and covariance func-
tion

E
[
ζ12(x)ζ12(x

′)
] = G̃1(x, x ′) + r G̃2(x, x ′)

{
G̃1(x, x) + r G̃2(x, x)

}1/2 {
G̃1(x ′, x ′) + r G̃2(x ′, x ′)

}1/2 ,

where x, x ′ ∈ [0, 1]. Analogue to the one-sample case, the quantile Q̂12,1−α

can be estimated using simulations. The RSCB for m1(x) − m2(x) is given
as

(m̃1(x) − m̃2(x)) ± c(n1, n2) · n1/21

[
G̃1(x, x) + r̂ G̃2(x, x)

]1/2
Q̂12,1−α,

where the correction factor is selected as c(n1, n2) = 1 + (
1 + min(n1, n2)0.20

)−1
,

similarly to the discussion in Sect. 4.2. The confidence band for the difference of the
mean functions can be used to perform a hypothesis test of the form H0 : m1(x) ≡
m2(x), ∀x ∈ [0, 1] versus HA : m1(x) �= m2(x), ∃ x ∈ [0, 1]. The test can be per-
formed by calculating the appropriate (1−α)× 100% confidence band. Although the
p-value cannot be calculated directly, it can be estimated by finding the largest α when
H0 is rejected.

4 Simulation

In this section, we perform a simulation study to select the correction factor and com-
pare the performance of the proposed RSCB with the (non-robust) method proposed
by Cao et al. (2012b) for the mean function and the difference of mean functions for
two populations. We use empirical confidence band coverage rate as a performance
criterion. Since outlier curves often have different types of outlying behaviors in the
functional data setting, we consider several types of outliers in the assessment of the
performance of the RSCB. In Appendix, we also provide the comparison of SCB
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and RSCB under different mean/covariance functions setting and additional outlier
types.

4.1 Simulation setting

We first generate data from the simulation model in Cao et al. (2012b), i.e.,

Yi j = m ( j/N ) +
2∑

k=1

ξikφk ( j/N ) + σεi j , 1 ≤ j ≤ N , 1 ≤ i ≤ n.

In this model, ξik for k = 1, 2 and εi j for 1 ≤ j ≤ N , 1 ≤ i ≤ n are generated from
N (0, 1). The number of subjects is n and the number of observations per curve is taken
as N = n for functional samples. The mean function, eigenvector functions and the
noise level are taken asm(x) = 10+sin{2π(x−1/2)}, φ1(x) = −2 cos{(π(x−1/2)},
φ2(x) = sin{π(x − 1/2)}, and σ = 0.5, respectively. Note that this model implies
that λ1 = 2, λ2 = 0.5, but this information is not used a priori.

Under this functional model, we introduce outlier curves (Yo
i j ) to the generated

functional sample by contaminating a subset, IO , of the original functional sample.
The contamination proportion varies from 0 to 0.5, at 0.05 increment. In order to
determine the influence of different types of outliers on constructing SCB for the
mean function, we consider three different types of outliers, mainly with localized
influence, which mimic the types of outlying curves encountered in the real data sets
in Sect. 5.

1. Peak outliers To simulate an outlier with a punctual influence, each curve was
contaminated at a single measurement point, j∗/N , by adding a fixed value s
(outliers strength), that is,

Yo
i j∗ = Yi j∗ + s, i ∈ IO , j∗ = �0.05N�.

This produces a peak outlier curve with a peak at the point j∗/N .
2. Bump outliers This type is an extension of the peak outliers and the contamination

occurs in an interval, [b0, b1], rather than at a single point, that is,

Yo
i j∗ = Yi j∗ + s, i ∈ IO , j∗/N ∈ [b0, b1].

This type of outlier is present in the ozone data set considered in Sect. 5. In the
simulation, the interval is chosen as [b0, b1] = [0.5, 0.53].

3. Step outliers A further extension of the bump outliers is created by contaminating
the curve in the interval [ci , 1], where ci is randomly chosen from [0.5, 1] for each
outlying curve, that is,

Yo
i j∗ = Yi j∗ + s, i ∈ IO , j∗/N ≥ ci .
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Fig. 1 Empirical coverage rates of 95% RSCB when the correction factor c varies between 1 and 2

4.2 Finding correction factor

The motivation of applying correction factor is to improve the consistency of RSCB,
as we find the estimator G̃ tends to underestimate the true value for small sample
sizes. We follow the idea introduced in Pison et al. (2002) to find an appropriate
correction factor based on simulation. In this simulation, we set the contamination
ratio of the outliers as 20% and the outliers strength as s = 5. Three sample sizes
n = 50, 100 and 200 are considered and the correction factor c is varied for values
between 1 and 2. For each n, the validity of the confidence band is tested at 100 points
{1/100, . . . , 99/100, 1}, against the value of the true mean function defined as in the
simulation setting. The proportion of the valid confidence bands is then evaluated. The
simulation is repeated 500 times. Figure 1 presents the empirical coverage rates of 95%
RSCB, i.e., m̃(x)± c · n−1/2G̃(x, x)1/2 Q̂1−α , for the cases of bump and step outliers.
Using the empirical coverage rates for various c, we select c(n) = 1 + (1 + n0.20)−1

as the correction factor to improve the empirical coverage rates. Notice that c(n) is
greater than 1, which helps to improve consistency for small sample cases, and has a
diminishing influence as the sample size increases, i.e., limn→∞ c(n) = 1. Although
an exhaustive study of all possible sample sizes and outliers is impossible, additional
simulation results in Appendix have also shown that this selection of correction factor
performed well under different simulation settings and outliers.

4.3 An illustrative example

We first show the performance of the proposed method for one-sample SCB construc-
tion on an illustrative toy example. Therefore, we generate a functional sample of
n = 100 from the model defined in Sect. 4.1 and contaminate the data by using all
three types of outliers with the contamination proportion 20% and, for this illustrative
example, a strength of s = 20. We first construct the 95% confidence band using
the proposed RSCB (black) and non-robust (red) SCB for the mean function for each
outlier type. We also construct the non-robust SCB and RSCB for the mean function
when the sample does not have outlier curves to assess the consistency of the proposed
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Fig. 2 Comparison between RSCB (black) and non-robust SCB (red) for a simulated dataset (color figure
online)

RSCB. Figure 2 depicts the effects of outlier curves on the non-robust SCB and RSCB
methods.

The first graph (top left in Fig. 2) for no outlier case shows that the proposed RSCB
behaves the same as the non-robust SCB when there is no outlier curve in the data;
therefore, it is consistent. For peak and bump outliers (top right and bottom left in
Fig. 2), which are considered as very localized outliers, the width of the non-robust
SCB iswidened around the outlier location and the estimate of the truemean function is
strongly affected, deviating from the true mean function, which results in a confidence
band that does not cover the mean function, whereas the RSCB is robust to outlier
curves even though it is widened slightly around the outlier location, but by a small
factor, and the estimated mean is barely affected by the presence of these outliers.

For the step outlier (bottom right in Fig. 2), the mean function estimation and the
non-robust SCB are affected dramatically since the estimate of the mean function
is deteriorated, whereas the RSCB is not affected even though the band is widened a
little around the outlier location. This illustrative example provides evidence that when
there are outlier curves in a functional dataset, estimate of the mean function and non-
robust SCB are both affected badly, while the proposed RSCB based on the R mean
estimator performs well for different types of outlier curves. Further, the proposed
RSCB is consistent since it performs well when there are no outlier curves.
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Fig. 3 Comparison of the area of the RSCB (black) and non-robust SCB (red), for varying strengths of
outliers (color figure online)

Another important metric is the relationship between the strength of the outlier
curves and the total area of the confidence band. To illustrate this metric, we generate
functional samples of size n = 50 from themodel defined in Sect. 4.1 and contaminate
the data by using peak and step outliers with contamination proportion 20%, and the
varying strengths, s = 5, 10, 20, 30, 40, 50. The results are presented in Fig. 3. Note
that the area of non-robust SCB is strongly influenced by the strength of the outliers,
while the area of the RSCB is maintained at an almost constant level. Similar results
are obtained for the bump outliers, which are not shown here.

4.4 Simulation for the SCB for themean function and the difference of twomean
functions

Case I: SCB for the mean function, m(x)
To evaluate the performance of the proposed RSCB method for the mean function,

we calculate the empirical coverage rate. We generate functional samples from the
model in Sect. 4.1 for sample sizes n = 30, 50, and 100 with strength is s = 5. Each
simulation is repeated 500 times.

The empirical coverage rates for contamination proportions varying from 0.05 to
0.50 are presented in Fig.A.1 in Supplementary file aswell as inTable 1. The results for
non-contaminated datasets are presented in Table 2. For the first two types of outliers
(top two graphs in Fig. A.1 and Table 1), the proposed RSCB method maintains the
nominal level 95% and has breakdown point close to 50%, while the non-robust SCB
breaks down immediately in the presence of outliers and shows a rapid decrease in the
empirical coverage rate. Hence, we conclude that proposed RSCB performs superiorly
to the non-robust SCB for these two cases.

For the step outlier case, the RSCB method still performs well (bottom graph in
Fig. A.1 and Table 1). Although the RSCBmethod does not maintain 50% breakdown
point as in the case of peak and bump outliers, but still has reasonably good breakdown
point (20% to 30%), whereas the non-robust SCB breaks down immediately in the
presence of even small contamination proportions.
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Table 1 Comparison of robust (R) and non-robust (NR) empirical coverage rates of 95% SCB for four
types of outlier curves

Outlier type n Method Contamination proportion

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Peak 30 R 0.91 0.92 0.92 0.93 0.91 0.90 0.91 0.94 0.93 0.94

NR 0.71 0.44 0.26 0.08 0.05 0.04 0.03 0.01 0.02 0.01

50 R 0.89 0.92 0.92 0.92 0.91 0.88 0.89 0.92 0.93 0.89

NR 0.77 0.20 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 R 0.93 0.93 0.95 0.94 0.94 0.92 0.93 0.91 0.88 0.87

NR 0.90 0.81 0.70 0.52 0.32 0.17 0.07 0.02 0.00 0.00

200 R 0.94 0.97 0.94 0.94 0.96 0.96 0.95 0.95 0.91 0.92

NR 0.93 0.90 0.85 0.77 0.62 0.52 0.34 0.22 0.12 0.02

Bump 30 R 0.93 0.91 0.92 0.88 0.87 0.92 0.95 0.93 0.93 0.94

NR 0.81 0.70 0.56 0.27 0.13 0.11 0.14 0.13 0.12 0.06

50 R 0.92 0.92 0.88 0.87 0.88 0.87 0.90 0.88 0.91 0.91

NR 0.86 0.68 0.50 0.14 0.03 0.00 0.00 0.00 0.00 0.00

100 R 0.93 0.94 0.91 0.89 0.86 0.87 0.90 0.88 0.89 0.85

NR 0.80 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 R 0.94 0.93 0.90 0.81 0.71 0.67 0.72 0.70 0.59 0.63

NR 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Step 30 R 0.93 0.92 0.95 0.96 0.98 0.99 0.99 0.99 1.00 0.82

NR 0.81 0.83 0.67 0.17 0.02 0.00 0.00 0.00 0.00 0.00

50 R 0.91 0.96 0.96 0.98 0.97 0.98 0.99 1.00 0.98 0.84

NR 0.91 0.59 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 R 0.93 0.94 0.94 0.92 0.93 0.91 0.88 0.86 0.79 0.35

NR 0.73 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

200 R 0.94 0.90 0.81 0.66 0.54 0.31 0.19 0.07 0.02 0.00

NR 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2 Comparison of robust
(R) and non-robust (NR)
empirical coverage rates of 95%
SCB for datasets with no outliers

n 30 50 100 200

R 0.93 0.93 0.96 0.96

NR 0.81 0.92 0.93 0.94

Case II: SCB for the difference of two mean functions, m1(x)−m2(x)
We also conduct simulation to evaluate the performance of the RSCB method for

the difference between two mean functions, by testing the hypotheses described in
Sect. 3.5,

H0 : m1(x) ≡ m2(x), ∀x ∈ [0, 1] versus HA : m1(x) �= m2(x), ∃ x ∈ [0, 1].
(7)
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Fig. 4 Empirical type I error of hypothesis test for the difference of means for two populations, with
nominal value α = 0.05. Non-robust method (red) versus robust method (black) (color figure online)

We employ the same model in Sect. 4.1 for the one sample case. In this simulation
setup, n1 = 100, and n2 = 130 correspond to the sample sizes for the first and the
second population, respectively, N = 100 are the number of measurement points for
both samples, and outlier curves are introduced to the first population.

The results of the simulation are presented in Fig. 4 for the three types of outliers,
using RSCB (red) and using non-robust SCB (black) as proposed in Cao et al. (2012b).
For all cases, the type I error is not maintained for the non-robust method, while for
the RSCB method, the type I error is kept at, or close to the nominal value. For the
step outliers, the type I error is close to the nominal value for small contamination
proportions, deteriorating for large contamination proportions, albeit at a much slower
rate than the non-robust SCB. This is evidence that our proposed RSCB method has
a superior performance compared to the classical one.

5 Applications

We illustrate our approach on two datasets: octane dataset for the one-sample case and
ground-level ozone concentration dataset for the two-sample case.
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Fig. 5 95% SCB comparison for the octane dataset. Non-robust (red) versus robust (black) methods. Left:
full spectrum. Right: magnified on the second half of the spectrum (color figure online)

5.1 Octane dataset

This dataset consists of 39 near-infrared (NIR) spectra of gasoline sample, obtained
from Esbensen et al. (1994). It is known that six of the samples contain added ethanol,
which corresponds to an upward translation on the upper wavelength, 1390 onward,
interval of the spectrum. This is considered as the step outliers described in Sect. 4.

The R estimation of the mean and the 95% RSCB are calculated for this dataset,
as well as the mean estimator and confidence band using the method in Cao et al.
(2012b). The results are presented in Fig. 5, showing the full spectrum measure (left
panel) and magnified on the second half of the spectrum to display the differences
more apparently between the non-robust and robust SCBs (right panel).

We observe that the R mean estimator remains close to the non-outlying curves,
while the non-robust estimate of themean function is heavily influenced by the outliers,
resulting in an upward shift. The non-robust SCB is also heavily influenced by the
outliers, translating in a vast wide band on the second half of the spectrum. However,
the proposed RSCB maintains a consistent width across the whole spectrum.

5.2 Ground-level ozone concentration dataset

This dataset consists of hourly average measurements of ground-level ozone (O3)
concentrations from a monitoring station in Richmond, BC, Canada, from the years
of 2004 to 2012. The presence of ozone at ground level is highly undesirable and
considered a serious air pollutant. Since the concentration of ground-level ozone typ-
ically peaks at summer months, only the month of August is analyzed, resulting in 31
samples, with 24 measurement points for each sample.

The same dataset was studied in Boente and Salibian-Barrera (2015), and using
S-estimators for the principal components, the presence of outliers was detected in the
year of 2005. For illustrative purposes, we take the ozone levels for the year of 2005
as one sample and the ozone levels for the year of 2007, which we know there are no
outlier curves (Boente and Salibian-Barrera 2015), as the other sample. The plot of
the ground level O3 concentration for years 2005 and 2007 is presented in Fig. 6, top
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Fig. 6 Top left: O3 levels in years of 2005 (gray and black) and 2007 (red) in Richmond. Black lines are
the outliers. Top right: 95% non-robust SCB (red) and RSCB (gray) for the difference between the mean
functions of the two years. Bottom: 95% non-robust SCB (red) and RSCB (gray) for the difference between
the mean functions of the two years, keeping outliers for RSCB, excluding outliers for non-robust SCB
(color figure online)

left panel, with the year of 2005 in gray/black and the year of 2007 in red. The outliers
detected by Boente and Salibian-Barrera (2015) are highlighted.

We set up our hypotheses for testing whether there is a difference between the
ozone mean functions of the years 2005 and 2007 in Richmond, Canada. The outliers
in the dataset are similar to the bump outliers described in Sect. 4. The ground level
O3 concentration remained the same, except for the aforementioned outliers in 2005
(Fig. 6, top left panel). The Rmethod does not reject the null hypothesis at a significant
level α = 0.05, while the non-robust method proposed in Cao et al. (2012b) rejects
the null hypothesis, with an empirical p value calculated as 0.015. The 95% SCB of
the difference between the mean functions of the ground level O3 concentration in
years of 2005 and 2007 is presented in the top right panel of Fig. 6. We also calculate
the 95% SCB for the difference between the mean functions with the outliers kept for
the RSCB and excluding the outliers for the non-robust SCB. This is presented in the
bottom panel of Fig. 6. This plot provides a comparison of the SCB between the robust
and non-robust methods, highlighting that the former successfully works, despite the
presence of outliers.
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6 Discussion

In this paper, we proposed a novel method for robustly estimating themean function of
the functional data and amethod to obtain anRSCB for themean functionwith the help
of a robust estimator for the covariance function. To the best of our knowledge, this
work is the first manuscript investigating the construction of RSCB accounting for the
presence of outlying curves. Although we primarily focus on the computational issue
of RSCB, we also proved the consistency of the proposed LAD estimator for the mean
function when the measurement errors have a symmetric distribution. Moreover, we
obtained a finite-sample correction factor that results in consistent coverage rates for
the RSCB for small sample sizes. Although an exhaustive study of all possible sample
sizes and outliers is impossible, we conducted a simulation study to determine the
correction factor for three additional types of outliers. We showed that this selection
of correction factor performed well under different simulation settings and outliers.

Further, we consider that our contribution to software development for computing
and visualizing SCBandRSCBwith functional data is significant. TheR-codeswritten
for the non-robust and robust SCB in this manuscript which can be downloaded at
http://auburn.edu/~gzc0009/software.html will be instrumental in applied research,
and these SCB methods will provide a strong visualization tool for interdisciplinary
audiences.

As suggested by one referee, we may consider model (1) under elliptical pro-
cesses setting. Let η be elliptical with location m and scatter operator G, η(x) =
m(x) + ∑∞

k=1 ξkφk(x), where for any k the random vector (ξ1, . . . , ξk)
T has an

spherical distribution. Furthermore, the scale function G = ∑∞
k=1 φk ⊗ φk with

φk(x) = √
λkϕk(x) and λ1 ≥ λ2 ≥ · · · and {ϕk(x)}∞k=1 are the eigenvalues and

eigenfunctions. By considering elliptical processes setting, it allows to identify loca-
tion m without requiring any moment conditions. The interested readers are referred
to Boente et al. (2014). We also notice that m̃(x) does not have the same asymptotic
variance as the estimators considered in Cao et al. (2012b) and G̃ is not a consistent
estimator, somore careful and intensivework is necessary to investigate the asymptotic
covariance of LAD estimator m̃(x). We leave these issues for future work.
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