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ABSTRACT

In the past decade, sparsity-driven regularization has led to signifi-
cant improvements in image reconstruction. Traditional regularizers,
such as total variation (TV), rely on analytical models of sparsity.
However, increasingly the field is moving towards trainable mod-
els, inspired from deep learning. Deep image prior (DIP) is a recent
regularization framework that uses a convolutional neural network
(CNN) architecture without data-driven training. This paper extends
the DIP framework by combining it with the traditional TV regular-
ization. We show that the inclusion of TV leads to considerable per-
formance gains when tested on several traditional restoration tasks
such as image denoising and deblurring.

Index Terms— Image reconstruction, image restoration, deep
learning, deep image prior, total variation regularization.

1. INTRODUCTION

Image reconstruction is one of the most widely studied problems in
computational imaging. Since the problem is often ill-posed, the
process is traditionally regularized by constraining the solutions to
be consistent with our prior knowledge about the image. Some tradi-
tional imaging priors include nonnegativity, transform-domain spar-
sity, and self-similarity [1-4]. Recently, however, the attention in the
field has been shifting towards new imaging formulations based on
deep learning [5].

The most common deep-learning approach is based on an end-
to-end training of a convolutional neural network (CNN) for repro-
ducing the desired image from its noisy measurements [6-10]. A
popular alternative considers training a CNN as an image denoiser
and using it within an iterative reconstruction algorithms [11-14].
However, recently, it was also shown that a CNN can by itself reg-
ularize image reconstruction without data-driven training [15]. This
deep image prior (DIP) framework naturally regularizes reconstruc-
tion by optimizing the weights of a CNN for it to synthesize the
measurements from a given random input vector. The intuition be-
hind DIP is that natural images can be well represented by CNNs,
which is not the case for the random noise and certain other image
degradations. DIP was shown to achieve remarkable performance on
a number of image reconstruction tasks [15, 16].

In this paper, we propose to further improve DIP by combin-
ing an implicit CNN regularization with an explicit TV penalty. The
idea of our DIP-TV approach is simple: by including an additional
TV term into the objective function, we restrict the solutions synthe-
sized by CNN to those that are piecewise smooth. We experimentally
show that our DIP-TV method outperforms the traditional formula-
tions of DIP and TV, and performs on a par with other state-of-the-art
image restoration methods such as BM3D [17] and IRCNN [12].
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Fig. 1: Comparison of DIP-TV against several standard algorithms
for image denoising. DIP-TV achieves the best SNR performances
on Monarch with AWGN of o = 65. The combination of the CNN
and TV priors preserve homogeneity of the background as well as
the texture, highlighted by rectangles drawn inside the images.

2. BACKGROUND

Consider the restoration as a linear inverse problem
y=Hxte, 6

where the goal is to reconstruct an unknown image x € RY from
the measurements y € R™. Here, HeR™*" is a degradation ma-
trix and e e RM corresponds to the measurement noise, which is as-
sumed to be additive white Gaussian (AWGN) of variance o2.

As practical inverse problems are often ill-posed, it is common
to regularize the task by constraining the solution according some
prior knowledge. In practice, the reconstruction often relies on the

regularized least-squares formulation
x" =argmin {|ly —Hx||7, + Ap(x) } )

where the data-fidelity term ensures the consistency with measure-
ments, and regularizer p constrains the solution to the desired image
class. The parameter A >0 controls the strength of regularization.
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Fig. 2: The set of 14 grayscale images used in experiments.

Total variation (TV) is one of the most widely used image priors
that promotes sparsity in image in image gradients [18]. It has been
shown to be effective in a number of applications [19-21]. The
£1-based anisotropic TV is given by

prv (%) £ [[D1x]n|+|[Da2x]a], 3)

i=1

where D1 and D2 denote the finite difference operation along the
first and second dimension of a two-dimensional (2D) image with
appropriate boundary conditions.

Currently, deep learning achieves the state-of-the-art perfor-
mance for different image restoration problems [22-24]. The core
idea is to train a CNN via the following optimization

@*:arggmin L(fe(y)x), )

where fe(-) represents the CNN parametrized by ®. L denotes
the loss function. In practice, (4) can be effectively optimized using
the family of stochastic gradient descend (SGD) methods, such as
adaptive moment estimation (ADAM) [25].

Recently, Ulyanov et al. [15] proposed to use CNN-based meth-
ods in an alternative way. They discovered that the architecture of
deep CNN models is well-suited for representing natural images, but
not random noise. With a random input vector, CNN can reproduce
the clear image without supervised training on a large dataset. In the
context of image restoration, the associated optimization for DIP can
be formulated as

©" =argmin |y —Hfe ()7,
© )
such that x* = fo«(z).

where z€R™ denotes the random input vector. The CNN generator
is initialized with random variables ®, and these variables are iter-
atively optimized so that the output of the network is as close to the
target measurement as possible.

3. PROPOSED METHOD

The goal of DIP-TV is to use the TV regularization to improve the
basic DIP approach. We first consider the optimization problem
shown in (2) and the objective function of DIP in (5). One can
find that the ||y — H fe (z)||7, term in (5) actually corresponds to the
data-fidelity term in (3) by replacing feo (z) with an unknown image
output. Thus, we can consider replacing (5) with an optimization
problem

Ch =argmin {lly —Hfeo(2)|Z, + Aorv(fo(z)},

such that x* = fo«(z).
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Fig. 3: CNN architecture [15] used in this paper. The architecture
is based on the well-known U-ner with skip connections between
the down layers and up layers. Two different kernel sizes are noted
under each convolutional layer, and the number of filters is illustrated
above each block. The variable ns[i] denotes the number of feature
maps at ith skip layer, and the features in other layers correspond to
128.

Optimization in (6) is similar to training of a CNN and one can rely
on any standard optimization algorithms.

Figure 3 illustrates the CNN architecture we used in this paper,
which was adapted from [15]. In particular, the popular U-net ar-
chitecture [26] is modified such that the skip connections contain
a convolutional layer. The decoder uses a down-sampling and up-
sampling based scaling-expanding structure, which makes the effec-
tive receptive field of the network increase as the input goes deeper
into the network [27]. Besides, the skip connection enables the later
layers to reconstruct the feature maps with both local details and
global texture. Here, the input z can be initialized with a fixed 3D
tensor with 32 feature maps and of the same spatial size as x filled
with uniform noise. The proposed framework can deal with both
grayscale and color images, where for color images anisotropic TV
jointly regularizes all three channels.

4. EXPERIMENTS

We now present the experimental results on image denoising and
deblurring. We consider 14 gray scale images and 8 standard color
images (256 x 256 and 512 x 512) from set12, set14, and BSD68 as
our testing images. The gray scale images are shown in Figure 2,
while color images are: Monarch, Parrots, House, Lena, Peppers,
Baby, and Jet.

4.1. Image Denoising

In this subsection, we analyze the performance of DIP-TV method
for image denoising problems. The CNN architecture in Figure 3
is used for both color and grayscale images, with n,[i] =4 for each
skip layers. All algorithmic hyperparameters were optimized in
each experiment for the best signal-to-noise ratio (SNR) perfor-
mance with respect to the ground truth test image. Both DIP-TV
and DIP were set to run 5000 optimization step. We use the average
SNR to denote the SNR values averaged over the associated set of
test images.
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Fig. 4: Image denoising results on Tower and Jet obtained by EPLL, BM3D, TV-FISTA, DIP, and DIP-TV. The first and second columns
display the original images and corrupted images, respectively. Each reconstruction is labeled with its SNR (dB) value with respect to the
original image. Visual differences are highlighted using the rectangles drawn inside the images.
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Fig. 5: Image deblurring results with realistic motion blur kernel from [28] and o =7.65 on Peppers obtained by IRCNN, DIP, and DIP-TV.
Visual differences are highlighted using the rectangles drawn inside the images.

We first present the results of the experiments on grayscale im-
ages, where we compared DIP-TV with EPLL [29], BM3D [17],
TV [30] and DIP [15]. In order to directly evaluate the range of
noise levels that DIP-TV performs better, the input SNR to output
SNR relationships are presented in Table 1. The grayscale images
were corrupted by AWGN corresponding to input SNR of 5 dB, 10
dB, 15 dB, 20 dB, 25 dB, respectively. In particular, DIP-TV outper-
forms original DIP by around 0.5 dB for a wide range of noise lev-
els from 5 dB to 20 dB. Note that the proposed method also bridge
the gap between DIP and the state-of-the-art methods in high noise
levels. Figure 4 illustrates the visual comparisons for grayscale im-
ages Tower and Jet under two different noise levels, respectively.
The DIP-TV significantly promotes the denoising performance of
DIP itself in terms of both visual qualities and SNR. The noise is
effectively filtered out and the details of the image are preserved be-
cause of the TV regularization. For instance, DIP-TV improves the
SNR with respect to Tower by over 1.06 dB against DIP, and outper-
forms BM3D by 0.35 dB. Visually, the door highlighted in Tower is
clearly restored, while other methods bring serious distortion to it.

In color image denoising, we compared our method with
CBM3D [17] and NLM [31] as well as DIP itself. We consid-
ered AWGN corresponding to variance o from 25 to 75. Figure 1
compares the SNR performance of CBM3D, DIP, and DIP-TV on
the image Monarch. Table 2 summaries the average SNR among

different methods. Overall, DIP-TV exceeds DIP by at least 0.2
dB on the testing images. Moreover, DIP-TV outperforms CBM3D
with the increase of noise level (e.g. o >35). Considering that the
whole procedure of DIP-TV and DIP are image-agnostic and no
prior information is learned from other images, it is notable that
DIP-TV achieves comparable performance to the state-of-the-art for
high noise levels.

4.2. Image Deblurring

In image deblurring, one is given an blurry image which is synthe-
sized by firstly applying blur kernel H and then adding AWGN with
noise level o; The goal is to restore the image from the degraded
ones. We tested DIP and DIP-TV based on the network architecture
illustrated in [15], with n[i] = 128. Both DIP and DIP-TV were set
to run 5500 optimization step. Taking advantage of recent progress
in CNN and the merit of GPU computation, here we utilized convo-
lution to implement the blur. As a baseline, we compared our method
with IRCNN [12] and DIP itself based on the same set of images in
denoising. Two blur kernels were applied, including a general Gaus-
sian kernel with standard deviation 1.6 as well as a realistic kernel
defined in [28]. Different AWGN of o is added in each experiment.

Figure 5 shows the visual results for Peppers obtained by dif-
ferent methods. All methods can effectively remove the blurry and
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Table 1: The SNR (dB) results of different methods on the testing images with input noise levels 5 dB, 10 dB, 15 dB, 20 dB, and 25 dB. For
example, 5 dB noisy input represents very high noise level and corresponds to o =76.26 in average.

(Tmagess [ T | 2 | 3 [ 4 [ 5 [ 6 | 8 [ 9 [ 10 [ 11 [ 12 ] 13 ] 14]
Input SNR=5dB /o =76.26
EPLL 18.60 | 21.39 | 19.18 | 15.29 | 16.88 | 16.54 | 18.33 | 21.80 | 21.21 | 20.19 | 19.38 | 19.85 | 16.85 | 21.20
BM3D 18.72 | 22.22 | 18.81 | 15.31 | 16.86 | 16.50 | 18.30 | 21.87 | 21.55 | 20.25 | 19.52 | 20.35 | 17.33 | 21.22
TV 17.22 | 2038 | 17.65 | 13.74 | 16.24 | 15.42 | 16.57 | 19.71 | 20.09 | 18.38 | 18.49 | 18.27 | 16.23 | 20.60
DIP 17.98 | 21.19 | 18.78 | 1498 | 16.16 | 16.19 | 17.61 | 21.44 | 21.08 | 18.67 | 18.97 | 20.19 | 16.64 | 20.51
DIP-TV | 18.84 | 22.41 | 19.56 | 15.52 | 1699 | 16.79 | 18.48 | 22.26 | 21.61 | 19.10 | 19.55 | 20.52 | 17.80 | 21.57
Input SNR =10dB / 0 =53.43
EPLL 21.21 | 2421 | 21.96 | 17.81 | 19.42 | 19.65 | 20.88 | 24.59 | 23.68 | 21.20 | 21.79 | 22.98 | 19.65 | 23.91
BM3D | 21.30 | 25.10 | 21.57 | 17.81 | 19.39 | 19.58 | 20.84 | 24.65 | 24.01 | 21.28 | 21.90 | 23.39 | 20.20 | 23.85
TV 19.76 | 22.82 | 20.39 | 16.34 | 18.45 | 18.04 | 1891 | 22.62 | 22.15 | 20.34 | 20.56 | 20.80 | 18.85 | 22.83
DIP 20.76 | 24.32 | 21.55 | 17.81 | 18.82 | 19.14 | 20.21 | 24.43 | 23.24 | 21.01 | 21.22 | 23.46 | 19.90 | 22.99
DIP-TV | 21.33 | 25.11 | 22.10 | 17.96 | 19.43 | 19.61 | 20.89 | 24.77 | 23.81 | 21.57 | 21.65 | 23.60 | 20.46 | 24.12
Input SNR =15 dB /o =30.02
EPLL 23.57 | 27.04 | 24.63 | 21.00 | 22.10 | 22.79 | 23.12 | 27.21 | 26.29 | 23.65 | 24.51 | 26.03 | 22.73 | 26.78
BM3D | 24.02 | 27.95 | 24.55 | 2096 | 22.04 | 22.69 | 23.41 | 27.26 | 26.60 | 23.71 | 24.60 | 26.64 | 23.34 | 26.74
TV 22.42 | 2539 | 2344 | 19.58 | 20.99 | 21.00 | 22.28 | 25.49 | 24.49 | 22.64 | 2293 | 23.77 | 22.51 | 25.22
DIP 23.08 | 26.17 | 23.96 | 20.85 | 21.24 | 22.08 | 22.70 | 26.89 | 25.75 | 22.74 | 23.69 | 26.52 | 22.51 | 25.32
DIP-TV | 23.77 | 27.37 | 24.63 | 21.05 | 21.85 | 22.59 | 23.12 | 27.33 | 2597 | 22.90 | 23.95 | 26.81 | 23.22 | 26.65
Input SNR=20dB /o =14.24
EPLL 26.59 | 29.26 | 27.35 | 24.19 | 24.61 | 26.04 | 26.41 | 30.11 | 28.78 | 26.50 | 27.09 | 29.19 | 25.51 | 29.58
BM3D | 26.78 | 30.20 | 27.36 | 24.16 | 24.61 | 25.95 | 26.30 | 30.13 | 29.07 | 26.53 | 27.14 | 29.84 | 26.21 | 29.55
TV 2535 | 27.92 | 26.18 | 23.06 | 23.92 | 24.34 | 25.13 | 28.42 | 26.99 | 25.36 | 25.60 | 26.94 | 24.97 | 30.86
DIP 25.66 | 29.03 | 26.77 | 23.92 | 23.94 | 25.45 | 2541 | 29.31 | 27.49 | 23.25 | 25.04 | 29.59 | 25.55 | 28.31
DIP-TV | 26.37 | 29.53 | 27.38 | 24.10 | 24.46 | 25.66 | 25.63 | 29.72 | 27.84 | 24.17 | 25.42 | 29.80 | 25.90 | 29.06
Input SNR=25dB /o0 =5.12
EPLL 30.01 | 31.80 | 30.20 | 27.75 | 28.21 | 29.51 | 29.51 | 32.86 | 31.11 | 29.58 | 29.49 | 32.21 | 28.46 | 32.29
BM3D | 30.17 | 32.79 | 30.17 | 27.71 | 28.17 | 29.39 | 29.45 | 32.88 | 31.38 | 29.59 | 29.51 | 33.00 | 29.12 | 32.27
TV 28.84 | 30.51 | 29.29 | 26.82 | 27.43 | 2790 | 27.81 | 31.36 | 29.77 | 28.45 | 28.47 | 30.42 | 28.24 | 32.63
DIP 28.33 | 31.71 | 29.27 | 26.86 | 26.79 | 28.11 | 27.99 | 30.21 | 27.95 | 24.67 | 25.71 | 31.84 | 28.45 | 30.96
DIP-TV | 28.75 | 31.80 | 29.92 | 27.42 | 2691 | 28.56 | 28.17 | 31.29 | 28.13 | 24.86 | 26.05 | 32.19 | 28.49 | 31.84

Table 2: The average SNR (dB) results of CBM3D, NLM, DIP, and
DIP-TV on the testing color images with noise level o =25 35 45 55
65 75.

[ Methods | =25 [ 6=35[ 0=45

o=55 ‘ o=65 ‘ o=175

CBM3D | 2698 | 2545 | 24.60 | 23.79 | 23.12 | 22.50
NLM 2595 | 24.19 | 2297 | 21.83 | 20.90 | 20.15
DIP 2647 | 2536 | 24.44 | 2343 | 22.64 | 22.05
DIP-TV | 26.71 | 25.50 | 24.61 | 23.86 | 23.21 | 22.65

noise from the image. Particularly, our method further enhance the
piecewise-smoothness and mitigate the noise of the image, and thus
increases the peak-signal-to-noise ratio (PSNR) by over 0.45 dB
against DIP. Also note that the aid of TV regularization makes DIP
even outperform IRCNN by 0.15 dB on Peppers. Table 3 reports the
average PSNR compassion with IRCNN and DIP on color and gray
scale images, repectively. In general, the improvement by TV reg-
ularization outperforms DIP by at least 0.54 dB in terms of PSNR
and makes the DIP framework more comparable with IRCNN. For
example, DIP-TV is only 0.01 dB lower than IRCNN in terms of the
average PSNR on color images, with standard Gaussian blur kernel
and 0 =2.

Table 3: The average PSNR (dB) results of IRCNN, DIP and DIP-
TV on the testing gray scale images and color images.

Methods [ o [ IRCNN [ DIP [ DIP-TV
Gaussian blur with standard deviation 1.6
Gray ) 29.76 28.65 29.44
Color 32.04 31.49 32.03
Kernel 1 (19 x 19 [28])

Gray 555 32.58 31.41 32.11
Color ’ 34.20 33.48 34.09
Gray 765 28.59 26.74 27.53
Color ’ 30.89 29.87 30.45

5. CONCLUSION

This work has presented a simple method, namely DIP-TV, to im-
prove the deep image prior framework, leading to promising perfor-
mance, equivalent to and sometimes surpassing recently published
leading alternatives, such as BM3D and IRCNN. The proposed
method is based on the recent idea that a CNN model itself can
act as a prior on images and improve sparsity promoting priors via
the ¢;-norm penalty on the image gradient. The results on images
denoising and deblurring demonstrate that TV regularization can
further improve on DIP and provides high-quality results.
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