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ABSTRACT
Stochastic gradient descent (SGD) is one of the most widely used
optimization methods for parallel and distributed processing of large
datasets. One of the key limitations of distributed SGD is the need to
regularly communicate the gradients between different computation
nodes. To reduce this communication bottleneck, recent work has
considered a one-bit variant of SGD, where only the sign of each
gradient element is used in optimization. In this paper, we extend
this idea by proposing a stochastic variant of the proximal-gradient
method that also uses one-bit per update element. We prove the
theoretical convergence of the method for non-convex optimization
under a set of explicit assumptions. Our results indicate that the
compressed method can match the convergence rate of the uncom-
pressed one, making the proposed method potentially appealing for
distributed processing of large datasets.

Index Terms— Proximal-gradient method, forward-backward
algorithm, stochastic gradient descent, nonconvex optimization.

1. INTRODUCTION

Efficient processing of large datasets is a fundamental problem in
modern signal processing. In many applications, the task can be
formulated as an optimization problem of the form

x̂=argmin
x∈Rn

{f(x)} with f(x)=d(x)+r(x), (1)

where the data-fidelity term d penalizes mismatch to the data and
the regularizer r enforces desirable properties in x such as sparsity
or positivity. For a differentiable function f , the solution of (1) can
be approximated iteratively with the classical gradient method [1, 2]

xt←xt−1−γ∇f(xt−1), (2)

where γ>0 is the step size. However, when f consists of a large
number of component functions

f(x)=
1

K

K∑
k=1

fk(x), (3)

the cost of computing the full gradient∇f can become prohibitively
expensive. In such cases, it is common to rely on the stochastic
gradient descent (SGD) [3] that approximates the gradient at every
iteration either with that of a single component fk or with an average
of B component gradients as

xt←xt−1−γ∇f̂(xt−1) with ∇f̂(x)= 1

B

B∑
b=1

∇fkb(x), (4)

This material is based upon work supported by the National Science
Foundation under Grant No. 1813910.

where k1, . . . ,kB are independent random variables that are dis-
tributed uniformly over [1 . . .K].

A powerful feature of SGD is that it can be easily parallelized
by splitting the computation of B gradients over multiple compute
nodes [4]. However, distributed SGD suffers from a significant com-
munication overhead due to the frequent gradient updates transmit-
ted between the nodes. As the size of the gradient scales proportion-
ally to the number of optimization parameters, it can reach hundreds
of millions of variables for certain large-scale applications such as
3D imaging [5] or deep learning [6]. Motivated by this problem, re-
cent work has considered a compressed SGD, where the algorithm
compresses ∇f̂ during optimization [7–9]. A particularly simple
variant of compressed SGD is signSGD [9], which only keeps the
sign of the stochastic gradient at every iteration

xt←xt−1−γ sgn
(
∇f̂(xt−1)

)
, (5)

and hence compresses each stochastic gradient to a single bit. Re-
markably, it was shown that under some conditions this simple
scheme can match the convergence rate of uncompressed SGD [9].

While the current formulation of signSGD is both conceptually
elegant and widely applicable, it does not take advantage of the re-
cent progress in the proximal optimization theory [10]. In many
applications, the regularizer r in (1) consists of functions rk with
easily computable proximals [11]

proxγrk (y), argmin
x∈Rn

{
1

2
‖x−y‖22+γrk(x)

}
, (6)

which enables efficient optimization with a class of methods known
as proximal algorithms. For example, two widely popular methods
for large-scale optimization, FISTA [12–16] and ADMM [17–19],
are both examples of proximal algorithms.

In this paper, we propose a novel framework for one-bit
stochastic optimization based on the proximal-gradient extension
of signSGD. Our method, called signProx, is similar to signSGD
in the sense that it also uses only one-bit per element of the up-
date. In fact, we will see that under some conditions signProx is
exactly equivalent to signSGD. On the other hand, signProx also
enables gradient-free optimization, and hence generalizes signSGD
to problems with easily computable proximals. One of the key
contribution of this paper is the theoretical analysis of signProx for
nonconvex optimization under a set of transparent assumptions. Our
analysis and simulations reveal that signProx can converge as fast or
faster than the noncompressed algorithm, which makes compressed
proximal optimization appealing for processing large datasets.

7800978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



Algorithm 1 SPGM

1: input: x0∈Rn, γ>0, and B≥1
2: for t=1,2, . . . do
3: sample a vector k with i.i.d. elements kb∼θ
4: xt← P̂k(x

t−1)
5: end for

Algorithm 2 signProx

1: input: x0∈Rn, γ>0, and B≥1
2: for t=1,2, . . . do
3: sample a vector k with i.i.d. elements kb∼θ
4: xt←xt−1−γ sgn(xt−1− P̂k(x

t−1))
5: end for

2. MAIN RESULTS

In this section, we present our main results. We first introduce
signProx and then follow up by analyzing its convergence.

2.1. Compressed optimization using proximals

The central building block of our algorithm is the following proximal-
gradient mapping

Pk(x), proxγrk (x−γ∇d(x)) , k∈ [1, . . . ,K] (7)

which computes a gradient-step with respect to the function d and
then evaluates the proximal with respect to another function rk, both
with a step-size γ>0. Throughout this paper, we will assume that
d is a smooth, but possibly nonconvex, function. On the other hand,
to have a well-defined proximal, we assume that rk are all closed,
proper, and convex functions. We also define the following convex
combination of mappings in (7)

P(x), E[Pk(x)]=
K∑
k=1

θkPk(x), (8)

where we can express the sum as an expectation since θk≥0 and∑K
k=1 θk=1. It is known that a convex combination of proximals

gives another proximal [20, 21], which means that there exists a
closed, proper, and convex function r such that

P(x)=proxγr(x−γ∇d(x)). (9)

Algorithm 1 summarizes a stochastic alternative to the tra-
ditional proximal-gradient method [22, 23], which we will call
SPGM in this paper. Instead of evaluating the full proximal-gradient
step (8), which can be costly for large K, it computes an average
proximal-gradient over a mini-batch of size B

P̂k(x),
1

B

B∑
b=1

Pkb(x)=proxγr̂(x−γ∇d(x)), (10)

where each kb∈ [1 . . .K] is sampled independently according to the
probability distribution θ from (8). When the dependence of P̂k on
k is clear from context, we will sometimes omit the subscript k from
the notation as in P̂. The second equality in (10) is due to the fact
that P̂ is a convex combination of proximals, and hence itself a valid
proximal of some convex function r̂.

Algorithm 2 summarizes the main contribution of this paper:
one-bit compressed version of SPGM. Similarly to signSGD [9],
it requires only a single bit for updating each element of the iterate.
However, the update direction at iteration t is given by the sign of the
quantity (xt−1− P̂(xt−1)). The choice of this direction is deliber-
ate as it coincides with the gradient-mapping defined as follows.

Definition 1. For an objective f(x)=d(x)+r(x) and a step-size
γ>0, the gradient mapping is defined as the operator

G(x),
1

γ
(x−P(x))=

1

γ
(x−proxγr(x−γ∇d(x))), ∀x∈R

n.

It is common to analyze the convergence of proximal algorithms us-
ing the gradient mapping, since G(x∗)=0 if and only if x∗ is the
critical point of f [24]. Hence, signProx simply uses a one-bit ap-
proximation for elements of the gradient mapping at every iteration.

We conclude this section by noting that signProx can also be
seen as a generalization of signSGD. Let d=0 and define rk to be a
linear approximation of fk around xt−1

rk(x)=fk(x
t−1)+∇fk(xt−1)T(x−xt−1). (11)

Then, one can verify that the stochastic proximal-gradient itera-
tion (10) reduces to the SGD iteration (4)

P̂(xt−1)=
1

B

B∑
b=1

Pkb(x
t−1) =xt−1−γ∇f̂(xt−1). (12)

Which means that the update of signProx will reduce to

xt=xt−1−γsgn(xt−1− P̂(xt−1))=xt−1−γsgn(∇f̂(xt−1)).

Hence, signSGD can be interpreted as Algorithm 2 applied to a lin-
ear approximation of a function.

2.2. Theoretical analysis

We now discuss the convergence of SPGM and signProx. Conver-
gence of the stochastic proximal-gradient algorithms in the convex
setting was analyzed by Bertsekas [23]. Here, we focus on the case
where d is nonconvex. Our result for signProx extends the analysis
of signSGD in [9] using the theory of proximal optimization.

Assumption 1. We analyze SPGM under the following assump-
tions:

(a) The objective function f has a finite minimum f∗=f(x∗)
attained at some x∗∈Rn.

(b) The function d is differentiable and has a Lipschitz continu-
ous gradient with a constant L>0.

(c) All functions rk are closed, proper, and convex. We also as-
sume that they have Lipschitz continuous gradients with the
same constant L>0.

(d) The proximal-gradient mappings have a bounded variance

E
[
‖Pk(x)−P(x)‖2

]
≤γ2σ2, ∀x∈Rn,

for some constant σ>0, where γ>0 is the step-size.
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All these are standard assumptions used in the analysis of stochastic
optimization algorithms. The dependence of the variance (d) on γ
might seem surprising; however, note that this comes from the de-
pendence of the proximal-gradient on γ, with γ=0 implying that
Pk(x)=P(x) for all k∈ [1 . . .K] and x∈Rn.

Theorem 1. Run SPGM for T iterations under Assumption 1 with
the step γ=1/(L

√
T ) and the mini-batch sizeB=1. Then, we have

that

E

[
1

T

T∑
t=1

‖G(xt−1)‖22

]
≤ 1√

T

[
2L(f(x0)−f∗)+3σ2] .

The proof is given in Section 5.1. This establishes that SPGM con-
verges to the critical point of the objective f .

Our analysis of signProx will need the following more elaborate
set of assumptions.

Assumption 2. We analyze signProx under the following assump-
tions:

(a) The objective function f has a finite minimum f∗=f(x∗)
attained at some x∗∈Rn.

(b) The function d is differentiable and there exists a nonnegative
vector L, (L1, . . . ,Ln) such that

|∇d(x)i−∇d(y)i|≤Li|xi−yi|, ∀i∈ [1 . . .n],∀x,y∈Rn

(c) All functions rk are closed, proper, and convex. We addition-
ally assume that they all satisfy

|∇rk(x)i−∇rk(y)i|≤Li|xi−yi|, ∀i∈ [1 . . .n],∀x,y∈Rn.

(d) The proximal-gradient mappings have a bounded variance

E
[
(Pk(x)i−P(x)i)

2]≤γ2σ2
i , ∀i∈ [1 . . .n],∀x∈Rn,

for a positive σ , (σ1, . . . ,σn), where γ>0 is the step-size.

Note (b) and (d) lead to the standard assumption of Lipschitz con-
tinuity by defining a Lipschitz constant L, ‖L‖∞. Similarly, the
standard variance bound is recovered by setting σ2=‖σ‖22. Also
note that when the mini-batch size is B>1, the variance bound is
effectively reduced by B for the mini-batch.

Theorem 2. Run signProx for T iterations under Assumption 2 with
the step γ=1/(2‖L‖1

√
T ) and the mini-batch size B=T . Then,

we have that

E

[
1

T

T∑
t=1

‖G(xt−1)‖1

]
≤ 4√

T

[
‖L‖1(f(x0)−f∗)+‖σ‖1+1

]
.

The proof is given in Section 5.2. One can see that signProx has
the same `1-geometry as signSGD, where the convergence rate de-
pends on the `1-norm of the gradient mapping, the stochasticity via
σ, and the curvature via L. Surprisingly, it is possible for signProx
to outperform SPGM, when the gradient-mapping is dense but has
a sparse set of extremely noisy components (see the detailed discus-
sion for signSGD in [9]). Our simulations in the next section will
highlight this situation by comparing the relative performances of
SPGM and signProx for nonconvex phase retrieval. Finally, to con-
clude this section, note that the theoretical analysis here was done for
nonconvex functions f . It would be very interesting to see how con-
vexity of d can strengthen these convergence results. Note that the
majority vote in signSGD [9] also directly applies to our algorithm;
however, we omit its analysis due to the page limitation.
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Fig. 1: Comparison of SPGM and signProx on the problem of gen-
eralized phase retrieval using TV regularization in two scenarios:
with dense (a, c, d) and sparse (b, e, f) stochasticity σ of the prox-
imal. The images (c, e) are the outputs of SPGM, while (d, f) are
the outputs of signProx. This figure illustrates that in some settings
signProx can converge similarly or even faster than SPGM.

3. NUMERICAL ILLUSTRATION

We illustrate the relative performance of SPGM and signProx with a
simple example. Consider the problem of generalized phase retrieval
that was extensively considered in the literature [25–27]. When the
signal is real, the goal is to reconstruct x∈Rn given a set of non-
linear measurements y= |z|2 with z=Hx∈Rm. This problem
can be formulated as nonconvex optimization with a data-fidelity
term d(x)= 1

2
‖y−|Hx|2‖22 and a sparsity-preserving regularizer

such as total variation (TV) [28–30]. Figure 1 considers the recon-
struction of a 50×50 Shepp-Logan phantom from m=3000 inten-
sity measurements y, where the measurement matrix H is random
with i.i.d. N (0,1/m) elements. We obtain a stochastic algorithm
by using an unbiased estimate P̂ for P, obtained by adding a ran-
dom noise to P distributed i.i.d as p(e)=ρG(e;σ2

e)+(1−ρ)δ(e),
where G(e;σ2

e) denotes the Gaussian pdf of variance σ2
e and δ(e) is

the Dirac delta function. By setting ρ∈(0,1], we control the spar-
sity of the noise in the proximal-gradient, which directly corresponds
to shaping the stochasticity σ in Assumption 2(d). Intuitively, when
there is a sparse set of very noisy updates, the performance of SPGM
will be dominated disproportionally by the noise, while the effect on
signProx will be reduced as it discards the update amplitude. This is
visible in Figure 1, where (a, c, d) correspond to the dense stochastic-
ity scenario (ρ=1) and (b, e, f) correspond to the sparse stochasticity
scenario (ρ=0.1). In both cases, the standard deviation of the noise
is kept constant to the product of γ and σ=0.1. The step-size γ is se-
lected for the best performance. The convergence is quantified with
the normalized objective (f(xt)−f∗)/(f(x0)−f∗), where f∗ was
obtained using the full TV reconstruction. One can observe that the
convergence rate of SPGM is the same in both settings, while the
convergence of signProx is faster when the stochasticity is sparse.

4. CONCLUSION

We have proposed a new signProx algorithm for stochastic optimiza-
tion. The updates of signProx are compressed as each stochastic
update contains a single-bit per element. We have proved the con-
vergence of the method on nonconvex objectives under explicit as-
sumptions. The future work will investigate potential applications
and will further strengthen the theoretical analysis presented here.
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5. APPENDIX

5.1. Proof of Theorem 1

Consider a single iteration of SPGM x+= P̂(x)=x−γĜ(x),
where we used the definition of the gradient mapping. Consider also
x̃=P(x)=x−γG(x). Note that for B=1, we have that

E[P̂(x)]=P(x) ⇒ E[Ĝ(x)]=G(x)

E[‖P̂(x)−P(x)‖22]≤γ2σ2 ⇒ E[‖Ĝ(x)−G(x)‖22]≤σ2.

We can then obtain the following bound

f(x+)=d(x+)+r(x+)

≤f(x)+[∇d(x)+∇r(x̃)]T(x+−x)+ L

2
‖x+−x‖22

+[∇r(x+)−∇r(x̃)]T(x+− x̃)

≤f(x)−γG(x)TĜ(x)+ γ2L

2
‖Ĝ(x)‖22+γ2L‖Ĝ(x)−G(x)‖22,

where the first inequality uses the Lipschitz continuity of ∇d and
twice the convexity of r, and the second inequality uses the defini-
tion of the gradient mappings, Cauchy-Schwarz inequality, and the
Lipschitz continuity of ∇r. By taking the conditional expectation
and setting γ=1/(L

√
T ), we obtain

E[f(x+)−f(x) |x]

≤−γ‖G(x)‖22+
γ2L

2
(‖G(x)‖22+σ2)+γ2Lσ2

≤− 1

L
√
T
‖G(x)‖22+

1

2LT
‖G(x)‖22+

3σ2

2LT

≤− 1

2L
√
T
‖G(x)‖22+

3σ2

2LT
,

where the final inequality uses the fact that 1/T ≤1/
√
T for all

T ≥1. By rearranging the terms and summing up the gradient-
mapping norms at different iterations, we finally obtain

E

[
1

T

T∑
t=1

‖G(xt−1)‖22

]
≤ 1√

T

[
2L(f(x0)−E[f(xT )])+3σ2

]
≤ 1√

T

[
2L(f(x0)−f∗)+3σ2] ,

which proves the result.

5.2. Proof of Theorem 2

Consider a single iteration of signProx

x+=x−γsgn(x− P̂(x))=x−γsgn(Ĝ(x)),

and a full proximal-gradient iteration x̃=P(x)=x−γG(x). We
can obtain the following bound

f(x+)=d(x+)+r(x+)

≤d(x)+∇d(x)T(x+−x)+
n∑
i=1

Li
2
(x+i −xi)

2

+r(x)+∇r(x+)T(x+−x)

=f(x)+[∇d(x)+∇r(x̃)]T(x+−x)+
n∑
i=1

Li
2
(x+i −xi)

2

+[∇r(x+)−∇r(x̃)]T(x+−x).

We separately bound the last term above as follows

[∇r(x+)−∇r(x̃)]T(x+−x)

=[∇r(x+)−∇r(x)]T(x+−x)+[∇r(x)−∇r(x̃)]T(x+−x)

≤
n∑
i=1

[
|∇r(x+)i−∇r(x)i||x+i −xi|+ |∇r(x)i−∇r(x̃)i||x

+
i −xi|

]
≤

n∑
i=1

[Li(x
+
i −xi)

2+Li|xi− x̃i||x+i −xi|]

=γ2‖L‖1+γ
n∑
i=1

Li|xi− x̃i|≤γ2‖L‖1+γ‖L‖∞‖x− x̃‖1

≤γ2‖L‖1+γ2‖L‖1‖G(x)‖1,

where we used the smoothness assumption on ∇r, the proximal-
gradient iterate γG(x)=x− x̃, and the fact that ‖L‖∞≤‖L‖1. By
using this bound in the original inequality, we obtain

f(x+)−f(x)≤−γG(x)Tsgn(Ĝ)+ 3γ2

2
‖L‖1+γ2‖L‖1‖G(x)‖1

=−γ‖G(x)‖1+
3γ2

2
‖L‖1+γ2‖L‖1‖G(x)‖1

+γG(x)T[sgn(G(x))−sgn(Ĝ(x))]

=−γ‖G(x)‖1+
3γ2

2
‖L‖1+γ2‖L‖1‖G(x)‖1 (13)

+2γ

n∑
i=1

|G(x)i|1[sgn(G(x)i) 6=sgn(Ĝ(x)i)],

where 1[·] is an indicator function. The expectation of this function
can be further bounded as was done in [9]

E[1[sgn(G(x)i) 6=sgn(Ĝ(x)i)]]=P[sgn(G(x)i) 6=sgn(Ĝ(x)i)]

≤P[|Ĝ(x)i−G(x)i|≥|Gi(x)|]≤
E[|Ĝ(x)i−G(x)i|]

|G(x)i|

≤

√
E[(Ĝ(x)i−G(x)i)2]

|G(x)i|
≤ σi√

T |G(x)i|
,

where in the second row we used probability relaxation and the
Markov inequality, in the third we used the Jensen’s inequality and
the variance bound for the mini-batch of size B=T . By plugging
this expression back into (13) and taking the conditional expectation

E[f(x+)−f(x)|x]

≤−γ‖G(x)‖1+
3γ2

2
‖L‖1+γ2‖L‖1‖G(x)‖1+

2γ√
T
‖σ‖1

≤− ‖G(x)‖1
2‖L‖1

√
T
+
‖G(x)‖1
4‖L‖1T

+
3

8‖L‖1T
+
‖σ‖1
‖L‖1T

≤− ‖G(x)‖1
4‖L‖1

√
T
+

3

8‖L‖1T
+
‖σ‖1
‖L‖1T

,

where in the second line we set the step-size to γ=1/(2‖L‖1
√
T ).

By rearranging the terms and summing up the gradient-mapping
norms at different iterations, we finally obtain

E

[
1

T

T∑
t=1

‖G(xt−1)‖1

]
≤ 4√

T

[
‖L‖1(f(x0)−f∗)+‖σ‖1+1

]
,

which completes the proof.
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