
Scalable Distributed Memory Community Detection
Using Vite

Sayan Ghosh∗, Mahantesh Halappanavar†, Antonino Tumeo†, Ananth Kalyanaraman∗ Assefaw H. Gebremedhin∗

∗ Washington State University, Pullman, WA, USA {sayan.ghosh, ananth, assefaw.gebremedhin}@wsu.edu
† Pacific Northwest National Laboratory, Richland, WA, USA {hala, antonino.tumeo}@pnnl.gov

Abstract—Graph clustering, popularly known as community
detection, is a fundamental graph operation used in many appli-
cations related to network analysis and cybersecurity. The goal of
community detection is to partition a network into “communities”
such that each community consists of a tightly-knit group of
nodes with relatively sparser connections to the rest of the nodes
in the network. To compute clustering on large-scale networks,
efficient parallel algorithms capable of fully exploiting features
of modern architectures are needed. However, due to their
irregular and inherently sequential nature, many of the current
algorithms for community detection are challenging to parallelize.
In response to the 2018 Streaming Graph Challenge, we present
Vite—a distributed memory parallel implementation of the
Louvain method, a widely used serial method for community
detection. In addition to a baseline parallel implementation of
the Louvain method, Vite also includes a number of heuristics
that significantly improve performance while preserving solution
quality. Using the datasets from the 2018 Graph Challenge (static
and streaming), we demonstrate superior performance and high
quality solutions.

I. INTRODUCTION

In response to the 2018 Graph Challenge [1], we present
our work in the broad category of graph clustering for static
and streaming graphs.

Given an undirected graph G = (V,E, ω), where V is the
vertex set, E is the edge set and ω represents edge weights,
community detection aims to compute a partitioning of V into
a set of tightly-knit communities (or clusters). Community
detection is among the most frequently used graph structure
discovery tools in a network scientist’s toolkit [2]. Thanks to
the rapid advancement of high throughput data generation and
sensing techniques across scientific and industrial domains,
real-world networks constructed from raw data are becoming
extremely large and complex to analyze.

In this paper, we present empirical evaluation of Vite—a
distributed memory implementation of a parallel community
detection method [3]—on the 2018 Graph Challenge inputs.
Vite is a parallel implementation of the Louvain method,
which is a widely used sequential heuristic for community
detection based on modularity optimization [4]. In addition
to parallelizing the algorithm for distributed memory parallel
computers, we have implemented multiple heuristics to further
exploit the graph structure, expose parallelism, and take advan-
tage of certain properties of the underlying algorithm. Broadly,
these heuristics involve two techniques: (i) graph coloring to
generate a partial ordering of vertices; and (ii) approximate
computing for exploiting convergence properties of the algo-

rithm for the purpose of performance-quality tradeoffs. The
algorithmic details are presented in §II.

In §III, we present a detailed experimental evaluation of
Vite (and configurations of its heuristics) on the 2018 Graph
Challenge datasets. We analyze both performance and quality
of the outputs generated by Vite. Primary experimental
evaluations were performed on NERSC Edison supercom-
puter, with up to 1.5K processes. We also use NERSC Cori
supercomputer (which uses the same network interconnect
as NERSC Edison, with newer processors) to demonstrate
scalability up to 4K processes for some cases. The experi-
mental results discussed in §III show that our method is able
to deliver excellent parallel performance and reduce time-
to-solution while preserving quality. Vite is available for
download under the BSD 3-clause license from:
http://hpc.pnl.gov/people/hala/grappolo.html.

II. PARALLEL ALGORITHM

In this section, we present a high level overview of Vite,
our distributed memory implementation for parallel commu-
nity detection, and the different heuristics it implements. For
a detailed description, we refer the reader to [3].

A. Overview of Vite
Vite is a parallel implementation of the well known Lou-

vain algorithm [4], which uses modularity [5] as its optimiza-
tion objective. The algorithm is multi-phase, multi-iterative,
where within each phase there are multiple iterations, as
summarized in Algorithm 1. Initially, each vertex is assigned
its own distinct community. Within each iteration, each vertex
makes a greedy decision on whether to stay in its current
community or migrate to a neighboring community as dictated
by the modularity gain. Modularity is calculated after every
iteration based on the current state of communities, and a
phase terminates when there is “negligible” gain in overall
modularity between consecutive iterations (as determined by
a threshold τ). At the end of a phase, the graph is compacted
such that each community is condensed into one “meta-vertex”
and edges are redrawn between those respective meta-vertices
as per the connections between the corresponding communities
in G. The compacted graph is passed on as input to the next
phase. The overall algorithm terminates when the net gain in
modularity falls below a certain threshold.

To enable parallel processing on distributed memory, the
input graph is initially partitioned (in a trivial manner) such
that all processes approximately receive the same number of

1
978-1-5386-5989-2/18/$31.00 ©2018 IEEE

Algorithm 1 Parallel Louvain Algorithm (at rank i).
Input: Local portion Gi = (Vi, Ei) of the graph G = (V,E)
Input: Threshold τ (default: 10−6).
Notation: C denotes communities, and Q denotes modularity.

1: Ccurr ← {{u}|∀u ∈ V }
2: {Qcurr, Qprev} ← 0
3: while true do
4: Qcurr ← LouvainIteration(Gi, Ccurr)
5: if Qcurr −Qprev ≤ τ then
6: break and output the final set of communities
7: NextPhase(Gi, Ccurr)
8: Qprev ← Qcurr

vertices. Edges are also partitioned. There are two types of
edges—those that connect two vertices that reside locally,
and those that connect a local vertex to a “ghost” vertex
that resides remotely on another process. Consequently, each
process maintains two lists, one for its ghost vertices and
another for its ghost communities (along with their owning
process ids). The mapping of vertices to processes changes af-
ter every phase (owing to graph compaction), and we perform
a single (one-time per phase) send-receive communication
step to exchange these ghost coordinate information. On the
other hand, the community compositions could change more
frequently as vertices could change community affiliations at
every iteration, and therefore, membership information needs
to be relayed from the corresponding owner processes to all
those processes that keep a ghost copy of those communities.
We also parallelize the graph compaction step, which is a
nontrivial step. More details on how these individual steps
are implemented in distributed memory can be found in [3].

B. Heuristics for performance optimization
On top of our baseline implementation, we also imple-

mented three different heuristics aimed at improving the
overall execution time and/or exploiting quality-time tradeoffs
that are exposed through certain algorithmic properties. These
heuristics are summarized below.

a) Threshold Cycling: In the baseline algorithm, the
threshold parameter τ used to detect phase termination, is kept
fixed throughout the execution. However this parameter can be
tuned across phases to potentially accelerate convergence. In-
tuitively, during the initial phases when the graph is relatively
large, the threshold is also kept large, to incentivize graph
compaction early on. As the algorithm proceeds to its later
phases, the threshold can be reduced to make the algorithm
sensitive to quality (minor net gains in modularity). This
could potentially result in faster convergence of the algorithm,
although with varying impact on quality. There are a couple of
different variants possible for this idea, and in this paper, we
used threshold cycling, in which the threshold is modulated in
a cyclical fashion across phases. A range of threshold values
are invoked in successive phases after every N phases, where
N is predetermined.

b) Early Termination: In our parallel algorithm, one of
the major contributors to communication cost is exchange of
ghost vertex information across processes. After experimenting
with our multithreaded algorithm [6] with numerous inputs, we
made the critical observation that the rate at which modularity
increases significantly decreases as iterations advance within

a phase. This diminishing returns property in quality happens
because the rate at which vertices change their community af-
filiation tends to drastically decrease as the iterations progress.

To exploit this expected behavior, we devised a probabilistic
scheme that we call “early termination” (et), where a vertex
decides to stay “active” or get “terminated”, at any given
iteration. A vertex that is “active” at any iteration reevaluates
its community state; whereas a terminated vertex does not
perform any computation or generate any communication. To
identify which vertices to terminate, we look at the most recent
activity of that vertex. Intuitively, if it has not moved recently
then we reduce the probability that it will stay active. For
example, consider vertex v. Let Cv,j denote the community
containing v at the end of iteration j. Let the probability that
v is active during iteration k be denoted by Pv,k. We define
Pv,k as follows [3]:

Pv,k =

{
Pv,k−1 ∗ (1− α), if Cv,k−1 = Cv,k−2

1, otherwise
(1)

where α is a real number between 0 and 1. As α approaches
zero, it becomes similar to the baseline scheme; and as it
approaches one, it becomes more aggressive in terminating
vertices early on. We developed two minor variants of early
termination, labeled et and etc. In both et and etc, when the
probability for a given vertex becomes less than some small
percentage (2% in our experiments), we terminate it. Further-
more, in etc, if the fraction of terminated vertices reaches
a percentage (90% in our experiments), we terminate the
phase. The latter is implemented using global communication
in Louvain iteration.

c) Incomplete Coloring: In the serial algorithm, the order
in which vertices are processed within each iteration could
impact performance or output quality. In parallel, the order
could play a prominent role in performance as concurrent
processing of two vertices that are connected by an edge
(dependency) could delay convergence. In our multithreaded
implementation [6], we used distance-1 coloring to overcome
this challenge. In a distance-1 coloring, two vertices that are
connected by an edge are assigned to two different color
classes. We therefore allow concurrent processing of one color
class at a time, since this guarantees that no two neighboring
vertices are processed concurrently.

In our distributed memory implementation, we perform
an incomplete coloring to reduce the overhead in switching
between the colors. The basic idea is to color only a fraction
of the vertices with a preselected number of color classes using
the Jones-Plassmann algorithm [7]. The algorithm proceeds by
assigning a unique random number to each vertex. At a given
iteration of the algorithm, if the random number of a vertex is
the minimum (alternatively, maximum) among its neighbors,
then the vertex colors itself at this step with a predetermined
color class for that iteration and removes itself from further
consideration. Otherwise, it competes in subsequent steps until
it gets a color or the given number of colors are exhausted.
A second variant of this approach is to keep coloring until
a certain minimum fraction of the vertices are colored, after
which the remaining vertices are bundled into one color. Note

2
978-1-5386-5989-2/18/$31.00 ©2018 IEEE

that the vertices thus bundled into the final color class may
have conflicts.

III. EXPERIMENTAL RESULTS

We perform our primary experimental evaluations on
NERSC Edison, which is a 5,586-node Cray XC30 machine
with dual-socket 12-core Intel R© “Ivy Bridge” Xeon R© E5-
2695v2 processor at 2.4 GHz (24 cores per node), 64 GB
memory per node, 30 MB L3 cache, and Cray XC series
interconnect (Aries) with dragonfly topology. We used Cray
MPICH 7.6.2 for this machine. Vite was run using 12 MPI
processes per node and 2 OpenMP threads per process. We
used the Intel R© ICPC 17.0.4 compiler with “-O3 -xHost” as
compilation options for building Vite. Below, we summarize
the descriptors/legends used in the figures/tables in this section
to refer to the different variants of our parallel algorithm
(discussed in §II).
• baseline: the basic parallel version (Algorithm 1)

without the heuristics;
• tscale: version with threshold cycling enabled;
• et: version with adaptive early termination, which re-

quires an input parameter (α). We report et performance
with α = 0.25 (denoted as et1) and α = 0.75 (denoted
as et2);

• etc: variant of early termination with an extra commu-
nication step to gather inactive vertex count. We report
etc performance with α = 0.25 (denoted as etc1) and
α = 0.75 (denoted as etc2); and

• color: version with incomplete coloring. We use from
32 to 40 colors in our experiments.

The number of vertices and edges in the 2018 official stream-
ing partition challenge datasets are listed in Table I.

TABLE I
OFFICIAL STATIC DATASET CHARACTERISTICS.

Input label #Nodes #Edges

1K 1,000 8,067
5K 5,000 50,850

20K 20,000 473,914
50K 50,000 1,189,382

200K 200,000 4,750,333
1M 1,000,000 23,716,108
5M 5,000,000 118,738,395

20M 20,000,000 475,167,612

We begin with quality comparisons using the ground truth
information for a subset of the inputs. We then provide detailed
information on several aspects of performance by providing
strong scaling results, comparison of different heuristics on
quality-performance tradeoffs, and a detailed summary of best
performance (Table IV). We also provide relevant observations
and analysis within each subsection.
A. Qualitative Comparisons

In order to assess the quality of Vite, we compare our
results against reference ground truth files for small-medium
sized datasets, as shown in Table II. We compute precision,
recall and F-score using the formulas detailed in [8]. When
the quality assessment feature is turned on, Vite performs
extra collective operations per phase to gather the vertex-
to-community mapping of the current graph into the master
process (i.e., rank #0).

We note that, for the cases with the very low F-Score
values (e.g., 5K HIHI and HILO, 20K HIHI, 50K HIHI, most
of 200K), we have identified potential issues in the current
ground truth partitions and input files provided in the challenge
dataset, and therefore, do not reflect the true quality of the
solutions computed by Vite. For example, some of the inputs
have isolated vertices (i.e., some vertex ids do not appear in the
edge list). Isolated vertices should be partitioned in their own
cluster, but in the ground truth information they are assigned
to partitions with other vertices.

B. Performance
We now evaluate the performance of Vite on both the

challenge networks and other publicly available real world
and synthetic datasets. We recently demonstrated speedups
between 2 − 46× over the baseline version using different
heuristics for a large set of inputs [3]. However, the efficacy
of these heuristics depends on the connectivity structure of the
inputs. As an illustration, we show the scaling of Vite on four
Graph500 [9] Kronecker graphs that have a poor community
structure (modularity≈ 0.0107 − 0.0199) in Figure 1. While
the figure shows strong scaling on up to 1536 processes that
Vite is able to achieve on these graphs (about 2.3-3.5x), it
also shows the negligible difference that heuristics make with
respect to the baseline performance.

Next, we show the results obtained on four of the largest
challenge networks (200K, 1M, 5M, 20M) under the four
different categories of hardness (LOLO, LOHI, HIHI, HILO).
Figure 2 and Figure 4 shows the performance, and Figure 3
shows the quality, using different heuristic settings for Vite.
These two figures illustrate the following: The coloring version
is the slowest (on average about 8×) compared to all other
heuristic versions, as shown in Figure 4. However, it is also
the one that consistently delivers the highest modularity (as
shown in Figure 3). Furthermore, Figure 3 also shows the
impact of the input hardness on the heuristics. Specifically,
the faster heuristics (i.e., without coloring) generally perform
significantly better in quality as well on the less harder cases
(e.g., LOLO, LOHI) than for the hardest case (HIHI), as shown
on Figure 2. The coloring heuristic require extra communica-
tion to synchronize after each round of processing vertices
with the same color, which increases the overall execution
time relative to the baseline version. The extra communication
step in etc can help in avoiding reasonable computation/
communication overhead associated with “ghost” vertices.
Although a reduction in the number of iterations per phase may
improve overall performance (we observe about 1.25 − 2.3×
improvement in etc as compared to et for certain cases); but on
some other cases, this effect may lead to an increased number
of phases, due to a large number of inactive vertices affecting
the general convergence. Also, if the number of iterations
per phase is relatively small originally (as observed for some
LOHI and HIHI inputs), then the communication overhead in
etc may invalidate any benefit over et. Figures 2 and 3 serve
to demonstrate the performance-quality tradeoffs that can be
achieved through different heuristics.

a) Combining heuristics delivers better performance:
Some of the heuristics can be combined with others to
generate a complementary positive effect (on performance

3
978-1-5386-5989-2/18/$31.00 ©2018 IEEE

 8

 16

 32

96 192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

Scale 21

baseline
tscale

et1
et2

etc1
etc2

 16

 32

 64

96 192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

Scale 22

 16

 32

 64

 128

96 192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

Scale 23

 32

 64

 128

 256

96 192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

Scale 24

Fig. 1. Parallel heuristics have little effect on RMAT generated Graph500 graphs.

TABLE II
QUALITY COMPARISONS OF STATIC DATASETS (1K-200K) WITH KNOWN GROUND TRUTH COMMUNITY INFORMATION. WE LIST PRECISION, RECALL

AND F-SCORE FOR EACH TYPE OF INPUT. VERY LOW F-SCORE VALUES ARE DUE TO ISSUES IN THE GROUND TRUTH FILES FROM CHALLENGE DATASET.
‖V ‖ 1,000 5,000 20,000 50,000 200,000
Input Prec. Rec. F-Sc. Prec. Rec. F-Sc. Prec. Rec. F-Sc. Prec. Rec. F-Sc. Prec. Rec. F-Sc.

Baseline
LOLO 0.966 0.988 0.976 0.685 0.976 0.805 1 1 1 0.938 0.993 0.965 0.956 1 0.977
LOHI 0.461 0.819 0.590 0.527 0.874 0.658 0.921 0.997 0.957 0.8700 0.998 0.929 0.0220 0.0399 0.0283
HIHI 0.660 0.911 0.765 0.201 0.00475 0.00928 0.858 0.00346 0.00690 0.0377 0.0613 0.0467 0.0191 0.0332 0.0243
HILO 0.580 0.939 0.717 0.0636 0.0769 0.0696 1 1 1 0.983 1 0.991 0.0156 0.0287 0.0202

Baseline + Color
LOLO 0.717 0.951 0.818 0.871 0.979 0.922 0.943 0.994 0.968 0.950 0.986 0.968 0.786 1 0.880
LOHI 0.793 0.945 0.862 0.595 0.921 0.723 0.0591 0.0721 0.0649 0.838 0.999 0.911 0.317 0.991 0.481
HIHI 0.643 0.907 0.752 0.0990 0.189 0.130 0.475 0.991 0.643 0.389 0.948 0.552 0.338 0.998 0.505
HILO 0.824 0.927 0.872 0.911 0.995 0.951 0.907 0.976 0.940 0.914 1 0.955 0.466 1 0.635

 4

 8

baseline

tscale

et1
et2

etc1
etc2

LOLO 200K

static
streamingEdge

streamingSnowball

 4

 8

baseline

tscale

et1
et2

etc1
etc2

LOHI 200K

 4

 8

baseline

tscale

et1
et2

etc1
etc2

HIHI 200K

 4

 8

baseline

tscale

et1
et2

etc1
etc2

HILO 200K

 4

 8

 16

baseline

tscale

et1
et2

etc1
etc2

LOLO 1M

 4

 8

baseline

tscale

et1
et2

etc1
etc2

LOHI 1M

 4

 8

 16

baseline

tscale

et1
et2

etc1
etc2

HIHI 1M

 4

 8

 16

baseline

tscale

et1
et2

etc1
etc2

HILO 1M

 32

 64

 128

baseline

tscale

et1
et2

etc1
etc2

LOLO 5M

 32

 64

 128

baseline

tscale

et1
et2

etc1
etc2

LOHI 5M

 32

 64

 128

baseline

tscale

et1
et2

etc1
etc2

HIHI 5M

 32

 64

 128

baseline

tscale

et1
et2

etc1
etc2

HILO 5M

 128

 256

 512

baseline

tscale

et1
et2

etc1
etc2

LOLO 20M

 128

 256

 512

baseline

tscale

et1
et2

etc1
etc2

LOHI 20M

 128

 256

 512

baseline

tscale

et1
et2

etc1
etc2

HIHI 20M

 128

 256

 512

baseline

tscale

et1
et2

etc1
etc2

HILO 20M

Fig. 2. Runtime performance (Y-axis, in secs.) for four of the largest official 2018 datasets. Graphs of sizes 1M, 5M and 20M are executed on 192 processes
(16 nodes), whereas the 200K graph is executed on 24 processes (1 node) of NERSC Edison.

4
978-1-5386-5989-2/18/$31.00 ©2018 IEEE

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

LOLO 200K

static
streamingEdge

streamingSnowball

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

LOHI 200K

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

HIHI 200K

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

HILO 200K

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

LOLO 1M

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

LOHI 1M

 0.01

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

HIHI 1M

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

HILO 1M

 0.001

 0.01

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

LOLO 5M

 0.01

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

LOHI 5M

 0.01

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

HIHI 5M

 0.01

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

HILO 5M

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

LOLO 20M

 0.01

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

LOHI 20M

 0.01

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

HIHI 20M

 0.01

 0.1

 1

baseline

tscale

et1
et2

etc1
etc2

color

HILO 20M

Fig. 3. Modularity (Y-axis) of official 2018 datasets of sizes 200K, 1M, 5M and 20M. Graphs of sizes 1M, 5M and 20M are executed on 192 processes (16
nodes), whereas the 200K graph is executed on 24 processes (1 node) of NERSC Edison.

 32

 64

 128

LOLO LOHI HILO HIHI

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
)

200K

static
streamingEdge

streamingSnowball

 64

 128

 256

 512

LOLO LOHI HILO HIHI

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
)

1M

 256

 512

 1024

LOLO LOHI HILO HIHI

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
)

5M

 2048

 4096

LOLO LOHI HILO HIHI

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
)

20M

Fig. 4. Runtime performance for four of the largest official 2018 datasets with coloring heuristic. Graphs of sizes 1M, 5M and 20M are executed on 192
processes (16 nodes), whereas the 200K graph is executed on 24 processes (1 node) of NERSC Edison.

and/or quality). As a test, we combined early termination (et)
with coloring. Figures 8 and 9 show this effect of combining
heuristics for two input cases (respectively): LOHI and Orkut.
We can observe that coloring combined with one of the
more aggressive versions of early termination (et2 or etc2),
significantly helps in reducing the execution time (in many
cases by about 10×) without lowering quality. Improvement
in the execution time originates from the fact that coloring
helps in generating an informed partial ordering (i.e., process-
ing of vertices). This allows vertices to settle in their final
community states more quickly. Early termination exploits this
behavior and quickens convergence (by reducing the number

TABLE III
NUMBER OF ITERATIONS (AND PHASES) FOR LOHI STATIC DATASETS

USING COLORING COMBINED WITH et.
Heuristics

/Sizes
1M 5M 20M

Iters. Phases Iters. Phases Iters. Phases
color 175 4 163 4 273 5

color+et1 182 4 202 6 139 4
color+et2 147 4 148 4 108 5
color+etc1 70 5 115 7 92 6
color+etc2 72 5 92 6 92 6

of iterations), as confirmed by the data presented in Table III.
b) Scaling results on other inputs: We demonstrate the

scalability of Vite using the largest reference dataset, 20M
(Figure 5), as well as other datasets, such as the protein k-

5
978-1-5386-5989-2/18/$31.00 ©2018 IEEE

 32

 64

 128

 256

 512

192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

LOLO

baseline
tscale

et1
et2

etc1
etc2

 32

 64

 128

 256

 512

192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

LOHI

 32

 64

 128

 256

 512

192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

HIHI

 32

 64

 128

 256

 512

192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

HILO

Fig. 5. Scalability of different variants on the largest reference static dataset, 20M.

 4

 8

 16

 32

 64

96 192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

V2A

baseline
tscale

et1
et2

etc1
etc2

 4

 8

 16

 32

 64

96 192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

U1A

 16

 32

 64

 128

 256

96 192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

V1R

 8

 16

 32

 64

 128

96 192 384 768 1536

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

P1A

Fig. 6. Scalability of protein k-mer graphs.

 8

 16

 32

 64

 128

96 192 384 768 1536

Processes

Execution time (in secs)

baseline
tscale

et1
et2

etc1
etc2

 0.25

 0.5

 1

96 192 384 768 1536

Processes

Modularity

Fig. 7. Scalability and modularity variation of Orkut (3M nodes, 117M edges).

 64

 128

 256

 512

 1024

 2048

 4096

color

color+et1

color+et2

color+etc1

color+etc2

Execution time (in secs)

1M 5M 20M

 0.1

 1

color

color+et1

color+et2

color+etc1

color+etc2

Modularity

Fig. 8. Performance on LOHI static datasets (1M, 5M, 20M) using 192
processes when coloring is combined with et.

mer graphs (Figure 6) and social network graphs, namely
Friendster (Figure 10) and Orkut (Figure 7).

c) Performance scaling on other platforms: We have
tested Vite on multiple platforms. Figure 10 shows results of
Vite for Friendster dataset on NERSC Cori and ALCF Theta
platforms. We use the recommended quad-cache mode for the
KNL nodes in Theta (without changing our code). We observe

 128

 256

 512

 1024

 2048

 4096

96 192 384 768 1536

Processes

Execution time (in secs)

color
color+et1

color+et2
color+etc1

color+etc2

 0.25

 0.5

 1

96 192 384 768 1536

Processes

Modularity

Fig. 9. Orkut performance when coloring is combined with et.

 256

 512

 1024

 2048

 4096

 8192

256 512 1024 2048 4096

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

ALCF Theta

baseline
tscale

et1
et2

etc1
etc2

 64

 128

 256

 512

 1024

 2048

256 512 1024 2048 4096

E
x
e

c
u

ti
o

n
 t

im
e

 (
in

 s
e

c
s
)

Processes

NERSC Cori

Fig. 10. Scalability of Friendster (65.6M nodes, 1.8B edges) on NERSC Cori
(Haswell) and ALCF Theta (KNL).

that the Intel R© Haswell R© nodes of NERSC Cori outperform
Theta by a factor of 2 to 3×.

d) Best heuristics for input datasets: In conclusion, we
summarize the execution times for a selected set of different
inputs and configurations in Table IV. All the datasets used
in our evaluation are listed on the GraphChallenge website
(http://graphchallenge.mit.edu/data-sets).

TABLE IV
A SUMMARY OF BEST PERFORMANCE RESULTS (RUN ON NERSC

CORI/EDISON PLATFORM) FOR INPUT GRAPHS.
Graphs Nodes Edges Mod. Time(in s) Proc. Best

heuristic
UK2007 105.8M 3.3B 0.972 32.08 (Cori) 1024 etc2
Friendster 65.6M 1.8B 0.624 82.72 (Cori) 4096 etc1
Web-cc12-
PayLevel

42.8M 1.2B 0.687 104.09
(Cori)

1024 etc1

Web-wiki-
en-2013

27.1M 601M 0.671 16.89 (Cori) 2048 et2

LOLO
Static

20M 475.1M 0.358 33.6
(Edison)

1536 tscale

LOHI
Static

20M 475.1M 0.34 37.4
(Edison)

1536 etc2

HIHI Static 20M 474.9M 0.0391 37.5
(Edison)

1536 etc1

HILO
Static

20M 475M 0.0394 37.7
(Edison)

1536 etc2

K-mer P1a 139.3M 297.8M 0.971 11.8
(Edison)

1536 etc2

K-mer U1a 67.7M 138.8M 0.988 7.5 (Edison) 1536 etc1
K-mer V1r 214M 465.4M 0.944 17 (Edison) 1536 etc1
K-mer V2a 55M 117.2M 0.990 6.91

(Edison)
1536 etc1

Orkut 3M 117.1M 0.661 11.36 (Cori) /
12.19 (Edison)

1024/
1536 etc1

6
978-1-5386-5989-2/18/$31.00 ©2018 IEEE

ACKNOWLEDGEMENTS

The research is in part supported by the U.S. DOE Exa-
Graph project, the DARPA HIVE Program and HPDA at DOE
PNNL, the DOE award DE-SC-0006516 to WSU, the NSF
award 1815467, and the NSF award IIS 1553528. PNNL is
operated by Battelle Memorial Institute under Contract DE-
AC06-76RL01830.

REFERENCES

[1] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, D. Staheli, and S. Smith,
“Streaming Graph Challenge: Stochastic Block Partition,” in IEEE HPEC,
2017.

[2] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, Feb. 2010.

[3] S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu,
D. Chavarria-Miranda, A. Khan, and A. Gebremedhin, “Distributed
louvain algorithm for graph community detection,” in IEEE International

Parallel and Distributed Processing Symposium (IPDPS), May 2018, p.
Accepted.

[4] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfold-
ing of communities in large networks,” Journal of Statistical Mechanics:
Theory and Experiment, p. P10008., 2008.

[5] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E, vol. 69, no. 2, p. 026113,
2004.

[6] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel heuristics for
scalable community detection,” Parallel Computing, vol. 47, pp. 19–37,
2015.

[7] M. T. Jones and P. E. Plassmann, “A parallel graph coloring heuristic,”
SIAM J. Sci. Comput., vol. 14, no. 3, pp. 654–669, May 1993.

[8] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo, “Scalable
static and dynamic community detection using grappolo,” in High Per-
formance Extreme Computing Conference (HPEC), 2017 IEEE. IEEE,
2017, pp. 1–6.

[9] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray UserâĂŹs Group (CUG), vol. 19, pp. 45–74, 2010.

7
978-1-5386-5989-2/18/$31.00 ©2018 IEEE

