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Abstract

Tiling is a key technique for data locality optimization and is
widely used in high-performance implementations of dense
matrix-matrix multiplication for multicore/manycore CPUs
and GPUs. However, the irregular and matrix-dependent
data access pattern of sparse matrix multiplication makes
it challenging to use tiling to enhance data reuse. In this
paper, we devise an adaptive tiling strategy and apply it to
enhance the performance of two primitives: SpMM (prod-
uct of sparse matrix and dense matrix) and SDDMM (sam-
pled dense-dense matrix multiplication). In contrast to stud-
ies that have resorted to non-standard sparse-matrix rep-
resentations to enhance performance, we use the standard
Compressed Sparse Row (CSR) representation, within which
intra-row reordering is performed to enable adaptive tiling.
Experimental evaluation using an extensive set of matrices
from the Sparse Suite collection demonstrates significant
performance improvement over currently available state-of-
the-art alternatives.
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1 Introduction

Tiling is a key technique for effective exploitation of data
reuse and is used in all high-performance implementations
of dense linear algebra computations, convolutional neural
networks, stencil computations, etc. While tiling for such reg-
ular computations is well understood and is heavily utilized
in high-performance implementations on multicore/many-
core CPUs and GPUs, the effective use of tiling for sparse
matrix multiplication poses challenges.
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Figure 1. OI and GFLOPs with respect to matrices having
different bands

In order to motivate the need for data locality optimiza-
tion via tiling for sparse-matrix dense-matrix multiplica-
tion (SpMM)!, we present some experimental data on an
Intel Xeon Phi processor (KNL, Knights Landing) using the
mkl_scsrmm routine for SpMM in the Intel MKL library. A
number of banded matrices ({S | S[x][y] # 0 < (0 <
x < #rows,max(0,y — b) < y < min(#cols,y + b))}, where

1We use SpMM to denote the product of a sparse matrix with a dense matrix,
to be distinguished from sparse matrix-matrix multiplication (Sp GEMM),
where two sparse matrices are multiplied.
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b is the half band-size) of size 16K X 16K with different
band-sizes were used as the sparse matrix argument for the
MKL SpMM routine. Fig. 1 presents the performance trend
(GFLOPs) as the band-size is varied. Performance improves
up to a band-size of 1025 and drops beyond that. The figure
also plots the measured operational intensity (OI), the ratio
of floating-point operations to the number of bytes of data
moved to/from main memory. It may be seen that measured
OI increases up to a band-size of 1025 and then drops for
larger band sizes. Thus, the performance drop is correlated
with increased data movement per operation. As we explain
in greater detail later in Sec. 3, this is in contrast to the
potential maximum OI, which increases with band-size.

With dense matrix-matrix multiplication, uniform tiling
is the norm, where all tiles (except boundary tiles) have the
same number of operations and same data footprint. How-
ever, with SpMM the number of non-zero elements will vary
significantly across different uniform-sized tiles due to the
very non-uniform distribution of non-zero elements across
the 2D index space of a sparse matrix. As we explain in de-
tail later in the paper, whether tiled execution can achieve
higher performance than untiled execution for a 2D region
of a sparse matrix depends on the sparsity structure in that
region., In this paper, we develop an Adaptive Sparse Tiling
(ASpT) approach to tiling two variants of sparse matrix mul-
tiplication: SpMM (Sparse-dense Matrix Multiplication) and
SDDMM (Sampled Dense Dense Matrix Multiplication). A
key idea is that the average number of non-zeros per “active”
row/column segment (i.e., at least one nonzero) within a 2D
block plays a significant role in determining whether tiled
or untiled execution is preferable for a 2D block. The sparse
matrix is partitioned into panels of rows, with the active
columns within each row-panel being either grouped into
2D tiles for tiled execution, or relegated to untiled execution
because its active column density is inadequate. In contrast
to other prior efforts that have used customized data repre-
sentations in order to improve the performance of sparse
matrix operations, we achieve the hybrid tiled/untiled execu-
tion by using the standard (unordered) Compressed Sparse
Row (CSR) representation of sparse matrices: the nonzero
elements in column segments that are to be processed in
untiled mode are reordered to be contiguously located at the
end in the unordered CSR format.

We demonstrate the effectiveness of the proposed model-
driven approach to hybrid-tiled execution of sparse matrix
computations by developing implementations for SpMM
and SDDMM kernels on GPUs and multicore/manycore pro-
cessors (Intel Xeon, and Intel Xeon Phi KNL). On all plat-
forms, the significant performance improvement is achieved
over available state-of-the-art alternatives - Intel’s MKL and
Nvidia’s cuSPARSE libraries for SpMM, and the MIT TACO
compiler and BIDMach for SDDMM.
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Figure 2. Various data representations for a sparse matrix

2 Background and Related Work
2.1 Standard Sparse Matrix Representation

The CSR representation is one of the most widely used
data structures for representing sparse matrices [35, 48]. As
shown in Fig. 2 (b,c), the CSR structure is composed of three
arrays: row_ptr, col_idx, and values. The value of row_ptr[i]
contains the index of the first element of row i. values[]
holds the actual numerical values of the nonzero elements,
and col_idx[] holds the corresponding column indices. As
shown in Fig. 2 (b,c), non-zeros within each row are placed
contiguously in col_idx[] and values[]. CSR has two variants,
ordered CSR and unordered CSR [19]. In ordered CSR, the col-
umn indices within a row are sorted, whereas in unordered
CSR the column indices may not be kept in sorted order.
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Fig. 2 (c) illustrates unordered CSR and Fig. 2 (b) represents
the corresponding ordered CSR version.

Double-Compressed Sparse Column (or Row) DCSC (DSCR)
[6] is an alternate format, used for ultra-sparse matrices
where many rows (columns) may be completely empty. Fig. 2
(d) shows a DCSC representation, where a sparse matrix is
partitioned into row panels. Four arrays are maintained:
col_ptr[], col_idx[], row_idx[], and values[]. col_idx[] con-
tains the column index and col_ptr[] points to the first ele-
ment of the corresponding column segment. row_idx[] and
values[] store the row indices and the actual non-zero values,
respectively. Fig. 2 (d) shows the DCSC representation.

Sparse matrices can also be represented using 2D-tiles, as
shown in Fig. 2 (e). Like DCSC, the sparse matrix is parti-
tioned into a set of row panels. Each row panel is further
divided into 2D tiles. tile_row_ptr[] is used to track the start
point of each row within a 2D tile. The col_idx[] and val-
ues[] hold the column indices and actual non-zero values,
respectively.

2.2 SpMM and SDDMM

In SpMM, a sparse matrix S is multiplied by a dense matrix
D to form a dense output matrix O. Fig. 3 (left) shows a
conceptual view of SpMM. Alg. 1 shows sequential SpMM
using a CSR representation. SpMM is widely used in many
applications such as Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) for finding eigenvalues of
a matrix [3], Convolutional Neural Networks (CNNs) [16],
and graph centrality calculations [33]. SpMM is also one of
the core GraphBLAS primitives [7].

In SDDMM two dense matrices D1 and D2 are multiplied
and the result matrix is then scaled by an input sparse matrix
S (Hadamard product). Fig. 3 (right) shows a conceptual
view of SDDMM. Alg. 2 shows sequential SDDMM using
a CSR representation. The SDDMM primitive can be used
for efficient implementation of many applications such as
Gamma Poisson (GaP) [39], Sparse Factor Analysis (SFA)
[10], and Alternating Least Squares (ALS) [21].

Both SpMM and SDDMM traverse the rows of S (the outer
loop). In SpMM, each element in the i-th row (with column
index k) of the input sparse matrix S is used to scale the k-th
row of D1[k][:] and the partial products are accumulated to
form the i-th row of the output matrix O[i][:]. In SDDMM,
the dot product of the j-th row of D1 (i.e., D1[j][:]) and i-th
row of D2 (i.e., D2[i][:]) is computed at nonzero position (i)
of the sparse matrix S and then scaled with S(i,j) to form
O(i,)).

Several recent research efforts have been directed toward
the development of efficient Sparse Matrix-Vector Multiplica-
tion (SpMV) [14, 23, 24, 27, 28, 32, 34-38, 40, 46, 49]. However,
very few efforts have focused on SpMM and SDDMM.

In typical applications where SpMM or SDDMM are used,
these operations are repeated many times using the same
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Figure 3. Conceptual view of SpMM and SDDMM

sparse matrix (the values may change, but the sparsity struc-
ture does not change). For instance, SpMM is useful in the
Generalized Minimum Residual (GMRES) [4] method, where
several hundred iterations are required. This usage pattern
allows a one-time light pre-processing of the sparse matrix
to enhance performance, and the cost of this pre-processing
is amortized across the iterations. As explained later, our
approach requires a one-time reordering of sparse matrix
elements to enhance data locality and reuse.

Algorithm 1: Sequential SpMM (Sparse Matrix Matrix
Multiplication)

input : CSR S[M][N], float D[N][K]
output: float O[M][K]
1 for i = 0to S.num_rows-1do
2 for j = S.row_ptr[i] to S.row_ptr[i+1]-1do
3 Lfork=0toK—1do
4

L O[i][k] += S.values[j] * D[S.col_idx[j]][k];
Algorithm 2: Sequential SDDMM (Sampled Dense
Dense Matrix Multiplication)

input : CSR S[M][N], float D1[N][K], float D2[M][K]
output: CSR O[M][N]
1 for i = 0to S.num_rows-1do

2 for j = S.row_ptr[i] to S.row_ptr[i+1]-1do

3 for k = 0to K-1do

4 L O.values[j] += D2[i][K] * D1[S.col_idx[j]][k];
5 O.values[j] *= S.values[j];

2.3 Related Work

Efforts to optimize SpMM and SDDMM may be grouped
into two categories: using standard representation (CSR) or
non-standard customized sparse matrix representation.

Intel’s MKL [43] is a widely used library for multi/many
cores. MKL includes optimized kernels for many sparse
matrix computations, including SpMM, SpMV and sparse-
matrix sparse-matrix multiplication (SpGEMM).

TACO [20] is a recently developed library using compiler
techniques to generate kernels for sparse tensor algebra
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operation, including SpMM and SDDMM. Generated kernels
are already optimized, and OpenMP parallel pragma is used
for parallelization.

cuSPARSE [1] provided by Nvidia also supports SpMM. It
offers two different modes depending on access patterns of
dense matrices (i.e., row or column major order).

BIDMach [11] is a library for large-scale machine learning,
and includes several efficient kernels for machine learning al-
gorithms such as Non-negative Matrix Factorization (NMF),
Support Vector Machines (SVM). It includes an implementa-
tion of SDDMM.

Recently, Yang et al. [48] applied row-splitting [5] and
merge-based [27] algorithms to SpMM to efficiently hide
global memory latency. Based on the pattern of the sparse
matrix, one of two algorithms is applied.

Several efforts have sought to improve SpMM performance
by defining new representations for sparse matrices. Variants
of ELLPACK have been used to improve performance, e.g.,
ELLPACK-R in FastSpMM [30], and SELL-P in MAGMA [3].

OSKI [41] uses register blocking to enhance data reuse in
registers/L1-cache which improves the SpMV performance.
When the nonzero elements are highly clustered, register
blocking can reduce the data footprint of the sparse matrix.

Compressed Sparse Blocks (CSB) [2] is another sparse
matrix storage format which exploits register blocking. The
sparse matrix is partitioned and stored as small rectangular
blocks. In CSB, register blocking also reduces the overhead of
transposed SpMM (O = AT B). SpMM implementation with
CSB data representation has been demonstrated to achieve
high performance when both SpMM and transposed SpMM
(O = AT B) are simultaneously required [2]. Register blocking
also plays a pivotal role in many sparse matrix formats for
both CPUs [8, 9, 45] and GPUs [47].

We recently developed an SpMM implementation for GPUs
based on a hybrid sparse matrix format called RS-SpMM that
enabled significant performance improvement over alterna-
tive SpMM implementations [17]. However, a disadvantage
of the approach is that a customized non-standard data struc-
ture is used for representing the sparse matrix, making it
incompatible with existing code bases and libraries. Appli-
cations often use many library functions, which are based
on the CSR representation. Iterative applications that make
repeated use of SpMM interleaved with other sparse matrix
operations may incur a high overhead in a repeated conver-
sion from standard CSR to the non-standard representation
(35, 48].

Reordering of sparse matrices has been widely explored in
many other contexts. Yzelman et al. [50] show that reorder-
ing by recursive hypergraph-based sparse matrix partition
can enhance cache locality, and thus performance. Oliker et
al. [29] demonstrate that the performance of conjugate gradi-
ent (CG) and incomplete factorization (ILU) preconditioning
can be improved by several reordering techniques such as
METIS graph partitioning [18], that enhance locality.
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While the above reordering strategies improve perfor-
mance, they suffer from significant pre-processing overhead.
GOrder [44] and ReCALL [22] try to reduce the preprocess-
ing overhead using greedy strategy for graph algorithms.
The key idea is to number/index the vertices such that ver-
tices with many common neighbors are assigned indices
which are close to each other to improve data locality.

In this paper, we seek to improve the SpMM/SDDMM
performance without the use of any non-standard sparse
matrix representations. A significant benefit of using an
unordered CSR format rather than an arbitrary new data
format is the compatibility with existing code and libraries.
Another benefit is the reduced storage space requirement.
With non-standard representations, it may be necessary to
keep an additional copy of the sparse-matrix in a standard
format such as CSR for use with other library functions. By
using a standard representation, this space overhead can be
avoided.

There are two significant differences between the reorder-
ing technique used in ASpT and existing works. First, the
pre-processing overhead is significantly lower (milliseconds)
than reordering schemes like GOrder [44] and ReCALL [22],
which take tens of seconds for SuiteSparse datasets with
large numbers of non-zeros [13]. Second, the original index-
ing of vertices is preserved, which eliminates overheads for
re-indexing.

3 Overview of ASpT

This subsection provides an overview of ASpT (Adaptive
Sparse-matrix Tiling), a strategy for tiled execution of sparse
matrix multiplication using an unordered Compressed Sparse
Row (CSR) representation.

We first elaborate on the observed performance trend
shown earlier in Fig. 1. Let us consider the execution of the
CSR SpMM algorithm (Alg. 1). The outer (i) loop traverses the
rows of the sparse matrix S; the middle (j) loop accesses the
nonzero elements in row; of S, and the inner (k) loop updates
row; of the output array O by scaling appropriate rows of the
input dense matrix D by the values of the nonzero elements
of S in row;. The total number of non-zero elements for an
N X N banded matrix with band-size B is approximately
NB and so the total number of floating point operations for
SpMM product with a dense matrix of size N X K is 2NBK.
The total data footprint for the computation (sum of sizes
of all arrays) for single-precision (4 bytes per word for the
two dense matrices; 8 bytes per nonzero in the sparse matrix,
for column index and value; 4 bytes per row pointer in CSR)
is 4NK + 4NK + 8NB + 4N, or approximately 8N(K+B). The
maximum possible operational intensity (OI), correspond-
ing to complete reuse of data elements in cache/registers is
thus % = ﬁ Therefore, as the band-size increases,
max_OI also increases. The actually achieved (measured)
Ol first increases as B increases, but then decreases due to
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limited L2 cache capacity. The Intel Xeon Phi KNL system
has a 1Mbyte L2 cache shared by two cores. The inner (k)
loop in Alg. 1 traverses K distinct elements, and the middle
(j) loop traverses B iterations, resulting in access of a total of
BK elements of D. With a banded matrix, the set of column
indices for adjacent rows almost completely overlap (except
for two elements at the ends of the band), resulting in almost
complete reuse of the data from D if sufficient cache capacity
is available. For K=128, setting 4*128”"B = 512K gives B=1024,
consistent with the experimental data that shows a drop in
performance when B is raised from 1025 to 2049.

register

Dense input matrix™ (D)

= —— 8

CSR (input: no reuse, output: reg)

]. Tw § D D cache
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M| T, £ %
5 DCSC (input: reg, output: cache)
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Sparse input matrix (S) 2D tile (input: cache, output: reg)

Figure 4. Data Reuse with three different data representa-
tions
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Figure 5. Performance of CSR, DCSC, 2D tile for different
synthetic matrices

Thus it can be seen that data reuse for the input dense
matrix D may suffer significantly if too many other rows are
accessed before a row is again referenced (when the next
nonzero in the corresponding column of S is accessed). The
extent of achieved reuse of D is thus very dependent on the
sparsity structure of S. In the extreme case, for Alg. 1, no
reuse at all may be achieved for D, while full reuse is achieved
for S and O. This is illustrated in Fig. 4 - the element O[{][/]
in Alg. 1 being placed in a register because of its repeated
access in the innermost loop.

In order to achieve better reuse for elements of D, the order
of access of the elements of S must be changed. For a banded
sparse matrix, full reuse of D can be achieved by accessing S
column-wise. But full column-wise access will result in loss
of reuse for O. By performing column-wise access within
row-panels of S, it is feasible to still achieve full reuse for O

304

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

in cache, as well as some reuse for D. This corresponds to the
use of DCSC data representations, with the access pattern
shown in Fig. 4. While this DCSC scheme may be superior in
terms of minimization of data movement to/from memory;, its
access pattern may be detrimental to ILP (Instruction Level
Parallelism) due to the very small average number of non-
zeros within the active columns in a row-panel. Further, the
number of register loads/stores increases with this scheme
since each operation requires a load-modify-store from/to
registers. A third alternative is to use 2D tiling, as shown in
Fig. 4, where access is row-wise within a tile, allowing better
register-level reuse for the accumulated results.

The trade-offs between these three alternatives depend
on the sparsity structure of the matrix and are very difficult
to model analytically due to the complex interplay between
the impact of the reduction of the volume of data access
from memory and increase in stall cycles due to reduced ILP.
Therefore we used micro-benchmarks based on synthetic
random matrices to understand the performance trends for
the three alternative schemes shown in Fig. 4. Fig. 5 shows
the performance (single precision) for different synthetic
sparse matrices on an Intel Xeon Phi KNL. The non-zeros in
the synthetic matrices are randomly distributed with differ-
ent sparsity, and nnz_colseg (the average number of elements
in a column segment in DCSC) is computed as % where
Ty is the recommended row segment size for DCSC, and
nnz is the number of non-zeros in the sparse matrix with
M=128K, N=4K, K=128. To fully exploit the L2 cache on KNL,
the row panel size is chosen as 512 and 256, for DCSC and
2D tile, respectively (the row panel size is halved for 2D tile
since the cache is used for both dense input D and dense
output O matrices).

With CSR, the non-zero elements of the sparse matrix in
a row are accessed one by one and multiplied by the corre-
sponding elements in D. The partial results are accumulated
in registers and written out to memory at the end of each
row. The O elements get full reuse in registers. However,
the reuse of D elements is very dependent on the sparsity
structure of S and for large sparse matrices the reuse for
these elements can be very low. In other words, with the
CSR representation, it is difficult to exploit locality for D.
This performance impact is shown in Fig. 5

Performance can be improved by exploiting reuse of D
elements. when the number of elements in a column segment
(nnz_colseg) is high. DCSC targets the improvement of reuse
of D. In DCSC (Fig. 4), the sparse matrix is partitioned into a
set of row panels, each of which has Ty, contiguous rows. The
size of a row panel (T/) is chosen such that the corresponding
O elements can fit in the L1/L2 cache (or shared memory in
case of GPUs), i.e., Ty; X Tx < cache size. Each non-empty
column-segment of the row panel is processed sequentially.
The D elements corresponding to the column are brought
into registers and the partial results are accumulated in the
cache. Thus, within a row panel, the D elements get full reuse
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from registers and the O elements get full reuse from the
cache. In DCSC, the reuse for D is increased, but the reuse
of O elements is from the cache as opposed to registers in
CSR (register accumulations are faster). Hence, as shown in
Fig. 5, the performance with a DCSC representation increases
with nnz_colseg. When nnz_colseg is low, the standard CSR
representation outperforms DCSC.

2D tiling can be used to achieve good reuse of D and O
elements. In 2D tiling (in Fig. 4), the sparse matrix is parti-
tioned into a set of row panels which are further subdivided
into a set of 2D tiles such that each tile has Ty; rows and Ty
columns of the sparse matrix. The elements within a 2D tile
are represented in CSR format (other formats can also be
used). In this scheme, the D elements are loaded to cache and
the partial accumulations in each row of the 2D tile are done
in registers (similar to CSR). However, as shown in Fig. 5,
when nnz_colseg is low, the performance of the 2D tiling
scheme is lower than CSR.

Dense tiles Sparse tile

o
[
S | |[-=5/ 5 i=——|B) by Thread0
1= p— » y Threa
2 [=
P —
= ﬂe/—\ » by Thread 1

Sparse Matrix

Figure 6. SpMM with ASpT on many cores

The ASpT scheme is based on the observation that when
columns in a 2D tile have sufficiently high nnz_colseg, 2D
tiling achieves the best performance. When nnz_colseg is
low, row-wise access with the standard CSR algorithm is
best. Our empirical evaluation with synthetic benchmarks
did not reveal scenarios where DCSC performance is the best.
Therefore, we use a combination of row-wise CSR access and
2D-tiled execution. Fig. 6 shows the high-level idea behind
the Adaptive Sparse Tiling (ASpT) approach that we describe
in detail in the next section. The sparse matrix is first divided
into row-panels, where the row-panel size is determined
by cache/scratchpad capacity constraints. Within each row-
panel, column segments are classified as sufficiently dense
or not (the threshold is dependent on the target system and
is determined from the cross-over point between CSR and
2D-Tile performance with the micro-benchmarking using
synthetic matrices (e.g., Fig. 5). The columns within a row-
panel are then reordered so that columns over the threshold
are placed in 2D tiles (the horizontal sizing of the 2D tiles is
explained in the next section), while all columns below the
threshold are placed at the right end of the row panel in a
large group targeted for untiled row-wise CSR execution.
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4 SpMM with ASpT
4.1 Data Representation

Our SpMM scheme uses the unordered CSR representation
with additional metadata, as depicted in Fig. 7. Fig. 7 (a) and
(b) show the conceptual view of the sparse matrix and the
corresponding unordered CSR representation, respectively
(the corresponding ordered CSR representation is seen in
Fig. 2 (b)). In Fig. 7 (a), the entire matrix is split into two row-
panels, where each row-panel contains a set of contiguous
rows. A column segment within a row panel is classified
as heavy if it has at least two non-zeros. Each row panel of
the sparse matrix is reordered as seen in Fig. 7 (b). All the
heavy columns in a row panel are placed before the light
columns. Each reordered row panel can thus be viewed as
two segments, where the first segment contains a set of heavy
columns and the second segment consists of light columns.
The first segment (heavy) is further subdivided into 2D tiles,
while the entire second segment is viewed as a single 2D
tile. The width of the 2D tiles in the heavy segments of row
panels is selected such that the corresponding elements of
D fit in the cache (or shared memory). We note that our
approach only performs reordering of non-zeros and not
re-numbering (i.e., column indexes of the non-zero elements
remain unchanged).
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Additional metadata in ‘tile_row_ptr’ keeps track of the
start and end pointers of each tile (Fig. 7 (c)) within each row.
For example, consider the first row of the reordered matrix.
The first tile begins at position ‘0’. Hence, tile_row_ptr[0]
is ‘0’. The first element corresponding to the second tile
begins at position ‘1’; hence tile_row_ptr[1] is ‘1’, and so
on. The number of 2D tiles in each row panel is encoded in
panel_ptr[i]. For a given row panel, the number of 2D tiles can
be obtained by subtracting panel_ptr[i] from panel_ptr[i+1].

4.2 SpMM on Multi/many-cores

Listing 1. SpMM with ASpT on multi cores

#pragma omp parallel
for row_panel_id=0 to num_row/panel_size-1 do
num_tiles = panel_ptr[row_panel_id+1]-panel_ptr[
row_panel_id];
// if tile_id num_tile-1,
Otherwise dense.

sparse tile is processed.

for tile_id=0 to num_tile-1 do

for i=0 to panel_size-1 do

ptr = panel_ptr[row_panel_id]xpanel_size + i*num_tile

+ tile_id;

out_idx = i+row_panel_idxpanel_size;

low = tile_row_ptrlptr]

high = tile_row_ptrlptr+1];

for j = low to high-1 do

#pragma simd
for k = @ to K-1 do
// inputs is expected to be in cache in dense tiles
// output is expected to be in register
Ofout_idx][k] += col_val[j] * D[col_idx[j11[k];
done
done

done
done

done

Listing 1 shows the ApST SpMM algorithm specialized for
multi/many-core processors. The row panels of the sparse
matrix are distributed among threads (Line 2-21). As men-
tioned in the previous sub-section, the entire row-panel is
split to a set of heavy tiles (tile_id < num_tile — 1) and a
single sparse tile (tile_id == num_tile — 1). Both the heavy
tiles and sparse tiles are processed by the same kernel; how-
ever, we expect most of the D accesses in heavy tiles to be
served by the L2 cache and from memory for the sparse
tiles. The tiles within a row panel are processed sequentially
(Line 5). The elements of each row within a 2D tile are iden-
tified by using tile_row_ptr[0] and panel_ptr[i+1] (line 7 to
10). The non-zero elements in each row of the 2D tile are
processed sequentially (line 11-18). In order to increase In-
struction Level Parallelism (ILP), vectorization is done along
the K dimension. This also helps to achieve good cache line
utilization.
4.3 SpMM on GPUs

Although we can use the same high-level tiling idea for GPUs,
the GPU implementation should take advantage of the GPU
architecture in order to achieve high performance. The main
difference between GPUs and multi/many-core processors
is that GPUs have many more registers per thread. It also
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has an explicitly managed scratchpad memory called shared
memory. However, cache capacity per thread in GPUs is

; cache size
quite small (# of threads on SM or SMs )

4.3.1 Utilization of Shared Memory and Registers

Contrary to multi/many-cores, where only a few threads ac-
cess L1/L2 cache simultaneously, a huge number of threads
can access GPU caches at the same time. For instance, on
the Nvidia Pascal P100, 2K and 112K threads can simultane-
ously access the same 24KB L1 and 4MB L2 caches. If each
thread accesses unique memory locations, then each thread

can only use 4K _ 12B/threads L1 and % = 37B/threads

L2 cache. Hoiviver, GPUs have a large number of registers
and shared memory per Streaming Multiprocessor (SM). For
example, P100 has 256KB storage capacity in registers and
64KB shared memory per each SM. The shared memory
bandwidth on the P100 is higher than L1 cache. Therefore,
utilizing these resources for improving locality would be ben-
eficial for performance. In GPUs, only the memory locations
with statically resolvable access patterns can be placed in
registers. Since we process each row sequentially, the access
pattern of O can be statically determined, and these elements
can be placed in registers. However, the accesses for D de-
pend on the sparsity structure; hence the accesses are kept
in shared memory.

Dense tile 2 Sparse tile

Colidk 9 2 3 6 4 5 7 1
TIX[X|[Xx|x X[ x|x IIIII'II
2 [x[x X [ X[ x X 0123
3 X | x [ x Ix x| x Shared-memory » Conflict
o I TxTx x " Col_idx -»
Col_idx % 4
A><‘Reordering (a) -
Colidk 0 5 3 6 4 2 7 1
TIX|X[x|X XXX
2 (X [X X[ X|x X [:I:I:]:]
3 x| x [ x| x[x]x @Notonﬂict
alx|x|x X | x| x| x Shared\memory

(b)

Figure 8. Remove Index Mapping Conflicts to Shared Mem-
ory

We next describe the approach to mapping of columns of
Dto shared memory. Consider Fig. 8 and assume that column
‘i’ of D is mapped to column i%4-th column in the shared
memory. This would result in mapping the first (col_idx:2)
and third columns (col_idx:6) of the yellow tile to the same
location in shared memory (Fig. 8 (a)) resulting in a conflict.
Alternatively, the needed columns of D could be mapped
contiguously in shared memory, with an indirection array to
indicate the mapping of column indices to shared memory:.
However, this strategy incurs two major overheads: i) extra
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Listing 2. SpMM with ASpT on GPUs (dense tile)

row_panel_id = tb_idx;
row_offset = tid/WARP_SIZE;
slice_base = tb_idy*WARP_SIZE;
slice_offset = tid%WARP_SIZE;
for tile_id=@ to panel_ptr[row_panel_id+1]-panel_ptr[
row_panel_id]-1 do
for i=row_offset to TILE_WIDTH-1 step tbh.size()/
WARP_SIZE do
map_id = map_list[panel_ptr[row_panel_id]l+tile_id][
row_offset];
sm_D[map_id%TILE_WIDTH][slice_offset] =
slice_base+slice_offset];
done
__syncthreads();
// processing dense blocks
for i=row_offset to panel_size-1 step tb.size()/
WARP_SIZE do

DLmap_id][

ptr = panel_ptrl[row_panel_idJl*panel_size + ix(panel_ptr
[row_panel_id+1]-panel_ptr[row_panel_id]) +
tile_id;

out_idx = i+row_panel_id*panel_size/WARP_SIZE;

low = tile_row_ptr[ptr]

high = tile_row_ptr[ptr+11];

buf_0 = 0o;

for j=low to high-1 do
buf_0 += col_val[j] * sm_D[col_idx[jJI%TILE_WIDTH][
slice_offset];
done
O[i+row_panel_idxpanel_size][slice_base+slice_offset]
+= buf_0;

__syncthreads();
done
done

Listing 3. SpMM with ASpT on GPUs (sparse tile)

row_panel_id = tb_idx;

row_offset = tid/WARP_SIZE;

slice_id = tb_idy*WARP_SIZE;

slice_offset = tid%WARP_SIZE;

// processing a sparse block

for i=row_offset to panel_size-1 step tb.size()/WARP_SIZE
do

ptr = panel_ptr[row_panel_idJ]*panel_size + (i+1)*(
panel_ptr[row_panel_id+1]-panel_ptr[row_panel_id])
-1;

out_idx = i+row_panel_id*panel_size;

low = tile_row_ptr[ptr];

high = tile_row_ptr[ptr+1];

buf_0 = 0;

for j=low to high-1 do
buf_0 += col_val[j] * D[col_idx[j]][slice_base+
slice_offset];

end

O[i+row_panel_idxpanel_size][slice_base+slice_offset] +=
buf_0;

end

space required for the indirection array and ii) overhead due
to access of the indirect array. For each non-zero access, the
indirection array needs to be accessed to find the element in
shared memory, which is inefficient. We addressed this issue
by reordering column indices to remove mapping conflicts
in each tile. That is, every column index in the tile is mapped
to a different location in the shared memory. By doing so, we
can directly access the shared memory using a simple modulo
operation. For example, in Fig. 8 (b), ‘modulo 4’ mapping

can be used. This strategy may result in partially filled tiles.
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If a heavy 2D tile does not have enough column segments,
they are moved to the sparse segment. The reordering can
be easily done once during the pre-processing stage.

4.3.2 SpMM Algorithm: GPUs

Listing 2 and 3 show the SpMM-ASpT GPU algorithm for
dense and sparse tiles, respectively. The GPU algorithm is
similar to that for multi/many-cores. The different threads
in a warp are mapped along K to avoid thread divergence
and to achieve good load balance. For heavy 2D tiles the
corresponding elements of D are brought to shared memory,
whereas for light 2D tiles shared memory is not used. Each
2D tile is processed by a thread block.

For processing both dense and sparse tiles, row panel id,
row offset, and slice index are first computed (line 1-4 in
Listing 2 and 3). Then, for dense tiles, all the threads in a
thread block collectively bring the corresponding elements
of D to shared memory (line 6-9 in Listing 2). map_id (line 7
in Listing 2) keeps track of the original column index, and is
used to access elements of D.

The rest of the code (Lines 12-23 in Listing 2 and Lines 6-
16 in Listing 3) is very similar to multi/many-core algorithm.
Different warps process different rows within a row-panel,
and the threads within a warp are distributed along K. The
results are accumulated in registers and written out to global-
memory at the end of each row (Line 21 in Listing 2 and Line
15 in Listing 3).

4.4 Parameter Selection

The key parameters that affect performance for ASpT are
i) the threshold for the number of non-zeros in a column
segment to be classified as heavy and ii) the tile sizes (Tas,
Tn, and Tk). These parameters were empirically determined
using synthetic matrices described in Sec. 3. Fig. 5 shows
the performance of CSR, DCSC and 2D tile as a function
of column density. The threshold for classifying a column
segment as heavy is chosen as the minimum column density
at which 2D tile outperforms CSR. The rationale is that heavy
segments are processed by the 2D tile algorithm, whereas
the light segment, even though represented as a single 2D
tile, is processed by CSR algorithm. Thus, if the number of
nonzeros in a column segment is less than the crossover
point in Fig. 5, it is better to process those non-zeros using
the CSR algorithm, and the 2D tile algorithm otherwise. The
tile sizes were also chosen empirically such that the data
footprint of the tile fits in the L2 cache (512 KB per core) for

the KNL (i.e. (Tar + Tn) X Tk X sizeof (word) X %
= 512K). For our experiments, the L1 cache was too small
to exploit locality (and thus did not give great benefits). We
explored different (Ty, Ty, Tx) subjected to the L2 footprint
constraint, and selected the best performing parameters. The

best performance was obtained when Ty = T, Tx = K, and
# of threads =2
#_of cores T 7
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We followed similar steps for selecting GPU parameters.
Since D elements are kept in shared memory, the tile sizes Tx
and Ty are constrained by the shared memory capacity. The
shared memory size per thread block was selected such that
full occupancy was maintained (for P100 we assigned 32KB
of Shared-Memory per thread block of size 1024). Since the
elements of Oare kept in registers, Tx and T, are constrained
by the register capacity. Thread coarsening [25, 26] was also
employed to improve performance.

5 SDDMM with ASpT

In SDDMM, two dense matrices are multiplied and the re-
sulting matrix is then scaled using an element-wise multipli-
cation (Hadamard product) with a sparse matrix. Since the
sparsity structure of the input and output sparse matrices
is the same, we can optimize SDDMM by forming dense
matrix products only at locations corresponding to non-zero
elements in the input sparse matrix, as done by existing
implementations [11, 20].

Listing 4. Part of SDDMM on multi cores

#pragma simd
for j = low to high-1 do
#pragma simd reduction
for k = @ to K-1 do
// D2 is expected to be in cache in dense tiles
// output_col_val is expected to be in register
O[j] += D2[out_idxJ[k] * D[col_idx[jJ1[k];
done
o[31]
done

*= col_val[j];

Listing 5. Part of SDDMM on GPUs (dense tile)

buf_D2 = D2[i+row_panel_idx*panel_size][slice_base+
slice_offset];
for j=low to high-1 do
buf_0 = buf_D2 % sm_D[col_idx[jI%TILE_WIDTHI]L
slice_offset];
for k=WARP_SIZE/2 downto 1 step k=k/2 do

buf_0 += __shfl_down(buf_output, k);
done
if slice_offset == @ then
O[j] += buf_0 * col_val[j];
end
done

Listing 6. Part of SDDMM on GPUs (sparse tile)

buf_D2 = D2[i+row_panel_idx*panel_size][slice_base+
slice_offset];
for j=low to high-1 do
buf_0 = buf_D2 % D[col_idx[jll[slice_base+slice_offset];
for k=WARP_SIZE/2 downto 1 step k=k/2 do
buf_0 += __shfl_down(buf_0, k);
done
if slice_offset == @ then
O[j] += buf_0 * col_val[j];
end
done

SDDMM on multi/many-cores can be implemented by
substituting the box (line 11-18) in Listing 1 with Listing 4.
For SDDMM, the K dimension is not tiled, and the tile sizes
Ty and Ty are chosen such that both DI and D2 fit in L2
cache. The for loop in Line 11 computes the dot product of
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D1 and D2. The inner for loop (Line 14) corresponding to
K is vectorized. Unlike SpMM, SDDMM requires reduction
across the K dimension and is implemented by specifying
the ‘reduction clause’ in Line 17. Line 19 scales the result by
multiplying it with the corresponding element in the input
sparse matrix S.

SDDMM on GPUs for dense and sparse tiles can be imple-
mented by replacing the box in Listing 2 and 3 by Listing 5
and 6, respectively. The only difference between Listing 5
and 6 is in Line 13 where elements of DI are served by
shared-memory in the dense version and global memory
in the sparse version. The elements of D2 corresponding to
the row are kept in registers for both dense and sparse tiles
(line 11 in Listing 5). Since the K dimension is mapped across
threads and the corresponding O elements are kept in regis-
ters that are private to a thread, we use warp shuffling for
reduction (line 14-16 in Listing 5). The accumulated output
value is scaled and written back to global memory (line 17-19
in Listing 5).

6 Experimental Evaluation

This section details the experimental evaluation of the ASpT-
based SpMM and SDDMM on three different architectures:
e Nvidia P100 GPU (56 Pascal SMs, 16GB global memory
with bandwidth of 732GB/sec, 4MB L2 cache, and 64KB
shared memory per each SM)
e Intel Xeon Phi (68 cores at 1.40 GHz, 16GB MCDRAM
with bandwidth of 384GB/sec, 34MB L2 cache)
e Intel Xeon CPU E5-2680 v4 (2 X 14 cores at 2.40 GHz,
16GB MCDRAM with bandwidth of 72GB/sec, 35MB
L3 cache)

For GPU experiments, the code was compiled using NVCC
9.1 with the -O3 flag and was run with ECC turned off.

For the Intel Xeon Phi, the code was compiled using Intel
ICC 18.0.0 with -O3 and -MIC-AVX512 flags. The clustering
mode was set to ‘All-to-All’ and the memory mode was set
to ‘cache-mode’ (to fit big datasets).

For the Intel Xeon CPU, the code was also compiled with
Intel ICC 18.0.0 with -O3 flag.

We only include the kernel execution time for all experi-
ments. Preprocessing time and data transfer time from CPU
to GPU or disk to RAM are not included. The impact of pre-
processing overhead is reported separately. All tests were
run five times, and average numbers are reported.

6.1 Datasets and Comparison Baseline

For experimental evaluation, we selected 975 matrices from
the SuiteSparse collection [13], using all matrices with at
least 10K rows, 10K columns, and 100K non-zeros. The ma-
trices in SuiteSparse are from diverse application domains
and represent a wide range of sparsity patterns.

For SpMM on KNL, we compared ASpT with Intel MKL
[43], CSB [2], and TACO [20], which represent the current
state-of-the-art SpMM implementations.
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Table 1. Summary performance comparison: SpMM
percentage
KNL Xeon GPU
SP DP SP DP SP DP
K=32 | K=128 | K=32 | K=128 | K=32 | K=128 | K=32 | K=128 | K=32 | K=128 | K=32 | K=128
>100% 1.7% | 14% | 14% | 1.7% | 51% | 1.0% | 40% | 1.2% | 0.1% | 0.0% | 0.1% | 0.1%
slowdown 50%~100% | 1.9% | 0.7% | 1.2% | 1.4% | 6.7% | 3.6% | 7.9% | 2.6% | 0.1% | 0.0% | 0.1% | 0.4%
10%~50% | 4.2% | 4.0% | 52% | 6.1% |12.6% | 13.9% | 16.4% | 10.8% | 1.7% | 1.7% | 3.2% | 10.4%
0%~10% | 3.2% | 2.5% | 41% | 3.3% | 6.2% | 7.3% | 63% | 59% |11.2% | 6.2% | 12.3% | 18.8%
0%~10% | 2.6% | 3.0% | 3.7% | 3.9% | 42% | 7.4% | 7.4% | 6.9% |24.9% | 18.8% | 21.4% | 22.9%
speedu 10%~50% | 19.4% | 15.8% | 25.0% | 20.2% | 15.7% | 26.7% | 20.3% | 32.2% | 49.5% | 53.5% | 44.1% | 34.0%
P P 50%~100% | 35.0% | 28.8% | 33.1% | 32.5% | 18.5% | 20.6% | 15.3% | 24.6% | 6.1% | 164% | 51% | 3.6%
>100% | 32.0% | 43.8% | 26.5% | 31.0% | 31.1% | 19.5% | 22.4% | 15.9% | 6.5% | 3.5% | 13.5% | 9.8%

For SpMM on GPUs, we compare ASpT with Nvidia cuS-
PARSE. cuSPARSE offers two modes, and we compare against
the better performing one. We do not compare ASpT with
MAGMA [3] and CUSP [12] as they are consistently outper-
formed by cuSPARSE (more than 40% on average).

For SDDMM on manycores (KNL), we compared ASpT
with TACO which has been shown to significantly outper-
form Eigen [15] and uBLAS [42]. For SDDMM on GPUs, we
compared ASpT with BIDMach [11], which represents the
state-of-the-art SDMMM implementation.

We evaluate ASpT with single precision (SP) and double
precision (DP), with the number of vectors set to 32 and

128 (K=32,128). However, only SP is used for SDDMM com-
parison on GPUs since BIDMach does not support DP for
SDDMM.

6.2 SpMM

Fig. 9 (a) shows SpMM performance with SP and DP for
different K widths on the KNL. Each point in Fig. 9 (a) rep-
resents the average GFLOPs value for a contiguous set of
10 matrices - the matrices are sorted in ascending order by
the number of non-zeros. As shown in Fig. 9 (a), TACO is
outperformed by CSB, which is outperformed by MKL. For
all configurations, ASpT outperforms other implementations.
ASpT performance is improved when K is increased from
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Figure 10. SDDMM results

Table 2. Summary performance comparison: SDDMM

percentage
KNL Xeon GPU
Sp DP Sp DP Sp
K=32 | K=128 | K=32 | K=128 | K=32 | K=128 | K=32 | K=128 | K=32 | K=128
>100% 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.1% 0.0% 0.0%
50%~100% | 0.1% 0.2% 0.3% 0.1% 1.3% 2.3% 0.1% 1.5% 0.0% 0.0%
slowdown
10%~50% | 2.2% 25% | 4.2% 3.6% | 15.6% | 15.5% | 10.6% | 11.3% | 0.0% 0.2%
0%~10% 3.3% 1.4% 3.1% 28% | 11.2% | 7.0% | 15.7% | 9.1% 0.0% 0.0%
0%~10% 2.7% 2.2% 3.8% 32% | 4.5% 9.0% 9.0% 9.5% 0.0% 0.1%
speedu 10%~50% | 16.3% | 14.4% | 18.6% | 22.8% | 20.5% | 17.8% | 20.4% | 25.4% | 0.2% 1.2%
p P 50%~100% | 21.8% | 24.9% | 27.5% | 29.3% | 14.1% | 16.3% | 19.8% | 17.8% | 1.4% | 11.3%
>100% 53.6% | 54.4% | 42.5% | 38.2% | 32.8% | 31.6% | 24.5% | 25.3% | 98.4% | 87.2%

32 to 128. For matrices having a small number of non-zeros,
performance is low. This is because concurrency is very low
or there is not enough data reuse (i.e., m is small). An
overall summary of the relative performance across the set of

matrices is presented in Table 1. The speedup and slowdown
GFLOPs_with_ASpT
are defined as GFLOPs_with_best_comparsion_baseline —1land

GFLOPs_with_best_comparsion_baseline .
GFLOPs_with_ASpT — 1, respectively. ASpT

achieves significant speedup for most matrices and only suf-
fers slowdown for a small fraction of the matrices.

Fig. 9 (b) shows SpMM performance with SP and DP for
different K widths on the Intel Xeon multicore CPU. As
shown in Fig. 9, the relative performance trends of Xeon and
KNL are quite similar.
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Fig. 9 (c) shows SpMM performance on the Nvidia Pascal
P100 GPU. The performance gap between ASpT and cuS-
PARSE is higher for higher K widths. The performance of
cuSPARSE does not improve much when K is increased. cuS-
PARSE at most achieves 685 GFLOPs (SP, K=128 with tsyl201
dataset), whereas ASpT achieves around 900 GFLOPs when
the number of non-zeros is around 4M. Fig. 9 (c) also com-
pares ASpT with Merge-SpMM [48]. The comparison was
limited to single precision as Merge-SpMM does not sup-
port double precision. For each dataset, Merge-SpMM re-
ports GFLOPs with different strategies, and we took the best
among them. Merge-SpMM’s performance is slightly inferior
to cuSPARSE, which is outperformed by ASpT.
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6.3 SDDMM

Figs. 10 (a) and (b) show the SDDMM performance on the
KNL and Xeon, respectively. The performance trend is similar
to SpMM in Figs. 9 (a) and (b), but the absolute GFLOPs is
lower. On KNL, ASpT outperforms TACO for the majority of
the datasets as shown in Table 2. Table 2 also shows a similar
trend on Xeon CPU.

Fig. 10 (c) presents SDDMM performance on GPUs. The
performance trend is similar to that of SpMM in Fig. 9 (c),
with lower absolute GFLOPs. Both BIDMach and ASpT im-
prove when K is increased, and ASpT significantly outper-
forms BIDMach across all the matrices. We only report BID-
Mach performance for single precision since it does not
support double precision.
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Figure 11. Preprocessing time (SpMM)

Table 3. Details of preprocessing overhead

(prepmr:::;ng ime | KNL | KNL | CPU | CPU | GPU | GPU
/computing_time) (SP) | (DP) | (SP) | (DP) | (SP) | (DP)
0~5 64.7% | 89.7% | 87.8% | 98.8% | 75.4% | 83.7%
5~10 31.1% | 94% | 113% | 1.0% | 14.5% | 13.6%
10~15 3.2% | 0.6% | 0.9% | 0.1% | 7.2% | 2.2%
15~20 0.8% | 0.2% | 0.0% | 0.0% | 2.0% | 0.4%
20~25 0.0% | 0.0% | 0.0% | 0.0% | 0.6% | 0.1%
25~30 0.1% 0.0% 0.0% 0.0% 0.2% 0.0%

6.4 Preprocessing Overhead

Constructing additional meta-data and reordering the col-
umn indices incurs overhead. Fig. 11 shows the preprocessing
time normalized to the execution time of one ASpT SpMM
with K=128, for single precision (red curve) and double pre-
cision (blue curve). Typical applications involving SpMM
and SDDMM execute a large number of iterations (e.g., [31]
for SpMM and [51] for SDDMM). Hence, our preprocessing
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overhead is negligible. DP precision has less overhead, as the
preprocessing time for SP and DP is similar but the SpMM
time for DP is higher than that of SP. Table 3 shows that the
preprocessing times are generally between 0-5X compute
time.

Table 4. Benefit of tiling or reordering

Tiling-Only|Tiling+Reordering
SpMM(KNL)/speed-up over MKL 1.38 2.06
SpMM(GPU)/speed-up over cuSPARSE 0.8 1.34
SDDMM(KNL)/speed-up over TACO 1.02 2.01
SDDMM(GPU)/speed-up over BIDMach|  2.41 4.04

6.5 Benefit from Tiling / Reordering

While tiling helps to improve the data-reuse of the dense in-
put matrix, it has two main disadvantages (1) tiling overhead
and (2) loss of concurrency for very sparse tiles. Tiling only
helps to improve the data-reuse for columns with sufficient
density. Hence, tiling overheads can be minimized by limit-
ing the tiling to columns with sufficient column density. A
simple 2D tiling strategy would include columns of both low
and high density which may affect performance. The per-
formance can be improved by grouping columns with high
density and limiting tiling to these high-density columns;
This can be achieved using reordering. Note that reordering
without tiling may not improve performance as the data-
reuse may not be improved. However, it is possible that the
inherent matrix structure may already be clustered and thus
tiling without any reordering could potentially improve per-
formance. Hence, we ran experiments with just tiling and
no reordering. Results with K=128 for single precision are
presented in Table 4; other configurations achieved similar re-
sults. As shown in Table 4, the combined Tiling+Reordering
strategy substantially outperforms the Tiling-Only strategy.

7 Conclusion

SpMM and SDDMM are key kernels in many machine learn-
ing applications. In contrast to other efforts that use cus-
tomized sparse matrix representations to achieve high perfor-
mance, this paper targets efficient implementation of these
primitives using the standard (unordered) CSR sparse matrix
representation so that incorporation into applications can
be facilitated. An adaptive 2D tiled approach exposes higher
memory reuse potential, and an efficient reordering scheme
enables efficient execution of 2D tiles. In comparison to the
current state-of-the-art, the ASpT based SpMM algorithm
achieves a speedup of up to 13.18x, with a geometric mean
of 1.65x on an Intel Xeon Phi KNL; a speedup of up to 7.26x,
with a geometric mean of 1.36x on an Intel Xeon multicore
processor; and a speedup of up to 24.21x with a geometric
mean of 1.35x on GPUs. The ASpT based SDDMM algorithm
achieves a speedup of up to 30.15x, with a geometric mean of
1.93x on the KNL; a speed of up to 22.75x, with a geometric
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mean of 1.52x on the Xeon; and a speedup of up to 13.74x,
with a geometric mean of 3.60x on GPUs.
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A Artifact Appendix
A.1 Abstract

The artifact contains the implementation of sparse-matrix
dense-matrix multipilicationo (SpMM) and sampled dense-
dense matrix multiplication (SDDMM) described in PPoPP
2019 paper titled “Adaptive Sparse Tiling for Sparse Matrix
Multiplication”. In addition to the source code, associated
scripts to replicate the experimental evaluation are provided.
The “compiles.sh” script will automatically install the code.
The required datasets can be downloaded using the “down-
load.sh”. The results can be validated by running the “runx.sh”
script.

A.2 Description
A.2.1 Check-list (Artifact Meta Information)

¢ Required Compilers:

— nvce 9.1.85

— gcc4.850r4.9.3

- icc 18.0.3 (with MKL)

e Data set:

— All datasets were downloaded from SuiteSparse
(http://faculty.cse.tamu.edu/davis/suitesparse.html)

— A script called “download.sh” will automatically down-
load all the required datasets. This include the datasets
which were used to evaluate the performance of imple-
mentations.

¢ Run-time environment:

- OS: Linux/Windows (the results presented in the paper
are based on experiments run on a Linux platform)

— Root access: Required to turn off ECC on GPU and set the
clustering mode to ‘All-to-All’ and the memory mode to
‘cache-mode’ on KNL (both are not required for functional
verification)

e Hardware: manycore

— For performance verification: Intel Xeon Phi (68 cores with
1.40 GHz, 16GB MCDRAM with bandwidth of 384GB/sec,
34MB L2 cache)

— For functional verification: AVX-512

e Hardware: multicore

— For performance verification: Intel Xeon CPU E5-2680
v4 (2 X 14 cores with 2.40 GHz, 16GB MCDRAM with
bandwidth of 72GB/sec, 35MB L3 cache)

e Hardware: GPU
— For performance verification: Nvidia Pascal P100
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— For functional verification: Any Nvidia GPU with compute
capability > 6.0 and global memory > 16GB
e Execution:
— For performance verification: sole user
e Output:
— Console
e Experiment replication:
— Bash script is provided with the distribution
¢ External dependences:
- cmake >=3.11.4 (Not present in distribution)
— boost >= 1.58 (Not present in distribution)
— Apache Maven 3.6.0 (Not present in distribution)
— JDK 8 (Not present in distribution)
Publicly available?:

— Yes. Link: http://gitlab.hpcrl.cse.ohio-state.edu/chong/ppopp19_ae

A.2.2 How Delivered

The source code of ASpT, associated scripts to install/run/ver-
ify the framework and scripts to download datasets are avail-
able at http://gitlab.hpcrl.cse.ohio-state.edu/chong/ppopp19_ae

A.3 Installation

After cloning/downloading the source code, follow these
steps.

e run “‘compilesx.sh”. For example, “/compile_ GPU_SpMM.sh”
will install all GPU SpMM implementations

e run “download.sh”. This script will download all the
datasets. The results section of the paper contain re-
sults with the dataset

A.4 Experiment Workflow

Ensure that implementations and associated dependences are
installed properly. Download the datasets using the “down-
load.sh” script. To run the benchmarks use the “runs.sh”
script. For eg. running “/run_GPU_SpMM.sh” will run all
GPU SpMM implementations.

A.5 Evaluation and Expected Result

The expected results are shown in Figs. 9 through 11 and
Table 1 and 2. The performance may vary depending on the
machines used. Functional correctness can be evaluated on
any Nvidia GPU with compute capability > than 6.0 and a
manycore processor with AVX-512.
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