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A Fast and Efficient Incremental Approach toward Dynamic
Community Detection

Neda Zarayeneh! and Ananth Kalyanaraman

Abstract—Community detection is a discovery tool used by
network scientists to analyze the structure of real-world net-
works. It seeks to identify natural divisions that may exist in the
input networks that partition the vertices into coherent modules
(or communities). While this problem space is rich with efficient
algorithms and software, most of this literature caters to the
static use-case where the underlying network does not change.
However, many emerging real-world use-cases give rise to a need
to incorporate dynamic graphs as inputs.

In this paper, we present a fast and efficient incremental
approach toward dynamic community detection. The key con-
tribution is a generic technique called A-screening, which
examines the most recent batch of changes made to an input
graph and selects a subset of vertices to reevaluate for potential
community (re)assignment. This technique can be incorporated
into any of the community detection methods that use modu-
larity as its objective function for clustering. For demonstration
purposes, we incorporated the technique into two well-known
community detection tools. Our experiments demonstrate that
our new incremental approach is able to generate performance
speedups without compromising on the output quality (despite its
heuristic nature). For instance, on a real-world network with 63M
temporal edges (over 12 time steps), our approach was able to
complete in 1056 seconds, yielding a 3x speedup over a baseline
implementation. In addition to demonstrating the performance
benefits, we also show how to use our approach to delineate
appropriate intervals of temporal resolutions at which to analyze
an input network.

I. INTRODUCTION

Community detection is a fundamental problem in many
graph applications. The goal of community detection is to
identify tightly-knit groups of vertices in an input network,
such that the members of each community share a high con-
centration of edges among them than to the rest of the network.
Owing to its ability to reveal natural divisions that may exist in
a network (in an unsupervised manner), community detection
has become one of the fundamental discovery tools in a
network scientists toolkit. The operation is widely used in
a variety of application domains including (but not limited
to) social networks, biological networks, internet and web
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networks, citation and collaboration networks, etc. Designing
efficient algorithms and implementations for community detec-
tion has been an area of active research for well over a decade.
While theoretical formulations are known to be NP-Hard [1],
there are a number of efficient heuristics and related software
already available. A comprehensive review of community
detection methods and related applications is available in [2].
However, most of the existing tools target static networks;
whereas most real-world networks are dynamic, where vertices
and edges can be added and/or removed over a period of time.

Owing to the increasing availability of dynamic networks,
the problem of dynamic community detection has become
an actively researched topic of late, and multiple methods
have been proposed over the last decade (e.g., [3]-[5]). In
Section II we present a brief review of such related works.
Despite these advances, a key remaining challenge in the
design of these algorithms is in quickly identifying the parts
of the graph that are likely to be impacted by a change (or
collectively by a recent batch of changes), so that it becomes
possible to update the community information with minimal
recomputation effort.

Contributions: In this paper, we propose an algorithmic
technique and a corresponding incremental approach that
would complement the developments made in dynamic com-
munity methods, and in particular those that use the modularity
function [6] as their clustering objective. More specifically, the
main contributions are as follows:

1) We visit the problem of identifying vertex subsets that are
likely to be impacted by the most recent batch of changes
made to the graph. To address this problem, we present
a technique called A-screening, which can be effi-
ciently implemented and incorporated as part of existing
dynamic community algorithms that use modularity.

ii) To demonstrate and evaluate this technique, we incorpo-
rated the technique into two well-known classical com-
munity detection methods—namely, the Louvain method
[7] and the SLM method [8]—thereby generating two
incremental clustering implementations.

iii) Using these two implementations, we present a thorough
experimental evaluation on both synthetic and real-world
inputs. Our results show that the A-screening tech-
nique is effective in pruning work (to reduce recomputa-
tion effort) without compromising on output quality.

iv) In addition to demonstrating its performance benefits,
we also show how to use our approach to delineate
appropriate intervals of temporal resolutions at which to
analyze an input network.
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II. RELATED WORK

Algorithms to compute dynamic communities over time-
evolving graphs can be broadly classified into two types.

One class of methods follows a two-step strategy of first
identifying the best set of communities for the current time
step and then subsequently mapping them onto the communi-
ties from previous generations to track evolution. Hopcroft et
al. [9] present a method in which a static community detection
tool is individually applied to the graphs at all time steps and
the results are later combined. Greene et al. [4] propose a
variation where they use a matching-based heuristic to map
communities of the latest time step to the communities of
previous generations.

In general, the two-step strategy is better suited if the
magnitude and/or complexity of changes to the input graph
is more drastic or random. However, the strategy suffers
two drawbacks: It can make community tracking difficult
as an application of static community detection at every
time step may not necessarily preserve previous communities,
thereby making the outputs non-deterministic. Secondly, these
approaches could become expensive to run on large inputs due
to recomputation and community tracking overheads.

The other class of methods for detecting dynamic commu-
nities follows a more incremental strategy where communities
from the previous generation(s) are propagated and updated
using changes reflected in the current time step. Maillard
et al. [10] propose a modularity-based incremental approach
extending upon the classical Clauset-Newman-Moore static
method [11]. Aktunc et al. [3] propose a method DSLM as an
extension of its static predecessor [8]. Xie et al. [12] present an
incremental method based on label propagation which is a fast
heuristic. Saifi and Guillaume [13] provide a way to track and
update community “cores” across time steps. Zakrzewska and
Bader [5] present another variant that tracks the communities
of a selected set of seed vertices in the graph. The FacetNet
approach introduced by Lin et al. [14] is a hybrid approach
that operates with a dual objective of maximizing modularity
for the current time step while trying to also preserve as much
of the previous generation communities.

In general, the incremental strategy has the advantage in
runtime (because of the reuse of community information from
previous steps), and it also has the advantage of outputting
a relatively stable set of communities across time steps. The
technique of A-screening proposed in this paper is aimed
at helping these incremental methods to be able to quickly
identify the relevant parts of the graph that are potentially
impacted by a recent batch of changes, so that the compu-
tation effort in the incremental step can be reduced without
compromising on clustering quality.

We note here that most of the existing methods use mod-
ularity or one of its variants as the objective function for
optimizing community structure. Bassett et al. [15] propose
and evaluate the choice of alternative null hypothesis models.
A more thorough survey of dynamic community detection
methods is presented in [16].
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III. METHOD
A. Basic Notation and Terminology

A dynamic graph G(V, E) can be represented as a sequence
of graphs G1(V1, E1),...,Gr(Vr, Er), where Gi(Vi, E})
denotes the graph at time step ¢; we use n; = |V;| and
M; = |Ey|. In this paper, we consider only undirected graphs.
The graphs may be weighted—i.e., each edge (i,j) € E
is associated with a numerical positive weight w;; > 0; if
the graphs are unweighted, then the edges are assumed to be
associated with unit weight, without loss of generality. We
denote the neighbors of a vertex i as () = {j | (¢,7) € E¢}.
We use m; to denote the sum of the weights of all edges
in Gy—i.e., m; = Z(i’j)eEt w;j. We denote the degree of a
vertex ¢ by d(7). The weighted degree of a vertex i, denoted
by d,, (i), is the sum of weights of all edges incident on .

In this paper, we consider incrementally growing dynamic
graphs, where edges and vertices can be added (but not
deleted) from one time step to another. This implies that
Vi DVi_yand E; O E;_q, forall 1 < ¢t < T. We denote
the newly added edges at any time step ¢ as Ay = E; \ Ey_q.
We denote the set of communities detected at time step ¢
as C;. Note that, by definition, C; represents a partitioning
of the vertices in V;—i.e., each community C' € C; is a
subset of V;; all communities in C; are pairwise disjoint; and
Ucee, € = Vi-

For any vertex i € V;, we denote the community containing
1, at any point in the algorithm’s execution, as C'(¢), following
the convention used in [17]. Also, let e;_,c denote the sum
of the weights for the edges linking vertex ¢ to vertices in
community C—i.e., e;jc = > ccnp(;) Wij- Furthermore, let
ac denote the sum of the weighted degrees of all vertices in
C—ie., ac = ) ;e du(i).

Given the above, the modularity, @, as imposed by a
community-wise partitioning C; over Gy, is given by [6]:

1 1
Qe = Tmt(z €insC(i) ~ 5

‘ 2my
ieVy

2

ac)

6]
CeCy

Given a community-wise partitioning on an input graph, the
modularity gain that can be achieved by moving a particular
vertex 4 from its current community to another target com-
munity (say C(j)) can be calculated in constant time [7]. We
denote this modularity gain by AQ;_,¢(;)-

B. Problem Statement

Definition III.1. Dynamic Community Detection: Given a
dynamic graph G(V, E) with T time steps, the goal of dynamic
community detection is to detect an output set of communities
Cy at each time step t, that maximizes the modularity Q; for
the graph G(Vi, Ey).

Since the static version of the modularity optimization
problem is NP-Hard [1], it immediately follows that the
dynamic version is also intractable. For the static version, a
number of efficient heuristics have been developed (as sur-
veyed in [2]). These approaches can be broadly classified into
three categories: divisive approaches [18], [19], agglomerative
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approaches [6], [11], and multi-level approaches [8], [20],
[21]. Of these, the multi-level approaches have demonstrated
to be fast and effective at producing high-quality partitioning
in practice. In Algorithm 1 we show generic algorithmic
pseudocode for this class of approaches. While they vary in
the specific details of how each step is implemented, they
share several common traits (note that this description is for
the static use-case):

o At the start of each level, all vertices are assigned to a
distinct community id.

An iterative process is initiated, in which all vertices are
visited (in some arbitrary order) within each iteration,
and a decision is made on whether to keep the vertex
in its current community, or to migrate it to one of its
neighboring communities. This decision is typically made
in a local-greedy fashion. For instance, in the Louvain
algorithm [7], a vertex migrates to a neighboring commu-
nity that maximizes the modularity gain of that vertex—
ie., let j € I'(i) U {¢}. Then,

C(i) + argmax AQ; ¢ ()
C(@j)

When the net modularity gain resulting from an iteration
drops below a certain threshold 7, the current level is
terminated (i.e., intra-level convergence), and the algo-
rithm compacts the graph into a smaller graph by using
the information from the communities. This procedure
represents a graph coarsening step, and the coarsened
graph is subsequently processed using the same iterative
strategy until there is no longer an appreciable modularity
gain between successive levels.

Algorithm 1 succinctly captures the main steps of the multi-
level approaches.

C. A Naive Algorithm for Dynamic Community Detection

A simple approach for dynamic community detection is
to directly apply the static algorithm (Algorithm 1) on the
graph at every time step. However, such an approach suffers
from multiple limitations. First, it completely ignores the
communities identified at previous time steps, causing outputs
to become non-deterministic. Furthermore, by ignoring the
previous community information, the algorithm is essentially
forced to recompute from scratch, and as a result, evaluate the
community affiliation for all vertices at each time step. This
can mean wasteful computation. For instance, it is reasonable
to expect that only those vertices in the “vicinity” of a newly
added edge to be impacted by the addition. However, the naive
strategy cannot exploit such proximity information, thereby
negatively impacting performance particularly for large real-
world networks where event-triggered changes tend to happen
in a more localized manner at different time steps.

D. An Incremental Approach via A-screening

Here, we present an alternative approach in which we first
identify a subset of vertices to evaluate at the start of every
time step, using the changes A;. The idea is to identify all
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Algorithm 1: Abstraction for Multi-level Approaches
Input: G(V, E)
Output: An assignment I1:V — Z
1 Initialize IT by setting C(v) < {v}, Yo € V
2 repeat
3 repeat
4 for each v € V do
5 Compute a local (greedy) function
9(v,C(v))
C(v) « Update community assignment for
v using the results from g(v,C(v))
end
Compute a global quality function @ for IT
until Convergence based on Q)
Review communities of II (optional step)
G(V, E) + Perform graph compaction for next

level
12 until Convergence based on @

13 return II

7
8
9
10
11

(or most) those vertices whose community affiliation could
potentially change due to A;; the remaining vertices will
simply retain their previous community assignments. This
new filtering technique, which we call A-screening (and
abbreviated as AS), is generic enough to be applied to any
incremental clustering approach that uses modularity. For
the purpose of this paper, we demonstrate it on multi-level
approaches.

More specifically, let Static(G) denote any static com-
munity detection algorithm of choice, that takes in an input
(static) graph G and outputs a set of communities C. Then,
our incremental approach is as follows.

1) Att =1, we call Static(G1) to output C;.

2) For each subsequent time step ¢t > 1:

a) We initially assign each pre-existing vertex ¢ € V; N
Vi—1 to the same community label as C;_1(¢). Each
remaining vertex (i.e., newly added at t) is assigned
a distinct (new) community label.

Next, we call a function A-screening(Gy, A;) that
returns a subset of vertices R; C V. This subset
corresponds to the set of vertices that have been
selected for processing during time step t.
Subsequently, we call StaticAS(Gt, R:), which is a
variant of Static(G;) that loads G but visits only the
vertex subset R, for evaluation during each iteration—
i.e., a modification to the for loop of line #4 in
Algorithm 1. Note that this procedure that uses R,
is only relevant to the iterations at the first level, as in
the subsequent levels, the algorithm uses compacted
versions of the same graph.

To demonstrate the A-screening technique, we
modified two well-known community detection methods:
Louvain algorithm [7], and smart local moving (SLM) al-
gorithm [8]. We call the resulting modified implementations

b)

)
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as dLouvain-As and dSLM-As respectively.

Note that there is also a simpler incremental version that
can be implemented for both these methods—by following
all steps outlined in our incremental approach except for
A-screening and instead trivially setting R; = V;. For
a comparative assessment of the A-screening strategy,
we implemented this baseline version as well—we refer to
the resulting two implementations as dLouvain-base and
dSLM-base! respectively.

E. The A-screening Scheme

In what follows, we describe our A-screening scheme
in detail. Given the graph (G;) and changes (A;) at time
step ¢, the goal of A-screening is to identify a vertex
subset R; C V; for reevaluation at time step t—i.e., any
vertex that is added to R; will be evaluated for potential
migration by the iterative clustering algorithm (Algorithm 1);
all other vertices are not evaluated (i.e., they retain their
respective community assignment from the previous time step
t — 1). Our A-screening scheme is also a heuristic and
it does not guarantee the reproduction of the results from
the corresponding baseline version—dLouvain-base or
dSLM-base—which are also heuristics. The main objective
here is to save runtime by reducing the number of vertices
to process, without significantly altering the quality. Despite
its heuristic nature, however, our A—screening scheme is
designed to preserve the key behavioral traits of the baseline
version (as we show in lemmas later in this section).

Algorithm: We assume that A, is stored as a list of ordered
pairs of the form (3, j). This implies that for each newly added
edge (4,]), there will be two entries stored in A;: (4,5) and
(j,1), as the input graph is undirected. We refer to the first
entry (7) of an ordered pair ((4,j)) as the “source” vertex and
the other vertex (j) as the “sink”. Let Sa denote the set of all
source vertices in Ay, and Ta(7) denote the set of all sinks
for a given source 1.

Algorithm 2 shows the steps for A-screening. We
initialize R; to ). Subsequently, we examine all edges of A;
in the sorted order of its source vertices. Sorting helps in two
ways: It helps us to consider all the new edges incident on
a given source vertex collectively and identify the edge that
(locally) maximizes the net modularity gain (consistent with
line #4 of Algorithm 2). This way we are able to mimic
the behavior of the baseline versions which also use the
same greedy scheme to migrate vertices. This sorted treatment
also helps reduce overhead by updating R; in a localized
manner (relative to the source vertices) and avoiding potential
duplications in the computations associated with a vertex.

Once sorted, we read the adjacency list for each source
vertex (Algorithm 2:line #3), identify a neighbor (j.) that
maximizes the modularity gain (line #4), and update R; based
on that vertex (line #8). However, prior to updating R;, we
check if the selected vertex j, has a better incentive to move
to 4’s community Cy_1(¢) (line #7); if that happens, then R,

IWe note that our dSLM-base implementation is in effect same as [3].

is not updated from source ¢ and instead, that decision is
left/deferred until j, is visited as the source. This way we
avoid making conflicting decisions between source and sink
while decreasing the time for processing (by reducing R, size).
Note that we only use the direction of migration that results
in the larger of the two gains for updating R,. The decision
to migrate itself is deferred until the stage of execution of
the iterative algorithm. In other words, the A-screening
procedure does not modify the state of communities, but it
sets the stage for which communities to be visited during the
main iterative process.

Algorithm 2: A-screening at time step ¢
Input: G, A,
Output: R;: Subset of vertices for reeavaluation

1 Rt «— (Z)

2 Sort edges in A; based on the source

3 for each i € S do

4 Let j, < argmaxjeTA(i){AQiﬁctil(j)}
5 Let gainy <= AQ;c,_,(j.)

6 Let gaing <~ AQ;, e, ()

7 if gainy > gaing and gainy, > 0 then

8 R: eRtU{z,]*}UF(z)UCt_l(]*)
9 end

10 end

11 return R,

The main part of Algorithm 2 is on line #8, where R;
is updated. Our scheme adds the following subset to TR;:
vertices ¢ and j,., all neighbors of ¢ (I'(7)), and all vertices
in the community containing j,.. In what follows, using a
combination of lemmas, we show that the R; so constructed
is positioned to capture all (or most of the) “essential” vertices
that are likely to be impacted by the edge additions in A;. In
other words, if a vertex is not added to R, it can be concluded
that it is less likely (if at all) to be impacted by the changes to
the graph, and therefore it can stay in its previous community
state—thereby saving runtime.

In all these lemmas, for sake of convenience (and without
loss of generality), we analyze the potential impact of the event
represented by moving ¢ to j,’s community. Intuitively, the key
to populating R, is in anticipating which vertices are likely to
alter their community status triggered by this migration event.
Fig. 1 shows the different representative cases that originate
for consideration in our lemmas.

First, we claim that any vertex that is a neighbor of ¢ can
be potentially impacted.

Lemma IIL1. If i’ € I'(i), then the community state for i
could potentially alter at time step t if i migrates to C(j).

Proof. There are two subcases: (A) if i’ is also in Cy_1(4);
and (B) otherwise.

Subcase (A) is represented by vertex label ¢; in Fig. 1. If ¢
were to leave C;_1(7), the strength of the connection of i; to
C—1(%) can only weaken because of a decrease in the positive

12
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Fig. 1: Figure showing the impact of a newly added
edge (4,7), shown in red dotted line. Representative
cases of candidate vertices for potential inclusion in
R are shown highlighted as labelled vertices. Note
that we follow the naming convention of denoting the
community containing a vertex ¢ by C(i). Also, note
that not all edges are shown.

term of the modularity (Eqn. 1)). Even if the negative term of
the same equation also decreases (due to the departure of &
from C;_1(7), it may or may not be sufficient to keep i; in
Cy—1(7). Therefore, we add i; to R;.

Subcase (B) is represented by vertex label k& in Fig. 1. Here,
k is in a community different from C;_;(i). However, the
situation with k is similar to that of 77 in subcase (A), as k’s
connection to its present community could potentially weaken
if it discovers a stronger connection to C(j,) as a result of ¢’s
move. Therefore, we add k to R;. O

Next, we analyze the potential of vertices that are in Cy_1 (%)
but not in I'(i) to be impacted by the migration of 7. In fact,
we conclude that there is no need to include such vertices in
Ri.

Lemma IIL2. If i’ € C;_1(i), then at time step t, a change
to the community state of i’ is possible, only if i’ is also a
neighbor of 1.

Proof. We have already considered the case where i’ € I'(4)
(as part of Lemma III.1). Therefore we only need to consider
the case where ¢’ ¢ I'(i). This is represented by vertex label
i in Fig. 1. Since iy is already in Cy_1(i) and since i
does not share an edge with ¢, a departure of ¢ from C;_1 (%)
can only positive reinforce i5’s membership in C;_1(¢). This
can be shown more formally by comparing the modularity
gains associated with .. Owing to space limitations, we
show the expanded proof in Appendix: Section A.1? in [22].
In summary, vertex i will have little incentive to change
community status and therefore can be excluded from R;. [

Next, we analyze the potential impact of ¢’s migration on
members of j,’s community.

Lemma IIL3. If j; € C;_1(j«), then at time step t, a change
to the community status of any such j, is possible.

Zhttps://arxiv.org/abs/1904.08553
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Proof. Regardless of whether j; shares a direct edge with
J« or not, the migration of a new vertex (¢) into its present
community (C;_1(j«)) increases the negative term in Eqn. 1.
This may or may not be accompanied with an increase in
the positive term as well (depending on whether j; shares
an edge with the incoming vertex ¢). In either case, however,
we need to re-evaluate the community status of such vertices.
Therefore, we add j; to R;. ]

Finally, we analyze the impact of i’s potential migration
from C;_4 (i) to Cy_1(j«), on vertices that are in neither of
those two communities and are also not in I'(2).

Lemma IIL4. If k € V;\{C (i) UC(j)}, then at time step t,
unless k is also in I'(i), there is no need to include k in R.

Proof. We consider only vertices k ¢ I'(i), as the other case
was already covered in Lemma III.1. There are three subcases:
(A) k shares an edge with some vertex in Cy_1(4) except i;
(B) k shares an edge with some vertex in C;_1(j); and (C)
k has no neighbors in Cy_1(4) or C;_1(j.). However, in none
of these cases a migration of i to C;_1(jx), could create an
incentive for k to move to C;_;(j,). This is shown formally
in Appendix: Section A.2 in [22]. O

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Input data: For experimental testing, we used a combina-
tion of synthetic and real-world networks. Table I shows the
input statistics for the inputs used.

TABLE I: Input network statistics. See Fig. B.2 of Appendix
in [22] for more details on individual time steps.

Input Input No. vertices No. edges No.
graph (cumulative) | timesteps

50k_l1 50,000 2,362,448 10

Synthetic 50k_hh 50,000 2,367,024 10
SM_II 5,000,000 | 213,656,492 10

SM_hh 5,000,000 | 213,771,700 10

Real-world Arxiv HEP-TH 27,770 352,807 11
sx-stackoverflow 2,601,977 63,497,050 2-28

As synthetic inputs, we used a collection of streaming
networks available on the MIT Graph Challenge 2018 [23].
We used two types of networks: i) Low block overlap, Low
block size variation (abbreviated as “11”), and ii) High block
overlap, High block size variation (abbreviated as “hh”).
These two types are in the increasing order of their community
complexity (11<hh). However, in both cases, the number of
edges grows linearly with time step (see Appendix Fig. B.2
in [22]). The datasets are available from sizes of 1K nodes to
20M nodes, and each of these datasets has ten time steps. For
our testing purposes, we used the 50K and 5M datasets.

As real-world inputs, we used two networks downloaded
from SNAP database [24]:

1) Arxiv HEP-TH: This is a citation graph for 27,770
papers (vertices) with 352,807 edges (cross-citations). For
the purpose of analysis we treated edges to be undirected.
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The dataset covers papers published between 1993 and
2003. Consequently, we partitioned this period into 11
time steps (one for each year).

sx-stackoverflow: This is a temporal network of interac-
tions on Stack Overflow, with 2,601, 977 vertices (users)
and 63,497,050 temporal edges (interactions). User-user
interactions can be of multiple types but for the purpose
of our analysis we treated all pairwise interactions equiv-
alently and used only the first instance of each interaction
as an edge.

2)

Implementations tested: In our experiments, we tested the
following implementations:

1) Static: This is a (static) community detection code run
from scratch on the graph at each time step i. Louvain
[7] and sS1LM [8] are the two tools we used for this
purpose.

Baseline: This is a community detection code run incre-
mentally on the graph at each time step ¢. “Incremental”
here implies that at the start of every time step i, we
initialize the state of communities to that of the end
of the previous time step ¢ — 1 (for ¢+ > 0). For this
purpose, we implemented our own incremental version
of the Louvain tool—we call this dLouvain-base);
and for SLM, we use the already available incremental
version DSLM [3]—we call this dSLM-base).
A-screening: This is a modified baseline version in-
corporated with our A-screening step to identify the
R set for use within each time step. The corresponding
two implementations are referred to as dLouvain-AS
and dSLM-AS.

2)

3)

B. Runtime and Quality Evaluation

First, we evaluate the impact of A-screening technique
on performance. Since the main part of the algorithm is the
iterative loop that scans every vertex and assigns communities
(the for loop in Algorithm 1), we measured the average time
taken per iteration of a given level, and the results are plotted
in Fig. 2. As can be observed, A-screening achieves a
significant reduction in the time spent within each iteration
(compared to both static and baseline).

The savings are a result of the reductions in the number
of vertices processed per iteration in the AS version (i.e.,
R, set size). We found the R, set-based savings to be more
significant for the real-world inputs compared to the synthetic.
This is shown in Fig. 3, which shows the percentage of
vertices processed per iteration—the R, set size fractions
range from as little as under 10% in some time steps (for
real-world inputs) to as much as 100% in some time steps
(for the synthetic inputs). This wide variation in efficacy can
be attributed to the nature of input changes. Even though
both classes of input graphs (synthetic and real-world) show
linear growth rates in size, for the synthetic inputs it is
harder to benefit from A-screening because edges are
connected almost randomly from new to existing vertices (as
introduced by an edge sampling randomized procedure [23]);
whereas, in the real-world networks, changes happen more
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7 Vel
to a larger savings in performance.

in a localized manner, giving an opportunity to benefit from
A-screening. In fact, even between the two real-world
networks, we observed a significant difference in the filtering
efficacy of the A-screening technique. Specifically, with
the ArXiv HEP-TH input, the R;-size fraction varied between
50%-90%; whereas the savings were more significant in the
case of sx-stackoverflow (and also showing a linear trend).

Next, we evaluate the total runtime including the time
taken to execute all levels. Note that in multi-level codes, the
number of iterations per level may vary across the different
implementations. Fig. 4 shows the runtime as a function of the
time steps, for different combinations of four inputs (SM_II,
SM_hh, Arxiv HEP-TH, sx-stackoverflow) and two sets of
implementations (Louvain and SLM).

We find that in all cases both baseline and AS implementa-
tions consistently outperform the respective static implemen-
tation, providing more than 2 orders of magnitude in some
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experienced long runtimes and therefore we omit those curves.

cases. Between the baseline and AS implementations, the
difference varies based on the input. For the synthetic inputs,
both versions perform comparably with a slight advantage
to the AS implementation in some time steps. As discussed
earlier, this can be attributed to the random nature of changes
induced in the synthetic inputs. For the real-world inputs, AS
significantly outperforms baseline, yielding over 5X speedup
in some time steps. For example, in Fig. 4c we have a 5X
speedup in time step tjp, since in time step tg we have
55158947 edges and this number has increased to 60714297 in
time step t19 and most of the new edges are intra-community
edges which result in less number of nodes for reevaluation
and consequently less time.

We also evaluated the quality (measured by modularity)
achieved by each version. We observed that the S version
yielded almost the same modularity as the baseline version
despite its heuristic nature, in nearly all cases except one
shown in Appendix Fig. B.3 (a) in [22] where AS gives a
much superior quality compared to the baseline. Results on
all inputs tested are shown in Appendix Fig. B.3 in [22].

C. Effect of Varying the Temporal Resolution

In many real-world use-cases, even though the input graph is
available as a temporal stream, the appropriate temporal scale
to analyze them is not known a priori. In fact, this scale is an
input property that a domain expert expects to discover through
the analysis of dynamic communities. In order to facilitate
such a study through dynamic community detection, we study
the effect of varying the temporal resolution, as defined by
the number of time steps used to partition a graph stream,
on the output clustering. Using the sx-stackoverflow input,
we first generated multiple temporal datasets, each of which
representing the input stream divided into a certain number
of time steps, ranging from {2, 4, 8, 12, 16, 20, 24, 28}
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Fig. 5: Plots showing the effect of varying the
temporal resolution—as measured by the number
of temporal bins (i.e., time steps) used to partition
the input graph stream. The resolution of parti-
tioning changes from coarser to finer, from left to
right on the x-axis.

steps. In this scheme, there are multiple nested hierarchies—
for instance, the 16-time steps partitioning can be achieved
by splitting each of the 8-time steps partitions into two.
Subsequently, we ran dLouvain-AS on the different temporal
datasets.
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Fig. 5 shows the results of our analysis. Fig. 5a shows
the change in average modularity as we increase the tem-
poral resolution from coarser to finer (left to right along
the x-axis). We observe that the modularity values decline
gradually until around 16 time steps, after which the decline
starts to accelerate. The decline in modularity suggests that
the community-based structure of the underlying network (at
different scales) starts to weaken as we increase the temporal
resolution. This is to be expected as the temporally binned
graphs tend to only become sparser with increasing resolution.
Notably, the more rapid slide that starts to appear after the 16
time steps-resolution suggests that the community structure
starts to deteriorate after that resolution for this input.

Interestingly, this property is better captured by Fig. 5b,
which shows the % savings in total runtime achieved by
our A-screening filtering scheme. Intuitively, when the
% savings remains approximately steady (highlighted by the
plateau region from the resolution of 4 time steps to 16 time
steps), it means that the nature of the evolution of the graphs
within those resolutions is also relatively consistent. However,
a steeper decline (on either end of the plateau) suggests
that under those temporal resolution scales the temporally
partitioned graphs become either too sparse (right) or too dense
(left).

Note that software speed becomes an important enabling
factor for conducting these types of experiments, where one
needs to run the dynamic community analysis repeatedly under
different configurations.

V. CONCLUSION

Conducting community detection-based analysis on large
dynamic networks is a time-consuming problem and there have
been many incremental strategies proposed. In this paper, we
visit a subproblem in this context—one of identifying vertices
that are likely to be impacted by a new batch of changes.
We presented a generic technique called A-screening
that examines and selects provably ‘“essential” vertices for
evaluation at every time step. We incorporated this technique
into two widely-used community detection tools (Louvain
and SLM) and demonstrated speedups in performance with-
out compromising on the output quality, for a collection of
synthetic and real-world inputs. Future research directions
include: i) extension of the A-screening technique to
edge deletions; ii) parallelization on multicore platforms; iii)
extensions to other incremental community detection tools;
and iv) application and dynamic community characterization
on large-scale real-world networks.
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