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ABSTRACT. In this paper we study Current Density Impedance Imaging (CDII)
on Electrical Networks. The inverse problem is to determine the conductivity
matrix of an electrical network from the prescribed knowledge of the magnitude
of the induced current along the edges coupled with the imposed voltage or
injected current on the boundary nodes. This problem leads to a weighted
11 minimization problem for the corresponding voltage potential. We also
investigate the problem of determining the transition probabilities of random
walks on graphs from the prescribed expected net number of times the walker
passes along the edges of the graph. Convergent numerical algorithms for
solving such problems are also presented. Our results can be utilized in the
design of electrical networks when certain current flow on the network is desired
as well as the design of random walk models on graphs when the expected net
number of the times the walker passes along the edges is prescribed. We also

show that a mass preserving flow J = (J;;) on a network can be uniquely
recovered from the knowledge of |J| = (|J;;]) and the flux of the flow on the
boundary nodes, where J;; is the flow from node i to node j and J;; = —Jj3,

and discuss its potential application in cryptography.

1. Introduction. Let G = (V, E) be a simple, undirected, weighted graph with n
vertices. We can identify G with an electrical network by placing a resistor with
resistance R;; between every two vertices ¢ and j, for 0 < ¢,5 < n with i # j. We
assign the weight o;; = R% on each edge E;;, and let o;; = 0 if ¢ and j are not
connected. Suppose a voltage is applied to a subset of the vertices, denoted by 0V
and called the boundary of V', then a current J = (J;j)nxn will be induced on the
edges of the graph, where J;; is the current flowing from vertex i to vertex j. In
particular, J;; = —J;; and if the current flows from 7 to j, then J;; > 0. We will
also assume that J;; = 0 if the vertices ¢ and j are not connected by an edge, and
that J;; = 0. Note that V = 0V Uint(V) = {1,2,...,n}. We will view the voltage
potential on V' as a vector v = (v1, va, ..., v,) € R™ where v; is the voltage potential
at vertex 7. We will also denote the imposed voltage potential on the boundary
nodes by a function f: 9V — R. By Kirchhoff’s and Ohm’s Law

S 45 (0; — ;) = 0 for all i € mt(V), (1)
j=1
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where int(V) = V' \ OV are the interior nodes, and v = f on 9V is the imposed volt-
age on the boundary nodes (Dirichlet boundary condition). Assume ((¢s;)nxn, f)
is given on E x 9V. Then (1) can be written as a system of m = |int(V')| linear
equations with m unknowns, i.e.

Apv =b, (2)

where v is a m dimensional column vector containing the unknown voltage values
at the interior nodes, Ap is a m x m non-singular matrix (see Proposition 1 below)
depending on the conductivities, and b is a m dimensional column vector depend-
ing on the conductivities and the known voltage at the boundary. In particular
the forward problem (1) always has a unique solution which is indeed the voltage
potential associated to the conductivity problem on the network.

On the other hand if a current 0 # ¢g € RI9VI is injected to the network on a
subset of vertices 9V C V (Neumann boundary condition), then we necessarily have

[oV]

Z g: =0, (3)

and by Kirchhoff’s and Ohm’s Law the voltage potential v satisfies

> i1 0ij(vi—v;) =0 forall i€ int(V)

(4)
Z;;l oij(v; —v;) =g; forall iedV.

The above equations can be written as
Anv =b, (5)

where Ay is an n x n matrix depending on the conductivity ¢ = (04;)nxn, and b is
an n-dimensional column vector depending on the injected current on the bound-
ary OV. The matrix Ay also has unique solutions up to adding a constant (see
Propositions 3 and 4 below) and the solution of (5) is the voltage potential on the
vertices of the graph. The matrix Ay is in fact the well known graph laplacian of
a weighted undirected graph.

As described above, the forward problems always have unique solutions up to
a constant and can be easily solved by solving a linear system of equations. In
this paper we are interested in the inverse problem of determining the conductivity
matrix of an electrical network from the knowledge of the induced current along the
edges of the network and Dirichlet or Neumann boundary conditions. This problem
can also be understood as a design problem where one aims to design an electrical
network that induces a prescribed current along its edges when a voltage f € RI9VI
is applied to the boundary nodes 8V, or when a current g € RI?V! is injected on
OV. These inverse problems are in the spirit of Current Density Imaging (CDI) and
Current Density Impedance Imaging (CDII) in dimensions n > 2 which have been
actively studied in recent years because of their potential applications in medical
imaging, see [17,19-24,26-34]. In dimension n = 3 the induced current inside
the conductive body €2 can be measured by Magnetic Resonance Imaging (MRI),
see [17,21].

Random walks arise in many mathematical and physical models in biology, eco-
nomics, computer and social networks, epidemiology, and statistical mechanics.
Such models have been used to model infection on graphs such as spread of epi-
demics and rumours with mobile agents, see [2,7], voting patterns [4,40], and stock
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market prices [11]. Random walk models have also been proven to be a simple yet
powerful method for extracting information from computer and social networks such
as identification of reputable entities in a network. For instance Google’s PageR-
ank algorithm uses random walks to rank websites in their search engine results,
see [18,35], and the survey papers [25] and [36] for applications of random walks
on graph in computer networks. Also see [39] for a wide variety of applications of
random walks on graphs in statistical mechanics. The inverse problem we inves-
tigate here translate to intriguing questions in various contexts where a random
walk model on graphs is utilized. The results could also be useful in the design of
effective random walk models for achieving prescribed goals with random steps in
a network. For instance, one can think of designing a random walk model with a
prescribed high net number of times the walker passes along certain edges of the
graph.

To the authors’ best knowledge the natural inverse problem considered in this
paper has not been studied elsewhere. In [5] and [3], the authors investigate the
problem of recovering the conductivity of the edges from the measurement of volt-
ages at the boundary vertices, and measurements of the voltage, current, and con-
ductivity on the boundary respectively. In [5] the authors proved injectivity of this
inverse problem for critical, circular and planar graphs and provided an explicit
reconstruction method. Under the assumption of monotonicity of conductivities,
partial uniqueness results are established in [3]. While the general theory of inverse
problems on graphs is a rich field of study with applications in various disciplines,
the above results are most closely related to this work.

There is a close connection between electrical networks and random walks on
graphs (see [6]). In Section 5 we exploit this connection and apply our results on
electrical networks to study the inverse problem of determining transition probabil-
ities of random walk models from the net number of times the walker passes along
the edges of the graph. We will also discuss a potential application of our results
in public-key encryption, a seemingly unrelated problem.

The paper is organized as follows. In Section 2 we study the problem of deter-
mining the conductivity matrix of an electrical network from the knowledge of the
magnitude of the induced current with Dirichlet boundary condition, and in Section
3 we study this problem with Neumann boundary data. In Section 4 we present
a numerical algorithm for finding minimizers of the {' minimization problem we
obtain in Sections 2 and 3. In Section 5 the connection between random walks and
electrical networks is discussed and we apply our results on electrical networks to
the inverse problem of determining transition probabilities from the net number of
time a random walker passes along the edges of the graph.

2. Dirichlet Boundary Condition. In this section we study the inverse problem
of determining the conductivity matrix ¢ = (0;)nxn from the knowledge of its
induced current J = (J;j)nxn on E and the imposed voltage potential f on OV
(Dirichlet boundary conditions). Let G = (V| E) be an undirected, simple, con-
nected graph with n vertices, and suppose a voltage is applied to some subset of
the vertices inducing the current J = (J;;)nxn on E. Throughout the paper |J]|
denotes the matrix |J| := (|J;j|)nxn, we will refer to |J| as a measurement matrix.

We first show that the forward problem has a unique solution, i.e. Ap is non-
singular. One can find a proof in [5] and we present a brief proof for the sake of
completeness.
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Proposition 1. The matriz Ap is non-singular.

Proof. For every i € int(V) it follows from (1) that v; is the weighted average
of the voltage potential in its neighboring nodes, i.e.

j=10ijVj
Sii0
j=191j
Consequently v satisfies the strong maximum principle in the sense that if v attains
its maximum or minimum on an interior node, then v must be constant on V. In

particular, v attains its minimum and maximum on the boundary V.
Now suppose Apv = Apv = b. Then w = v — v satisfies

(6)

v =

> oij(wi —w;) =0 for all i € int(V).
j=1

Since w = 0 on OV, it follows from the above maximum principle that w =0 on V.
Thus the matrix Ap is non-singular. |

An immediate consequence of Proposition 1 is that the forward problem (1) al-
ways has a unique solution.

Definition 2.1. We say that a vertex i is an interior vertex and write ¢ € int(V) if
n
Ji = Z Jz'j =0.
j=1
Otherwise we say that i is boundary vertex and write ¢ € 0V. For every ¢ € 9V,

J; is the current flowing in (J; < 0) or out (J; > 0) of the graph at vertex . In
particular, V' = int(V) U9V and int(V) N oV = 0.

Definition 2.2. Given f: 9V — R and a measurement matrix a = (a;j)nxn With
a;; € [0,00) for all 1 < 4,5 < n and a;; = 0 when ¢ = j and E, ; ¢ E, we say
that a symmetric matrix o = (04j)nxn With o;; € [0,00] is a conductivity matrix
associated to the data (f,a), if there exists a function v : {1,2,...,n} — R with
v|pv = f, and a matrix J = (J;j)nxn such that

Jij = Jij(vi - ’Uj) and |J”| = Qyj for all Z,] with (O # Vj,

and
n

> Jiy=0
j=1

for all i € int(V'). When a;; # 0 and v; = v;, then we formally define 0;; = co and
say that the edge between nodes ¢ and j is a perfect conductor. We shall also refer
to the function v as a voltage potential and denote the set of all voltage potentials
corresponding to the data (f,a) by V(s q).

For any measurement matrix a = (@;)nxn, define the function I : R” — R by
1
I(u):§Zaij|ui—uj|, (7)
,J

and for f € RI9VI consider the minimization problem

min{/(u) : v €R" and ulsgy = f}. (8)
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We shall prove that u € V; ,) if and only if it is a minimizer of the least gradient
problem. Let us first study the dual of the minimization problem above.

1. The Dual problem. Here we discuss the dual of the least gradient problem
(8) and study the connection between these two problems.

Let H(V) be the set of all real valued functions on the vertices. We shall view a
function v € H(V') as a vector in R™. Also let H(E) to be the space of all functions
on E, i.e. the space of all n x n matrices b = (b;;), where b;; denotes the value
of the function on the edge from vertex i to j, with the additional convention that
bi; = 0 if the edge from ¢ to j is not in F, and b; = 0.

Definition 2.3. Let u,v € H(V) and a,b € H(FE). Then we define the inner
products

U v ?-L(V) Zulvlv b d H(E) wadz] (9)

on H(V) x H(V) and H(E) x H(E), respectively. The spaces H(V) and H(E)
equipped with the above inner products are Hilbert spaces.

Next we define two linear operators D : H(V) — H(E) and div : H(E) — H(V)
which play crucial roles in our arguments.

Definition 2.4. For u € H(V) we define Du € H(E) as
(Du)ij = ui — u; (10)

if the edge connecting ¢ to j is in E, and 0 otherwise. Also for b € H(E) we define
divb € H(V) as follows

(divb); Zbﬂ — bij. (11)

Observe that if b € H(E) is anti-symmetric, that is b;; = —b;; forall 1 <i,j <n,
then the divergence is simply —2 y bi;. We shall refer to D and div operators as
gradient and divergence, respectively, since they play the role in our setting of
the standard gradient and divergence operators on R”, n > 2. Note that the
definition of the gradient and divergence given here does not depend on the weights
(conductivities) of the graph as it would normally when defining these operators
on a weighted graph. Since in the inverse problems we consider in this paper, the
conductivities are unknown, these definitions are desirable. Let us first show that
—div is the adjoint of D.

Proposition 2. Let u € H(V) and b € H(E). Then

(u, =divb)y vy = (Du, b) 3 (p)-
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Proof. Let u € H(V) and b € H(E). Then

(u, —divb)y )y = Zui(—(divb)i)

= iuiZ(bm—bﬁ)
sz:ubj - zj:zi:ujbij
= Yty

i
= Y (Du)iby
i

Let f € RI?Vl and define
Hy={ueHV):uloy = f}.

For a € H(E) we take a > 0 to mean that every entry is non-negative. Then for
0<acH(E)and f € RVl the least gradient problem (8) can be written as

1 1
ulg_?f 5 ZZjaij\ui —uj| = unel%lf §<a, |Dul)3 k), (12)
where we have used the notation |Dul;; = [(Du);;|. Now choose us € Hy. Define

Ho(V) C H(V) to be the space of functions on V' which are equal to zero on 9V.
Then we can equivalently write the primal problem (12) as

1 1
LS EJ aijlui —uj + (uyp)i — (ug);l Loin 5 (@ |Du+ Dugl)am). (13)

Define F': H(E) — R and G : Ho(V) — R as follows
1
F(d) = 5((1, |d 4+ Dugl)y gy and G(u) = 0. (14)

Then (13) can be written as

P = i F .
(P) ap i (Du) + G(u)

By Rockafellar-Fenchel duality (see [9]), this problem admits a dual problem which
can be expressed as

— G*(—divb) — F*(=b 15
s (—divb) (—b), (15)

where F* and G* denote the convex conjugate of F' and G, respectively. It is easy
to see that

G (u) = sup UjV;
( ) vE'Ho(V);

0 if u=0 on int(V)
oo otherwise.

Next we compute the convex conjugate of F.
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Lemma 2.5. Let a = (a;;) € H(E) with a;; > 0 and uy € Hy(V). Then

—(b, Dur if |pl <4
F*(b) _ < ) uf>H(E) 1 ‘ | = AL (16)
00 otherwise.
Proof. Suppose |b] < %a, that is |b;;]| < %aij for all 7, j. Then

* 1
) = sup ((d,b)nm) — 5(a,|d+ Dugl)y (k)
deH(E) 2

1
—(b, Dug)ppy + sup ((d,b)y(m) — *(a, ld)2(E))
deH o (E)

= —(b,Dug)y)+ sup Zdwbw aw|dw|)
deHa(B) 75

—(b, Dug)y () + bUP Z|dul |bij| — aw)

IN

< = (b Dug)np).-
Taking d = 0 we also get F*(b) > —(b, Dus)y (k-

Now suppose that there exists 1 < ig,jo < n such that [b;, 0| > 3aj,. Let

diyjo = Abiyjo, and d;; = 0 otherwise, where A € R. Then we have
. 1
F*(b) = —(b,Dug)yr)+ sup E dijbij — 5 aijldij])
deHq(E)

1
> <b Duf>7'l(E) + Sup )\(bl()j[) - §ai0j0 ‘biojo |)

1
= _<b7 Duf>7'l(E') -+ sup )‘|bi0j0 ‘('biojo‘ - iaiojo)
A>0

= OQ.

Thus the dual problem (15) can be written as

1
(D) ap :=sup{—(b, Dus)yr): becH(E), [b]< 2%
and div(b) = 0 on int(V)}.

Given that u; = 0 for at least one ¢ € V one can show that any minimizing
sequence of the the primal problem is uniformly bounded. Hence a convergent
subsequence exists and a minimizer of the primal problem (P) always exists. On the
other hand, it follows from Theorem IIT.4.1 in [9] that the dual problem (D) also has
a solution. Indeed since I(u) = 3(a,|Du + Duy|)#(p) is convex and J : H(E) — R
with J(p) = (a, |p|)#(r) is continuous at p = 0, the condition (4.8) in the statement
of Theorem I11.4.1 in [9] is satisfied. The weighted [! minimization problem (8) does
not have an unique minimizer and thus the conductivity inducing the current J on
F is not unique. However we can characterize the non-uniqueness.

Theorem 2.6. The infimum of the primal problem (P) is equal to the supremum
of the dual problem (D). Moreover, the dual problem has an optimal solution b, and
J = —2b satisfies

|Jij| = ai; for every i,j with v; # v; (17)



8 CHRISTINA KNOX AND AMIR MORADIFAM

and

Jij(vi —vj) >0 for all1 <i,j <n, (18)
for every minimizer v of (8). Conversely, if u € Hy and the above equation holds
then then u is a minimizer of (8).

Proof. A solution b to the dual problem always exists and the infimum of the
primal problem (P) is equal to the supremum of the dual problem by Theorem
II1.4.1 in [9] as discussed above. Let v be a minimizer of (8). Then

1
ap =1I(v) = 5Zaijlvi vl = Y bl — vl =D <bij(vs—vy)  (19)
i i i

(=b, Dv)y gy = (divh, v)3(v)
Z (divb);v; = Z (divd); fi = ap = ap.

€0V 1€0V

Hence the inequalities in 19 are indeed equalities and thus
1
bij| = 5 ij for every 4, j with v; # v;
and
bij(vi - Uj) § 0 for all 1 S Z,] S n.
Therefore if we let J = —2b we we see that (17) and (18) hold. It is not hard to see

that the converse also holds from the above computations. O

Corollary 1. If u and v are two arbitrary minimizers of (8), then
(u; —uj)(v; —v;) >0forall 1 <i,j <m.

2.2. Voltage Potentials Have Minimum Energy. We are now ready to prove
the following theorem.

Theorem 2.7. Let f be a function on OV and a be a measurement matriz. Then
v € V(y,0) if and only if it is a minimizer of the least gradient problem (8).

Proof. Suppose v € V(;,) and let J be the corresponding current on E. Then

1 1 1
f(”)ZgZaiﬂvi—vﬂ = iz‘JinU’i_vj‘ZEZJij(Ui_Uj) (20)
i i i

n

= ZviZJij = Z vy + Z v;J;

i=1  j=1 icint(V) i€dV
= viJ; = Z fids.
i€dV icaV
Therefore the minimum of the least gradient problem (8) is equal to ), 5y fiJi-
Moreover the minimum is achieved for every v € V(;,|s))-
Now suppose v is a minimizer of the problem (8) and let b be a solution of the
dual problem (D) and let J = —2b. Then by Theorem 2.6
|J,J| = Q45 for all Z,] with (O 7& Vj
and since divJ = 0 on int(V)

> Jij =0 for all i € int(V).

j=1
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For v; # v; define 0y; = Uf]”;}v > 0. Then
i Vj

Jij S Uij(vi - ’Uj) for all ’L,] with V; # Vj.
Thus v € V(s,4) and the proof is complete. 0

Remark 1. Note that every minimizer v of (8) uniquely determines a conductivity
matrix o. Corollary 1 indicates that the directions of the flow of the current along
the edges is unique, despite multiplicity of the minimizer of (8). Indeed if two
conductivity matrices o' and ¢® with 0 < ¢};,07; < oo induce the currents J*
and J? on a network when the voltage f is imposed on OV, and |J!| = |J?|, then
J' = J2%. This is a counter-intuitive result.

2.3. Multiple Measurements. Suppose we have two data sets (f!,a') and (f?, a?),
and would like to find a conductivity matrix ¢ inducing the currents with magni-
tudes a! and a2, when the voltage potentials f! and f? are imposed on the boundary
vertices V! and V2, respectively.

Let I' and I? be defined by Equation (7) for a' and a? respectively and for
u = (u!,u?) € R" x R" define

9 I R 1
) 1 _ 7 g i j o1
(u,u”) Z ‘J_l_| |J.2.‘ ) (21)

c2 ij ij
where

21, 9): i 172
C*={(,j): 1<4,j<n and Jj, Jj # 0}.
Define
Fu',u?) =TI"(u') + IP(u?) + @(u', u?) (22)
and
A= {(ul,u2) ER"XR": u' = fl on OV! and %= f2 on 8V2}.

Now consider

inf  F(u,u?). (23)

(utu?2)eA
It is easy to see that (23) always has a minimizer.
Theorem 2.8. Let (u',u?) be a minimizer of (23).

1. If there exists a conductivity matriz o which induces the current J* with |J¢| =
a' when the voltage potential f* is imposed on the boundary, denoted 0"V,
i=1,2, then ®(u',u?) = 0. Moreover,

1
0--:L for all i,j with ul # ul
) 1,1 ’ i 5
|u; Uj|
and
2
as.
055 = 2i7 57 forall 4,5 with uf;ﬁuf
|u; uj|

2. If there doesn’t exist a conductivity matriz o inducing the current J' with
|J*| = a* when the voltage potential f* is imposed on the boundary noted OV,
i=1,2, then ®(u',u?) > 0.
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Proof. (1) Suppose there exists a conductivity matrix o producing the data
(f',a') and (f?,a?). It follows directly from Theorem 2.7 that the set of minimiz-
ers of (23) is equal to Vs1 41y X V(s2 42). So the first statement follows.

(2) Suppose ®(u',u?) = 0. Then u! and u? minimize I* and I? over the appropriate
spaces and so by Theorem 2.7, u' € V(1 ,1) and u® € V(2 42) and thus they each
have corresponding conductivity matrices o! and o2 that generate currents J! and
J? respectively. However ®(u',u?) = 0 implies that these conductivities are in fact
equal. O

Now suppose a finite data set of measurements is given:

(ffa"), (£2,0%), .., (fF,d"), k>2.

Define
1
- §Zaéj|ui —u], 1<I<k,
iJ
and
k 1 1 l ]2
ui —u; o ou—u
(I)k(u’u27 7uk):Z - 1 L= .
l b
—2 @l |Jij| |‘]ij|
where

C'={(i,j): 1<i,j<n and J},J, #0}.

YR
Consider the weighted ! minimization problem

k
inf I'(oh) 4+ ®F (ut, u?, ..., ub), 24
e 100+ 0 ) (24)

(ulu?,...,
where
AF = (b ?, . uF) s Wl eR™ and Wl =Y on OV!, i=1,2,..,k}.
One can similarly prove the following theorem.

Theorem 2.9. Let (u',u?,...,u") be a minimizer of (24).

1. If there emists a conductivity matriz o which induces the current J' with |J'| =
al when the voltage potential f' is imposed on the boundary noted OV', | =
1,2,....k, then ®(u',u?,...,u*) = 0. Moreover,

l
a;;
1 7

lut —u

| for all i,7 with ui #* ué», l=1,2,.., k.
i

045 =
2. If there doesn’t exist a conductivity matriz o inducing the current J' with

|J!| = a! when the voltage potential f' is imposed on the boundary noted OV,
1=1,2,3, ..., k, then ®(u',u?,...,uF) > 0.

3. Neumann Boundary Condition. Let G = (V, E) be an undirected simple
connected graph with n vertices, and suppose the current 0 # g € RI%V! is injected
to a subset OV of V, regarded as boundary of V', inducing the current J = (J;;) on
E. Then g should satisfy the compatibility assumption

[oV|

Z g =0. (25)
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We will again denote |J| := (|Ji;|)nxn and refer to |J| as a measurement matrix.
The following proposition characterizes solutions of the forward problem (4).

Proposition 3. Let Ay be the matriz defined in (5). Then
Ker(An) ={(¢,¢,....,c) e R": ceR}.

Proof. Suppose Ayw = 0 for some w € R™. Then it follows from (4) that

§Zgij(wi_wj)2 = §Zwizaij(wi_wj)_§ijzaij(wi_wj)
4.7 =1 =1 =1 =1

Hence w; = w; for all ¢ and j connected by an edge. Since G is connected the proof
is complete. O

Proposition 4. The equation Ayv = b has a solution if and only if >, b; = 0.

Proof. By the Fredholm Alternative from linear algebra, Ayv = b has a solution
if and only if b € K er(ANT)l. By the previous proposition and the fact that Ay
is symmetric we have

Ker(Ay™)* = Ker(Ay)* ={beR": ) b =0}.
i=1

|
Therefore if > ; b; = 0, up to adding a constant the equation (4) has a unique
solution. The following is the analog to Definition 2.2.

Definition 3.1. Given 0 # g : 0V — R satisfying Z‘g{‘ g; = 0 and a measurement
matrix a = (ai;)nxn with a;; € [0,00) for all 1 < 4,5 <n and a;; = 0 when ¢ = j
and E;; ¢ E, we say that a symmetric matrix ¢ = (0;)nxn With 0;; € [0, 00]
is a conductivity matrix associated to the data (g,a), if there exists a function
v:{1,2,...,n} = R with and a matrix J = (J;;)nxn such that

Jz'j = O'ij(vi — Uj) and |Jij| = Qij for all i,j with Vi 7& Vj,
> Jij =g foralli € OV
j=1

and
n

> Jij =0 for all i € int(V).

j=1
When a;; # 0 and v; = v;, then we formally define 0;; = oo and say that the edge
between nodes 7 and j is a perfect conductor. We shall also refer to the function v
as a voltage potential and denote the set of all voltage potentials corresponding to
the data (g,a) by V(g.q)-
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For a measurement matrix @ = (a;j)nxn, define the function I : R™ — R by
1
I(u) = §Zaij|ui —Uj|. (26)
i,J

Also for g € RI?V! satisfying (25) define
My :={ueR": Z u;g; = 1}.
icov

We shall prove that the voltage potential is a minimizer of the I' minimization
problem

1
uréljl\fllg B Z aijlu; — uj. (27)
irj

Let us first study the dual of this problem.

3.1. The Dual problem. In this section we discuss the dual of the least gradient
problem (27) and study its connection to the primal problem. Let 0 # g € RIOVI
satisfying (25). Choose uy € H(V') such that

Define
Mo :={ueH(V): Z u;g; = 0}.
i€V
Then we can equivalently write the primal problem (27) as

1 1
Jin 2 ; aijlui —uj + (ug)i — (ug)j| = min >{a,[Du+ Dugl)rce).  (28)

Define F': H(E) — R and G : My — R as follows
1
Fd) = §<a, |Du + Dug|)y gy and G(u) = 0. (29)

Then (28) can be written as
(Py) apy:= min F(Du)+ G(u).

u€eMo

As before this problem admits a dual problem which can be expressed as

— G*(—divb) — F*(=b). 30
i — G (~divh) — F*(~b) (30)

From Lemma 2.5 we have

00 otherwise.

Next we compute G*.

Lemma 3.2. Let G : My — R be defined as G = 0. Then for G* : (My)* = R we
have

0 if beB

oo otherwise, (31)

G*(D*b) = {
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where
B:={beH(E): divb=0 on int(V) and (divb); = A\g; for all i € V,
for some X € R}.
Proof. First note that

G*(D*b) = sup (D*b,u)yvy = sup (b, Duyypy = sup —(divb, u)x v
uEMyg ueEMy ueMy

o if divb e Mot

~ |oo otherwise.
Let h € H(V) with h; = 0if ¢ € int(V) and h; = g; if i € 9V, and

N={ h: AeR} CH(V).
Observe that Mg = {u € H(V) : (h,u)y) = 0}. Hence My = N=. Since
Nit = N, see [16],
Mg =N,

and the result follows. O

Therefore the dual problem (30) can be written as
(Dn)  apy = sup{—(b, Dug)y (g},
beD

where D = {b € B: b < 1a}.

Similar to before one can show that (27) has a minimizer. Similar to the Dirichlet
boundary condition case, it follows from Theorem II1.4.1 in [9] that the dual problem
(Dy) also has a solution and characterizes the non-uniqueness of solutions of the
primal problem (27).

Theorem 3.3. The infimum of the primal problem (Pn) is equal to the supremum
of the dual problem (Dy). Moreover, the dual problem has an optimal solution b,
and J = —2b satisfies

|Jij| = aij for every i,j with u; # u,; (32)
and

Jij(ui —u;) >0 for alll1 <i,j <n, (33)
for every minimizer uw of (27). Conversely, if (32) and (33) hold for some M,,
then then u is a minimizer of (27).

Proof. Let b be a solution to the dual problem with corresponding A € R.
Suppose u is a minimizer of 27. Then

1
apy =1(u) =3 ;azﬂuz‘ —u| > ; |bijl i — uj| > ZZJ: —bij(ui — uy) (34)
= (=b, Du)y(my = (divh, u)w(v)
= A Z gili = A =Qp, = Qpy.
icov
Thus the inequalities in (34) are indeed equalities and taking J = —2b we we see

that (32) and (33) hold. It is easy to see from the above compuations that the
converse also holds. O
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Corollary 2. If u and v are two arbitrary minimizers of (27), then

(u; —uj)(v; —v;) >0 foralll1 <4,j <n.

3.2. Voltage Potentials Have Minimum Energy. We can now prove the analog
to Theorem 2.7.

Theorem 3.4. Let g # 0 be a function on OV satisfying 25 and a be a measurement
matriz. If v € V(g,q), then v is a minimizer of the least gradient problem (27).

Conversely, given any a = (a;;) with a; ; >0 and g € RIOVI satisfying (25), if v is
a minimizer of the least gradient problem (27), then v € V(g,q) for some A > 0.

Proof. Suppose v € V(,,) and let J be the corresponding current on E. Fol-
lowing similar computations as in the proof of Theorem 2.7 we have

1 1 1
I(U)=§Zaij\”i—%| = §Z|Jij”’07;_vj|Zinij('Uz‘_'Uj) (35)
iJ i i

Z vig; = L.

i€V

Therefore the minimum of the least gradient problem (27) is equal to 1. Moreover
the minimum is achieved for every v € Vg 1))

Now suppose v is a minimizer of the problem (27) and let b be a solution of the
dual problem (Dy) with the corresponding A € R. Let J = —2b. Then by Theorem
3.3 we see that v € V(zg.a)- O

Remark 2. Note that Corollary 2 indicates that the direction of the flow of the
current along the edges is unique, despite multiplicity of the minimizers of (8) (see
also Remark 1).

3.3. Multiple Measurements. Suppose we have two data sets (g*, a') and (g2, a?),
and would like to find a conductivity matrix ¢ inducing the currents with magni-
tudes |J'| and |J?|, when the currents g' and g* are injected on the boundary
vertices 0'V and 92V, respectively. We can consider the minimization problem

(Uliﬁf)e’C F(v'v?). (36)

where F' is defined by (22) and
K= {(v'v?) € R" x R": Zvilgil =1 on and Zvizgf =1}
j=1 j=1

The analog to Theorem 2.8 can be formulated and proved in this setting and we
can also similarly extend to a finite number of measurements.

4. Algorithms for finding minimizers. In this section we present numerical
algorithms for finding minimizers of the ' minimization problems discussed in
Sections 3 and 4, yielding voltage potentials for Dirichlet or Neumann boundary
conditions. The primal problem (Pp) and (Py) can be written as

min F(d) subject to Du=d, (37)
{ueH,deH(E)}
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where H = Ho(V) for the Dirichlet case and H = M, for the Neumann boundary
problem. This leads to the unconstrained problem

e

min  F(d) + —||Du — d||*. 38

{ueH,deH(E)} ( ) 2 ” H ( )

To solve the above minimization problem, we use and develop an algorithm in

the spirit of the alternating Split Bregman method which was first introduced by

Goldstein and Osher [15]. The Split Bregman algorithm suggests initiating the
vectors b° and d°, and producing the sequences u*, b*, and d* as follows

. «
(Ukﬂa dk+1) = argmlnueH,deH(E){F(d) + 9 | V¥ + Du—d ||§}a (39)
bk+1 _ bk + Duk+1 _ dk+1

where o > 0. Since the joint minimization problem (39) in both w and d is in
general expensive to solve exactly, Goldstein and Osher [15] proposed the following
Alternating Split Bregman algorithm for solving problems of type (37)

Pt = argmingcy || b + Du —d" |3, (40)
. «

dHtt = argmin ey gy {£'(d) + by | 6% + Du* —d |3}, (41)

b = bF 4 DuMT — gt (42)

See [1,10,13,15,37,38] for more details. It is pointed out by Esser [10] and Set-
zer [38] that the above idea to minimize alternatingly was first presented for the
augmented Lagrangian algorithm by Gabay and Mercier [13] and Glowinski and
Marroco [14]. The resulting algorithm is called the alternating direction method
of multipliers (ADMM) [12] and is equivalent to the alternating split Bregman
algorithm. The convergence of ADMM in finite dimensional Hilbert spaces was
established by Eckstein and Bertsekas [8]. This in particular implies convergence of
the alternating split Bregman algorithm in finite dimensional Hilbert spaces. Cai,
Osher, and Shen [1] and Setzer [37,38] also independently presented convergence
results for the alternating split Bregman in finite dimensional Hilbert spaces. In [27]
and [29] the authors proved the convergence of the alternating split Bregman algo-
rithm in infinite dimensional Hilbert spaces by showing that the alternating split
bregman algorithim corresponds to the Douglas-Rachford splitting algorithm for
the dual problem. Indeed the dual problems (15) and (30) can be written in the
form

0 € A(-b) + B(-b), (43)
where A := 0G*o(—div) and B = JF* are maximal monotone operators on H. For
a set valued operator P : H — 2 let Jp denote its resolvent, i.e. Jp = (Id+ P)7L.
Douglas-Rachford splitting algorithm states that for any initial elements z¢ and pg
and any « > 0, the sequences pi and xj generated by the following algorithm

Tpy1 = Jaa(2pk —xk) + Tk — Pk
Per1 = JaB(Try1), (44)
converges to some = and p respectively. Furthermore p = J,p(x) and p satisfies
0 € A(p) + B(p).
Let us introduce the sequences b* and d* with

zr = a(df +d¥) and p = aby.
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Notice that both sequences b* and d* converge. The resolvents Ju(2py — %) and
JaB(ZK+1) can be computed as follows

Jaa(2pr — 1) = a(b® + DuFt — g¥) (45)
and
Jap(Thi1) = a(bF + DuFtt — d*H), (46)
where ©*t1 and d*t! are minimizers of
Ii(u) = > [bE; + (Du); — df|? (47)
1,
and

1 a
L(d) =5 > aijldij + (Dug)ij| + 3 D IbE 4 (DuF ) — di (48)
' i

over u € Ho(V) for the Dirichlet problem and over u € Mj for the Neumann
problem, and over d € H(E).

In the case of Dirichlet boundary condition the minimizer of I; should satisfy
the Euler-Lagrange equation

S° (Du)iy = L(divdk); — (divd*),], Vi € int(V)
j=1 (49)
u; =0 forall 7€ dV.

It follows from Proposition 1 that the above system is uniquely solvable.

In the case of Neumann boundary condition, I; also has a unique minimizer in
M up to adding a constant, but identifying the solutions is more subtle. First note
that if « is a minimizer I; in My, then it satisfies the Euler-Lagrange equation

Z (DU)” = %[(lebk)Z — (ledk)Z}, Vi € 1nt(V)

=1 (50)

> (Du)i; = By + [5(divb®); — (divd¥);], forall i€V

j=1
for some 8 € R. Conversely for § € R, every solution of the above equation which
belongs to My is a minimizer of I;. Since Y, 5, 9; = 0 and Y7 (dive); = 0 for
any ¢ € H(E), by Propositions 3 and 4 the system (50) has a unique solution in
H(V) for every 8 € R, up to adding a constant. To identify 3 and find a solution
of (50) in My, let z be a solution of

n

Z (DZ)ij =0, Vi € ll’lt(V)

! (51)
> (Dz)ij=g; forall iedV.
j=1
Then
0<3 > (D) = 3 Y wiy (Dz)y - 3 >z (Dz)y
i,j i=1  j=1 j=1 =1

= Dz (D2)iy
=1 j—=1
= Y =g

i€V
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Hence

Z zig; > 0.

i€V
Now let u be a solution of
- 1
> (Du)i; = 5[(divb’“)i — (divd*);]), VieV. (52)
j=1
Define
8= — Zieav Ui gi
Yicov Zibi

Then v = u + Bz belongs to My and satisfies the equation (50), and hence v is the
unique minimizer of I; over My, up to adding a constant.
The minimizer of I for the Dirichlet problem can be directly computed as
dk+1 _ max{|wij| — %, 0} szl — (DUf)ij lf wij 75 0
K —(Duf)ij if wij = O,

(53)

where w;; = (Du*t1);; + (Dug)ij + bf;. For the Neumann problem uy is replaced
by vg.

Therefore Douglas-Rachford splitting leads to the following convergent algorithms
for the Dirichlet and Neumann problems.

Algorithm 1 (Finding a minimizer of the Dirichlet Problem)

Let @ > 0, uy € H(V) with u = f on OV and initialize b°,d° € H(E). For
k>0:

1. Solve

Z(DukJrl)ij = %[(dlvbk)z — (ledk)l], Vi € Hlt(V)
G . (54)
u;7" =0 forall iedV.
2. Compute dF*!
gort = [ max{lwigl =50, 0bpidy = (Dug)ij - if wiy #0 (55)
“ 7(D’U,f)ij if wij = 0,

where w;; = (Duk+1)ij + (Dug)ij + bfj-
3. Set
k k
i = b + (Duth);; — dlit.

The following proposition follows directly from the convergence of Douglas-Rachford
splitting algorithm and Theorem 1.2 in [27]. See also [1, 37, 38].

Proposition 5. Let u* b*, and d* be the sequences produced by the Algorithm 1.
Then v* — u and b* — %J, where u and J are solutions of the (13) and it’s
dual problem (D), respectively. In addition d* — Du. In particular u is a voltage

potential corresponding to the data (f,a) and J is the induced current with |J| = a.
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Algorithm 2 (Finding a minimizer of the Neumann Problem)

Let a > 0, vy, € H(V) with > v;9; = 1 and initialize °,d° € H(E). Also let

%
z € R™ be a solution of (51) with z; = 0. For k& > 0:
1. (a) Solve
k — 1[(divhk " ;
{ %:(Du ) = 3l(divdF); — (divdF),], VieV (56)

with w51 = 0.

(b) Compute
gR+1 — _2icov ui g,

Yicov #ii
and set vF 11 = yF+1 4 ghtly
2. Compute dF*!
gort = [ maxllwig] = 53,03y = (Dug)iy it wy; # 0
v _(Dvg)ij lf wij = 0,
Where wij = (D’Uk+1)ij —+ (Dvg)ij —+ bfj
3. Set

(57)

bttt = bl + (D) — it

Convergence of Douglas-Rachford splitting algorithm implies the following con-
vergence result, see Theorem 1.2 in [27] and [1,37,38].

Proposition 6. Let v* b*, and d* be the sequences produced by the Algorithm 2.

Then v¥ — v and V¥ — i,], where v and J are solutions of the (28) and it’s
dual problem (Dy ), respectively. In addition d* — Dv. In particular v is a voltage
potential corresponding to the data (Ag,a) for some X\ € R and J is the induced cur-
rent with |J| = a. Moreover X is the optimal values of the primal and dual problems

(Py) and (D), i.e. A= apy, = ap,.

4.1. Numerical Simulations. We performed a set of numerical simulations in
MATLAB to demonstrate convergence of Algorithm 1 and 2. A simple graph with
100 vertices was generated and edges were randomly assigned between nodes with
a approximate density of 0.125. Random numbers uniformly distributed between
0 and 1 were then assigned to each edge as their conductivity. We then selected 5
boundary nodes and randomly assigned values between 0 and 1 as boundary data.
For the Dirichlet boundary data, the forward problem was solved to determine
the current J, generating the data a = |J|. To generate the boundary data for
the Neumann problem we found the current entering/leaving the system at each
boundary vertex. The simulations for both the Dirichlet and Neumann boundary
data were done on the same graph structure with the same current data |J|. The
nonsingular linear systems in algorithm 1 were solved using the MATLAB mldivide
function and the singular linear systems in algorithm were solved using the pinv
function. The vector uy was chosen to be zero on int(V') and f on the 0V. The
vector vy in Algorithm 2 was chosen using the MATLAB mldivide function. Tables
1 and 2 show the numerical errors for algorithms 1 and 2 on the same graph for
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TABLE 1. Numerical errors for algorithm 1 on 100 node graph with
1121 edges

Tolerance | Relative L2 Error | Number of Iterations | Elapsed Time(s)

10-3 1.2171x1073 16 0.069309
104 1.3160x 104 22 0.102846
105 1.4494x10~5 92 0.358250
10-6 1.3615x10~ 133 0.405979

TABLE 2. Numerical errors for algorithm 2 on 100 node graph with
1121 edges

Tolerance ‘ Relative L2 Error | Number of Iterations ‘ Elapsed Time(s)

10~2 1.3069% 103 7 0.055400
1073 1.3908x 104 9 0.071342
104 1.0235x1075 12 0.086956
1075 1.1987x10~6 24 0.147310

TABLE 3. Average Number of Iterations

Tolerance ‘ Algorithm 1 ‘ Algorithm 2

10-3 21.175 15.918
1074 46.097 18.905
10-° 111.847 23.486
106 227.624 32.846

different levels of tolerance. Simulations were run on a late 2013 MacBook Pro
with a 2.4 GHZ Intel Core i5 processor. We used the L? matrix norm for error
computations.

While running our simulations we observed that the speed of convergence of
Algorithm 1 varied quite wildly depending on the choice of boundary data. We
also observed that the speed of convergence of Algorithm 2 was always the same
or faster than that of Algorithm 1. To test this observation, we ran algorithms
1 and 2 on the same graph used in Tables 1 and 2 for 1000 different choices of
Dirichlet boundary. The average number of iterations for each algorithm is shown
in Table 3. We also remark that changing the structure of the graph also effects the
speed of convergence. It is not clear to the authors that why Algorithm 2 converges
faster than Algorithm 1, and an in depth analysis of the speed of convergences of
algorithms 1 and 2 remain open.

5. Applications. In this section we discuss potential applications of our results
on electrical networks on random walks on graphs and Cryptography.

5.1. Random Walks on Graphs. Let G = (V, E’) be a connected, directed, and
simple graph with n nodes and consider a random walk on G. Suppose a random
walker begins at node a and walks until they reach node b and if they return to
a before reaching b they keep walking. Let P = (P;;) € H(E) be the matrix of



20 CHRISTINA KNOX AND AMIR MORADIFAM

transition probabilities, i.e. 0 < P;; < 1 is the probability of the random walker
walking from node 7 to node j. In particular Zj Py =1forall<i<n. Let
Wi;; be the expected number of times the walker walks from node ¢ to node j before
exiting the graph at node b. Note that W;; = —Wj;. Can one determine transition
probabilities P = (P;;) from the knowledge of the boundary vertices {a,b} and
W = (W, ;)? In this section, among other results, we show that the answer is yes,
and describe an algorithm for determining such P.

There is a close connection between electrical networks and random walks on
graphs [6]. Let G = (V,E) be an electrical network with conductivity matrix
o = (0i5), 05 € [0,00), and let OV = {a,b}. Suppose a current g with g(a) = 1

and g(b) = —1 is injected to the network inducing a current J along the edges.
Define
n 0-1
g; ‘= Z;aij and Pij = 0_7: (58)
i=

and assign the transition probability matrix P to the graph G = (V, E’). Then the
net number of times the walker taking an step from node 7 to node j is indeed J;;,
i.e.

J=W.

Therefore if the boundary nodes 9V = {a, b} and the magnitude of expected net
number of times the walker should walk along the edges of the graph is prescribed,
by the method presented in Section 5, one can first find a conductivity matrix o
inducing the current J = W on network and compute transition probability matrix
P by (58).

The connection between random walks on graphs and electrical networks with
Neumann boundary condition can be generalized to the case when 0V =T', UT
with Ty NTy = 0 and Ty, Ty, # 0. Let g € RI9VI with g|r, > 0 and g|r, < 0 and

Zgizl and Zgi:—l.

i€l i€l

Suppose we would like to determine a transition matrix P such that if a random
walker enters the network from a vertex k in I', with probability g, then

e they exit the network at a node [ € T, with probability |g]
e the expected net number of times they pass from vertex ¢ to node j before
exiting the network is W;;, 1 <14,7 < n.
As explained above, to determine the transition matrix P it suffices to find a con-
ductivity matrix o inducing the current J = W with Neumann data g on V. Then
P can be computed from (58).

Suppose OV = {a, b} and consider the inverse problems of determining the tran-
sition probabilities from the relative net number of times the walker walks between
the edges of the graphs, i.e. alV = (aWV; ;) where « is a unknown constant. Then
one can determine a transition probability P by finding a conductivity matrix o by
minimizing the [! minimization problem (7) with a = aW, f(a) =1 and f(b) = 0.
A transition matrix can also be obtained by minimizing (27) with the Neumann
boundary condition g(a) =1 and g(b) = —1.

Remark 3. Note that in this section we assume that the conductivity matrix
o = (045) satisfies 0;; € [0,00). Indeed we do not allow perfect conductors as
otherwise the probability matrix P in (58) will not be well-defined. As described in



ELECTRICAL NETWORKS WITH PRESCRIBED CURRENT 21

the introduction, if for a minimizer v of (8) or (27) we have v; = v; and |J; ;| # 0
for some 1 <4, j < n, then the edge (¢, ) is a perfect conductor, i.e. o;; = co. If
v is minimizer of (8) or (27) leading to perfect conductance on an edge, then one
may look for an increasing function F' : R — R such that u = (ug,uz,...,uy) :=
(F(v), F(v2),...,F(vy,)) satisfies u; # u; for ¢ # j. Note that such u will also
be a minimizer of (8) or (27) and would provide a conductivity matrix o with
0;; € [0,00), and hence the transition probabilities can be computed from (58). If
such increasing function F' does not exists, then there exists no transition probability
matrix P for which the expected number of times the walker passes along the edges
is W.

5.2. Applications in Cryptography. In this section we discuss a potential ap-
plication of our results on electrical networks in public-key encryption. As stated
in Remark 2, Theorem 2.7 implies that a mass preserving flow J = (J;;) along the
edges of a graph G = (V, E) can be recovered from the knowledge of |J| = (]J;;])
and its net flux on the boundary nodes 0V. More precisely, suppose J; ; is the
current from node 4 to node j (J;; = —Jj; for (4,j) € E), and suppose

n

Z Jij =0  for every interior node ¢ ¢ oV
j=1

and
n

Z Jij = fi  for every boundary node i € 9V.
j=1

Then J can be reconstructed from the knowledge of (|J|, f,0V). This counter-
intuitive result has a potential application in cryptography. To see the connection,
let us translate a special case of this result to the language of matrices.

Let I,, be a subset of {1,2,...,2n + 1} with n elements and Aj, be the space
of (2n + 1) x (2n + 1) anti-symmetric matrices A = (a,;) satisfying the following
properties:

I.a;€e{-1,0,+1}fori#janda; =0,forall<i4j<2n+1
IT . All rows of A contain an even number of non-zero entries
IIT . Sum of the entries of the ith row is equal to zero if i & I,
IV . For i € I,,, the sum of the entries of the ith row is denoted by f;, which is
not necessarily zero.

Note that f € R™. Suppose a pair of communicators have agreed on a set of
indices I,, C {1,2,...,2n+ 1} with n elements, both are aware of I,,, and would like
to securely communicate a matrix A € A, . Then the first party can just send the
key (JA|, f) where f € R™ is the sum of the entries of the rows of A that belong
to I,. The second party can decrypt the message and find A from the knowledge
of (|A], f,I), using the algorithm we developed in Section 4. Since a;; only takes
integer values in {—1,0,41}, a few iterations of the algorithm should be enough to
determine A. On the other hand, finding A from the knowledge of (|A|, f) would
be extremely difficult for an adversary who is not aware of I,,. Indeed since all rows
of |A] have an even number entries equal to 1, the adversary could not determine
the boundary nodes I, from |A|. To decrypt the message, the adversary faces the
problem of guessing I,, among (2”;1) subsets of {1, ....,2n+ 1} with n elements and
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matching it with f. The number of different possibilities are

2n+1 22n+1
n! ~ nl,
n VT
which grows very fast and makes the decryption for adversaries extremely difficult

for large n. The above application in public-key encryption and the challenges of
its implementation will be further studied in a forthcoming paper.
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