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ABSTRACT. We study existence of minimizers of the general
least gradient problem

inf
u∈BVf

∫

Ω
ϕ(x,Du),

where BVf = {u ∈ BV(Ω) : u|∂Ω = f }, f ∈ L1(∂Ω), and
ϕ(x, ξ) is a convex, continuous, and homogeneous function of
degree 1 with respect to the ξ variable. It is proven that there
exists a divergence-free vector field T ∈ (L∞(Ω))n that deter-
mines the structure of level sets of all (possible) minimizers; that
is, T determines Du/|Du|, |Du|-almost everywhere in Ω, for all
minimizers u. We also prove that every minimizer of the above
least gradient problem is also a minimizer of

inf
u∈Af

∫

Rn
ϕ(x,Du),

where Af = {v ∈ BV(Rn) : v = f on Ωc} and f ∈ W 1,1(Rn)

is a compactly supported extension of f ∈ L1(∂Ω), and show
that T also determines the structure of level sets of all minimiz-
ers of the latter problem. This relationship between minimizers
of the above two least gradient problems could be exploited to
obtain information about existence and structure of minimizers
of the former problem from those of the latter, which always
exist.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let Ω be a bounded open set in Rn with Lipschitz boundary, andϕ : Ω×Rn → R

be a continuous function satisfying the following conditions:

(C1) There exists α > 0 such that 0 ≤ ϕ(x, ξ) ≤ α|ξ| for all x ∈ Ω and
ξ ∈ Rn.

(C2) ξ ֏ϕ(x, ξ) is a norm for every x.

For any u ∈ BVloc(R
n), let ϕ(x,Du) denote the measure defined by

∫

A
ϕ(x,Du) =

∫

A
ϕ(x,vu(x))|Du| for any bounded Borel set A,

where |Du| is the total variation measure associated with the vector-valued mea-
sure Du, and vu denotes the Radon-Nikodym derivative vu(x) = dDu/d|Du|.
Standard facts about BV functions imply that (see [2]) if U is an open set, then

∫

U
ϕ(x,Du)(1.1)

= sup
{∫

U
u∇ · Y dx | Y ∈ C∞c (U ;Rn), supϕ0(x, Y(x)) ≤ 1

}
,

where ϕ0(x, ·) denotes the norm on Rn dual to ϕ(x, ·), defined by

ϕ0(x, ξ) := sup{ξ · p | ϕ(x,p) ≤ 1}.

Since ϕ satisfies (C1), the dual ϕ0(x, ·) can be equivalently defined by

ϕ0(x, ξ) = sup

{
ξ · p

ϕ(x,p)
| p ∈ Rn

}

(see (2.17) in [2]). For u ∈ BV(Ω),
∫

Ω
ϕ(x,Du) is called the ϕ-total variation of

u in Ω.
In this paper, we study existence and structure of minimizers of the general

least gradient problem

(1.2) inf
v∈BVf (Ω)

∫

Ω
ϕ(x,Dv),

where f ∈ L1(∂Ω) and

BVf (Ω) :=
{
v ∈ BV(Ω) | for almost every x ∈ ∂Ω,

lim
r→0

ess sup
y∈Ω, |x−y|<r

|f (x)− v(y)| = 0
}
.
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Least gradient problems naturally arise in conductivity imaging. In [8], the
author and collaborators presented a method for recovering the conformal factor
of an anisotropic conductivity matrix in a known conformal class from one interior
measurement. More precisely, assume that the matrix-valued conductivity σ(x)
is of the form

σ(x) = c(x)σ0(x)

where c(x) ∈ Cα(Ω) is a positive scalar-valued function and

σ0 ∈ C
α(Ω,Mat(n,Rn))

is a known positive definite symmetric matrix-valued function. In medical imag-
ing, σ0 can be determined by using Diffusion Tensor Magnetic Resonance Imag-
ing. In [8] the authors showed that the corresponding voltage potential u is the
unique solution of the least gradient problem

argmin
{∫

Ω
ϕ(x,Dv) | u ∈ BV(Ω), u

∣∣
∂Ω = f

}
,

where ϕ is given by

ϕ(x, ξ) = a(x)
( n∑

i,j=1

σ
ij
0 (x)ξiξj

)1/2
,

a =
√
σ−1

0 J · J,

and J is the current density vector field generated by imposing the voltage f at
∂Ω. Once u is determined, the function c(x) can easily be calculated. Recovering
isotropic conductivities is a special case of the above formulation where σ0 is the
identity matrix and the weight a is the magnitude of the induced current density
vector field. (See [12–17] for applications of least gradient problems in imaging
isotropic conductivities.)

Any function f ∈ L1(∂Ω) can be extended to a compactly supported function

in W 1,1
c (Rn) with inner and outer trace f on ∂Ω (see, e.g., [6]). Throughout

the paper, we denote this function by f again, and assume that f ∈ L1(∂Ω) is

the restriction of a function f ∈ W
1,1
c (Rn). We will frequently switch between

writing f ∈ L1(∂Ω) and f ∈ W 1,1
c (Rn) depending on the context.

It is well known that the least gradient problem (1.2) may not have a min-
imizer in BVf (Ω) (see [18], [9], and [11]). To see this, suppose {un}∞n=1 is a

minimizing sequence of (1.2). Since BV(Ω) ֓ L1
loc(Ω), I(v) =

∫

Ω
ϕ(x,Dv)

is coercive in BV(Ω) (a consequence of (C1)) and weakly lower semicontinuous
(see [9] for more details), it follows from standard arguments that {un}∞n=1 has a
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subsequence converging strongly in L1
loc to a function ũ ∈ BV(Ω) with

∫

Ω
ϕ(x,Dũ) ≤ inf

v∈BVf (Ω)

∫

Ω
ϕ(x,Dv).

However, in general, the trace ũ|∂Ω on ∂Ω may not be equal to f , leading to
possible nonexistence for the problem (1.2). A natural question one may ask
is whether it is possible to deduce information about existence, multiplicity, and
structure of minimizers of (1.2) in BVf from the knowledge of a limit ũ ∈ BV(Ω)
of a minimizing sequence {un}

∞
n=1, which may not have the trace f on ∂Ω. One

of the main objectives of the paper is to answer this question. We shall show that
ũ reveals fundamental information about existence and the structure of level sets
of the minimizers of (1.2).

Define
Af := {v ∈ BV(Rn) | v = f on Ωc},

and note that BVf Î Af and BVf ֓ Af in the sense that any element v of
BVf (Ω) is the restriction to Ω of a unique element of Af . It follows from the
above argument that any minimizing sequence {vn}∞n=1 of (1.2) has a subsequence
converging strongly in L1

loc to a function w ∈ Af satisfying

∫

Ω
ϕ(x,Dw) ≤ inf

v∈Af

∫

Ω
ϕ(x,Dv).

Hence, w is a minimizer of the least gradient problem

(1.3) inf
v∈Af

∫

Ω
ϕ(x,Dv).

One of our main goals is to study the relation between minimizers of (1.3) (which
always exist) and the existence of minimizers of (1.2). We shall first prove that any
minimizer of (1.2) is also a minimizer of (1.3).

Proposition 1.1. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary,
and assume ϕ : Ω × Rn → R is a continuous function satisfying the condition (C1)

and (C2), and f ∈ W 1,1
c (Rn). Then,

min
v∈Af

(∫

Ω
ϕ(x,Dv)+

∫

∂Ω
ϕ(x,νΩ)|f − v|ds

)
= inf
v∈BVf (Ω)

∫

Ω
ϕ(x,Dv).

Next, we prove that all minimizers of the least gradient problems (1.3) and
(1.2) have the same level set structure, confirming an observation of Mazón, Rossi,
and De León [11] (see Remark 2.8 in [11]).

Theorem 1.2. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, and
assume ϕ : Ω × Rn → R is a continuous function satisfying the condition (C1) and
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(C2), and f ∈ W 1,1
c (Rn). Then, there is a divergence-free vector field T ∈ (L∞(Ω))n

with ϕ0(x, T) ≤ 1 almost everywhere in Ω such that every minimizer w of (1.2) or
(1.3) satisfies

ϕ

(
x,

Dw

|Dw|

)
= T ·

Dw

|Dw|
, |Dw|-almost everywhere in Ω(1.4)

and

ϕ(x,νΩ) = [T , sign(f −w)νΩ], Hn−1-almost everywhere on ∂Ω.(1.5)

The above theorem asserts that a fixed divergence-free vector field T deter-
mines the structure of the level sets of all minimizers of the least gradient problems
(1.2) and (1.3). More precisely, since ϕ0(x, T) ≤ 1 almost everywere in Ω, we
have

ϕ(x,p) ≥ T ·p

for every p ∈ Sn−1 and almost every x ∈ Ω. Thus, it follows from (1.4) that
|Dw|-almost everywhere, p = Dw/|Dw| maximizes

T · p

ϕ(x,p)

among all p ∈ Sn−1, determining Dw/|Dw|, |Du|-almost everywhere inΩ. The-
orem 1.2 should be compared to the results in [10].

On the other hand, the condition (1.5) determines the set of possible jumps
of a minimizer u on ∂Ω. To see this, suppose the trace of T can be represented
by a function Ttr ∈ (L

∞(∂Ω))n. Then, (1.5) implies that, up to a set with Hn−1-
measure zero,

{
x ∈ ∂Ω | w

∣∣
∂Ω > f

}
⊆ {x ∈ ∂Ω |ϕ(x,νΩ(x)) = Ttr · νΩ},

and similarly
{
x ∈ ∂Ω | w

∣∣
∂Ω < f

}
⊆ {x ∈ ∂Ω |ϕ(x,νΩ(x)) = −Ttr · νΩ},

for every minimizer w of (1.3). The above conclusions are more explicit in the
following corollary of Theorem 1.2.

Corollary 1.3. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, and

assume that a ∈ C(Ω̄) is a non-negative function, and f ∈ W 1,1
c (Rn). Then, there

exists a divergence-free vector field T ∈ (L∞(Ω))n with |T | ≤ a almost everywhere in
Ω such that every minimizer w ∈ Af of

(1.6) inf
v∈Af

∫

Ω
a|Dv|



1030 AMIR MORADIFAM

satisfies

T ·
Dw

|Dw|
= |T | = a, |Dw|-almost everywhere in Ω,

and

a = [T , sign(f −u)νΩ], Hn−1-almost everywhere on ∂Ω.(1.7)

Corollary 1.3 asserts that there exists a divergence-free vector field T such
that, for every minimizer u of (1.5), the vector field Dw/|Dw| is parallel to T ,
|Dw|-almost everywhare in Ω. See Section 5 in [9] for an example of a least
gradient problem that has infinitely many minimizers, all of which have the same
level set structure. Moreover, if the trace of T can be represented by a function
Ttr ∈ (L

∞(∂Ω))n, then up to a set with Hn−1-measure zero,

{
x ∈ ∂Ω | w

∣∣
∂Ω > f

}
⊆ {x ∈ ∂Ω | Ttr · νΩ = |Ttr|},

and similarly
{
x ∈ ∂Ω | w

∣∣
∂Ω < f

}
⊆ {x ∈ ∂Ω | Ttr · νΩ = −|Ttr|}.

In other words,w|∂Ω = f , Hn−1-almost everywhere in

{x ∈ ∂Ω : |Ttr · νΩ| < |Ttr|},

for every minimizerw of (1.3).

Remark 1.4. Suppose, then, that assumptions of Corollary 1.3 hold, and let
w ∈ Af be a minimizer of (1.6) with w|Γ ≠ f , for some open subset Γ of ∂Ω.
Also, let T be the vector field in the statement of Corollary 1.3, and assume T is
continuous in a neighborhood of Γ , that is, T ∈ C(Ω ∩ O) ∪ Γ ), where O is an
open set of Rn containing Γ . If w̃ is another minimizer of (1.3) which is locally
C1 near Γ and satisfies w̃|Γ = f , then f must be constant along Γ . Indeed, since
w has a jump on Γ , it follows from (1.7) that T is parallel to νΩ on Γ . Therefore,
by Corollary 1.3, ∇w̃ is also parallel to νΩ on Γ . Thus, w̃ must be constant on
the jump set Γ ⊂ ∂Ω of w. In particular, if f is not constant on every open
connected component of the jump set Γ ⊂ ∂Ω of w ∈ Af , then (1.6) does not
have a minimizer in BVf that is locally C1 near Γ .

In what follows, we are concerned with sufficient conditions to guarantee that
every minimizer w ∈ Af of (1.3) belongs to BVf (Ω) and therefore is also a
minimizer of the least gradient problem (1.2). In [9], the author and collaborators
showed if f ∈ C(∂Ω) and if ∂Ω satisfies the following geometric hypothesis, then
every minimizer of (1.3) is also a minimizer of (1.2) (see Theorem 1.1. in [9]).

Foru ∈ BV(Ω),
∫

Rn
ϕ(x,Du) is called theϕ-total variation of u inRn. Also,

if E is a Borel subset of Rn, then we write Pϕ(E;Rn) to denote the ϕ-perimeter
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of E in Rn, defined by

Pϕ(E;Rn) :=
∫

Rn
ϕ(x,DχE),

where χE is the characteristic function of E. Note that if ∂E is smooth enough,
then

Pϕ(E;Rn) :=
∫

∂E
ϕ(x,νE(x))dH

n−1 νE := outer unit normal,

which is a generalized inhomogeneous, anisotropic area of ∂E in Rn.
If V is a measurable subset of Rn, we write

V (1) :=
{
x ∈ Rn | lim

r→0

Hn(B(r , x)∩ V)

Hn(B(r))
= 1

}
.

Definition 1.5. Let Ω ⊂ Rn be a bounded Lipschitz domain and ϕ : Ω ×
Rn → R a continuous function that satisfies (C1) and (C2). We say that Ω satisfies
the barrier condition if, for every x0 ∈ ∂Ω and ε > 0 sufficiently small, if V
minimizes Pϕ( · ;Rn) in {W ⊂ Ω | W \ B(ε,x0) = Ω \ B(ε,x0)}, then

∂V (1) ∩ ∂Ω∩ B(ε,x0) = ∅.

When ϕ(x, ξ) = |ξ|, the above condition is equivalent to those introduced
by Sternberg and Ziemer (see (3.1) and (3.2) in [18]), at least for smooth sets.

Remark 1.6. In [9], it is proved that ifϕ ∈ C1 and ∂Ω is sufficiently smooth,
then Ω satisfies the barrier condition provided that

−

n∑

i=1

∂xiϕξi(x,Dd(x)) > 0 on a dense subset of ∂Ω,

where

d(x) :=

{
dist(x, ∂Ω) if x ∈ Ω,
−dist(x, ∂Ω) otherwise.

Theorem 1.7. Suppose ϕ : Rn ×Rn → R is a continuous function that satisfies
(C1) and (C2) in a bounded Lipschitz domain Ω ⊂ Rn. If Ω satisfies the barrier

condition with respect to ϕ and f ∈ W 1,1
c (Rn) is continuous at Hn−1-almost every

x ∈ ∂Ω, then every minimizer w ∈ Af of (1.3) is also a minimizer of (1.2). In
particular, the least gradient problem (1.2) has a minimizer in BVf (Ω).

The proof of the above theorem follows from a slight modification of the proof
of Theorem 1.1 in [9], and will not be presented here. For the case ϕ(x, ξ) = |ξ|
and f ∈ C(∂Ω), Theorem 1.7 reduces to the existence result of Sternberg and
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Ziemer in [18], which is the first result in this direction (see also [19], [20], and
[7]).

In [21], Spradlin and Tamasan considered the case ϕ(x, ξ) = |ξ| and pre-
sented an example of an L1 function on the unit disk that satisfies the barrier
condition but is not the trace of a function of least gradient. This function is the
characteristic of a Cantor set which is discontinuous on a set of positive measure
on the unit circle, and hence Theorem 1.7 does not apply. Indeed, the example of
Spradlin and Tamsan shows that Theorem 1.7 is sharp.

2. PROOFS

Let Ω be a bounded open set in Rn with Lipschitz boundary, and f ∈ L1(∂Ω)
be the restriction of a compactly supported function (denoted by f again) in
W 1,1(Rn) with inner and outer trace f on ∂Ω. Define

Af := {w ∈ BV(Rn) | w = f on Ωc},

and note that BVf ֓ Af in the sense that any element v of BVf (Ω) is the
restriction to Ω of a unique element of Af . The problem (1.2) may not have a
solution, but as argued in the Introduction, (1.3) always has a solution.

Let E : (L1(Ω))n → R and G : W 1,1
0 (Ω)→ R be defined as follows:

(2.1) E(P) :=
∫

Ω
ϕ(x, P +∇f )dx, G(u) ≡ 0.

Then, the problem (1.3) can be written as

(P) inf
u∈W

1,1
0 (Ω)

E(Du)+G(u).

By Fenchel duality (see Chapter III in [5]) the dual problem is given by

(P∗) sup
V∈(L∞(Ω))n

{−E∗(V)−G∗(−∇ · V)}.

Recall that the Legendre-Fenchel transform E∗ : (L∞(Ω))n → R is

E∗(V) = sup{〈V, P〉 − E(P) | P ∈ (L1(Ω))n}.

One can easily compute G∗ : W−1,∞(Ω) → R:

G∗(v) =

{
0 if v ≡ 0,

∞ if v 6≡ 0,

whereW−1,∞(Ω) is the dual ofW 1,1
0 (Ω). The following lemma provides a formula

for E∗.
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Lemma 2.1. Let E be defined as in equation (2.1). Then,

E∗(V) =

{
−〈Df , V〉 if ϕ0(x, V(x)) ≤ 1 in Ω,
∞ otherwise.

Proof. Suppose
ϕ0(x, V(x)) > 1

on a set ω ⊂ Ω with positive Lebesgue measure. It follows from Lusin’s theorem
that, for every ε > 0, there is a compact set Q ⊂ω such that µ(ω\Q) < µ(ω)/2
and V = Ṽ on Q, for some continuous function Ṽ : Rn → Rn, where µ denotes
the Lebesgue measure. In particular, ϕ0(x, Ṽ(x)) > 1 for all x ∈ Q. Hence, it
follows from the definition of ϕ0 that

∀x ∈ Q, ∃P(x) ∈ Sn−2 such that ϕ(x, P(x)) < Ṽ(x) · P(x).

Since Ṽ and ϕ are continuous, for every x ∈ Q there exists εx such that

ϕ(y, P(x)) < Ṽ(y) · P(x), ∀y ∈ Bεx(x).

Notice that {Bεx(x) | x ∈ Q} is an open cover for the compact setQ. Thus, there
exists z ∈ Q such that µ(Bεz(z)∩Q) > 0. Now, define P̄ ∈ (L1(Ω))n as follows:

P̄ =

{
P(z) if x ∈ Bεz(z)∩Q,

0 otherwise.

Then, we have

E∗(V) = sup
P∈(L1(Ω))n

(
〈P,V〉 −

∫

Ω
ϕ(x, P +∇f )dx

)

= −〈∇f , V〉 + sup
P∈(L1(Ω))n

(
〈P,V〉 −

∫

Ω
ϕ(x, P)dx

)

≥ −〈∇f , V〉 + sup
λ∈R

λ

(
〈P̄ , V〉 −

∫

Ω
ϕ(x, P̄)dx

)

= −〈∇f , V〉 + sup
λ∈R

λ

∫

Bεz (z)∩Q

(
V(x) · P(z)−ϕ(x, P(z))

)
dx

= ∞.

On the other hand, if
ϕ0(x, V(x)) ≤ 1, in Ω,

then

(2.2) ϕ(x, P) ≥ V(x) · P ∀x ∈ Ω and P ∈ Rn.
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Consequently,

E∗(V) = sup
P∈(L1(Ω))n

(
〈P,V〉 −

∫

Ω
ϕ(x, P +∇f )dx

)

= −〈∇f , V〉 + sup
P∈(L1(Ω))n

(
〈P,V〉 −

∫

Ω
ϕ(x, P)dx

)

= −〈∇f , V〉 + sup
P∈(L1(Ω))n

∫

Ω

(
V(x) · P −ϕ(x, P)

)
dx

= −〈∇f , V〉.

The proof is now complete. ❐

Let νΩ be the outer unit normal vector to ∂Ω; then, for every V ∈ (L∞(Ω))n
with div(V) ∈ Ln(Ω), there exists a unique function [V, νΩ] ∈ L∞Hn−1(∂Ω) such
that

∫

∂Ω
[V, νΩ]udHn−1 =

∫

Ω
u∇ · V dx +

∫

Ω
V · ∇udx, ∀u ∈ C1(Ω̄).

Moreover, for u ∈ BV(Ω) and V ∈ (L∞(Ω))n with div(V) ∈ Ln(Ω), the
linear functional u֏ (V ·Du) gives rise to a Radon measure on Ω, and

∫

∂Ω
[V, νΩ]udHn−1 =

∫

Ω
u∇ · V dx +

∫

Ω
(V ·Du), ∀u ∈ BV(Ω)

(see [1, 3] for a proof, and also Appendix C in [4] for a more recent exposition).
Now, define

V := {V ∈ (L∞(Ω))n | ∇ · V ≡ 0 and ϕ0(x, V(x)) ≤ 1 in Ω}.

It follows from Lemma 2.1 that the dual problem can be explicitly written as

(P∗∗) sup
V∈V

∫

∂Ω
f [V, νΩ]ds,

where η is the outward pointing unit normal vector on ∂Ω. The primal problem
(P) may not have a solution, but the dual problem (P∗∗) always has a solution.
This is a direct consequence of Theorem III.4.1 in [5]. Indeed, it easily follows

from (1.1) that I(v) =
∫

Ω
ϕ(x,Dv) is convex, and that J : L1(Ω) → R with

J(p) =

∫

Ω
ϕ(x,p)dx is continuous at p = 0 (a consequence of (C2)). Therefore,

the condition (4.8) in the statement of [5, Theorem III.4.1] is satisfied.
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Proposition 2.2. Let Ω ⊂ Rn be a bounded open set with Lipschitz bound-
ary, and assume ϕ : Ω × Rn → R is a continuous function satisfying the condi-
tions (C1) and (C2), and f ∈ L1(∂Ω). Then, there is a divergence-free vector field
T ∈ (L∞(Ω))n with ϕ0(x, T) ≤ 1 almost everywhere in Ω such that

inf
u∈W

1,1
f (Ω)

∫

Ω
ϕ(x,Du) = max

V∈V

∫

∂Ω
f [V, νΩ]ds =

∫

∂Ω
f [T , νΩ]ds.

In particular, the dual problem (P∗∗) has a solution T ∈ V .

In the above proposition,W 1,1
f denotes the space of functions inW 1,1(Ω) with

trace f on ∂Ω. Proposition 1.1 follows directly from the following result.

Proposition 2.3. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary,
and assume ϕ : Ω × Rn → R is a continuous function satisfying the condition (C1)
and (C2), and f ∈ L1(∂Ω). Then,

min
u∈Af

(∫

Ω
ϕ(x,Du)+

∫

∂Ω
ϕ(x,νΩ)|f −u|ds

)
(2.3)

= inf
u∈BVf (Ω)

∫

Ω
ϕ(x,Du) =

∫

∂Ω
f [T , νΩ]ds,

where T ∈ V is a solution of the dual problem (P∗∗) guaranteed by Proposition 2.2.

Proof. Let u ∈ Af be a minimizer of (1.3) and T ∈ V be a solution of the
dual problem (P∗∗). Then,

∫

Ω
ϕ(x,Du) =

∫

Ω
ϕ

(
x,

Du

|Du|

)
|Du| ≥

∫

Ω
T ·

Du

|Du|
|Du|

=

∫

Ω
T ·Du =

∫

∂Ω
u[T , νΩ]ds.

Now, we conclude from (2.2) and the above inequality that

∫

Ω
ϕ(x,Du)+

∫

∂Ω
ϕ(x,νΩ)|f −u|ds

≥

∫

∂Ω
u[T , νΩ]ds +

∫

∂Ω
(f −u)[T , νΩ]ds

=

∫

∂Ω
f [T , νΩ]ds,

and consequently,∫

Ω
ϕ(x,Du)+

∫

∂Ω
ϕ(x,νΩ)|f −u|ds

≥ max
V∈V

∫

∂Ω
f [V, νΩ]ds.
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By Proposition 2.2, the above inequality holds also in the opposite direction, and
hence (2.3) holds. ❐

Proof of Theorem 1.2. Let u ∈ Af be a minimizer of (1.3) and T ∈ V be a
solution of the dual problem (P∗∗). Then, it follows from Proposition (2.3) that

∫

∂Ω
u[T , νΩ]ds =

∫

Ω
ϕ(x,Du) =

∫

Ω
ϕ

(
x,

Du

|Du|

)
|Du|(2.4)

≥

∫

Ω
T ·

Du

|Du|
|Du| =

∫

Ω
T ·Du =

∫

∂Ω
u[T , νΩ]ds,

and (1.4) follows. On the other hand, from Proposition 2.2 and (2.4), we con-
clude that

∫

∂Ω
f [T , νΩ]ds ≥

∫

Ω
ϕ(x,Du)+

∫

∂Ω
ϕ(x,νΩ)|f −u|ds

≥

∫

∂Ω
u[T , νΩ]ds +

∫

∂Ω
ϕ(x,νΩ)|f −u|ds.

Thus, ∫

∂Ω
ϕ(x,νΩ)|u− f |ds ≤

∫

∂Ω
(f −u)[T , νΩ]ds.

Since ϕ0(x, T) ≤ 1 almost everywhere in Ω, we have ϕ(x,νΩ) ≥ [T , νΩ].
Hence, (1.5) follows from the above inequality. ❐
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