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We study the negatively T − and positively T + charged trions in bulk materials in the effective 
mass approximation within the framework of a potential model. The binding energies of trions in 
various semiconductors are calculated by employing Faddeev equation in configuration space. Results 
of calculations of the binding energies for T − are consistent with previous computational studies 
and are in reasonable agreement with experimental measurements, while the T + is unbound for all 
considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing 
contributions of a mass-polarization term related to kinetic energy operators and a term related to the 
Coulomb repulsion of identical particles.

© 2018 Elsevier B.V. All rights reserved.
Excitonic effects in semiconductors are determined by the exci-
ton binding energy and electron–hole interaction and play a crit-
ical role in optoelectronic devices [1]. Charged exciton complexes 
such as negative (T −) and positive (T +) trions are formed when a 
single exciton is correlated with an additional electron in a con-
duction band or hole in a valence band, respectively, has been 
proposed by Lampert [2]. In the meantime T − and T + trions have 
been the subject of intense studies in the last two decades, both 
experimentally and theoretically. Their observation in bulk semi-
conductors has been hampered due to their rather small binding 
energies and became a challenging task. Trions were first observed 
in quantum wells [3] in 1993 and shortly thereafter in GaAs–
AlGaAs quantum wells [4–6]. Trions were predicted and found in 
the photoluminescence and absorption spectra of various optically 
excited semiconductors, especially in quantum dots [7,8], quan-
tum wells [1,9,10] and carbon nanotubes [11,12]. Mott–Wannier 
trions in two- and three-dimensional (2D and 3D) semiconductors 
can be described by the solutions of the three-body Schrödinger 
equation after modelling the crystal by effective electron and hole 
masses and a dielectric constant. There are stochastic variational 
calculations, and studies by using density functional theory, vari-
ational quantum Monte Carlo method, and the diffusion Monte 
Carlo approach [13–15]. Calculations have shown that the binding 
energy of a trion is strongly enhanced in two-dimensional struc-
tures due to the trion’s larger spatial extent. Trions have been ob-
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served in 2D transition-metal dichalcogenide (TMDC) semiconduc-
tors [16–25]. Until now several approaches have been proposed for 
evaluations of the binding energies of a trion in two-dimensional 
transition metal dichalcogenides. Initial work on trion binding en-
ergies in TMDCs employed variational wave functions [26], and 
more recently using the time-dependent density-matrix functional 
theory, the fractional dimensional space approach, the stochas-
tic variational method with explicitly correlated Gaussian basis, 
method of hyperspherical harmonics, and quantum Monte Carlo 
methods, such as the diffusion Monte Carlo and the path inte-
gral Monte Carlo [26–37]. Let us note that trions are studied in 
anisotropic two-dimensional materials such as phosphorene and 
arsenene [38], and are predicted to have remarkably high binding 
energies. Though much progress has been made, intrinsic exci-
tonic states of 2D and 3D trions are still highly debated in theory, 
particularly related to the binding energies for negatively and posi-
tively charged trions which thirsts for experimental determination. 
In this letter we address this issue.

Because trions are intrinsically three-particle objects, common 
calculation methods are not always adequate to describe their be-
havior and a more rigorous level of theory must be employed. 
In the present work we study the T − and T + trions within the 
Faddeev formalism [39], – the most rigorous approach for investi-
gating a three-body system. In the case of a trion one deals with a 
three-body system A AB with two identical particles. We perform 
ground-state calculations for a positively and negatively charged 
trion in the effective mass approximation within the framework 
of a nonrelativistic potential model using the method of Faddeev 
equations in configuration space [39]. This approach gives new 
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insights to the problem, because the Faddeev equations are the 
most general equations for description of a non-relativistic three-
particle system within the potential approach and use as inputs 
only masses of particles and pairwise inter-particle interaction. 
There are no any fitting parameters in our approach. In the case 
of trions in bulk the inter-particle interaction is described by the 
Coulomb potential and the electron and hole masses can be ob-
tained by different ab initio methods: many-body G0 W0 and GW , 
density functional theory and the local density approximation. 
Therefore, one can understand what kind other quantum effects, 
which are not included in the potential model, should be consid-
ered for an adequate description of trions. In our approach, the 
trion is a three-particle system eeh (hhe) consisting of electrons 
(e) and heavy holes (h), with each pair interacting by the Coulomb 
force. To understand the origin of the difference of binding ener-
gies for the mirror systems of charged trions, we solve the Faddeev 
equations for cases when all three particles are interacting via the 
Coulomb potential and when the interaction between two identi-
cal particles is omitted or is screened and use these solutions to 
analyze contributions of two terms which course the difference of 
binding energies. The first term is related to the Coulomb repul-
sion between two identical particles and the second one is the 
mass-polarization term (MPT) [40] related to the kinetic energy 
operators. The latter term can be most clearly introduced by using 
the Schrödinger equation in the system of reference relative to the 
non-identical particle.

The Faddeev equations in configuration space can be written in 
the form of a system of second order differential equations [39], 
which can be reduced to a simpler form for the case of two iden-
tical particles. In this case the total wave function of the system 
is decomposed into the sum of the Faddeev components U and 
W corresponding to the (A A)B and (AB)B types of rearrange-
ments: � = U + W ± P W , where P is the permutation operator 
for two identical particles. In the latter expression the sign “+” 
corresponds to two identical bosons, while the sign “−” corre-
sponds to two identical fermions, respectively. After introducing 
the set of the Jacobi coordinates for the three particles, separating 
the motion of the center-of-mass one can write the set of Faddeev 
equations for the relative motion of three particles when two of 
them are identical fermions in the following form [43,44]:

(H0 + V A A − E)U = −V A A(W − P W ),

(H0 + V AB − E)W = −V AB(U − P W ).
(1)

In Eq. (1) the Hamiltonian H0 is the operator of kinetic en-
ergy written in terms of corresponding Jacobi coordinates, while 
V A A and V AB are the potentials of the pairwise interactions be-
tween the particles. The pairwise interactions are described by the 
Coulomb potential with the dielectric constant related to the con-
sidered material.

Let us consider the states of T − and T + trions with the to-
tal angular momentum L = 0, the momentum of pair l = 0, and 
momentum λ = 0 of the third particle with respect to the center-
of-mass of the pair. Within this condition the pair of electrons 
(holes) is in a singlet spin state. The corresponding spin function 
is asymmetric with respect to the permutation operator P , which 
provides automatically the asymmetry of the trion wave function 
�: P� = P (U + W − P W ) = −U + P W − W = −�.

To analyze the origin of the difference of binding energies 
for the T − and T + trions let us follow Ref. [40] and write the 
Schrödinger equation for the trion in the system of reference rela-
tive to the non-identical particle:

(− h̄2

2μ
∇2

rA1
− h̄2

2μ
∇2

rA2
− h̄2

mB
∇rA1

∇rA2
+ V AB(rA1) + V AB(rA1)

− V A A(rA1 − rA2) − E3)�(rA1 , rA2 , rA1 − rA2) = 0, (2)
which is written in a self-explanatory notation. In Eq. (2) μ is the 
reduced mass of the electron and hole and Tmp = − h̄2

mB
∇rA1

∇rA2
is 

the mass-polarization term and E3 is the ground state energy of 
the three particles. In the case mB < mA the contribution of the 
MPT can be of the same order as the contribution of the other 
two differential operators in Eq. (2) due to the comparable mass 
factors of these operators, which can be expressed as 1/mB . In 
the case mB > mA the contribution of this term has the factor 
1/mB , while the mass factors of other differential operators are 
of the order of 1/mA . When mB >> mA the contribution of the 
MPT can be ignored. If in Eq. (2) the MPT and the interaction 
V A A ≡ V A A(rA1 , rA2 , rA1 − rA2 ) between two identical particles are 
neglected one obtains:

(− h̄2

2μ
∇2

rA1
− h̄2

2μ
∇2

rA2
+ V AB(rA1) + V AB(rA1)

− E3(Tmp = 0, V A A = 0))�(rA1 , rA2) = 0, (3)

where E3(Tmp = 0, V A A = 0) is the ground state energy of the 
three particle system for the aforementioned condition. In Eq. (3)
the total wave function can be factorized as �(rA1 , rA2) =
�(rA1 )�(rA2 ), where �(rA1 ) is a solution of two-body Schrödinger 
equation for the AB subsystem, and that leads to the trivial so-
lution: E3(Tmp = 0, V A A = 0) = 2E2, where E2 is the ground state 
energy of two-body subsystem AB . Within our consideration the 
bound AB pair is the exciton.

To evaluate the effect of the MPT, one can neglect the interac-
tion between the identical particles, V A A = 0, in Eq. (2). The evalu-
ation can be written as � = E3(Tmp = 0, V A A = 0) − E3(V A A = 0), 
where E3(V A A = 0) is the ground state energy of three particle 
system A AB when interaction between the identical particles is 
neglected.

Taking into account Eq. (3), the last expression can be rewritten 
as

� = 2E2 − E3(V A A = 0) = B3(V A A = 0) − 2B2 ≥ 0, (4)

where B2 and B3(V A A = 0) are the binding energies of the ex-
citon and three-body A AB system when the interaction between 
two identical particle is omitted, respectively. In the simplest case 
when mB >> mA the contribution of the MPT can be neglected 
and one has: B3(V A A = 0, < Tmp >= 0) = 2B2. In consequence, 
Eq. (4) is valid for any mass ratio mB/mA and can be used to eval-
uate the effect of the mass polarization term. The relation (4) is 
known in nuclear physics as the mass polarization effect [40–42].

Let us introduce the interaction between two identical particles 
as α < V A A >, where the parameter α controls the strength of 
this interaction. Substituting this potential in Eq. (2) and averaging 
it gives the following expression:

E3 = − < T1 > − < T2 > + < V AB > + < V AB > − < Tmp >

+ α < V A A > . (5)

In Eq. (5) the matrix elements < T1 > = < T2 > and < V AB > =
< V AB > due to the symmetry of the system. Thus, from the one 
hand by solving of the Faddeev equations (1) one can find binding 
energies B3 for the T − and T + trions and test the sensitivity of 
their binding energy to the strength of α < V A A > by varying the 
parameter α. On the other hand, by solving (1) under the condition 
V A A = 0, one can find the binding energies B3(V A A = 0) for trions 
when the interaction between two identical particles is omitted. 
Such an approach allows one to analyze the origin of the binding 
energy difference for T − and T + trions. Obviously, < Tmp > is re-
lated to � as well as < Tmp >≈ � when the contribution of MPT 
to E3(V A A = 0) is small.
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Table 1
The charged and neutral exciton binding energy deference BT = B3 − B2 (the binding energy of trion with respect to the exciton binding energy) for different materials. 
B2 and B3 are the binding energy for the trion and exciton, respectively. The relative contribution of the mass polarization term δ is calculated as δ = (B3(V A A = 0) −
2B2)/B3(V A A = 0). Here h̄2/m0 = 7.6195 eV Å2, ε is the dielectric constant. All energies are given in meV and the masses are given in units of a free electron mass m0.

Material: me , mh , ε mh/me me/mh Trion B2 B3 B3(V A A = 0) BT δ

InN: 0.11, 1.63, 7.5 [45] 14.8 T − 24.88 28.5 49.8 3.6 ∼0%
0.07 T + 24.88 – 65.8 – 24%

GaAs: 0.067, 0.51, 12.9 7.6 T − 4.83 5.33 9.66 0.5 ∼0%
0.13 T + 4.83 – 11.8 – 18%

ZnSe: 0.16, 0.75, 8.6 4.7 T − 24.2 26.3 48.4 2.1 ∼0%
0.2 T + 24.2 – 55.7 – 13%

GaN: 0.2, 0.82, 8.9 4.1 T − 27.57 29.6 55.1 2.1 ∼0%
0.24 T + 27.57 – 62.4 – 12%

CdTe: 0.096, 0.35, 10.16 3.6 T − 9.91 10.6 19.8 0.6 ∼0%
0.27 T + 9.91 – 22.2 – 11%

MoS2: 0.45, 0.45, 12.6 [50] 1.0 T − 19.3 – 39.3 – 1.7%
1.0 T + 19.3 – 39.3 – 1.7%

0.45, 0.45, 10.7 [51,52] 1.0 T − 26.7 26.8 54.5 ∼0.1 2.0%
1.0 T + 26.7 26.8 54.5 ∼0.1 2.0%
Fig. 1. The B3 − B2 for eeh (solid curve) and hhe (dashed curve) in InN as a function 
of the scaling factor α of the Coulomb repulsion between identical particles. The 
crossing point corresponds to α = 0.41. The relative value of the mass polarization 
term < Tmp > for hhe is shown by the vertical line segment.

Let us discuss results of calculations for excitons and T ± tri-
ons binding energies in various bulk semiconductors. The binding 
energies B3 and B3(V A A = 0) for the trions were calculated using 
the aforementioned Faddeev formalism. We calculate the binding 
energy B2 of the exciton in the same semiconductor as well. In 
our calculations we use the known mass ratio mB/mA for var-
ious bulk materials and the corresponding dielectric constant ε . 
The numerical results of our calculations presented in Table 1
show that the negative trion is always bound, while the posi-
tively charged trion has no bound state for all set of parameters. 
To demonstrate that for the particular equal masses the nega-
tively and positively charged trions have the same energies and 
can be bound or unbound depending on the value of the dielec-
tric constant we perform calculations for trions binding energies 
in bulk MoS2 which are presented in Table 1. The analyses of 
the results for B3(V A A = 0) and binding energy of the exciton 
B2 shows that the relation B3(V A A = 0) > 2B2 is always satis-
fied for trions and relative contribution of the MPT indicated by 
δ = (B3(V A A = 0) − 2B2)/B3(V A A = 0). For the positively charged 
trions, δ increases when the ratio mB/mA decreases. For the nega-
tively charged trions, the MPT effect is small and δ ∼ 0.

Let us mention that the results for B2 confirm the hydrogenic 
exciton energy B2 = R y∗ = 13.61μ∗/ε2

r (eV) (R y∗ is the effective 
Rydberg constant with the reduced electron–hole effective mass 
μ∗) and are in good agreement with experimental data and the-
oretical calculations [10,15,45–49]. Fig. 1 presents the difference 
B3 − B2 for A AB systems as a function of α, which controls the 
strength of interaction between identical particles: V A A → αV A A . 
The difference between the curves at α = 0 shows the contribu-
tion of MPT for the hhe system relative to the eeh. The slopes of 
the curves differ significantly. This indicates that the repulsion be-
tween identical particle is much stronger in the hhe system than in 
eeh because the two holes are localized much closer to each other 
due to their larger effective masses. Thus, our hypothetical model 
with parameter α, which controls the strength of interaction be-
tween identical particles for both trions and effectively represents 
screening caused predominantly by the valence electrons, leads 
to a weaker Coulomb interaction between the identical particles 
and hence an increased trion binding energy. However, this inter-
action is stronger for two holes because they are localized more 
closely to each other than electrons, due to the larger kinetic en-
ergy caused by the heavier effective mass of holes, and hence a 
reduced trion binding energy. Therefore, the effect of strong re-
pulsion due to the Coulomb interaction takes place. This fact is 
illustrated in Fig. 2 by the contour plots of the Faddeev compo-
nent U and W: the negative trion has more extended distribution 
within about 200 × 250 Å, than less extended distribution within 
80 × 120 Å for the positive trion. The analyses of Figs. 1 and 2
allows to conclude that both systems are bound with the same 
binging energy when α = 0.41, However, the hhe is more com-
pact. One can make the transformation of T − to T + by replacing 
of the masses of the electron and hole and vice versa (me → mh
and mh → me). The parameter ξ ≥ 0 sets this transformation as 
follows: mξ

A = (1 + ξ)mA, mξ
B = (1 − ξmA/mB)mB and keeps the 

sum of the masses, mA + mB = const . For example, for the effec-
tive masses of the electron and hole in InN, when ξ = 0 we have 
T − , while for ξ = 13.75 we have T + . The dependence of differ-
ent characteristics for eeh and hhe systems as a function of the 
parameter ξ is presented in Fig. 3. During the transformation, the 
energy E3 follows B2, does not return to the initial value defined 
for ξ = 0 due to the strong increasing of the Coulomb contribution 
(see Fig. 3a)). The contribution of the Coulomb repulsion increases 
more quickly than the B2 when the ratio mB/mA increases.

The replacement e → h in the eeh system, when the A A in-
teraction is omitted, leads to the increase of the MPT contribution 
indicated by the increasing B3(V A A = 0) relatively 2B2 (Fig. 3b)). 
Note that, in case of GaAs, the relative increase varies from 0% to 
18% or, in absolute values, from 9.66 meV to 11.8 meV.

The analyses of the results presented in Fig. 3 shows that the 
matrix element of the Coulomb repulsion < V A A > increases more 
quickly than the MPT, < Tmp >. In another words, small variations 
of the masses (making more compactness of the system) generate 
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Fig. 2. The contour plots of the Faddeev components U (left) and W (right) for a) hhe and b) eeh systems when the scaling factor for the ee (or hh) Coulomb repulsion 
α = 0.41 (see Fig. 1). The inserts show the corresponding Jacobi trees and Jacobi coordinates x and y are measured in Å.

Fig. 3. The mass transformation from eeh to hhe in InN. a) The binding energies B3 (solid curve), B2 (dashed curve) and B3(α = 0.7) (dot-dashed curve); and b) 2B2 (dashed 
curve), and B3(V A A = 0) (solid curve), as a function of the mass transformation parameter ξ . The parameter ξ is related to the negative trion, when ξ = 0, and to the positive 
trion, when ξ = 13.75.

Fig. 4. The value of a) B3 − B2, b) B3(V A A = 0) − 2B2, c) B3 − B3(V A A = 0) for eeh in InN as a function of the mass transformation parameter ξ ≤ 5 (solid curve). The B2 is 
shown by the dashed curve. The inset shows schematic distribution for energies in the system.
larger Coulomb repulsion between identical particles. The latter re-
sults in the unbound state of the transforming eeh system and the 
final hhe system (T +).

One can reduce this Coulomb repulsion artificially using the pa-
rameter α. The results are presented in Fig. 3a). The energy of T +
is evaluated as 0.7 meV above the eh threshold when α = 0.7. In 
this case, E3 is larger B2 during the transformation and in the final 
point. It means also that the MPT can compensate for the increased 
Coulomb repulsion.

The Coulomb repulsion of A A particles can be evaluated as 
�Bc(A A) = B3 − B3(V A A = 0). This is shown in Fig. 4, which 
presents the dependence of different characteristics for the eeh
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system on the parameter ξ = 0. One can conclude that, firstly, the 
binding energy of eeh system BT = B3 − B2, BT /B2 << 1 decreases 
during the mass transformation to the negative value (unbound 
state) when ξ ∼ 4 (Fig. 4 a)). One can further conclude, secondly, 
the contribution of the MPT increases with the increment of ξ and 
hence when the mass ratio mB/mA increases. However, the MPT 
related additional energy is small relative to B T and cannot com-
pensate for the Coulomb repulsion. Thirdly, the contribution of the 
Coulomb repulsion for T − near the point ξ ∼ 4 can be evaluated 
as < V c >∼ B2 taking into account the small binding energy of 
T − , as well as BT /B2 << 1. The latter means that the eeh system 
is clustered as e + (eh) and the energy separation of the electron 
from the pair eh is small. According to Eq. (5) one can writes: 
B3 = 2B2− < V c >≈ B2 and < V c >∼ B2.

We have shown that the matrix element < V c > of the 
Coulomb interaction for two identical particles in the hhe system 
is larger than one in the eeh system. When one disregards the 
V A A interaction, the large MPT in the hhe makes the system more 
bounded compares with the eeh system, where the contribution of 
the MPT term is negligible. Using scale factor α ≥ 0 for the A A in-
teraction we show that the relation < V c(hhe) > ≥ < V c(eeh) >
is satisfied for increasing α up to α ≈ 1. The system hhe becomes 
unbound rapidly when α is increasing. According to Eq. (5) one can 
write: B3 = 2B2+ < Tmp > −α < V c >, and can see that B3 ≈ B2
when the screening is defined by α ≈ 0.7. The binding energies of 
the T ± trions are calculated for different bulk materials based on 
the Faddeev equation for the A AB system in configuration space. 
It was found that the binding energy of T − is relatively small, 
BT /B2 << 1, while T + is unbound. The results of the calculations 
for BT are consistent with previous computational studies and are 
in reasonable agreement with experimental measurements. We ex-
plain the origin of the difference of binding energies of T − and T +
by using the Schrödinger equation written in the system of refer-
ence relative to the non-identical particle. There are two terms of 
the equation which play an important role for the formation of 
the bound state of a trion when me/mh << 1: the Coulomb re-
pulsion between two identical particles and MPT. The MPT, Tmp , 
adds a part to the binding energy of the A AB system, while the 
Coulomb repulsion between A A identical particles decreases the 
energy. Comparing the bound and unbound states of T ± in con-
sidered materials, we show that hole–hole Coulomb repulsion is 
stronger in T + than the electron–electron one in T − due to more 
close localization of the two holes. The last condition is possible 
due to large contribution of the MPT. By introducing the scaling 
parameter 0 ≤ α ≤ 1 and calculation of the binding energy as a 
function of α, we show that < V A A > is larger for the hole–hole 
pair.

We illustrated the interplay of these two terms by the hypo-
thetical mass transformation eeh → hhe, which replaces of the 
masses of the electron and the hole in bulk InN. Using this trans-
formation we demonstrate that the Coulomb repulsion decreases 
more quickly and the MPT contribution, < Tmp >, does not com-
pensate for the binding energy decrease. It was demonstrated that 
T + can be bound by reducing the strength of the Coulomb repul-
sion with the controlled parameter α < 1.

The properties of the eeh and hhe systems are similar for 3D 
and 2D models. The similarity is based on the existence of the 
MPT and the Coulomb repulsion in the Schrödinger equation for 
the both cases. As we show, the interplay of the terms results in 
the bound or unbound state of the systems.
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