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We study the negatively T~ and positively Tt charged trions in bulk materials in the effective
mass approximation within the framework of a potential model. The binding energies of trions in
various semiconductors are calculated by employing Faddeev equation in configuration space. Results
of calculations of the binding energies for T~ are consistent with previous computational studies
and are in reasonable agreement with experimental measurements, while the T* is unbound for all

considered cases. The mechanism of formation of the binding energy of trions is analyzed by comparing
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Coulomb repulsion of identical particles.
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Excitonic effects in semiconductors are determined by the exci-
ton binding energy and electron-hole interaction and play a crit-
ical role in optoelectronic devices [1]. Charged exciton complexes
such as negative (T~) and positive (T*) trions are formed when a
single exciton is correlated with an additional electron in a con-
duction band or hole in a valence band, respectively, has been
proposed by Lampert [2]. In the meantime T~ and T™ trions have
been the subject of intense studies in the last two decades, both
experimentally and theoretically. Their observation in bulk semi-
conductors has been hampered due to their rather small binding
energies and became a challenging task. Trions were first observed
in quantum wells [3] in 1993 and shortly thereafter in GaAs-
AlGaAs quantum wells [4-6]. Trions were predicted and found in
the photoluminescence and absorption spectra of various optically
excited semiconductors, especially in quantum dots [7,8], quan-
tum wells [1,9,10] and carbon nanotubes [11,12]. Mott-Wannier
trions in two- and three-dimensional (2D and 3D) semiconductors
can be described by the solutions of the three-body Schrodinger
equation after modelling the crystal by effective electron and hole
masses and a dielectric constant. There are stochastic variational
calculations, and studies by using density functional theory, vari-
ational quantum Monte Carlo method, and the diffusion Monte
Carlo approach [13-15]. Calculations have shown that the binding
energy of a trion is strongly enhanced in two-dimensional struc-
tures due to the trion’s larger spatial extent. Trions have been ob-
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served in 2D transition-metal dichalcogenide (TMDC) semiconduc-
tors [16-25]. Until now several approaches have been proposed for
evaluations of the binding energies of a trion in two-dimensional
transition metal dichalcogenides. Initial work on trion binding en-
ergies in TMDCs employed variational wave functions [26], and
more recently using the time-dependent density-matrix functional
theory, the fractional dimensional space approach, the stochas-
tic variational method with explicitly correlated Gaussian basis,
method of hyperspherical harmonics, and quantum Monte Carlo
methods, such as the diffusion Monte Carlo and the path inte-
gral Monte Carlo [26-37]. Let us note that trions are studied in
anisotropic two-dimensional materials such as phosphorene and
arsenene [38], and are predicted to have remarkably high binding
energies. Though much progress has been made, intrinsic exci-
tonic states of 2D and 3D trions are still highly debated in theory,
particularly related to the binding energies for negatively and posi-
tively charged trions which thirsts for experimental determination.
In this letter we address this issue.

Because trions are intrinsically three-particle objects, common
calculation methods are not always adequate to describe their be-
havior and a more rigorous level of theory must be employed.
In the present work we study the T~ and T trions within the
Faddeev formalism [39], - the most rigorous approach for investi-
gating a three-body system. In the case of a trion one deals with a
three-body system AAB with two identical particles. We perform
ground-state calculations for a positively and negatively charged
trion in the effective mass approximation within the framework
of a nonrelativistic potential model using the method of Faddeev
equations in configuration space [39]. This approach gives new
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insights to the problem, because the Faddeev equations are the
most general equations for description of a non-relativistic three-
particle system within the potential approach and use as inputs
only masses of particles and pairwise inter-particle interaction.
There are no any fitting parameters in our approach. In the case
of trions in bulk the inter-particle interaction is described by the
Coulomb potential and the electron and hole masses can be ob-
tained by different ab initio methods: many-body GoW¢o and GW,
density functional theory and the local density approximation.
Therefore, one can understand what kind other quantum effects,
which are not included in the potential model, should be consid-
ered for an adequate description of trions. In our approach, the
trion is a three-particle system eeh (hhe) consisting of electrons
(e) and heavy holes (h), with each pair interacting by the Coulomb
force. To understand the origin of the difference of binding ener-
gies for the mirror systems of charged trions, we solve the Faddeev
equations for cases when all three particles are interacting via the
Coulomb potential and when the interaction between two identi-
cal particles is omitted or is screened and use these solutions to
analyze contributions of two terms which course the difference of
binding energies. The first term is related to the Coulomb repul-
sion between two identical particles and the second one is the
mass-polarization term (MPT) [40] related to the kinetic energy
operators. The latter term can be most clearly introduced by using
the Schrodinger equation in the system of reference relative to the
non-identical particle.

The Faddeev equations in configuration space can be written in
the form of a system of second order differential equations [39],
which can be reduced to a simpler form for the case of two iden-
tical particles. In this case the total wave function of the system
is decomposed into the sum of the Faddeev components U and
W corresponding to the (AA)B and (AB)B types of rearrange-
ments: ¥ =U + W + PW, where P is the permutation operator
for two identical particles. In the latter expression the sign “+”
corresponds to two identical bosons, while the sign “—" corre-
sponds to two identical fermions, respectively. After introducing
the set of the Jacobi coordinates for the three particles, separating
the motion of the center-of-mass one can write the set of Faddeev
equations for the relative motion of three particles when two of
them are identical fermions in the following form [43,44]:

(Ho+Vaa — E)U=—-Vaa(W — PW), (1)
(Ho+Vap —E)W =—Vap(U — PW).

In Eq. (1) the Hamiltonian Hgo is the operator of Kkinetic en-
ergy written in terms of corresponding Jacobi coordinates, while
Vaa and Vg are the potentials of the pairwise interactions be-
tween the particles. The pairwise interactions are described by the
Coulomb potential with the dielectric constant related to the con-
sidered material.

Let us consider the states of T~ and T™ trions with the to-
tal angular momentum L = 0, the momentum of pair [ = 0, and
momentum A = 0 of the third particle with respect to the center-
of-mass of the pair. Within this condition the pair of electrons
(holes) is in a singlet spin state. The corresponding spin function
is asymmetric with respect to the permutation operator P, which
provides automatically the asymmetry of the trion wave function
U: PY=PWU+W —-PW)=-U+PW -W=-1.

To analyze the origin of the difference of binding energies
for the T~ and Tt trions let us follow Ref. [40] and write the
Schrodinger equation for the trion in the system of reference rela-
tive to the non-identical particle:

W, Rm_,
oM T e m_BVrAl Vip, +Vap(a,) + Vap(ra,)

—Vaa(ra, —1a,) — E3)W(ra,,1a,,TA; —Ta,) =0, (2)

(

which is written in a self-explanatory notation. In Eq. (2) u is the

reduced mass of the electron and hole and Ty = _%Vm] VrAz is
the mass-polarization term and E3 is the ground state energy of
the three particles. In the case mp < my4 the contribution of the
MPT can be of the same order as the contribution of the other
two differential operators in Eq. (2) due to the comparable mass
factors of these operators, which can be expressed as 1/mg. In
the case mp > my the contribution of this term has the factor
1/mp, while the mass factors of other differential operators are
of the order of 1/m4. When mp >> my4 the contribution of the
MPT can be ignored. If in Eq. (2) the MPT and the interaction
Vaa=Vaa(ra,,ra,,7a, —Ta,) between two identical particles are
neglected one obtains:

n \% n V2 4V 1%
(_ﬂ Ay T ﬂ s, T AB(Tay) + Vap(ra,)

— E3(Timp =0,V s =0)W(ra,,74,) =0, (3)

where E3(Tmp = 0,Vaa =0) is the ground state energy of the
three particle system for the aforementioned condition. In Eq. (3)
the total wave function can be factorized as W(ra,,ra,) =
D(ra,)P(ra,), where &(ry,) is a solution of two-body Schrédinger
equation for the AB subsystem, and that leads to the trivial so-
lution: E3(Tmp =0, Vaa =0) = 2E;, where E; is the ground state
energy of two-body subsystem AB. Within our consideration the
bound AB pair is the exciton.

To evaluate the effect of the MPT, one can neglect the interac-
tion between the identical particles, V44 =0, in Eq. (2). The evalu-
ation can be written as A = E3(Tmp =0, Vaa =0) — E3(Vaa =0),
where E3(Va4 = 0) is the ground state energy of three particle
system AAB when interaction between the identical particles is
neglected.

Taking into account Eq. (3), the last expression can be rewritten
as

A=2E; — E3(V4a=0)=B3(Vaa=0)—2B, >0, (4)

where B; and B3(Vaa = 0) are the binding energies of the ex-
citon and three-body AAB system when the interaction between
two identical particle is omitted, respectively. In the simplest case
when mp >> my the contribution of the MPT can be neglected
and one has: B3(Vaa =0, < Ty >= 0) = 2B;. In consequence,
Eq. (4) is valid for any mass ratio mg/my4 and can be used to eval-
uate the effect of the mass polarization term. The relation (4) is
known in nuclear physics as the mass polarization effect [40-42].

Let us introduce the interaction between two identical particles
as o < Vaa >, where the parameter o controls the strength of
this interaction. Substituting this potential in Eq. (2) and averaging
it gives the following expression:

Es=—<Ti1>—<Ta>+<Vag>+<Vap>—<Tip >
+a<Vas>. (5)

In Eq. (5) the matrix elements < T > =<Ty > and < Vap > =
< Vap > due to the symmetry of the system. Thus, from the one
hand by solving of the Faddeev equations (1) one can find binding
energies Bz for the T~ and T™ trions and test the sensitivity of
their binding energy to the strength of o < V44 > by varying the
parameter «. On the other hand, by solving (1) under the condition
Vaa =0, one can find the binding energies B3(V 44 = 0) for trions
when the interaction between two identical particles is omitted.
Such an approach allows one to analyze the origin of the binding
energy difference for T~ and T™ trions. Obviously, < Ty > is re-
lated to A as well as < Tryp >~ A when the contribution of MPT
to E3(Va4 =0) is small.
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Table 1

The charged and neutral exciton binding energy deference Br = B3 — B, (the binding energy of trion with respect to the exciton binding energy) for different materials.
B, and B3 are the binding energy for the trion and exciton, respectively. The relative contribution of the mass polarization term § is calculated as § = (B3(Vaa =0) —
2B3)/B3(Vaa =0). Here Fzz/mo =7.6195 eVAZ, € is the dielectric constant. All energies are given in meV and the masses are given in units of a free electron mass my.

Material: me, mp, € mpy/me me/mp Trion B) B3 B3(Vaa =0) Bt b

InN: 0.11, 1.63, 7.5 [45] 14.8 T 24.88 285 49.8 3.6 ~0%
0.07 T+ 24.88 - 65.8 - 24%
GaAs: 0.067, 0.51, 12.9 7.6 T 483 5.33 9.66 0.5 ~0%
0.13 T+ 4.83 - 11.8 - 18%
ZnSe: 0.16, 0.75, 8.6 47 T 242 26.3 484 21 ~0%
0.2 T+ 242 - 55.7 - 13%
GaN: 0.2, 0.82, 8.9 41 T 2757 29.6 55.1 21 ~0%
0.24 T+ 2757 - 62.4 - 12%
CdTe: 0.096, 0.35, 10.16 3.6 T~ 9.91 10.6 19.8 0.6 ~0%
027 T+ 9.91 - 222 - 1%
MoS,: 0.45, 0.45, 12.6 [50] 1.0 T 19.3 - 39.3 - 1.7%
1.0 T+ 19.3 - 39.3 - 1.7%
0.45, 0.45, 10.7 [51,52] 1.0 T 26.7 26.8 54,5 ~01 2.0%
1.0 T+ 26.7 26.8 545 ~0.1 2.0%

401 Sah strength of interaction between identical particles: Vs — aVaa.
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Fig. 1. The B3 — B, for eeh (solid curve) and hhe (dashed curve) in InN as a function
of the scaling factor o of the Coulomb repulsion between identical particles. The
crossing point corresponds to o = 0.41. The relative value of the mass polarization
term < Tpyp > for hhe is shown by the vertical line segment.

Let us discuss results of calculations for excitons and T tri-
ons binding energies in various bulk semiconductors. The binding
energies Bz and B3(V a4 = 0) for the trions were calculated using
the aforementioned Faddeev formalism. We calculate the binding
energy By of the exciton in the same semiconductor as well. In
our calculations we use the known mass ratio mg/ma for var-
ious bulk materials and the corresponding dielectric constant e.
The numerical results of our calculations presented in Table 1
show that the negative trion is always bound, while the posi-
tively charged trion has no bound state for all set of parameters.
To demonstrate that for the particular equal masses the nega-
tively and positively charged trions have the same energies and
can be bound or unbound depending on the value of the dielec-
tric constant we perform calculations for trions binding energies
in bulk MoS; which are presented in Table 1. The analyses of
the results for B3(V44 = 0) and binding energy of the exciton
By shows that the relation B3(V 44 = 0) > 2B, is always satis-
fied for trions and relative contribution of the MPT indicated by
8 = (B3(Vaa =0) —2B3)/B3(Vaa = 0). For the positively charged
trions, & increases when the ratio mg/ma decreases. For the nega-
tively charged trions, the MPT effect is small and § ~ 0.

Let us mention that the results for B, confirm the hydrogenic
exciton energy By = Ry* = 13.61u*/e? (eV) (Ry* is the effective
Rydberg constant with the reduced electron-hole effective mass
©1*) and are in good agreement with experimental data and the-
oretical calculations [10,15,45-49]. Fig. 1 presents the difference
B3z — B, for AAB systems as a function of «, which controls the

screening caused predominantly by the valence electrons, leads
to a weaker Coulomb interaction between the identical particles
and hence an increased trion binding energy. However, this inter-
action is stronger for two holes because they are localized more
closely to each other than electrons, due to the larger kinetic en-
ergy caused by the heavier effective mass of holes, and hence a
reduced trion binding energy. Therefore, the effect of strong re-
pulsion due to the Coulomb interaction takes place. This fact is
illustrated in Fig. 2 by the contour plots of the Faddeev compo-
nent U and W: the negative trion has more extended distribution
within about 200 x 250 A, than less extended distribution within
80 x 120 A for the positive trion. The analyses of Figs. 1 and 2
allows to conclude that both systems are bound with the same
binging energy when « = 0.41, However, the hhe is more com-
pact. One can make the transformation of T~ to TT by replacing
of the masses of the electron and hole and vice versa (m, — my
and my — me). The parameter £ > 0 sets this transformation as
follows: mi =1+ s)m,q,m% = (1 —&my/mp)mp and keeps the
sum of the masses, my + mp = const. For example, for the effec-
tive masses of the electron and hole in InN, when & =0 we have
T, while for £ = 13.75 we have T*. The dependence of differ-
ent characteristics for eeh and hhe systems as a function of the
parameter & is presented in Fig. 3. During the transformation, the
energy Es follows Bj, does not return to the initial value defined
for £ =0 due to the strong increasing of the Coulomb contribution
(see Fig. 3a)). The contribution of the Coulomb repulsion increases
more quickly than the B, when the ratio mg/m, increases.

The replacement e — h in the eeh system, when the AA in-
teraction is omitted, leads to the increase of the MPT contribution
indicated by the increasing B3(V 4 = 0) relatively 2B, (Fig. 3b)).
Note that, in case of GaAs, the relative increase varies from 0% to
18% or, in absolute values, from 9.66 meV to 11.8 meV.

The analyses of the results presented in Fig. 3 shows that the
matrix element of the Coulomb repulsion < V44 > increases more
quickly than the MPT, < Typ >. In another words, small variations
of the masses (making more compactness of the system) generate
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Fig. 2. The contour plots of the Faddeev components U (left) and W (right) for a) hhe and b) eeh systems when the scaling factor for the ee (or hh) Coulomb repulsion
a =0.41 (see Fig. 1). The inserts show the corresponding Jacobi trees and Jacobi coordinates x and y are measured in A.
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Fig. 3. The mass transformation from eeh to hhe in InN. a) The binding energies B3 (solid curve), B, (dashed curve) and B3(x = 0.7) (dot-dashed curve); and b) 2B, (dashed
curve), and B3(V a4 = 0) (solid curve), as a function of the mass transformation parameter &. The parameter & is related to the negative trion, when & =0, and to the positive

trion, when & = 13.75.
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Fig. 4. The value of a) B3 — B3, b) B3(V 44 =0) — 2B>, ¢) B3 — B3(V a4 =0) for eeh in InN as a function of the mass transformation parameter £ <5 (solid curve). The B3 is
shown by the dashed curve. The inset shows schematic distribution for energies in the system.

larger Coulomb repulsion between identical particles. The latter re-
sults in the unbound state of the transforming eeh system and the
final hhe system (TT).

One can reduce this Coulomb repulsion artificially using the pa-
rameter «. The results are presented in Fig. 3a). The energy of T+
is evaluated as 0.7 meV above the eh threshold when « = 0.7. In

this case, E3 is larger B, during the transformation and in the final
point. It means also that the MPT can compensate for the increased
Coulomb repulsion.

The Coulomb repulsion of AA particles can be evaluated as
AB:(AA) = B3 — B3(Vaa = 0). This is shown in Fig. 4, which
presents the dependence of different characteristics for the eeh
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system on the parameter £ = 0. One can conclude that, firstly, the
binding energy of eeh system By = B3 — Bj, Bt /B2 << 1 decreases
during the mass transformation to the negative value (unbound
state) when & ~ 4 (Fig. 4 a)). One can further conclude, secondly,
the contribution of the MPT increases with the increment of & and
hence when the mass ratio mg/my increases. However, the MPT
related additional energy is small relative to Br and cannot com-
pensate for the Coulomb repulsion. Thirdly, the contribution of the
Coulomb repulsion for T~ near the point & ~ 4 can be evaluated
as < V. >~ B, taking into account the small binding energy of
T—, as well as By/By << 1. The latter means that the eeh system
is clustered as e + (eh) and the energy separation of the electron
from the pair eh is small. According to Eq. (5) one can writes:
B3 =2B,— < V>~ By and < V. >~ Bj.

We have shown that the matrix element < V. > of the
Coulomb interaction for two identical particles in the hhe system
is larger than one in the eeh system. When one disregards the
Vaa interaction, the large MPT in the hhe makes the system more
bounded compares with the eeh system, where the contribution of
the MPT term is negligible. Using scale factor o > O for the AA in-
teraction we show that the relation < V.(hhe) > > < V.(eeh) >
is satisfied for increasing « up to « ~ 1. The system hhe becomes
unbound rapidly when « is increasing. According to Eq. (5) one can
write: B3 = 2B+ < Tpyp > —a < V¢ >, and can see that B3 ~ B,
when the screening is defined by « ~ 0.7. The binding energies of
the T trions are calculated for different bulk materials based on
the Faddeev equation for the AAB system in configuration space.
It was found that the binding energy of T~ is relatively small,
B1 /B3 << 1, while T* is unbound. The results of the calculations
for By are consistent with previous computational studies and are
in reasonable agreement with experimental measurements. We ex-
plain the origin of the difference of binding energies of T~ and T+
by using the Schrédinger equation written in the system of refer-
ence relative to the non-identical particle. There are two terms of
the equation which play an important role for the formation of
the bound state of a trion when me/m;, << 1: the Coulomb re-
pulsion between two identical particles and MPT. The MPT, Ty,
adds a part to the binding energy of the AAB system, while the
Coulomb repulsion between AA identical particles decreases the
energy. Comparing the bound and unbound states of T* in con-
sidered materials, we show that hole-hole Coulomb repulsion is
stronger in T than the electron-electron one in T~ due to more
close localization of the two holes. The last condition is possible
due to large contribution of the MPT. By introducing the scaling
parameter 0 < o <1 and calculation of the binding energy as a
function of o, we show that < V4 > is larger for the hole-hole
pair.

We illustrated the interplay of these two terms by the hypo-
thetical mass transformation eeh — hhe, which replaces of the
masses of the electron and the hole in bulk InN. Using this trans-
formation we demonstrate that the Coulomb repulsion decreases
more quickly and the MPT contribution, < Ty, >, does not com-
pensate for the binding energy decrease. It was demonstrated that
T* can be bound by reducing the strength of the Coulomb repul-
sion with the controlled parameter o < 1.

The properties of the eeh and hhe systems are similar for 3D
and 2D models. The similarity is based on the existence of the
MPT and the Coulomb repulsion in the Schrédinger equation for
the both cases. As we show, the interplay of the terms results in
the bound or unbound state of the systems.
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