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Abstract
The negatively T− and positively T+ charged trions in bulk and monolayer semiconductors are
studied in the effective mass approximation within the framework of a potential model. The
binding energies of trions in various semiconductors are calculated by employing the Faddeev
equation with the Coulomb potential in 3D configuration space. Results of calculations of the
binding energies for T− are consistent with previous computational studies, while the T+ is
unbound for all considered cases. The binding energies of trions in monolayer semiconductors
are calculated using the method of hyperspherical harmonics by employing the Keldysh
potential. It is shown that 2D T− and T+ trions are bound and the binding energy of the positive
trion is always greater than for the negative trion due to the heavier effective mass of holes. Our
calculations demonstrate that screening effects play an important role in the formation of bound
states of trions in 2D semiconductors.
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1. Introduction

Excitonic effects in semiconductor nanostructures that are
determined by the energies of excitonic complexes such as
exciton, trions, biexcitons and the electron–hole interaction,
play a critical role in optoelectronic devices and have gar-
nered considerable interest in recent years [1, 2]. Charged
exciton complexes such as negative (T−) and positive (T+)
trions are formed when a single exciton is correlated,
respectively, with an additional electron in a conduction band
or hole in a valence band, as proposed by Lampert [3].
However, the observation of trions in bulk semiconductors
has been hampered due to their rather small binding energies
and has become a challenging task. The calculation of the
trion wave functions and binding energy is a very old subject
that gave rise, in the 1960s and 1970s, to many publications

with respect to bulk materials (see, for example, the works
[4–6] and citations therein), as well as many calculations for
2D materials after the observation of trions in quantum wells
(QWs) by Kheng and co-workers in 1993 [7]. These com-
plexes confined in a QW and in the presence of a magnetic or
electric field, have been the subject of extensive theoretical
[4–6, 8–25] and experimental [27–40] studies. We cited these
articles, but the recent literature on the subject is not limited
by them. Theoretical calculations performed at the end of the
1980s [8] predicted a considerable (up to tenfold) increase of
the trion binding energy in QW heterostructures compared
with bulk semiconductors. Early theoretical calculations by
means of variational methods have yielded values of the T−

binding energy for bulk and QWs, which are not too far from
the experimental observations. Usually, the solution of the
trion eigenequations is very challenging and requires
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extensive variational calculations [4–6, 8, 13–16]. For
example, in [8] the binding energies for the 3D and 2D trions
are calculated variationally using a 22-term Hylleraas-type
trial wave function. In the meantime, T−and T+ trions have
been the subject of intense theoretical studies in the past two
decades (see, e.g. [18, 26] and references therein). There are
stochastic variational calculations that have been done and
studies undertaken by means of density functional theory,
application of the quantum Monte Carlo method, variational
quantum Monte Carlo method, or the diffusion Monte Carlo
approach [12, 14, 26, 41, 42]. But, most of these calculations
are limited to specific material systems. In order to achieve a
better agreement with experimental data, sometimes the pro-
blem is treated with a considerable number of fitting
parameters.

The binding energies of trions are very small in bulk, but
they can be substantially enhanced in structures of reduced
dimensionality such as 2D QWs and 1D quantum wires.
Calculations have shown that the binding energy of trions is
strongly enhanced in 2D structures due to the size-confine-
ment effect A confinement of correlated charge carriers and
reduced dielectric screening in these materials led to large
many-body effects, resulting in bound-state complexes of
electrons and holes with very large binding energies.

After the first work done to demonstrate the existence of
charged excitons in monolayer MoS2 [43], trions have been
observed in 2D transition metal dichalcogenide (TMDC)
semiconductors with binding energies of 15–30meV. These
binding energies are one order larger than for the trions
observed in QWs. Until now, several approaches have been
proposed for the evaluation of the binding energies of trions
in 2D TMDCs. Trion binding energies in TMDCs were cal-
culated using variational wave functions [44], and more
recently using the time-dependent density-matrix functional
theory, fractional dimensional space approach, stochastic
variational method with explicitly correlated Gaussian basis,
the method of hyperspherical harmonics, or quantum Monte
Carlo methods, such as the diffusion Monte Carlo and path
integral Monte Carlo [44–55].

Although the exciton complexes such as trions in solid-
state physics are very similar to the few-body bound systems
in atomic and nuclear physics, there is a major difference
related to band effects, which makes the effective masses of
the electrons and holes smaller than the bare electron mass,
and screening effects, resulting from the host lattice, which
make the Coulomb force much weaker than in atomic sys-
tems. The Mott–Wannier trions in 2D and 3D semiconductors
can be described by the solution of the three-body Schrӧ-
dinger equation after modeling the crystal by effective elec-
tron and hole masses and a dielectric constant.

Because trions are intrinsically three-particle objects,
common calculation methods are not always adequate to
describe their behavior and a more rigorous level of theory
must be employed. In the presented work, we study the T−

and T+ trions in bulk semiconductor within the Faddeev
equation formalism [56] and 2D trions in TMDC semi-
conductors within the framework of the method of hyper-
spherical harmonics [57, 58]. These methods are the most

rigorous approaches for the investigation of a three-body
system. In the case of trions, one deals with a three-body
system AAB with two identical particles. We perform ground-
state calculations for T± Mott–Wannier trions in the effective
mass approximation within the framework of a nonrelativistic
potential model using the method of Faddeev equations in 3D
configuration space [56] and the method of hyperspherical
harmonics in 2D configuration space. In our approach, the
trion is a three-particle AAB system with two identical parti-
cles constituent from electrons and heavy holes, with each
pair interacting by the Coulomb potential in the 3D case or in
the case of TMDC semiconductors by the screened Coulomb
force described via the Keldysh potential [59]. Such an
approach allows us to understand the origin of the difference
of binding energies for the mirror systems of charged trions.

The paper is organized in the following way. In section 2,
a brief description is given of the three-body AAB system with
two identical particles using the Faddeev equations in 3D
configuration space and reduction of the Schrödinger equation
using the method of hyperspherical harmonics to a coupled
system of differential equations that describe 2D trions in
TMDC semiconductors. Results of calculations for the bind-
ing energies are presented and analyzed in section 3. The
conclusions follow in section 4.

2. Formalism

2.1. 3D trion

Let us consider the formation of trions in a very diluted 2D
electron gas with the electron concentration pn a1 B

2,
where aB is the radius of the 2D exciton and the charged
exciton complex is the energetically lowest excitation [40]. At
these low electron densities the screening length of the elec-
trons drastically changes, giving rise to a substantial increase
in the electrostatic disorder in the sample [35]. In the limit of a
very diluted carrier gas, the binding energy of the trion is
given by the ground-state energy difference between the
exciton and trion. The deviation from this ‘bare’ value of a
trion binding energy takes place with increasing carrier den-
sity [37, 40]. In the case of the formation of trions in a very
diluted 3D electron gas, the electron concentration

p /n a1 3

4 B
3, where aB is the Bohr radius of the exciton. In

most of the binding energy calculations an ‘isolated’ trion was
considered, which is unperturbed by interaction with 2D
electron gas. However, there are a great number of effects,
which are not directly connected to the model of an ‘isolated’
trion, but can also influence the trion binding energy and must
be taken into account in real heterostructures. For example,
the complex valence band of semiconductors, electronic
screening effects, electron-to-hole mass ratio, quite different
structure of QW based on CdTe, GaAs, and ZnSe, or
monolayer TMSC semiconductors, that vary from sample to
sample [39, 40].

The simplest way of distinguishing these two cases is to
consider the common part of the binding energy of the three-
body system, which should be universal for all
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semiconductors, and the contribution of sample-dependent
effects [39]. Below, we theoretically study the binding energy
of trions within the rigorous methods developed in three-body
physics: the method of Faddeev equations and the method of
hyperspherical harmonics. Our model is the following. The
trion is treated as a three-body Coulomb system in the case of
a 3D trion and three-particle system interacted via the Kel-
dysh potential in the case of a 2D trion in TMDC monolayers.
The model has no fitting parameters and the inputs are elec-
tron and hole effective masses that are obtained within stan-
dard methods used in condensed matter physics. Therefore,
only three-body universal properties are the subject of this
paper.

The Faddeev equations in configuration space for a trion
can be written in the form of a system of second-order diff-
erential equations [56], which can be reduced to a simpler form
for the case of two identical particles. In this case, the total
wave function of the system is decomposed into the sum of the
Faddeev components U andW, corresponding to the (AA)B and
(AB)B types of rearrangements: Ψ=U+W−PW, where P
is the permutation operator for two identical fermions.

To separate the center-of-mass and relative motion of
three particles, let us introduce a set of mass-scaled Jacobi
coordinates for the partition i as follows:
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where ri and mi are a 3D coordinate and an effective mass of

the ith particle, respectively, and m =
+ +

m m m

m m m
i j k

i j k
is the

three-body effective mass. Here, the subscripts i, j and k are a
cyclic permutation of the particle numbers. Therefore, we
have three sets of the Jacobi coordinates. After separating the
motion of the center-of-mass, one can write the set of Fad-
deev equations in 3D configuration space for the relative
motion of three particles when two of them are identical
fermions in the following form [60, 61]:

+ - =- -
+ - =- -

( ) ( )
( ) ( ) ( )
H V E U V W PW
H V E W V U PW

,
. 2

AA AA

AB AB

0

0

In equation (2) the Hamiltonian H0 is the operator of kinetic
energy written in terms of corresponding Jacobi coordinates,
E is the ground-state energy of a trion, while VAA and VAB are
the potentials of the pairwise interactions between the parti-
cles. The pairwise interactions in bulk materials are described
by the Coulomb potential with the dielectric constant related
to the considered material.

Let us consider the states of T− and T+ trions with the total
angular momentum L=0, the momentum of pair l=0, and
momentum λ=0 of the third particle with respect to the center-
of-mass of the pair. Within this condition, the pair of electrons
(holes) is in a singlet spin state. The corresponding spin function

is an asymmetric relative to the permutation operator P, which
provides automatically the asymmetry of the trion wave function
Ψ: PΨ=P(U+W−PW)=−U+PW−W=−Ψ.

2.2. 2D trion

The nonrelativisic trion Hamiltonian in a 2D configuration
space is given by
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In equation (3) -(∣ ∣)V r rij i j , where ri is now the ith particle
position in a 2D configuration space, is the Keldysh potential
[59], which describes the Coulomb interaction screened by
the polarization of the electron orbitals in the 2D lattice. After
the transformation (1), where we are now considering ri as a
2D coordinate of the ith particle, the Schrödinger equation for
the relative motion of the three-body system reads

 åm
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To obtain a solution of the Schrödinger equation (4) for the
trion, we employ hyperspherical coordinates in 4D config-
uration space. Let us introduce in 4D space the hyperradius

r = +x yi i
2 2 and a set of three angles a j jW º ( ), , ,i i x yi i

where jxi
and jyi

are the polar angles for the Jacobi vectors xi
and y ,j respectively, and αi is an angle defined as

r a=x cos ,i i r a=y sin .i i Using these coordinates,
equation (4) can be rewritten as [53, 57]
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where W ( )K i
2 is the angular part of the Laplace operator in

4D configuration space and known as the grand angular
momentum operator [57, 58].

One can expand the wave function of the trion Ψ (ρ , Ω i)
in terms of the HH that are the eigenfunctions of the operator
K ,2 W F W = + F Wl l ( ) ( ) ( ) ( )K K K 2 ,i K K

2 that present a
complete set of orthonormal basis

år r rY W = F Wl l
-

l

( ) ( ) ( ) ( )u, . 6i K K i
3 2

K

In equation (6), rl ( )uK are the hyperradial functionsand λ ≡
{ }l l L M, , , ,x y where L is the total orbital angular momentum
of the trion with M as its projection, and K=2n+lx+ly,
n�0 is an integer number. By substituting (6) into (5) one
gets a set of coupled differential equations for the hyperradial
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functions rl ( )uK [53]:
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where k m= B2 T
2 2, BT is the binding energy of a 2D trion

and the coupling effective potential energy is

* ò år = F W - F W Wl l l l
<
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i j

ij i j K i i

3

which is defined by averaging of the Keldysh potential using
the fully antisymmetrized, with respect to two electrons or
two holes for T− and T+ correspondingly, hyperspherical
functions F Wl¢ ¢( )K i [53, 61].

3. Results and discussion

We begin by investigating the 3D or bulk case. The results of
our calculations for the binding energies of excitons X and T±

trions in various bulk semiconductors are presented in table 1.
The binding energies for the 3D trions are calculated using the
aforementioned Faddeev formalism. For comparison, we
present the results of calculations for the binding energy B2 of
the exciton in the same semiconductor. The binding energy of
a trion is defined as the difference of the ground-state energies
of an exciton and a trion. As the inputs we use the Coulomb
potential, the known masses of electrons and holes obtained
for various bulk materials and the corresponding dielectric
constant ò. The binding energies of excitons in different
semiconductors vary from a few meV to about 30 meV.
However, for the same bulk semiconductors the negatively
charged trions are weakly bound, while the positively charged
trions are completely unbound. This result seems strange
because the binding energy of trions is composed by the same
electron–hole attraction of the two excitonic pairs and
repulsion between two identical particles: two electrons (case
of T−) or two holes (case of T+) that have the same electric
charge. The only difference is related to the different masses
of the electron and the hole. Within our approach of the
treatment of 3D trions the origin of a discrepancy for the
binding energies of T− and T+ trions could only arise for one
or more of the following three reasons: (i) the Mott–Wannier

model is incorrect or incomplete; (ii) the Mott–Wannier
model is in principle correct, but the screening caused pre-
dominantly by the valence electrons leads to a weaker Cou-
lomb interaction between the identical particles that reduces
trion binding energy and hence requires the modification of
the Coulomb potential; iii) the effective masses of electrons
and holes used in the model are incorrect.

There is no obvious reason to believe that the Mott–
Wannier model, which provides a good description of the
Coulomb potential for excitons and a reasonable explanation
for the binding energy of the T− is incorrect. Moreover, this
model appropriately provides a good description for excitons
and trions in 2D TMDC materials with the Keldysh potential,
as shown below. To address the second option, let us intro-
duce the interaction between two identical particles as aVAA,
where the parameter α controls the strength of this interaction
and varies from 0 to 1. Substituting this potential in
equation (2) and solving the Faddeev equations, one can find
binding energies B3 for the T− and T+ trions and test the
sensitivity of their binding energy to the strength of αVAA by
varying the parameter α.

In figure 1, the trion biding energy BT is presented as a
function of the parameter α. The difference between the
curves at α=0 shows the contribution due to heavier
effective masses of two holes in the hhe system relative to the
electron masses in the eeh system. Thus, the difference of
energies of the trions has to depend on the mass ratio. When
the interaction between identical particles is omitted (α=0),
one can calculate additional energy caused by the mass
polarization term of the kinetic operator, known as a mass
polarization effect related to the dependence of the binding
energy on the mass ratio of non-identical particles of the AAB
system. The mass polarization energy is different for the eeh
and hhe systems. Therefore, for the trions with different
masses of electrons and holes the binding energies of T+ and
T− have to be different, as one can see in figure 1. The
additional analyses show that the slope of the curves is sig-
nificantly different and the curves intersect at α=0.41. This
hypothetical model with parameter α, which controls the

Table 1. Trion T± and neutral exciton X binding energies in meV for
different bulk semiconductors. m0 and ò are the free electron mass
and dielectric constant, respectively.

Material me/m0 mh/m0 ò X T− T+

InN 0.11 1.63 7.5 [62] 24.88 3.6 —

GaAs 0.067 0.51 12.9 4.83 0.5 —

ZnSe 0.16 0.75 8.6 24.2 2.1 —

GaN 0.2 0.82 8.9 27.57 2.1 —

CdTe 0.096 0.35 10.16 9.91 0.6 —

MoS2 0.45 0.45 10.7
[63, 64]

26.7 ∼0.1 ∼0.1

Figure 1. Binding energy BT for the eeh (solid curve) and hhe
(dashed curve) trions in bulk InN as a function of the scaling factor α
for the Coulomb force between identical particles. The calculated
values are indicated by open circles.
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strength of interaction between identical particles, shows that
at α<0.41 BT for the hhe system is bigger than for eeh,
while when α>0.41, we observed the opposite picture: BT is
bigger for the eeh and at about α>0.78 BT<0, which
means the hhe system is completely unbound. This indicates
that the repulsion between identical particles is much stronger
in the hhe system than in eeh because two holes are localized
much closer due to their bigger effective masses. Thus, in our
hypothetical model with parameter α, which controls the
strength of interaction between identical particles for both
trions, screening caused predominantly by the valence elec-
trons, leads to a weaker Coulomb repulsion between the
identical particles and hence increases trion binding energy.
However, this interaction is stronger for two holes because
they localized closer to each other than electrons, due the
bigger kinetic energy caused by the heavier effective mass of
holes, and hence a reduced trion binding energy. Therefore,
the effect of the strong repulsion between identical particles
due to the Coulomb interaction takes place.

Let us now address the third possibility that the band
effective masses of electrons and holes used in the model are
incorrect. These masses are taken from ab initio calculations,
which might not provide a sufficiently accurate description of
the electronic band structure. The difference of the electron
and hole masses gives appreciable uncertainty in the binding
energies for T−. However, results of our calculations show
that the matrix element of the Coulomb repulsion áY Yñ∣ ∣VAA

between two identical particles cannot be compensated by the
mass ratio mB/mA effect [65] in the case of T+. This is related
to the fact that hole–hole Coulomb repulsion in T+ is stronger
in considered materials than the electron–electron one in T−

due to the close localization of two holes. Figure 1 illustrates
this conclusion. It is obvious that when α = 0, the binding
energy of the hhe system is larger than that of the eeh system.
We have found that the close localization of the hh pair in the
hhe system is kept for α = 0.41, when the binding energies
for the eeh and hhe are equal. The slopes of the curves differ
significantly. This indicates that the repulsion between iden-
tical particles is much stronger in the hhe system than in eeh
because the two holes are localized much closer to each other
due to their larger effective masses.

While bulk, for example, MoS2 is an indirect gap semi-
conductor, all 2D TMDC semiconductors becomes direct gap
materials with the band gap at the K-point of the Brillouin
zone. In table 2, we present the summary of the results for the
binding energy of T− and T+ trions in different TMDC
materials obtained by employing the Keldysh potential [59] as
input for the eh, ee and hh interactions. In calculations, we use
the electron and hole effective masses obtained with the dif-
ferent methods cited in table 2. In particular, we use electron
and hole effective masses and r0 values for the screening
length obtained by different ab initio methods: many-body
G0W0 [66] and GW [64, 67], density functional theory either
in the local density approximation (LDA) [48, 68–73] or
using the Perdew–Burke–Ernzerhof (PBE) functional [47, 68,
74–78]. Since a range of masses are reported in the literature,
we have taken the average of the reported masses from [55]
that were supposedly obtained using the same method. The

calculations are performed with the method of hyperspherical
harmonics [53, 61]. In all TMDC semiconductors, negatively
and positively charged trions are bound. Comparing the
binding energies for T− and T+ trions one can conclude that
T+ is always stronger bound than T−. The latter fact has
strong correlation with the larger effective mass of the hole
than for the electron. Only for one set of the masses for
MoSe2 is the energy binding of T− larger than the one for T+.
However, in this case the effective mass of the electron is
bigger than for the hole. The rather small variation in the
binding energy of trions in 2D TMDC semiconductors can be
well understood from fundamental principles related to their
structural and electronic similarities. The small variation of
the binding energies for the same TMDC material is related to
the different effective masses of the electron and hole, and the
screening parameter r0 obtained within diverse methods. The
results are sensitive to the variations of effective masses and
in-plane dielectric susceptibility. While the energies for the
same TMDC semiconductor depend relatively weakly on the
effective masses of electrons and holes, the difference in the
binding energies related to the in-plane susceptibility is cer-
tainly dominated. When the screening parameter increases,
the binding energy decreases for the same TMDC semi-
conductor as well as for the different TMDC materials. For
completeness in our analysis, we should mention that first, the
strength of electron screening in 2D TMDC semiconductors
presented by the Keldysh potential [59], and second, the
confinement of the eeh and hhe system due to the reduced
dimensionality, lead to the existence of the bound state for T−

and T+ trions.

4. Conclusions

We provide the calculations for the binding energies of trions
within the effective mass Mott–Wannier potential model
using the most rigorous approaches for description of a few-
body system, the Faddeev equations and the method of
hyperspherical harmonics in 3D and 2D configuration space,
respectively.

The binding energies of the trions are calculated for
different bulk materials based on the Faddeev equation for the
AAB system in 3D configuration space when charges interact
via the Coulomb potential. It was found that the binding
energy of the negative trion is relatively small, while the
positive trion is unbound. We demonstrated that the screening
caused, predominantly by the valence electrons, leads to a
weaker Coulomb repulsion between the identical particles and
can lead to the bound T+. On the other hand, the reduction of
dimensionality from 3D to 2D is a crucial factor for
increasing trion stability, and the trion binding energy grows
by a factor of 10.

Calculations within the method of hyperspherical har-
monics show that in 2D monolayer TMDC semiconductors,
due to the reduced dimensionality and strong screening of eh,
ee and hh, interactions presented by the Keldysh potential,
negatively and positively charged trions are bound and the
binding energy of the positive trion is always greater than that
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of the negative trion due to the larger effective mass of the
hole. The mass ratios of the election and hole are inverse
values for the eeh and hhe systems. We have shown that the
mass polarization effect takes place for the case when the
interaction between identical particles is omitted, which
results in the additional binding energy for the eeh or hhe
depending on the mass ratio. Thus, the difference of energies
of the trions is sensitive to the mass ratio. Our calculations
demonstrate that screening effects play an important role in
the formation of bound states of trions in 2D semiconductors.

Finally, we can conclude that in the effective mass Mott–
Wannier potential model a negatively charged trion in 3D
formed via the Coulomb interaction is fragile and the posi-
tively charged trion is unbound, but trion complexes in 2D
systems formed via the Keldysh potential become stable.
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