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Abstract—As a special form of the Internet of Things, Smart
Grid is an internet of both power and information, in which
energy management is critical for making the best use of the
power from renewable energy resources such as solar and
wind, while efficient energy management is hinged upon precise
forecasting of power generation from renewable energy resources.
In this paper, we propose a novel least absolute shrinkage and
selection operator (LASSO) and long short term memory (LSTM)
integrated forecasting model for precise short-term prediction of
solar intensity based on meteorological data. It is a fusion of a
basic time series model, data clustering, a statistical model and
machine learning. The proposed scheme first clusters data using
k-means++. For each cluster, a distinctive forecasting model is
then constructed by applying LSTM, which learns the non-linear
relationships, and LASSO, which captures the linear relationship
within the data. Simulation results with open-source datasets
demonstrate the effectiveness and accuracy of the proposed model
in short-term forecasting of solar intensity.

Index Terms—Internet of Things (IoT), Short-term solar power
forecasting, Least absolute shrinkage and selection operator
(LASSO), Long short term memory (LSTM), K-means++.

I. INTRODUCTION

Internet of things (IoT) is defined as uniquely identifiable

objects that are organized in an Internet-like structure [1]. The

internet of information, vehicles, power, and energy are all

typical forms of IoT. With innovative structure and techniques,

IoT promotes the new developments of many traditional

industries, and the Smart Grid (SG) is one of them. As a

special form of the IoT, SG is considered as an internet of

both power and information [2]. In recent years, more and

more IoT-based technologies have been developed to make

SG a more sustainable, economic, safe and reliable power grid

from many aspects [3]–[5]. Among them, energy management

is one of the most innovative and important techniques, which

can increase the efficiency, reliability, and economy of the

SG [6]–[9].

Energy management in the SG is usually based on differ-

ent timescales, depending on practical constraints and pur-

poses [10]. At the daily scale, day-ahead strategies for power
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devices and budget for utilities can be developed, according to

the day-ahead predictions of daily average power generation

and demand, which focus on state estimation and market

guidance. At the hourly or minutely scale, the real-time power

distribution can be optimized based on predicted power gener-

ation and demand updated every hour or several minutes, and

the current power storage, which determines the power flows

in SG for more reliable, efficient and economic operation.

For both cases, energy management relies on predictions of

power generation and demand in the SG [6]. And precise

short-term predictions are more important to guarantee the

power balance and system reliability, and thus require higher

precision. Among the various renewable energy sources, solar

power is highly fluctuating, and changes very fast in some

cloudy days, making it difficult for accurate short-term fore-

casting [11]. Therefore, precise short-term prediction of solar

power generation is highly demanded to achieve a highly

efficient energy management scheme for the SG.

Solar power generation from solar panels are proportional

to solar intensity, so it can be estimated by predicting short-

term solar intensity [12]. Many recent works focus on applying

the time series model to predict short-term solar intensity.

The work in [13] conducts the short-term prediction of so-

lar radiation using autoregressive integrated moving-average

(ARIMA) and time delay neural network (TDNN). The authors

of [14] propose a time-series regression model with ARIMA

and artificial neural network (ANN) to predict solar intensity in

the city of Al-Ain, United Arab Emirates. The temporal model

works well when the weather is sunny and stable. However, in

cloudy, heavily cloudy, rainy, and similar weathers, the time

series based methods are not very accurate due to the high

variations of solar intensity. Therefore, applying only temporal

model is inadequate for further increasing the forecasting

accuracy [11].

Machine learning techniques, which can capture the re-

lationships between solar intensity and the meteorological

variables, are also popular in forecasting renewable power

generation. For example, support vector machine (SVM) is

applied in [15], and a method based on artificial neural

network (ANN) is proposed in [16]. Although many machine

learning methods can achieve fairly good results [15]–[18],

they do not perform a deep analysis of the data, and thus there

is still room for more accurate predictions. We summarize the

pros and cons of both time series and machine learning models

in solar intensity predictions in Table I.

Recurrent neural network (RNN) acquires the output from

not only the current input information but also the past
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TABLE I
THE PROS AND CONS OF MAJOR EXISTING METHODS FOR

SHORT-TERM SOLAR INTENSITY FORECASTING

Model Pros Cons

Time Series Accurate predictions Not effective
Model in sunny and stable weathers in fast-changing weathers

Machine Acceptable predictions Limitation on highly
Learning Model in almost all weathers precise predicting

experience and input information, which is a good candidate

to be integrated into the solar intensity forecasting model.

However, when the distance between two cells in the RNN

is too large, the vanishing gradient may cause losses of

important information [19]. Fortunately, the long short-term

memory (LSTM) method successfully solves this vanishing

gradient problem by adding three gates: input gate, forget

gate, and output gate into the RNN cell [20]. It is thus a

suitable method to further increase the forecasting accuracy by

capturing the non-linear relationships between solar intensity

and the meteorological variables. On the other hand, there

exist both linear and nonlinear relationships in the meteoro-

logical data. The linear representation can be captured by a

regression method. To this end, the least absolute shrinkage

and selection operator (LASSO) is a linear regression analysis

method, which reduces over-fitting and enhances the prediction

accuracy through variable selection and regularization [1].

Because of the complex and complicated relationships

between the solar intensity and meteorological variables, a

method integrating time series characteristics, statistical model

and machine learning is highly desirable for precise short-

term forecasting of solar intensity. By integrating these three

methods, we classify the data into several clusters according

to the idea of building different specific forecasting models

for different weather types. K-means is the most popular

clustering method for its computational efficiency [21]. Once

the number of clusters is specified, the clustering result could

be obtained. However, the randomness of initial sampling (e.g.,

bad data) affects the clustering results badly. The improved

k-means++ solves this sampling problem so that satisfactory

clustering results can be obtained [22]. Therefore, we apply k-

means++ to cluster the weather data. For each cluster, we start

from a basic temporal model because of its strong temporality

in short-term prediction of solar intensity. We then apply an

integrated forecasting model in each cluster, capturing both

temporal and spatial characteristics. The spatial part is further

divided into linear and nonlinear parts linked by optimal ratios.

This way, the forecasting accuracy can be increased to a very

high level.

The main contribution of this paper is to propose an

integrated forecasting model for precise short-term predictions

of solar intensity. The model architecture is shown in Fig. 1.

It is a fusion of a basic time serial model, data clustering,

a statistical model, and machine learning, which is a com-

prehensive model considering every aspect inside the short-

term solar intensity forecasting problem, including strong time

Meteorological Data

History Solar Intensity

Statistical 

Model

Solar Intensity Predictions

Machine 

Learning

Hybrid Temporal Model

Fig. 1. Architecture of our proposed model.

correlation, weather complexity, linear and non-linear rela-

tionships. It generates different forecasting models for every

different clusters from the k-means++ output, in which the

time series model captures the strong time correlation, LSTM

learns the non-linear relationship, and LASSO represents the

linear relationship. Such a comprehensive model guarantees a

very high forecasting accuracy of solar intensity, as will be

shown in our performance evaluation and comparison study.

Furthermore, our model is also applicable to other data-based

short-term forecasting problems, such as predicting short-term

wind power, loads of the power grid, and so on.

The remainder of this paper is organized as follows. We

present the forecasting model construction in Section II.

We propose our integrated short-term forecasting model in

Section III. Simulation studies are presented in Section IV.

Section V concludes this paper and discusses future work.

II. FORECASTING MODELS

In this section, we first introduce a general temporal model

followed by model refinement from error correction. We then

propose the integrated temporal model, which is based on the

structure shown in Fig. 1.

A. Temporal Model

The data of solar intensity is usually recorded for every time

interval, which can be represented using a time series model

as follows [23]

Y (t) = f(Y (t− δt), Y (t− 2δt), . . .) + ε(t), (1)

where Y (t) is the solar intensity at time t, ε(t) is the error

at time t, and f(·) is a function which connects the recorded

solar intensity data before t to the present Y (t), δt denotes the

time interval between two recordings, which is chosen from

different timescales according to the practical application. For

short-term predictions, δt is usually less than one hour. To

simplify the expression without loss of generality, we use t−k
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to represent t − kδt in our models, which do not specify δt,
and thus, Eq. (1) is rewritten as:

Y (t) = f(Y (t− 1), Y (t− 2), . . .) + ε(t). (2)

In the temporal model, time correlation becomes stronger

as δt gets smaller, i.e., data collected minutely correlate each

other more tightly than data collected hourly, and Y (t) and

Y (t− 1) are more closely correlated than Y (t) and Y (t− 2).
Based on this, we can further simplify the model for short-term

predictions as

Y (t) = Y (t− 1) + εt(t). (3)

The shorter the δt, the smaller the εt(t). Also, this model

works well for stable weather conditions such as sunny days.

However, when it is partly cloudy, εt(t) could be large, causing

more uncertainties in the model even when δt is chosen to

be less than 5 minutes. Obviously, the model in (3) is not

applicable in this case and a more comprehensive model is

required.

B. Model Refinement

In (3), the error term εt(t) is actually the difference between

Y (t) and Y (t − 1). The major cause of this difference is

from the weather condition and weather change, and thus, by

relating them to the change of solar intensity, we can refine

εt(t) as:

εt(t) = g( ~X(t), ~X(t)− ~X(t− 1)) + εr(t), (4)

where ~X(t) is the vector of meteorological variables at time

t, such as temperature, humidity, precipitation, etc.; ~X(t) −
~X(t− 1) is the change of meteorological variables in δt, and

εr(t) is the remaining error, which is expected to be less than

εt(t). Substituting (4) into (3), we have:

Y (t) = Y (t− 1) + g( ~X(t), ~X(t)− ~X(t− 1)) + εr(t), (5)

where g(·) is a function connecting ( ~X(t), ~X(t) − ~X(t −
1)) to Y (t) − Y (t − 1). Here, we choose both ~X(t) and
~X(t) − ~X(t − 1), because the change of solar intensity in

any δt may rely on the meteorological condition and change

simultaneously. For example, for a sunny day in summer

and winter, similar changes of meteorological data may cause

very different amount of solar intensity changes. Also, the

relationship between ~X(t)− ~X(t− 1) and Y (t)−Y (t− 1) is

actually very complicated overall. However, there exist some

useful relations, especially for some specific weather types and

conditions, which help to further refine the model.

C. Integrated Temporal Model

Considering both linearity and non-linearity, the function

g(·) is composed as

g( ~X(t), ~X(t)− ~X(t− 1)) = (6)

( ~X(t), ~X(t)− ~X(t− 1))T ~β + E( ~X(t), ~X(t)− ~X(t− 1)),

where the first term is a linear regression model representing

the linear part in the data, and ~β is the vector of the regression

coefficients; the second term is a function E(·) representing

the nonlinear part, which is usually revealed by machine

learning methods. We then substitute (6) into (5) to obtain

a comprehensive integrated temporal model:

Y (t) = Y (t− 1) + ( ~X(t), ~X(t)− ~X(t− 1))T ~β

+E( ~X(t), ~X(t)− ~X(t− 1)) + εr(t). (7)

The corresponding forecasting model is thus written as

Ỹ (t) = Y (t− 1) + ( ~X(t), ~X(t)− ~X(t− 1))T ~̃β

+ Ẽ( ~X(t), ~X(t)− ~X(t− 1)). (8)

In order to apply this forecasting model, we need to identify ~̃β
and Ẽ(·). To improve forecasting precision, solution methods

are very decisive. As introduced in Section I, LASSO is a

good option to get a better estimator ~̃β. It is also capable

of selecting meteorological variables, which is very useful to

reduce the computational complexity. As for Ẽ(·), LSTM is a

good choice for learning the nonlinear relationship. Moreover,

linearity and non-linearity have different weights in different

weather types. For example, in sunny days, linear relationship

is the leading factor, while in cloudy days, non-linearity takes

bigger role. So the weights allocated to them need to be

carefully selected for different weather types. To solve the

above problem, we propose the LASSO and LSTM integrated

forecasting algorithm in Sec. III.

D. Model Characteristics

Before proceeding to the algorithm, it is necessary to exam-

ine the statistical characteristics of the forecasting model with

respect to unbiasedness, consisting, efficiency, and sufficiency.

However, since the proposed model (8) is an integration of sta-

tistical and machine learning methods, we cannot evaluate the

model directly through statistical tests. Actually, the integrated

model takes into account all the four characteristics. Here, we

further analyze the model to show how these characteristics

can be achieved.

In the meteorological data based short-term solar intensity

forecasting problem, it is very difficult to find an unbiased

estimator or predictor, if such estimator exists. This is because

the relationships between solar intensity and the meteoro-

logical data are very complex and complicated, including

linearity, non-linearity, time correlation and others. Because of

this, the proposed model originates from a simple time series

model (3), which is actually a first order auto-regressive model

AR(1) of the parameter as 1. It is a non-stationary process and

thus the error εt(t) is not white noise. In order to further reduce

the bias of the model, we thus refine the error by (4).

In our forecasting model (7), data is partitioned into several

clusters. Then for each cluster, we identify ~̃β and Ẽ(·) to

apply the forecasting model. When the data size is approach-

ing infinite, the error εr(t) is approaching zero; because of

clustering, ~̃β and Ẽ(·) become more accurate. Theoretically,

machine learning methods are able to capture any relationship,

and the more data it learns, the better the model is. From this

aspect, the proposed predictor is consisting.

Normally, solar intensity prediction performance in fast

changing weathers are worse than that in sunny weathers. In
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other words, the efficiency of a forecasting model depends

mainly on the prediction performance in fast changing weath-

ers. Because of this, we cluster the data into several groups so

that a specific model is generated for every group to improve

accuracy. This way, the overall performance is improved, and

thus, the model efficiency is increased correspondingly.

To guarantee the sufficiency of the model, we make full

use of the dataset and partition the dataset into training data,

evaluation, data and testing data.

In summary, the integrated temporal model actually takes

into account of all the four aspects, i.e., unbiasedness, con-

sisting, efficiency, and sufficiency. Since theoretic analysis

of the characteristics of an estimator is important but very

difficult, it has to be replaced with quantitative simulations.

We will evaluate the model characteristics through simulations

in Sec. IV.

III. LASSO AND LSTM INTEGRATED ALGORITHM

In this section, we first present LASSO and LSTM and

discuss their parameter selection. We then present the method

to combine them together. Then we propose the integrated

algorithm for short-time solar intensity forecasting.

A. Least Absolute Shrinkage and Selection Operator (LASSO)

Let Y1(t) denote ( ~X(t), ~X(t)− ~X(t−1))T ~β, i.e., the linear

part in (7), and the predicted Y1(t) is written as

Ỹ1(t) = ( ~X(t), ~X(t)− ~X(t− 1))T ~̃β, (9)

where Ỹ1(t) is considered as the linear portion of the predicted

changes of the solar intensity from t− 1 to t. Because of its

shrinkage function and parameters’ selection, LASSO is used

here to identify the estimated coefficients ~̃β as

~̃β = argmin
~β











N
∑
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
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p
∑
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

2

+ λ

p
∑
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|βj |











,

(10)

where λ is a system parameter. LASSO is able to shrink large

regression coefficients in order to reduce over-fitting by the

constraint of the sum of the absolute value of the regression

coefficients smaller than a fixed value, which filters out some

coefficients, and thus effectively simplifies the model.

To acquire a fitted system parameter λ, two methods

are commonly used: cross validation [24] and regularization

path [25]. Cross validation is a very general and common

technique finding an optimal parameter. Its weakness is the

slow computation. Regularization path is able to achieve a

good estimation accuracy with fairly quick computation. It also

has the potential to achieve a high estimation accuracy even

when information is lacking. Thus, we use the regularization

path to obtain λ based on the following steps:

1) Choose a set of possible λs and sort them in ascending

order;

2) Execute the proposed algorithm for each λ and record

their performance;

3) Plot the achieved precision performance versus λ;
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Fig. 2. The structure of LSTM.

4) Choose an acceptable point on the curve to guarantee the

performance while achieving the maximized estimation

speed due to sparsity.

B. Long Short Term Memory (LSTM)

For the non-linearity representing function E(·) in the

model of (7), a specific machine learning method is required

to learn it from the meteorological data and change of solar

intensity. For simplification, we use Y2(t) to denote the non-

linear part in (7), and thus we can write the predicted Y2(t)
as

Ỹ2(t) = Ẽ( ~X(t), ~X(t)− ~X(t− 1)), (11)

where Ỹ2(t) is the output of the function acquired by the

learning method.

Neural network (NN) is a common method to capture

the non-linear relationship in a complex dataset. RNN is an

improved NN, which is able to combine both the current and

previous information to find solutions. However, it is very

difficult to obtain useful information if two RNN cells are far

away from each other, due to the gradient vanishing problem.

To address this issue, LSTM incorporates three gates into the

RNN cell, as shown in Fig. 2. Each cell of LSTM sends two

state variables to the next cell, which ensures the reliability of

information transmission and thus avoids gradient vanishing.

Moreover, the results from LSTM are highly repeatable [26].

Because of the above advantages, we apply LSTM to acquire

a precise Ỹ2(t).
Here, LSTM is used to generate the classification network

and regression network, for classifying evaluation and predic-

tion data, and learning non-linear characteristics respectively.

Both the two networks have three major steps. The first two

steps are feature extraction and the LSTM network, respec-

tively. The third step is softmax classifier for the classification

network, and a neural network for the regression network [27],

[28].

1) Feature Extraction: For better feature extraction, we

implement one fully connected layer with ReLU(·) as the

activation function, which is given as

zt = ReLU(Wxt + b), (12)

where xt and zt are the input and output of the fully connected

layers, respectively, W and b are the weights and biases of the

layers. The activation function is formulated as ReLU(·) =
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max(x, 0). The ReLU(x) function has several advantages such

as sparse representation, efficient gradient propagation, and

computation.

2) LSTM Network: After feature extraction, we use the

LSTM for training optimal weights. For the classification

LSTM network, we stack two layers of the LSTM network

to obtain a stronger learning ability, which improves the

performance of classification and regression.

3) Softmax Classifier: The output of the final cell’s hidden

state in the classification LSTM network is the input to a fully

connected layer, which trains the output data using the softmax

classifier. The softmax function maps the N dimensional

vector to normalized data p = [p1, p2, . . . , pN ], and

pi =
eh

T
f ωi

∑N
n=1

eh
T
f
ωn

, for i = 1, 2, . . . , N, (13)

where N is the number of training data, hf is the output vector

of the final cell’s hidden state in the LSTM network, and ωi

is the weight vector of the fully connected layer. Let L(t) be

the loss function, which is formulated as

L(t) =
1

2

N
∑

i=1

(pi − yi)
2, (14)

where yi is the true classification result for the ith training

data. We then use Back Propagation Through Time (BPTT)

and Real-Time Recurrent Learning (RTRL) to train the classifi-

cation LSTM networks [29]. We also use the Adam Optimizer

to improve the efficiency of optimization.

C. Data Clustering by K-means++

By LASSO and LSTM, we can use (8) to make predictions

given any dataset. Based on the complete historical data,

however, only one forecasting model will be constructed,

which is too general to adapt to various weather conditions.

Therefore, we need to cluster the data, and build a specific

model for each cluster.

K-means++ clustering is a commonly used method, which

selects k initial center points arbitrarily and clusters the data

according to the distances from each data point to the centers.

Its simple principle makes it suitable for fast computation for

many applications, although it is sometimes difficult to get

suitable number of k [30]. Here, we go through all possible

ks in the specified range. To overcome the shortcoming of

random selection of initial center points, which may lead

to bad clustering performance, k-means++ applies the d2-

sampling method [22] with the following procedure:

1) Select the first center point randomly;

2) Calculate the probability of selecting the next center by

p(x|C) =
d(x,C)2

Σx′∈X d(x′, C)2
, (15)

where X represents a set of n points in R
D, D is the

dimension of X , x denotes a point in X , C is the set of

center points and c is a selected center point, x′ denotes

the other points in set X except for x, and the function

d(x,C)2 is defined as d(x,C)2 = Σc∈C ‖ x− c ‖2
2
.

This way, the selected center points are far from each other

with a high probability, and thus k-means++ is suitable for

clustering the meteorological data. Therefore, we firstly cluster

the data, and then find the forecasting model for each cluster.

D. LASSO and LSTM Integrated Forecasting Algorithm

We now propose the LASSO and LSTM integrated forecast-

ing algorithm (LLIFA) for short-term solar intensity forecast-

ing. Let S = { ~X(t), ~Y (t)} represent the dataset of meteoro-

logical and solar intensity. We first divide it into two subsets:

the training set T = { ~X(t), ~Y (t)}T , and the evaluation set

E = { ~X(t), ~Y (t)}E , where T ∪ E = S and T ∩ E = ∅.

Then, we cluster the training set T into N groups of data,

and each group is denoted as Tk = { ~X(t), ~Y (t)}Tk
, where

k = 1, 2, ..., N . According to (6), the input variable for the k-

means++ clustering is the vector [ ~X(t), ~X(t) − ~X(t − 1)]
in T. Tk is then divided into two parts: the input vector
~XTk

= [ ~X(t), ~X(t) − ~X(t − 1)]Tk
and the output vector

~YTk
= ~Y (t) − ~Y (t − 1) for training. We next divide each

training output ~YTk
into the linear part ~Y1,Tk

and the non-

linear part ~Y2,Tk
:

~Y1,Tk
= ~YTk

· 1/(1 + αk), (16)

~Y2,Tk
= ~YTk

· αk/(1 + αk), (17)

where αk is a positive ratio coefficient in the kth cluster.

αk is set to different values in different clusters, to adjusts

the weights of ~Y1,Tk
and ~Y2,Tk

in the forecasting model.

Given αks, we can solve for the regression coefficients ~̃β and

the function Ẽ(·) using LASSO and LSTM, respectively, to

determine the forecasting model for each cluster. It is thus

important to search for the optimal αks, as evaluated by the

set E.

First, we need to classify E into N clusters according to

the classification standard in T. However, k-means++ does

not produce the same classification results, because T and E

are different. So we use LSTM to learn the classification net

classnet in T. Through classnet, E can be clustered under the

same rule into N clusters, denoted as Ek = { ~X(t), ~Y (t)}Ek
,

where k = 1, 2, ..., N . Based on this, we can perform the

traversing method to obtain the optimal αks. Considering

both (16) and (17), αks are limited in αk ∈ [αmin, αmax],
which is determined according to the dataset. αk,j gradually

increases from αk,0 = αmin to αk,j = αmax by an increment

dα, where j = 0, 1, ..., J , and J = b(αmax −αmin)/dαc. For

every αk,j , the corresponding ~̃βk,j and the function Ẽk,j(·) are

generated. According to (8), (9) and (11), the predicted ỸEk
(t)

can be found for every solar intensity in every evaluation

cluster Ek. So under αk,j , we can calculate the sum of errors

for each cluster by

eαk,j
=

Tk
∑

t=1

|YEk
(t)− ỸEk

(t)|, (18)

and then acquire the optimal α̂k by

α̂k = argmin
αk,j

{

eαk,j

}

. (19)
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Algorithm 1: Method of obtaining the optimal ratio coef-

ficients α̂k in different clusters

1 Determine the range of αk ∈ [αmin, αmax] according to

the dataset;

2 Start to test the ratio coefficients αk,j from αk,0 = αmin;

3 Divide each training output ~YTk
into linear part ~Y1,Tk

and non-linear part ~Y2,Tk
based on (16) and (17);

4 Generate the corresponding ~̃βk,j and function Ẽk,j(·)
through LASSO and LSTM by training set T;

5 Find every predicted solar intensity ỸEk
(t) in the

evaluation cluster Ek according to (8), (9) and (11);

6 Calculate the error sum eαk,j
for each cluster by (18);

7 Increase the ratio coefficients by increment dα until

αk,j = αmax and for each αk,j repeat Steps 3 to 6;

8 Acquire the optimal α̂k by (19).

Algorithm 2: The algorithm procedure of LLIFA

1 Divide the dataset S = { ~X(t), ~Y (t)} into the training set

T and evaluation set E;

2 Cluster the training set T into N groups of data using

k-means++;

3 Train the classification net classnet using T and cluster

E into N clusters using classnet;
4 Acquire the ratio coefficients α̂k through Algorithm 1

and obtain the corresponding regression coefficients, the

non-linear function at the same time, and the forecasting

model for every cluster;

5 Classify the new input data for a future time t into an

appropriate cluster through classnet;
6 Predict the solar intensity based on the forecasting model

of the corresponding cluster.

This way, we are able to obtain the optimal ratio coeffi-

cients, the corresponding regression coefficients, the non-linear

function, and thus the forecasting model of each cluster. We

summarize the steps to acquire α̂ks in Algorithm 1.

To predict the solar intensity for a future time t, new input

data is firstly classified into an appropriate cluster through

the classnet. Then the solar intensity can be predicted based

on the corresponding model of that cluster. We summarize the

procedure to perform LLIFA in Algorithm 2, which is a fusion

of LASSO and LSTM through k-means++ clustering. Note

that to make sure the forecasting model for every cluster is

precise, it needs to guarantee both the training dataset T and

the evaluation dataset E are sufficiently large, so that the ratio

coefficients in each forecasting model is significant. Also, we

divide the training and evaluation data before clustering them

separately, because the training data, and thus the choices of

the ratio coefficients are more appropriate.

IV. SIMULATION STUDIES

In this section, we verify our proposed forecasting model

and algorithms on two trace-driven datasets, and compare the

performance with other benchmarks. The simulation results

show that the proposed forecasting model achieve outstanding

performance for different datasets under different timescales,

and outperforms other benchmarks.

A. Data Description

The first trace-driven dataset is acquired from the Davis

weather station located in Amherst, MA, USA [31]. The

meteorological data was collected every 5 minutes. The main

recorded weather variables including temperature, wind chill,

humidity, dew-point, wind speed, wind direction, and rainfall.

The dataset is recorded from Feb., 2006 to Jan., 2013, which

also contains some missing data and some errors, recorded as

−100000. In the simulation study, we excluded such errors and

missing data. Moreover, we only consider the solar intensity

on the day time when the solar intensity is nonzero, so the

data of which the solar intensity is zero is also excluded.

For short-term solar intensity forecasting, we mainly use the

data from Jan. 1, 2011 to Feb. 28, 2013. We divide the data

into three sub-sets: training, evaluation and testing data. The

data from Jan. 1, 2011 to Dec. 31, 2012 is departed every

other day into training data and evaluation data separately.

This generates almost the same size of training and evaluation

data, ensuring both datasets are large enough to get precise

forecasting models for all clusters. The remaining data from

Jan. 1 to Feb. 28, 2013 are taken as testing data.

The second dataset is recorded in Harnhill and Diddington

in the U.K [32]. At each location, two weather stations are

installed (four in total), which recorded every 30 minutes the

data of rainfall, temperature, humidity, wind speed and so on.

We use this the data recorded from Aug., 2011 to Dec., 2012.

Missing data in datasets are represented by NaN. By excluding

such invalid data, the remaining useful data are separated into

the training, evaluation and testing data as same as the first

dataset. The data from Aug. 1, 2011 to Sept. 30, 2012 is

departed every other day into training data and evaluation data

respectively. The remaining data are taken as testing data. Note

that this data has a longer recording time interval than the first

one, which helps us to evaluate the proposed forecasting model

under different timescales.

B. Model Improvement with Data Analysis

We first use three fundamental models and their combina-

tions to analyze the data and model characteristics in short-

term solar intensity forecasting. According to Sec. II, we apply

the following models to predict solar intensity every 5 minutes:

Ỹ (t) = Y (t− 1) (20)

Ỹ (t) = ( ~X(t), ~X(t)− ~X(t− 1))T ~̃βo (21)

Ỹ (t) = Ẽm( ~X(t), ~X(t)− ~X(t− 1)) (22)

Ỹ (t) = Y (t− 1) + ( ~X(t), ~X(t)− ~X(t− 1))T ~̃βm (23)

Ỹ (t) = Y (t− 1) + Ẽm( ~X(t), ~X(t)− ~X(t− 1)), (24)

where (20) is a short-term time series model (TSM), (21)

and (22) are based on LASSO and LSTM respectively, (23) is

an integrated model combining TSM and LASSO, and (24) is

another integrated model combining TSM and LSTM. Based
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Fig. 3. 5-min solar intensity predictions by TSM
on Feb. 8 vs. observations.
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Fig. 4. 5-min solar intensity predictions by TSM
on Feb. 19 vs. observations.
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Fig. 5. 5-min solar intensity predictions by TSM
on Jan. 25 vs. observations.
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Fig. 6. 5-min solar intensity predictions by LASSO
on Feb. 8 vs. observations.
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Fig. 7. 5-min solar intensity predictions by LASSO
on Feb. 19 vs. observations.
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Fig. 8. 5-min solar intensity predictions by LASSO
on Jan. 25 vs. observations.
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Fig. 9. 5-min solar intensity predictions by LSTM
on Feb. 8 vs. observations.
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Fig. 10. 5-min solar intensity predictions by LSTM
on Feb. 19 vs. observations.
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Fig. 11. 5-min solar intensity predictions by LSTM
on Jan. 25 vs. observations.

on the UMASS data of 2011 and 2012, we find ~̃βo, ~̃βm, Ẽm(·)
and Ẽm(·), and use the above five models to predict the solar

intensity every 5 minutes for the first two months in 2013. We

use both mean absolute percentage error (MAPE) and root

mean square error (RMSE) to measure the accuracy of the

forecasting models, which are summarized in Table II. We

also plot the predicted solar intensity for Feb. 8, Feb. 19 and

Jan. 25 based on three single models of TSM, LASSO and

LSTM from Figs. 3 to 11. These three days represent three

different weathers: stable, fluctuating and fast changing.

From Table II, we have several observations. Among the

first three models, TSM achieves much better results than

LASSO and LSTM, while LASSO has the worst performance

whatever the weather is. This is because the temporal correla-

tion is very strong between the meteorological data and solar

intensity.LASSO has poor performance shown also in Figs. 6

to 8, because the linear relationship in the data under short

time period is weaker than that under longer timescale, such

as daily or weekly. LSTM has better performance than LASSO

because of its capability at learning and capturing strong time

correlations in the data.

On the other hand, comparing the forecasting results be-

tween the integrated models and the first three ones, we

find that both LSTM and LASSO can increase the predicting

accuracy of TSM. For three days shown in Table II, comparing

with TSM, the RMSEs decrease by 5.31%, 2.85%, and 2.58%

respectively under TSM-LASSO, and decrease by 24.48%,

41.89%, and 68.47% respectively under TSM-LSTM. Note
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TABLE II
FORECASTING ERRORS ON MAPE (%) AND RMSE (watts/m2) OF FIVE

MODELS WITH UMASS DATA

Date Feb. 8 Feb. 19 Jan. 25

TSM
RMSE 11.48 34.16 51.92
MAPE 7.58 13.63 29.06

LASSO
RMSE 221.37 159.62 208.12
MAPE 448.14 448.42 467.63

LSTM
RMSE 75.02 81.81 66.28
MAPE 37.66 59.55 96.58

TSM-LASSO
RMSE 10.87 33.19 50.58
MAPE 5.63 12.23 28.49

TSM-LSTM
RMSE 8.67 19.85 16.37
MAPE 3.86 7.04 11.76

that the improvement of LSTM and LASSO on TSM differs

for different weathers. LASSO can be a good assistant in stable

days, while LSTM is good for cloudy days. They complement

each other in assisting TSM. Based on these observations and

analyses, we propose the LLIFA by deep fusion of LSTM and

LASSO into TSM. And we notice that in different weathers,

LSTM and LASSO have different performance, based on

which, we cluster the data, find the regression coefficients

for LASSO, train the function for LSTM and allocate their

weights in the corresponding forecasting models.

C. Performance Evaluation of LLIFA

By applying LLIFA proposed in Sec. III-D, we need to

cluster the data into an optimal number of sub-sets. We cluster

the data into different numbers and calculate the forecasting

errors for every cluster. We plot in Fig. 12 the forecasting

errors for the three typical days Feb. 8, Feb. 19 and Jan. 25

under different number of clusters. Predictions on other days

have the same trend. It shows the forecasting errors for all

three days are minimized in 11 clusters. Fig. 12 indicates that

when the clustering number is either too small or too large,

the forecasting performance is poor. This is because given

the same dataset, increasing the number of clusters reduces

the amount of data in each cluster, which correspondingly

reduces the accuracy of the models. On the other hand, a small

number of clusters are not sufficient to capture the essential

information in the complex weather data and thus cause large

forecasting errors. We therefore set N = 11.

According to Algorithm 2, we use k-means++ to cluster

the data into 11 clusters. For each cluster, we obtain a

corresponding forecasting model which is used to predict the

solar intensity. By comparisons, we build another model in

the form of (8) without clustering. We compare the average

forecasting errors in each cluster with that without clustering

in Fig. 13 and Fig. 14. It can be seen that in every cluster,

the forecasting error reduces much from no clustering, which

verifies the effectiveness and importance of the clustering.

We plot the forecasting results of LLIFA for Feb. 8, Feb. 19

and Jan. 25 in Figs. 15, 16 and 17 respectively. The RMSEs

and MAPEs for these three days are 7.83watt/m2, 2.81%,
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Fig. 12. Forecasting MAPEs of three days under different clusters.

Cluster k

RMSE

(watt/m
2
)

1

10

20

30

Cluster k

No clustering

2 3 4 5 6 7 8

9.4

9 10 11

11.1

7.8

15.5

26.8

13.3

33.2

10.3

14.6
13.2

20.8

16.0

34.5

15.1

22.3

12.0

24.1

8.4

11.68.9

14.8
17.7

Fig. 13. Forecasting RMSEs under different clusters vs. no clustering.
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Fig. 14. Forecasting MAPEs under different clusters vs. no clustering.

15.53watt/m2, 5.81%, 13.31watt/m2, 9.83% respectively,

summarized in Table III. Note that in Fig. 17, the proposed

LLIFA achieves the average MAPE of only 9.83% in forecast-

ing the solar intensity every 5 minutes even in fluctuating or

fast changing weathers. For stable sunny day, the predictions

are very precise with MAPE as small as 3% in Fig. 15.

D. Comparisons of LLIFA to the Benchmarks

We now compare our proposed LLIFA scheme with a com-

monly used time series method ARIMA and a representative
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Fig. 15. 5-min solar intensity predictions by LLIFA on Feb. 8 vs. observations.
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Fig. 16. 5-min solar intensity predictions by LLIFA on Feb. 19 vs. observa-
tions.
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Fig. 17. 5-min solar intensity predictions by LLIFA on Jan. 25 vs. observa-
tions.

supervised learning method SVM. As a typical time series

model, ARIMA can transform any non-stationary process into

a stationary process through the differential time series. Solar

intensity is actually a non-stationary time series, and thus

TABLE III
5-MIN FORECASTING ERRORS ON MAPE (%) AND RMSE (watt/m2) BY

LLIFA FOR THREE TYPICAL DAYS WITH UMASS DATA

Date Feb. 8 Feb. 19 Jan. 25

RMSE 7.83 15.53 13.31

MAPE 2.81 5.81 9.83

TABLE IV
MEAN&MEDIAN VALUE OF MAPES (%) AND RMSES (watts/m2) FOR

5-MIN PREDICTIONS WITH THREE MODELS FROM JAN. 1 TO FEB. 28

Model Mean Median

LLIFA
RMSE 10.67 8.34
MAPE 4.73 3.16

ARIMA
RMSE 19.42 15.27
MAPE 9.94 7.29

SVM
RMSE 79.04 76.89
MAPE 67.52 58.65

ARIMA is applicable in solar intensity forecasting, especially

in sunny and stable weather. On the other hand, SVM is a

representative and widely adaptable machine learning method,

which generates very good results in many application scenar-

ios, when the optimal parameters are used. For example, SVM

is applied in [15] for solar intensity forecasting. Therefore, we

compare our model with ARIMA and SVM in our comparison

studies.

Predictions are made every 5 minutes for the first two

months in 2013 using UMASS weather data. The 5-min mean

and median RMSEs and MAPEs for LLIFA, ARIMA and

SVM are summarized in Table IV. The predicting results

show that LLIFA outperforms ARIMA and SVM with aver-

aged MAPE 4.73% and median MAPE 3.16%. ARIMA has

fairly good performance which is much better than SVM,

because ARIMA is good at modeling the short-term temporal

relationship [13] while SVM lacks a deep analysis of the

complex and complicated weather data, by simply trying

different kernels [15]. LSTM works better than SVM with

its stronger temporal learning capability. The results verify

again the strong time correlation in the short-term forecasting

problem. LLIFA fully considers the strong temporality and

integrates both statistical regression and machine learning

methods, so it has better forecasting performance.

E. Predicting Performance of LLIFA on a Longer Recording

Time Scale

Next we test LLIFA on another trace-driven data in Didding-

ton by forecasting the solar intensity every 30 minutes. This

time, we cluster the data into N = 10 groups by checking the

data with the same process as previous. We also select three

typical days: stable, fluctuating and fast changing, and plot

the corresponding forecasting results in Figs. 18, 19 and 20,

respectively. The predictions using only LSTM are also plotted

as a comparison. And the forecasting errors are summarized in
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Fig. 18. 30-min predictions from LLIFA and LSTM vs. observations on a
day in Cluster 6 of stable weather.
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Fig. 19. 30-min predictions from LLIFA and LSTM vs. observations on a
day in Cluster 2 of fluctuating weather.
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Fig. 20. 30-min predictions from LLIFA and LSTM vs. observations on a
day in Cluster 8 of fast changing weather.

Table V. Note that these three days are clustered into Cluster

6, 2 and 8, respectively.

In a typical sunny day, LLIFA has very precise predic-

TABLE V
30-MIN FORECASTING ERRORS ON MAPE (%) AND RMSE (watt/m2)
BY LLIFA AND LSTM FOR THREE TYPICAL DAYS WITH DIDDINGTON

DATA

Cluster # 6 2 8

LLIFA
RMSE 22.32 35.69 35.50
MAPE 9.85 14.94 21.18

LSTM
RMSE 27.12 88.16 49.02
MAPE 36.95 46.07 61.81

tions, tracking the actual observations closely. The RMSE and

MAPE in Fig. 18 are 22.32 watts/m2 and 9.85% respectively.

It can be found from Figs. 19 and 20 that in fluctuating and

fast changing weathers, the predicting performance of LLIFA

is not ideal. The MAPEs are 14.94% and 21.18% respectively.

This shows that when the weather changes fast, i.e., data index

19 to 23 in Fig. 19, and data index 15 to 23 in Fig. 20, LLIFA

has bad performance, although it still works better than LSTM.

This is same as the result from the previous UMASS data. In

summary, it is most difficult to predict the solar intensity in

fast changing weathers.

By comparing Table V with Table III, we could also find

that LLIFA predicts better with the UMASS data than the

Diddington data. This is because when the time interval of data

recordings increases, the time correlation decreases and thus

the forecasting precision of LLIFA decreases. In summary,

LLIFA works great in short-term solar intensity forecasting

especially in stable weathers. However, when the time interval

between data recordings increase, the forecasting accuracy is

getting down. However, LLIFA could still beat other methods

because it integrates temporal model, clustering, statistical

model and machine learning.

F. Evaluations on Model Characteristics

Finally, we sum up the errors between the actual solar

intensity and the predictions using the proposed model for

three different datasets of the two traces. The results are

summarized in Table VI. For both UMASS and Diddington

traces, the sum of predicting errors for three datasets are all

very close to zero, indicating the proposed model is close

to be unbiased. Unbiasedness appears more obviously in the

UMASS trace, which is recorded every 5 minutes and thus has

much more data than the Diddington trace. This implies the

possible consisting characteristic of the proposed forecasting

model. Also, as mentioned in Sec. II-D, the model applies

efficient clustering (evaluated in Sec. IV-C), and makes full

usage of the data, the proposed model is thus efficient and

sufficient.

V. CONCLUSION AND FUTURE WORK

In this paper, we developed a LASSO and LSTM integrated

temporal model for meteorological-data-based short-term so-

lar intensity forecasting. We first presented the fundamental

temporal model, followed by the model refinement and char-

acteristics analysis. Then we developed the integrated temporal
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TABLE VI
SUM OF THE PREDICTING ERRORS (watt/m2) IN DIFFERENT DATA SETS

FOR UMASS AND DIDDINGTON DATA

Training Evaluation Testing

# of UMASS data points 52500 52000 7412

Σ[y(t)− ŷ(t)] -1 3 -6

# of Diddington data points 5200 5100 2076

Σ[y(t)− ŷ(t)] 2 -13 29

model which integrates regression model and machine learning

method. We then proposed the LASSO and LSTM integrated

forecasting algorithm to realize the integrated temporal model

using k-means++ clustering, LASSO and LSTM. The pro-

posed models were validated with trace-driven simulations un-

der different timescales and compared to several benchmarks.

Although the proposed model can predict short-term solar

intensity with high precision, the prediction accuracy decreases

as timescale increases. So it may not be suitable for predicting

solar intensity on longer timescales. Our future work is to

propose an accurate general forecasting model which can

predict the solar intensity precisely on different timescales.
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