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Abstract—As a special form of the Internet of Things, Smart
Grid is an internet of both power and information, in which
energy management is critical for making the best use of the
power from renewable energy resources such as solar and
wind, while efficient energy management is hinged upon precise
forecasting of power generation from renewable energy resources.
In this paper, we propose a novel least absolute shrinkage and
selection operator (LASSO) and long short term memory (LSTM)
integrated forecasting model for precise short-term prediction of
solar intensity based on meteorological data. It is a fusion of a
basic time series model, data clustering, a statistical model and
machine learning. The proposed scheme first clusters data using
k-means+-+. For each cluster, a distinctive forecasting model is
then constructed by applying LSTM, which learns the non-linear
relationships, and LASSO, which captures the linear relationship
within the data. Simulation results with open-source datasets
demonstrate the effectiveness and accuracy of the proposed model
in short-term forecasting of solar intensity.

Index Terms—Internet of Things (IoT), Short-term solar power
forecasting, Least absolute shrinkage and selection operator
(LASSO), Long short term memory (LSTM), K-means+-+.

I. INTRODUCTION

Internet of things (IoT) is defined as uniquely identifiable
objects that are organized in an Internet-like structure [1]. The
internet of information, vehicles, power, and energy are all
typical forms of IoT. With innovative structure and techniques,
IoT promotes the new developments of many traditional
industries, and the Smart Grid (SG) is one of them. As a
special form of the IoT, SG is considered as an internet of
both power and information [2]. In recent years, more and
more loT-based technologies have been developed to make
SG a more sustainable, economic, safe and reliable power grid
from many aspects [3]-[5]. Among them, energy management
is one of the most innovative and important techniques, which
can increase the efficiency, reliability, and economy of the
SG [6]-[9].

Energy management in the SG is usually based on differ-
ent timescales, depending on practical constraints and pur-
poses [10]. At the daily scale, day-ahead strategies for power
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devices and budget for utilities can be developed, according to
the day-ahead predictions of daily average power generation
and demand, which focus on state estimation and market
guidance. At the hourly or minutely scale, the real-time power
distribution can be optimized based on predicted power gener-
ation and demand updated every hour or several minutes, and
the current power storage, which determines the power flows
in SG for more reliable, efficient and economic operation.
For both cases, energy management relies on predictions of
power generation and demand in the SG [6]. And precise
short-term predictions are more important to guarantee the
power balance and system reliability, and thus require higher
precision. Among the various renewable energy sources, solar
power is highly fluctuating, and changes very fast in some
cloudy days, making it difficult for accurate short-term fore-
casting [11]. Therefore, precise short-term prediction of solar
power generation is highly demanded to achieve a highly
efficient energy management scheme for the SG.

Solar power generation from solar panels are proportional
to solar intensity, so it can be estimated by predicting short-
term solar intensity [12]. Many recent works focus on applying
the time series model to predict short-term solar intensity.
The work in [13] conducts the short-term prediction of so-
lar radiation using autoregressive integrated moving-average
(ARIMA) and time delay neural network (TDNN). The authors
of [14] propose a time-series regression model with ARIMA
and artificial neural network (ANN) to predict solar intensity in
the city of Al-Ain, United Arab Emirates. The temporal model
works well when the weather is sunny and stable. However, in
cloudy, heavily cloudy, rainy, and similar weathers, the time
series based methods are not very accurate due to the high
variations of solar intensity. Therefore, applying only temporal
model is inadequate for further increasing the forecasting
accuracy [11].

Machine learning techniques, which can capture the re-
lationships between solar intensity and the meteorological
variables, are also popular in forecasting renewable power
generation. For example, support vector machine (SVM) is
applied in [15], and a method based on artificial neural
network (ANN) is proposed in [16]. Although many machine
learning methods can achieve fairly good results [15]-[18],
they do not perform a deep analysis of the data, and thus there
is still room for more accurate predictions. We summarize the
pros and cons of both time series and machine learning models
in solar intensity predictions in Table I.

Recurrent neural network (RNN) acquires the output from
not only the current input information but also the past
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TABLE I
THE PROS AND CONS OF MAJOR EXISTING METHODS FOR
SHORT-TERM SOLAR INTENSITY FORECASTING

Model | Pros | Cons

Not effective
in fast-changing weathers

Time Series
Model

Machine
Learning Model

Accurate predictions
in sunny and stable weathers

Acceptable predictions
in almost all weathers

Limitation on highly
precise predicting

experience and input information, which is a good candidate
to be integrated into the solar intensity forecasting model.
However, when the distance between two cells in the RNN
is too large, the vanishing gradient may cause losses of
important information [19]. Fortunately, the long short-term
memory (LSTM) method successfully solves this vanishing
gradient problem by adding three gates: input gate, forget
gate, and output gate into the RNN cell [20]. It is thus a
suitable method to further increase the forecasting accuracy by
capturing the non-linear relationships between solar intensity
and the meteorological variables. On the other hand, there
exist both linear and nonlinear relationships in the meteoro-
logical data. The linear representation can be captured by a
regression method. To this end, the least absolute shrinkage
and selection operator (LASSO) is a linear regression analysis
method, which reduces over-fitting and enhances the prediction
accuracy through variable selection and regularization [1].

Because of the complex and complicated relationships
between the solar intensity and meteorological variables, a
method integrating time series characteristics, statistical model
and machine learning is highly desirable for precise short-
term forecasting of solar intensity. By integrating these three
methods, we classify the data into several clusters according
to the idea of building different specific forecasting models
for different weather types. K-means is the most popular
clustering method for its computational efficiency [21]. Once
the number of clusters is specified, the clustering result could
be obtained. However, the randomness of initial sampling (e.g.,
bad data) affects the clustering results badly. The improved
k-means++ solves this sampling problem so that satisfactory
clustering results can be obtained [22]. Therefore, we apply k-
means++ to cluster the weather data. For each cluster, we start
from a basic temporal model because of its strong temporality
in short-term prediction of solar intensity. We then apply an
integrated forecasting model in each cluster, capturing both
temporal and spatial characteristics. The spatial part is further
divided into linear and nonlinear parts linked by optimal ratios.
This way, the forecasting accuracy can be increased to a very
high level.

The main contribution of this paper is to propose an
integrated forecasting model for precise short-term predictions
of solar intensity. The model architecture is shown in Fig. 1.
It is a fusion of a basic time serial model, data clustering,
a statistical model, and machine learning, which is a com-
prehensive model considering every aspect inside the short-
term solar intensity forecasting problem, including strong time

2
Meteorological Data
History Solar Intensity
'R )
Statistical Machine
Model Learning
— h —
Hybrid Temporal Model

¥

@olar Intensity Prediction9

Fig. 1. Architecture of our proposed model.

correlation, weather complexity, linear and non-linear rela-
tionships. It generates different forecasting models for every
different clusters from the k-means++ output, in which the
time series model captures the strong time correlation, LSTM
learns the non-linear relationship, and LASSO represents the
linear relationship. Such a comprehensive model guarantees a
very high forecasting accuracy of solar intensity, as will be
shown in our performance evaluation and comparison study.
Furthermore, our model is also applicable to other data-based
short-term forecasting problems, such as predicting short-term
wind power, loads of the power grid, and so on.

The remainder of this paper is organized as follows. We
present the forecasting model construction in Section II
We propose our integrated short-term forecasting model in
Section III. Simulation studies are presented in Section IV.
Section V concludes this paper and discusses future work.

II. FORECASTING MODELS

In this section, we first introduce a general temporal model
followed by model refinement from error correction. We then
propose the integrated temporal model, which is based on the
structure shown in Fig. 1.

A. Temporal Model

The data of solar intensity is usually recorded for every time
interval, which can be represented using a time series model
as follows [23]

V()= f(Y(t—68,),Y(t—25,),...)+e®), (1)

where Y(¢) is the solar intensity at time ¢, €(¢) is the error
at time ¢, and f(-) is a function which connects the recorded
solar intensity data before ¢ to the present Y (¢), J; denotes the
time interval between two recordings, which is chosen from
different timescales according to the practical application. For
short-term predictions, J; is usually less than one hour. To
simplify the expression without loss of generality, we use ¢t —k
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to represent t — kd, in our models, which do not specify &,
and thus, Eq. (1) is rewritten as:

Y(t)=fY(t—1),Y(t—2),...) +e(t). )

In the temporal model, time correlation becomes stronger
as 0; gets smaller, i.e., data collected minutely correlate each
other more tightly than data collected hourly, and Y (¢) and
Y (t — 1) are more closely correlated than Y (¢) and Y (¢t — 2).
Based on this, we can further simplify the model for short-term
predictions as

Y(t) =Y (t— 1)+ elt). 3)

The shorter the J;, the smaller the €,(¢). Also, this model
works well for stable weather conditions such as sunny days.
However, when it is partly cloudy, €,(¢) could be large, causing
more uncertainties in the model even when §; is chosen to
be less than 5 minutes. Obviously, the model in (3) is not
applicable in this case and a more comprehensive model is
required.

B. Model Refinement

In (3), the error term €, (t) is actually the difference between
Y (t) and Y (¢ — 1). The major cause of this difference is
from the weather condition and weather change, and thus, by
relating them to the change of solar intensity, we can refine
e:(t) as:

e(t) = g(X (1), X (1) = X(t — 1)) + e (8), )

where X (t) is the vector of meteorological variables at time
t, such as temperature, humidity, precipitation, etc.; X (t) —
X (t — 1) is the change of meteorological variables in J;, and
€,(t) is the remaining error, which is expected to be less than
€:(t). Substituting (4) into (3), we have:

V(1) =Y(t—1)+g(X(0), X(t) - X(t = 1) + (1), (5)

where g(-) is a function connecting (X (¢), X (t) — X (t —
1)) to Y(t) — Y(t — 1). Here, we choose both X (t) and
X(t) — X(t — 1), because the change of solar intensity in
any &; may rely on the meteorological condition and change
simultaneously. For example, for a sunny day in summer
and winter, similar changes of meteorological data may cause
very different amount of solar intensity changes. Also, the
relationship between X () — X (t—1) and Y (t) — Y (¢t — 1) is
actually very complicated overall. However, there exist some
useful relations, especially for some specific weather types and
conditions, which help to further refine the model.

C. Integrated Temporal Model
Considering both linearity and non-linearity, the function
g(+) is composed as
g(X (1), X(t) - X(t - 1)) = (6)
(X (1), X(t) = X(t = 1)" B+ B(X (), X (t) = X(t — 1)),
where the first term is a linear regression model representing

the linear part in the data, and 5 is the vector of the regression
coefficients; the second term is a function E(-) representing

the nonlinear part, which is usually revealed by machine
learning methods. We then substitute (6) into (5) to obtain
a comprehensive integrated temporal model:

V(1) =Y(t—1)+(X(t),X(t) - X(t-1))"F
+EX ), X(t) — X(t—1)) + e (t). (7)
The corresponding forecasting model is thus written as

Y(t—1)+ (X(1), X(t) -
+E(X(),X(t) - X(t—

V() = X(t-1)"5

1)). (8)

In order to apply this forecasting model, we need to identify E
and E(-). To improve forecasting precision, solution methods
are very decisive. As introduced in Section I, LASSO is a

good option to get a better estimator 5 It is also capable
of selecting meteorological variables, which is very useful to
reduce the computational complexity. As for E(-), LSTM is a
good choice for learning the nonlinear relationship. Moreover,
linearity and non-linearity have different weights in different
weather types. For example, in sunny days, linear relationship
is the leading factor, while in cloudy days, non-linearity takes
bigger role. So the weights allocated to them need to be
carefully selected for different weather types. To solve the
above problem, we propose the LASSO and LSTM integrated
forecasting algorithm in Sec. IIL

D. Model Characteristics

Before proceeding to the algorithm, it is necessary to exam-
ine the statistical characteristics of the forecasting model with
respect to unbiasedness, consisting, efficiency, and sufficiency.
However, since the proposed model (8) is an integration of sta-
tistical and machine learning methods, we cannot evaluate the
model directly through statistical tests. Actually, the integrated
model takes into account all the four characteristics. Here, we
further analyze the model to show how these characteristics
can be achieved.

In the meteorological data based short-term solar intensity
forecasting problem, it is very difficult to find an unbiased
estimator or predictor, if such estimator exists. This is because
the relationships between solar intensity and the meteoro-
logical data are very complex and complicated, including
linearity, non-linearity, time correlation and others. Because of
this, the proposed model originates from a simple time series
model (3), which is actually a first order auto-regressive model
AR(1) of the parameter as 1. It is a non-stationary process and
thus the error €;(t) is not white noise. In order to further reduce
the bias of the model, we thus refine the error by (4).

In our forecasting model (7), data is partitioned into several

clusters. Then for each cluster, we identify ﬁ and E() to
apply the forecasting model. When the data size is approach-
ing infinite, the error €, (t) is approaching zero; because of

clustering, 5 and E() become more accurate. Theoretically,
machine learning methods are able to capture any relationship,
and the more data it learns, the better the model is. From this
aspect, the proposed predictor is consisting.

Normally, solar intensity prediction performance in fast
changing weathers are worse than that in sunny weathers. In
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other words, the efficiency of a forecasting model depends
mainly on the prediction performance in fast changing weath-
ers. Because of this, we cluster the data into several groups so
that a specific model is generated for every group to improve
accuracy. This way, the overall performance is improved, and
thus, the model efficiency is increased correspondingly.

To guarantee the sufficiency of the model, we make full
use of the dataset and partition the dataset into training data,
evaluation, data and testing data.

In summary, the integrated temporal model actually takes
into account of all the four aspects, i.e., unbiasedness, con-
sisting, efficiency, and sufficiency. Since theoretic analysis
of the characteristics of an estimator is important but very
difficult, it has to be replaced with quantitative simulations.
We will evaluate the model characteristics through simulations
in Sec. IV.

III. LASSO AND LSTM INTEGRATED ALGORITHM

In this section, we first present LASSO and LSTM and
discuss their parameter selection. We then present the method
to combine them together. Then we propose the integrated
algorithm for short-time solar intensity forecasting.

A. Least Absolute Shrinkage and Selection Operator (LASSO)
Let Y3 (t) denote (X (t), X (t)— X (t—1))T 3, i.e., the linear
part in (7), and the predicted Yi(t) is written as

where Y] (t) is considered as the linear portion of the predicted
changes of the solar intensity from ¢ — 1 to ¢. Because of its
shrinkage function and parameters’ selection, LASSO is used

here to identify the estimated coefficients B’ as

2
p
+ )‘Z |6J| )
j=1
(10)

where ) is a system parameter. LASSO is able to shrink large
regression coefficients in order to reduce over-fitting by the
constraint of the sum of the absolute value of the regression
coefficients smaller than a fixed value, which filters out some
coefficients, and thus effectively simplifies the model.

To acquire a fitted system parameter A, two methods
are commonly used: cross validation [24] and regularization
path [25]. Cross validation is a very general and common
technique finding an optimal parameter. Its weakness is the
slow computation. Regularization path is able to achieve a
good estimation accuracy with fairly quick computation. It also
has the potential to achieve a high estimation accuracy even
when information is lacking. Thus, we use the regularization
path to obtain A based on the following steps:

- N

b= argmin Z

B i=1

p
yi—Bo— Y _i;B;

Jj=1

1) Choose a set of possible As and sort them in ascending
order;

2) Execute the proposed algorithm for each A and record
their performance;

3) Plot the achieved precision performance versus \;
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Fig. 2. The structure of LSTM.

4) Choose an acceptable point on the curve to guarantee the
performance while achieving the maximized estimation
speed due to sparsity.

B. Long Short Term Memory (LSTM)

For the non-linearity representing function FE(-) in the
model of (7), a specific machine learning method is required
to learn it from the meteorological data and change of solar
intensity. For simplification, we use Y3(t) to denote the non-
linear part in (7), and thus we can write the predicted Y5(¢)
as

—

Ya(t) = B(X(t), X (t) - X(t — 1)), (11)

where Y(t) is the output of the function acquired by the
learning method.

Neural network (NN) is a common method to capture
the non-linear relationship in a complex dataset. RNN is an
improved NN, which is able to combine both the current and
previous information to find solutions. However, it is very
difficult to obtain useful information if two RNN cells are far
away from each other, due to the gradient vanishing problem.
To address this issue, LSTM incorporates three gates into the
RNN cell, as shown in Fig. 2. Each cell of LSTM sends two
state variables to the next cell, which ensures the reliability of
information transmission and thus avoids gradient vanishing.
Moreover, the results from LSTM are highly repeatable [26].
Because of the above advantages, we apply LSTM to acquire
a precise Y5 (t).

Here, LSTM is used to generate the classification network
and regression network, for classifying evaluation and predic-
tion data, and learning non-linear characteristics respectively.
Both the two networks have three major steps. The first two
steps are feature extraction and the LSTM network, respec-
tively. The third step is softmax classifier for the classification
network, and a neural network for the regression network [27],
[28].

1) Feature Extraction: For better feature extraction, we
implement one fully connected layer with ReLU(-) as the
activation function, which is given as

2zt = ReLU(Wzy + b), (12)

where x; and z; are the input and output of the fully connected
layers, respectively, W and b are the weights and biases of the
layers. The activation function is formulated as ReLU(:) =
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max(z,0). The ReLU(z) function has several advantages such
as sparse representation, efficient gradient propagation, and
computation.

2) LSTM Network: After feature extraction, we use the
LSTM for training optimal weights. For the classification
LSTM network, we stack two layers of the LSTM network
to obtain a stronger learning ability, which improves the
performance of classification and regression.

3) Softmax Classifier: The output of the final cell’s hidden
state in the classification LSTM network is the input to a fully
connected layer, which trains the output data using the softmax
classifier. The softmax function maps the N dimensional

vector to normalized data p = [p1,p2,...,pnN], and
e fori=1,2,.... N (13)
Pi=_—F 7 ori=1,4,..., 1V,
Z Sy et

where NV is the number of training data, h s is the output vector
of the final cell’s hidden state in the LSTM network, and w;
is the weight vector of the fully connected layer. Let L(¢) be
the loss function, which is formulated as

N

L(t) = %Z(pi — i),

i=1

(14)

where y; is the true classification result for the ith training
data. We then use Back Propagation Through Time (BPTT)
and Real-Time Recurrent Learning (RTRL) to train the classifi-
cation LSTM networks [29]. We also use the Adam Optimizer
to improve the efficiency of optimization.

C. Data Clustering by K-means++

By LASSO and LSTM, we can use (8) to make predictions
given any dataset. Based on the complete historical data,
however, only one forecasting model will be constructed,
which is too general to adapt to various weather conditions.
Therefore, we need to cluster the data, and build a specific
model for each cluster.

K-means++ clustering is a commonly used method, which
selects k initial center points arbitrarily and clusters the data
according to the distances from each data point to the centers.
Its simple principle makes it suitable for fast computation for
many applications, although it is sometimes difficult to get
suitable number of k [30]. Here, we go through all possible
ks in the specified range. To overcome the shortcoming of
random selection of initial center points, which may lead
to bad clustering performance, k-means++ applies the d?*-
sampling method [22] with the following procedure:

1) Select the first center point randomly;
2) Calculate the probability of selecting the next center by

d(z,C)?
Zx’GX d(.I/, 0)2 ’

where X represents a set of n points in R”, D is the
dimension of X, x denotes a point in X, C' is the set of
center points and ¢ is a selected center point, =’ denotes
the other points in set X’ except for x, and the function
d(x,C)? is defined as d(z,C)? = Yeec ||  — ¢ ||3.

p(z|C) = (15)

This way, the selected center points are far from each other
with a high probability, and thus k-means++ is suitable for
clustering the meteorological data. Therefore, we firstly cluster
the data, and then find the forecasting model for each cluster.

D. LASSO and LSTM Integrated Forecasting Algorithm

We now propose the LASSO and LSTM integrated forecast-
ing algorithm (LLIFA) for short-term solar intensity forecast-
ing. Let S = {X(¢), Y (t)} represent the dataset of meteoro-
logical and solar intensity. We first divide it into two subsets:
the training set T = {X(¢),Y (¢)}r, and the evaluation set
E = {X(t),Y(t)}g, where TUE = S and TNE = 0.
Then, we cluster the training set T into N groups of data,
and each group is denoted as Ty, = {X(t),Y (t)}r,. where
k=1,2,...,N. According to (6), the input variable for the k-
means++ clustering is the vector [X(¢), X (t) — X (¢t — 1)]
in T. Ty is then divided into two parts: the input vector

Xp, = [X(t),X(t) — X(t — 1)}, and the output vector
Yr, = Y(t) — Y(t — 1) for training. We next divide each

—

training output Y7, into the linear part ?I,Tk and the non-
linear part Y5 7, :

371,Tk = ?Tk -1/(1 + o), (16)
Yoz, = Yr, - /(1 4+ ap), (17)

where «j, is a positive ratio coefficient in the kth cluster.
oy is set to different values in different clusters, to adjusts
the weights of Y; 1, and Y7, in the forecasting m~odel.

Given ays, we can solve for the regression coefficients 5 and
the function E(-) using LASSO and LSTM, respectively, to
determine the forecasting model for each cluster. It is thus
important to search for the optimal ays, as evaluated by the
set [E.

First, we need to classify E into N clusters according to
the classification standard in T. However, k-means++ does
not produce the same classification results, because T and E
are different. So we use LSTM to learn the classification net
classnet in T. Through classnet, E can be clustered under the
same rule into N clusters, denoted as Ej, = {X(¢),Y (t)} g, .
where £k = 1,2,...,N. Based on this, we can perform the
traversing method to obtain the optimal ays. Considering
both (16) and (17), ays are limited in o € [min, Qmaz)s
which is determined according to the dataset. oy ; gradually
increases from a0 = Qupin 1O Ok j = Qmaqe DY an increment
do, where j =0,1,...,J, and J = [(@maz — Q@min)/da]. For
every ay, 4, the corresponding Bk,j and the function E~k7 j(+) are
generated. According to (8), (9) and (11), the predicted YEk (t)
can be found for every solar intensity in every evaluation
cluster Ex. So under oy ;, we can calculate the sum of errors
for each cluster by

T
Cajy,; = Z'YEk<t) _YEk(t)‘7 (13)
t=1
and then acquire the optimal &y by
Qp = arg min {ea,w.} . (19)

Ok,
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Algorithm 1: Method of obtaining the optimal ratio coef-
ficients & in different clusters

1 Determine the range of ay € [Wmin, Qmax] according to
the dataset;

2 Start to test the ratio coefficients oy, ; from oy 0 = apin;

3 Divide each training output ?Tk into linear part YLTk
and non-linear part ?27Tk basNed on (16) and (17);

4 Generate the corresponding (3 ; and function Ej, ;(-)
through LASSO and LSTM by training set T;

5 Find every predicted solar intensity Yz, (¢) in the
evaluation cluster E; according to (8), (9) and (11);

6 Calculate the error sum e,, ; for each cluster by (18);

7 Increase the ratio coefficients by increment d,, until
Qi = Qumag and for each oy ; repeat Steps 3 to 6;

8 Acquire the optimal &y by (19).

Algorithm 2: The algorithm procedure of LLIFA

1 Divide the dataset S = {X (¢),
T and evaluation set E;

2 Cluster the training set T into N groups of data using
k-means++;

3 Train the classification net classnet using T and cluster
E into N clusters using classnet;

4 Acquire the ratio coefficients ¢&; through Algorithm 1
and obtain the corresponding regression coefficients, the
non-linear function at the same time, and the forecasting
model for every cluster;

5 Classify the new input data for a future time ¢ into an
appropriate cluster through classnet;

6 Predict the solar intensity based on the forecasting model
of the corresponding cluster.

Y (¢)} into the training set

This way, we are able to obtain the optimal ratio coeffi-
cients, the corresponding regression coefficients, the non-linear
function, and thus the forecasting model of each cluster. We
summarize the steps to acquire &ys in Algorithm 1.

To predict the solar intensity for a future time ¢, new input
data is firstly classified into an appropriate cluster through
the classnet. Then the solar intensity can be predicted based
on the corresponding model of that cluster. We summarize the
procedure to perform LLIFA in Algorithm 2, which is a fusion
of LASSO and LSTM through k-means++ clustering. Note
that to make sure the forecasting model for every cluster is
precise, it needs to guarantee both the training dataset T and
the evaluation dataset [E are sufficiently large, so that the ratio
coefficients in each forecasting model is significant. Also, we
divide the training and evaluation data before clustering them
separately, because the training data, and thus the choices of
the ratio coefficients are more appropriate.

IV. SIMULATION STUDIES

In this section, we verify our proposed forecasting model
and algorithms on two trace-driven datasets, and compare the
performance with other benchmarks. The simulation results

show that the proposed forecasting model achieve outstanding
performance for different datasets under different timescales,
and outperforms other benchmarks.

A. Data Description

The first trace-driven dataset is acquired from the Davis
weather station located in Amherst, MA, USA [31]. The
meteorological data was collected every 5 minutes. The main
recorded weather variables including temperature, wind chill,
humidity, dew-point, wind speed, wind direction, and rainfall.
The dataset is recorded from Feb., 2006 to Jan., 2013, which
also contains some missing data and some errors, recorded as
—100000. In the simulation study, we excluded such errors and
missing data. Moreover, we only consider the solar intensity
on the day time when the solar intensity is nonzero, so the
data of which the solar intensity is zero is also excluded.
For short-term solar intensity forecasting, we mainly use the
data from Jan. 1, 2011 to Feb. 28, 2013. We divide the data
into three sub-sets: training, evaluation and testing data. The
data from Jan. 1, 2011 to Dec. 31, 2012 is departed every
other day into training data and evaluation data separately.
This generates almost the same size of training and evaluation
data, ensuring both datasets are large enough to get precise
forecasting models for all clusters. The remaining data from
Jan. 1 to Feb. 28, 2013 are taken as testing data.

The second dataset is recorded in Harnhill and Diddington
in the U.K [32]. At each location, two weather stations are
installed (four in total), which recorded every 30 minutes the
data of rainfall, temperature, humidity, wind speed and so on.
We use this the data recorded from Aug., 2011 to Dec., 2012.
Missing data in datasets are represented by NaN. By excluding
such invalid data, the remaining useful data are separated into
the training, evaluation and testing data as same as the first
dataset. The data from Aug. 1, 2011 to Sept. 30, 2012 is
departed every other day into training data and evaluation data
respectively. The remaining data are taken as testing data. Note
that this data has a longer recording time interval than the first
one, which helps us to evaluate the proposed forecasting model
under different timescales.

B. Model Improvement with Data Analysis

We first use three fundamental models and their combina-
tions to analyze the data and model characteristics in short-
term solar intensity forecasting. According to Sec. II, we apply
the following models to predict solar intensity every 5 minutes:

Y(t)=Y(t—1) (20)
Y(t) = (X(t), X(t) — X(t —1))7 B, (1)
Y(t) = En(X(t), X(t) - X(t — 1)) @
Y(t)=Y(t—1)+(X(t),X(t) - X(t-1)"Bn (23)
Y(t)=Y(t—1)+ En(X(t),X(t) - X(t 1)), (4

where (20) is a short-term time series model (TSM), (21)
and (22) are based on LASSO and LSTM respectively, (23) is
an integrated model combining TSM and LASSO, and (24) is
another integrated model combining TSM and LSTM. Based
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Fig. 3. 5-min solar intensity predictions by TSM
on Feb. 8 vs. observations.

600

50 75
Data Index

Fig. 4. 5-min solar intensity predictions by TSM
on Feb. 19 vs. observations.
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Fig. 5. 5-min solar intensity predictions by TSM
on Jan. 25 vs. observations.
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Fig. 6. 5-min solar intensity predictions by LASSO
on Feb. 8 vs. observations.

Fig. 7. 5-min solar intensity predictions by LASSO
on Feb. 19 vs. observations.

Fig. 8. 5-min solar intensity predictions by LASSO
on Jan. 25 vs. observations.
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Fig. 9. 5-min solar intensity predictions by LSTM
on Feb. 8 vs. observations.

on the UMASS data of 2011 and 2012, we find S,, By, Em(-)
and E,,(-), and use the above five models to predict the solar
intensity every 5 minutes for the first two months in 2013. We
use both mean absolute percentage error (MAPE) and root
mean square error (RMSE) to measure the accuracy of the
forecasting models, which are summarized in Table II. We
also plot the predicted solar intensity for Feb. §, Feb. 19 and
Jan. 25 based on three single models of TSM, LASSO and
LSTM from Figs. 3 to 11. These three days represent three
different weathers: stable, fluctuating and fast changing.

From Table II, we have several observations. Among the
first three models, TSM achieves much better results than
LASSO and LSTM, while LASSO has the worst performance
whatever the weather is. This is because the temporal correla-

Fig. 10. 5-min solar intensity predictions by LSTM
on Feb. 19 vs. observations.

Fig. 11. 5-min solar intensity predictions by LSTM
on Jan. 25 vs. observations.

tion is very strong between the meteorological data and solar
intensity. LASSO has poor performance shown also in Figs. 6
to 8, because the linear relationship in the data under short
time period is weaker than that under longer timescale, such
as daily or weekly. LSTM has better performance than LASSO
because of its capability at learning and capturing strong time
correlations in the data.

On the other hand, comparing the forecasting results be-
tween the integrated models and the first three ones, we
find that both LSTM and LASSO can increase the predicting
accuracy of TSM. For three days shown in Table II, comparing
with TSM, the RMSEs decrease by 5.31%, 2.85%, and 2.58%
respectively under TSM-LASSO, and decrease by 24.48%,
41.89%, and 68.47% respectively under TSM-LSTM. Note
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TABLE II
FORECASTING ERRORS ON MAPE (%) AND RMSE (watts/mQ) OF FIVE
MODELS WITH UMASS DATA

Date \ Feb. 8 \ Feb. 19 \ Jan. 25

TSM RMSE | 1148 | 34.16 | 51.92
MAPE | 7.58 | 13.63 | 29.06

RMSE | 221.37 | 159.62 | 208.12

LASSO | \IAPE | 448.14 | 448.42 | 467.63
RMSE | 75.02 | 81.81 | 66.28

LST™ MAPE | 37.66 | 59.55 | 96.58
RMSE | 10.87 | 33.19 | 50.58

TSM-LASSO | ViAPE | 5.63 | 12.23 | 28.49
RMSE | 867 | 19.85 | 16.37

TSM-LSTM | \iapE | 386 | 7.04 | 11.76

that the improvement of LSTM and LASSO on TSM differs
for different weathers. LASSO can be a good assistant in stable
days, while LSTM is good for cloudy days. They complement
each other in assisting TSM. Based on these observations and
analyses, we propose the LLIFA by deep fusion of LSTM and
LASSO into TSM. And we notice that in different weathers,
LSTM and LASSO have different performance, based on
which, we cluster the data, find the regression coefficients
for LASSO, train the function for LSTM and allocate their
weights in the corresponding forecasting models.

C. Performance Evaluation of LLIFA

By applying LLIFA proposed in Sec. III-D, we need to
cluster the data into an optimal number of sub-sets. We cluster
the data into different numbers and calculate the forecasting
errors for every cluster. We plot in Fig. 12 the forecasting
errors for the three typical days Feb. 8, Feb. 19 and Jan. 25
under different number of clusters. Predictions on other days
have the same trend. It shows the forecasting errors for all
three days are minimized in 11 clusters. Fig. 12 indicates that
when the clustering number is either too small or too large,
the forecasting performance is poor. This is because given
the same dataset, increasing the number of clusters reduces
the amount of data in each cluster, which correspondingly
reduces the accuracy of the models. On the other hand, a small
number of clusters are not sufficient to capture the essential
information in the complex weather data and thus cause large
forecasting errors. We therefore set N = 11.

According to Algorithm 2, we use k-means++ to cluster
the data into 11 clusters. For each cluster, we obtain a
corresponding forecasting model which is used to predict the
solar intensity. By comparisons, we build another model in
the form of (8) without clustering. We compare the average
forecasting errors in each cluster with that without clustering
in Fig. 13 and Fig. 14. It can be seen that in every cluster,
the forecasting error reduces much from no clustering, which
verifies the effectiveness and importance of the clustering.

We plot the forecasting results of LLIFA for Feb. 8, Feb. 19
and Jan. 25 in Figs. 15, 16 and 17 respectively. The RMSEs
and MAPEs for these three days are 7.83watt/m2, 2.81%,

MAPE/%

A 82 Feb. 8

15

10

1 6 10 11 13 17
Number of Clusters

Fig. 12. Forecasting MAPEs of three days under different clusters.
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Fig. 13. Forecasting RMSEs under different clusters vs. no clustering.
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126
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Fig. 14. Forecasting MAPEs under different clusters vs. no clustering.

15.53watt/m?, 5.81%, 13.31watt/m?, 9.83% respectively,
summarized in Table III. Note that in Fig. 17, the proposed
LLIFA achieves the average MAPE of only 9.83% in forecast-
ing the solar intensity every 5 minutes even in fluctuating or
fast changing weathers. For stable sunny day, the predictions
are very precise with MAPE as small as 3% in Fig. 15.

D. Comparisons of LLIFA to the Benchmarks

We now compare our proposed LLIFA scheme with a com-
monly used time series method ARIMA and a representative
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Fig. 17. 5-min solar intensity predictions by LLIFA on Jan. 25 vs. observa-
tions.

supervised learning method SVM. As a typical time series
model, ARIMA can transform any non-stationary process into
a stationary process through the differential time series. Solar
intensity is actually a non-stationary time series, and thus

TABLE III
5-MIN FORECASTING ERRORS ON MAPE (%) AND RMSE (watt/m?) BY
LLIFA FOR THREE TYPICAL DAYS WITH UMASS DATA

Date | Feb. 8 | Feb. 19 | Jan. 25
RMSE | 7.83 | 15.53 | 13.31

MAPE | 281 | 581 | 983

TABLE IV
MEAN&MEDIAN VALUE OF MAPES (%) AND RMSES (watts/m?) FOR
5-MIN PREDICTIONS WITH THREE MODELS FROM JAN. 1 TO FEB. 28

Model | Mean | Median
o | S| 0| 5
o | 25 [ 0| 52
SV | Nikee | 68 | sss

ARIMA is applicable in solar intensity forecasting, especially
in sunny and stable weather. On the other hand, SVM is a
representative and widely adaptable machine learning method,
which generates very good results in many application scenar-
ios, when the optimal parameters are used. For example, SVM
is applied in [15] for solar intensity forecasting. Therefore, we
compare our model with ARIMA and SVM in our comparison
studies.

Predictions are made every 5 minutes for the first two
months in 2013 using UMASS weather data. The 5-min mean
and median RMSEs and MAPEs for LLIFA, ARIMA and
SVM are summarized in Table IV. The predicting results
show that LLIFA outperforms ARIMA and SVM with aver-
aged MAPE 4.73% and median MAPE 3.16%. ARIMA has
fairly good performance which is much better than SVM,
because ARIMA is good at modeling the short-term temporal
relationship [13] while SVM lacks a deep analysis of the
complex and complicated weather data, by simply trying
different kernels [15]. LSTM works better than SVM with
its stronger temporal learning capability. The results verify
again the strong time correlation in the short-term forecasting
problem. LLIFA fully considers the strong temporality and
integrates both statistical regression and machine learning
methods, so it has better forecasting performance.

E. Predicting Performance of LLIFA on a Longer Recording
Time Scale

Next we test LLIFA on another trace-driven data in Didding-
ton by forecasting the solar intensity every 30 minutes. This
time, we cluster the data into N = 10 groups by checking the
data with the same process as previous. We also select three
typical days: stable, fluctuating and fast changing, and plot
the corresponding forecasting results in Figs. 18, 19 and 20,
respectively. The predictions using only LSTM are also plotted
as a comparison. And the forecasting errors are summarized in
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Fig. 18. 30-min predictions from LLIFA and LSTM vs. observations on a
day in Cluster 6 of stable weather.
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Fig. 19. 30-min predictions from LLIFA and LSTM vs. observations on a
day in Cluster 2 of fluctuating weather.
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Fig. 20. 30-min predictions from LLIFA and LSTM vs. observations on a
day in Cluster 8 of fast changing weather.

Table V. Note that these three days are clustered into Cluster
6, 2 and 8, respectively.
In a typical sunny day, LLIFA has very precise predic-

TABLE V
30-MIN FORECASTING ERRORS ON MAPE (%) AND RMSE (watt/m?)
BY LLIFA AND LSTM FOR THREE TYPICAL DAYS WITH DIDDINGTON

DATA
Cluster # | 6 | 2 | 8
e | B | B2 5| 2
LsT™ | V00 | 3605 | 46,07 | o181

tions, tracking the actual observations closely. The RMSE and
MAPE in Fig. 18 are 22.32 watts/m? and 9.85% respectively.
It can be found from Figs. 19 and 20 that in fluctuating and
fast changing weathers, the predicting performance of LLIFA
is not ideal. The MAPEs are 14.94% and 21.18% respectively.
This shows that when the weather changes fast, i.e., data index
19 to 23 in Fig. 19, and data index 15 to 23 in Fig. 20, LLIFA
has bad performance, although it still works better than LSTM.
This is same as the result from the previous UMASS data. In
summary, it is most difficult to predict the solar intensity in
fast changing weathers.

By comparing Table V with Table III, we could also find
that LLIFA predicts better with the UMASS data than the
Diddington data. This is because when the time interval of data
recordings increases, the time correlation decreases and thus
the forecasting precision of LLIFA decreases. In summary,
LLIFA works great in short-term solar intensity forecasting
especially in stable weathers. However, when the time interval
between data recordings increase, the forecasting accuracy is
getting down. However, LLIFA could still beat other methods
because it integrates temporal model, clustering, statistical
model and machine learning.

F. Evaluations on Model Characteristics

Finally, we sum up the errors between the actual solar
intensity and the predictions using the proposed model for
three different datasets of the two traces. The results are
summarized in Table VI. For both UMASS and Diddington
traces, the sum of predicting errors for three datasets are all
very close to zero, indicating the proposed model is close
to be unbiased. Unbiasedness appears more obviously in the
UMASS trace, which is recorded every 5 minutes and thus has
much more data than the Diddington trace. This implies the
possible consisting characteristic of the proposed forecasting
model. Also, as mentioned in Sec. II-D, the model applies
efficient clustering (evaluated in Sec. IV-C), and makes full
usage of the data, the proposed model is thus efficient and
sufficient.

V. CONCLUSION AND FUTURE WORK

In this paper, we developed a LASSO and LSTM integrated
temporal model for meteorological-data-based short-term so-
lar intensity forecasting. We first presented the fundamental
temporal model, followed by the model refinement and char-
acteristics analysis. Then we developed the integrated temporal
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TABLE VI

SUM OF THE PREDICTING ERRORS (watt/m?) IN DIFFERENT DATA SETS

FOR UMASS AND DIDDINGTON DATA

| Training | Evaluation | Testing

# of UMASS data points | 52500 | 52000 | 7412
Zly(t) — 9(t)] |-l 3 | -6

# of Diddington data points | 5200 | 5100 | 2076
Zly(t) — 9(t)] | 2 | 13 | 29

model which integrates regression model and machine learning
method. We then proposed the LASSO and LSTM integrated
forecasting algorithm to realize the integrated temporal model
using k-means++ clustering, LASSO and LSTM. The pro-
posed models were validated with trace-driven simulations un-
der different timescales and compared to several benchmarks.
Although the proposed model can predict short-term solar
intensity with high precision, the prediction accuracy decreases
as timescale increases. So it may not be suitable for predicting
solar intensity on longer timescales. Our future work is to
propose an accurate general forecasting model which can
predict the solar intensity precisely on different timescales.
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