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Abstract—The optimal power energy scheduling of a Microgrid
(MG) is not only related to the active power of distributed
generators, but also dependent on the reactive power and system
operational constraints. It is essential to manage the active and re-
active power simultaneously in optimal energy distribution. This
paper is focused on developing an online algorithm to optimize
the real-time power energy distribution in the MG, considering
both reactive power and system operational constraints. The goal
is to provide high quality electricity usage for users in the MG
and maximize users’ utility. The output power of controllable
generators are also optimized. The proposed online algorithm is
asymptotically optimal, since its solution converges to the offline
optimal solution. The effectiveness of the proposed algorithm is
validated using data traces obtained from a real-world MG.

Index Terms—Energy Management System, Smart Grid, online
algorithm, power quality, Averaging Fixed Horizon Control.

I. INTRODUCTION

The Internet of Things (IoT) is a new paradigm that consists
of a pervasive presence around us of a variety of “things”
or “objects.”” The “things” in the IoT are connected to the
Internet through Radio-Frequency Identification (RFID) and
other information-sensing devices [1]. They are also able to
interact with each other and cooperate with their neighbor-
ing “smart” components to achieve common goals, such as
enabling intelligent identification and management [2], [3].
The Smart-grid/Microgrid (SG/MG) is an important domain
of the IoT, which attracts increasing attention for the high
resilience and self-healing features when there exists an attack
or natural disasters caused geographic area outages [4], [5].
Furthermore, SG/MG is widely studied for it is cost-efficient
and environmental friendly. Generally, SG/MG adopts various
IoT technologies, such as RFID, sensors, and communications
to quickly capture and deliver critical signals to guarantee high
resilience and resistance to various cyber attacks [4]-[6]. The
real-time connections among users, power supply companies,
and generators, as enabled by IoT technologies, are critical
to achieve real-time, high-speed, and bi-directional flow of
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information and electricity [6], [7]. These can effectively im-
prove the level of informatization of power systems, promote
the efficiency of renewable energy, and enhance the stability
of Smart-grid/Microgrid, which are important goals of energy
management systems (EMS) [4], [8].

The EMS in the MG has four main function modules, in-
cluding human-computer interaction, data analysis, prediction,
and decision optimization [5], [9], [10]. The optimal decisions
are made in the EMS, which can be day-ahead or in real-
time. For day-ahead EMS, researchers assume that all system
states over time are known a priori, such as load demand, re-
newable power generation, and electricity price. Then optimal
scheduling can be achieved by solving an offline optimization
problem with goals of minimizing the operation cost or energy
loss, maximizing users’ utility or power companies’ profit,
shaping the demand profile, and so on [8]-[12]. However,
when the accuracy of predicted values is low, this method
usually performs poorly. Thus many researchers focus on
promoting the accuracy of prediction in the EMS to mitigate
this problem [13]-[15]. However, perfect forecasting of the
complex SG/MG information is very challenging in practice,
since such systems are inherently highly random (e.g., affected
by future weather conditions and random user behavior).

Another means to tackle this problem is applying stochastic
programming for day-ahead EMS. Based on the probabilistic
characteristics of the uncertainties, several scenarios are first
obtained through Monte Carlo and scene reduction techniques.
Then, deterministic optimization algorithms can be applied to
solve the optimal scheduling problem [16], [17]. With this
approach, the uncertainties are considered day-ahead; how-
ever, it still requires accurate information on the probability
distribution of uncertainties, which could be difficult to obtain.
This approach usually incurs high computational complexity.

To make the optimal power distribution adaptive to real-time
variations in the SG/MG environment, online optimization
algorithms have been recognized to be highly promising for
real-time MG energy scheduling, which only rely on real-time
information or very-short-time-ahead predictions (which are
usually highly accurate) [18]. The optimal controls, decisions,
output generation, consumption level, and the utility gained by
this method are usually closer to the actual situation, and the
information is sent to distributed generators and customers in
a timely fashion [19]-[21].

Many existing online algorithms for MG energy manage-
ment are asymptotically optimal, i.e., their solution converges
to the offline optimal solution although they do not require
future information [19]-[21]. However, these existing works
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only consider the balance of the supply and demand of
active power in the MG. Several other important aspects,
including the actual power laws (e.g., Kirchhoff’s laws) and
system operational constraints (e.g., voltage stable range) have
not been fully considered. Consequently, the optimal control
strategies on power flow and output generation achieved by
these algorithms may violate the actual system constraints.
A real-word MG should operate stably and always provide
high quality electricity to users. It is essential to develop a
comprehensive problem formulation that takes into account all
the important aspects of the MG, as well as effective solution
algorithms with low computational complexity (for real-time
operation of the MG) and optimal performance.

In this paper, we focus on developing an online algorithm
for the MG EMS to achieve optimal energy scheduling,
which takes into account both actual power laws and system
operational constraints. We formulate the online energy distri-
bution as an optimal power flow (OPF) problem with multi-
objective. The objectives of our problem formulation include
maximizing uses’ utility, providing high quality electricity for
users all the time, optimizing the output power of control-
lable generators in the MG system, and keeping the system
operating in an economic style. To solve the online optimal
MG energy distribution problem, Receding Horizon Control
(RHC) has been successfully applied in prior work [20], [22],
[23]. The essence of this method is to replace the process
of solving a static large-scale model optimization problem
by solving a series of small-scale optimization problems,
which can effectively reduce the computational complexity
and adapt to the time-varying environment. However, these
prior works assume prefect prediction of future events in a
fixed operational time window, but ignores future updates on
prediction [20], [22] . They also assume that the uncertainties
of renewable power and load demand are independent [23].
These assumptions may be strong in a real-world MG system.
To address these issues, we propose to employ Averaging
Fixed Horizon Control (AFHC) [24], [25] to solve our online
optimal MG energy distribution problem, which only makes
some mild assumptions on the uncertainties in renewable
power and load demand, and these assumptions are exactly
inline with the real-world situation.

The objective function of the formulated problem is convex
but non-differentiable [26]. The constraints are based on the
physical power system, considering all the key operational fea-
tures, but are non-convex [27], [28]. To solve this challenging
problem, we first apply equivalent transformations to make the
objectives differentiable and convex, which, however, still have
the same optimal solution as the original problem [29]. Then
the slacking method is applied to transform the non-convex
feasible set to convex [30]. Then our online energy scheduling
scheme is converted to a convex problem, and solved with the
semidefinite programming (SDP) based interior point method.
We prove that the energy schedule achieved by our online
algorithm is asymptotically optimal, since it converges to the
offline optimal solution. To validate the performance of the
proposed scheme, we apply it to a real-world MG deployed in
Hekou, Nantong City, Jianshu Province, China. Our simulation
study shows that the online schedule converges to the offline
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Fig. 1. System architecture of a Microgrid.

optimal solution in expectation. Furthermore, users can enjoy
high-quality electrical energy in our system even when the real
power of renewable resources and load demand fluctuate rather
violently. Finally, the output power of controllable generators
is optimized and the voltage at every bus in the MG is
maintained within the allowed tolerance range.

The remainder of this paper is organized as follows. We
present the system model and problem statement in Section II.
The proposed online algorithm is developed and analyzed in
Section III. The simulation, validation, and evaluation of our
proposed algorithm are represented in Section IV. Section V
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider an MG integrated with renewable resources,
energy storage system (ESS), Micro-generators (MGENs),
load demand, and an MG control center (MGCC) as shown
in Fig. 1. The renewable energy sources in the MG include
photovoltaic (PV), wind turbine (WT), and so on. The energy
consumption in the MG can come from residential, com-
mercial, and industrial consumers. Such loads are usually
divided into two types [31], [32]. One type is fixed load,
such as refrigerators in houses and manufacturing machines in
factories. The other is elastic loads, such as electric vehicles
(EVs), HVAC (heating, ventilation and air conditioning), and
washer/dryers, which can be flexibly scheduled in the MG.
In AC MG, many loads are induction motors, and both the
active and reactive power demands are satisfied in the system.
The MGCC gathers information from local controllers (LCs),
receives the optimal energy strategies from the EMS, and then
sends the corresponding control commands to the LCs.

The Energy Management System (EMS) in the MG is
used to achieve optimal energy distribution. The MGCC
collects renewable power, users’ load demand, the upper and
lower limits of MGENS’s active/reactive power and voltage in
each node through communications links. Then the optimal
scheduling information will be sent to the generators side
and the consumer side, respectively. Both complex power and
information flow bidirectionally in the MG system.

Moreover, the ESS charges the extra power and discharges
when the demand is larger than DG’s generation. The elastic
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TABLE I
NOTATION
Symbol Description
T the time period of one round
t time slot, t = 1,2,..., T
i, 7 the buses in the power system
e, f the real, imaginary parts of voltage
P the real/active power in the power system
Q the reactive power in the power system

Structure parameters

GZ" j the conductance between node ¢ and j
B; ; the susceptance between node ¢ and j

Qagt the quadratic coefficient of diesel d at time ¢

st the quadratic coefficient of battery d at time ¢

Ba,t the linear coefficient of diesel d at time ¢

Adt the constant coefficient of diesel d at time ¢

n the diesel’s smoothing coefficient

w the prediction window size

Cat the cost of all diesels at time ¢

Cs,t the cost of all batteries at time ¢

Variables

Py the active power of fixed load demand at time ¢
Pet the active power of elastic load demand at time ¢
Py the active power of renewable power at time ¢
Py the active power of diesel’s output power at time ¢
P the active power of battery’s output power at time ¢
Qi¢ the reactive power of load demand at time ¢

Qe,t the reactive power of elastic load demand at time ¢

Q¢ the reactive power of generator k at time ¢
Pr.ts Ps,ts Pd,t the efficiency of the converters connected to the PV
array and ESS, and the power loss in MGENSs at time ¢
ei, fi the real and imaginary part of voltage at node %
erefs fref the real and imaginary part of voltage
at reference node
Hd,t>Vd, ¢ the transformation variables of Py ;

Quw the variables to relax the upper/lower bounder
of active power from inequality to equation

Ao the variables to relax the upper/lower bounder
of reactive power from inequality to equation

A ¢ the variables to relax the upper/lower bounder
of voltage from inequality to equation

Pret,t the net active power demand at time ¢

SoCs ¢ the battery s state of charge at time ¢

&y the auxiliary variables for real and
reactive power

omar omin the upper, lower bound of variables

] the predictive value of v

? the average value of v

ba,t the binary variables to relax Py ; in

absolute value term at time ¢

Sets
B the set of buses
D,S,E the set of diesels, ESS and elastic load

the set of reactive power sources

load is also one of the effective ways to consume excess energy
to keep the supply-demand balance and maximize the use of
renewable resources. Furthermore, reactive power resources,
such as ESS, MGENs, SVC (static var compensator), are
regulated to avoid voltage fluctuations at each node that are
caused by the intermittent power of the renewable generation
and load demand.

On the basis of realizing stable operation of the system, the
EMS can achieve maximum user satisfaction for electricity
usage in the MG. The system can operate in an economic
way, and the optimal output power of the adjustable power

generation can be achieved.

In this paper, d denotes the real power output of the MGEN,
deD=1{1,2,..,D}, and D is the set of all MGENSs in our
MG. We define the set of active powers of ESS as s € S =
{1,2,...,S}; and the elastic load is represented as e € E =
{1,2, ..., E}. The set of real power resources G is constituted
by D, S and E. For reactive power generators, we assume the
set is K, and k¥ € K = {1,2,..., K}. Actually, distributed
energy scheduling is related to the structure parameters in the
MG. In our system, the set of buses is B, and i, € B =
{1,2,..., B}. The notation used in this paper is summarized
in Table 1.

B. Problem Formulation

In our system, the active load demand is P, at time
t. Correspondingly, the reactive power demand is ;. In
order to maximize the output power of renewable resources,
renewable generators output their maximum active power, and
they are the uncontrollable generators in the MG. Taking
into account the efficiency of the converters connected to the
PV array and ESS, and the power loss in MGENs (let their
efficiency be p,.¢, ps:, and pg ), the real output powers of
renewable generators, ESS and MGENSs are p,. ¢ P, ¢, ps.tPs t,
pd,tPa,;, respectively.

For an MG, user’s electricity demand, the fixed load P, .,
should be satisfied at every time, and the elastic load P,
should be adjusted flexibly. In this paper, we maximize users’
utility by coordinating the complex power generation in the
MG [33] and optimizing the operation of MGENs according to
their output features [34], [35]. The cost of the MG is mainly
on the MGENSs and ESS, and we assume the costs of MGENs
and ESS are limited [19]. To achieve the above goals, we
formulate the power energy scheduling problem as follows.

T
min : Z (Pt + Pet — (patPas + psiPst + Pr,tpr,t)]2
t=1

D
+> n|Pay — Py (1)
d=1
D
s.t.: Z(ad,tpf,t + BatPat + Aat) < Caq 2
d=1
S
> P2 < Cay. 3)
s=1

In probelm (1), the objective consists of two major items:
the first one is to minimize the users’ dissatisfaction, and the
second item is to minimize the fluctuation in the output of
MGENSs, where 7 is the optimal coefficient. Furthermore, P ;
and Py;_, are the MGENs’ real power output at time ¢ and
t — 1, respectively, and Py o = 0; Cgq ¢ and C,; are the upper
bounds on the costs of MGENSs and ESS at time ¢, respectively;
aq.t, Bazt, and Ag4 are the cost coefficients of MGENSs; and
s 18 the cost coefficient of ESS.

In addition to satisfying the balance of supply and demand
of active power in MG, there are usually many inductive
loads in the AC MG system. Therefore, the reactive power
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must be considered simultaneously. Furthermore, the balance
of active and reactive power is related to the bus voltages
and the structural parameters between interconnected nodes.
Therefore, the system’s stable operation constraints should
include:

(i) Power flow constraints:

Py — %B[ez(eg — [iBij) + fi(fiGij + e;Bij)] = Pu

Pas = S lei(eiGiy = £1B5) + £ Gy + €355)] = P

Qk.i —JJ%B[fi(ejGij — [iBij) — ei(f;Gij + €;Bij)] = Qui,
g€ G/D,ieB,deD,keK, Vi, 4)

where @), ; is the reactive power output at time ¢ for reactive
generator k; e; and f; are the real and imaginary part of
voltage at bus ¢, respectively; Pj; and ();; are the active and
reactive power demand at bus i, respectively; G;; and Bj;
are the conductance and susceptance between nodes ¢ and j,
respectively. Constraint (4) aims to achieve the supply-demand
balance in both real and reactive power, and this balance is
related to the voltage of each bus and structure parameters in
the MG.

(ii) Limits of active and reactive power, and of the ESS
capacity:

Ppin < Py < PPt Vi

P;”f" < Py < PVt

QP™ < Qua < Qper. Wt 5)
SOCs,t = Socs,t—l - Tlles,ta vt

SoCT™ < SoCyy < SoCT™, Vi,

where ™% and ™" are the upper and lower limits of

variable x. SoCj; is the state of charge for ESS at time ¢.
During the optimal operation period, it should be within the
ESS capacity at any time. P,; is negative when the ESS is
charging and positive when the ESS is discharging. 7, is the
charge/discharge efficiency of the ESS. Constraint (5) is used
to ensure all generators run in the safety ranges of the real
power and reactive power resources. This is very important to
achieve stable operation in the MG.

(iii) In order to keep the voltage of each bus in the MG
within the stable range, we enforce limits on the voltage
amplitude at each bus and the reference bus, as

(V'i'min)Q S (672 + f22) S (V;maw)Z, Yt
ref = = eg, Wt (6)
ref - f07 Vt

where e,.r and f,..¢ are the real and imaginary part of voltage
in the reference bus, respectively. Generally, one MGEN is
chosen as the slack generator.

C. Problem Decomposition based on Time Windows

1) Assumptions on Predictions: It can be seen from (1)
to (6) that if the optimal scheduling is calculated just by the
forecast information, then these results often cannot be used
directly. This is because there is always a deviation between
the predicted and the actual values of the PV power and load
demand. Therefore, some assumptions need to be declared to

make the optimal energy distribution more instructive to the
actual scheduling. In our system, we have some assumptions
on renewable power and users’ load demand before solving the
optimization problem. And these assumptions on predictions
serve as the middle ground between the worse-case and the
stochastic viewpoints [24].

The relationship between the actual value and predicted
value of renewable power F,.; and load demand P;; are
established as:

{ Pro=Puot Sy filt = 2)e(z) (7)
P = rt+Ez L fr(t = 2)en(2),

where If’u and Pr.,t are the predictions of P; and P,
respectively, made at time z < ¢. Thus, it can be seen
that the prediction error 3.'_, f(t — 2)e(2) is modeled as
a weighted linear combination of previous-step noise terms
(i.e., e(z)). We assume that the noise terms are independent
and identically distributed (i.i.d.) with mean zero and positive
definite covariance Re; and that the weight function f(-)
satisfies f(0) = I and f(t) = O for ¢ < 0. Furthermore, it
is common for the impulse function to decay as f(z) ~ 1/2°.
The forecast value can be updated with time passes according
to (7). This assumption is closer to the actual situation.

2) Averaging Fixed Horizon Control Algorithm: In the
objective function (1), the second term is to achieve a smooth
control on the output power of the MGENSs. It can be seen
that global information must be obtained in order to solve
the problem, due to the coupling of MGENSs’ output powers
in time series. However, Eq. (7) indicates that when the
prediction horizon is increased, the quality of forecasts on P ;
and P,.; decline in our system. An effective way to resolve this
contradiction is to adopt the RHC algorithm to achieve online
optimization [36], so that in every fixed horizon window, the
accuracy of renewable power and load demand is relatively
high, and the goal of smoothing the output power of MGENs
can be achieved.

However, the optimal results calculated by the RHC are
not good enough for online optimization [25]. To this end,
a promising new algorithm, termed Averaging Fixed Horizon
Control (AFHC) can achieve asymptotically optimal values
from predictions compared with the offline optimization al-
gorithm [24]. In this paper, we employ AFHC to develop an
online algorithm for solving the MG optimization problem;
and show that the optimal scheduling calculated by this online
algorithm is asymptotically convergent to the offline optimal
solution. We will derive the conditions for this algorithm to
achieve the offline optimal in III-C.

Let the active power be P, = [Py, Pst, Pot]’ and the
window size of the AFHC be (w + 1). Every set in each
window is defined as: ¥,,, = {i : ¢ = m mod(w + 1)} N
[~w,T],m = 0,1,..,w. To simplify notation, we define
hi(Py) = (Piy+ Pey — (pacPas + pstPsi + pr,tpr,t))27 SO
the optimization problem in the mth window becomes:

T4+w
man(ht P,) +Z77|Pdt_Pdt 1|> ¥

t=1 d=1

st (2) ~(6), T€ T,
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Let (P}@C)fi - represent the solution to (8), and P}gc,t =0

when ¢ < 0. Then for (w+ 1) versions of FHC, AFHC can be
obtained by averaging the solutions of (w+1) FHC algorithms,

ie., Parncy = 1/(w+ 1) 300 _o Phtic

III. SOLUTION ALGORITHM

Through the analysis of the mathematical model in Sec-
tions II-B and II-C, it can be seen that the objective function
for smooth control of the MGEN output power is convex
but non-differentiable, which poses a computational challenge
than solving a differentiable function [26]. In addition, as in
Section II-B, in order to ensure stable operation of the MG
system, the reactive power in the system must be coordinated.
However, due to the introduction of reactive power, the optimal
analytic set is not convex anymore [27], [28]. Traditional
convex optimization techniques cannot be used to solve this
problem. To address these challenges, we propose an online
algorithm in this section. We will show that our online
algorithm is asymptotically convergent to the offline optimal
solution, and has a sublinear regret, i.e., the online solution is
equivalent to the offline optimal solution in expectation. We
will derive the conditions for the proposed online algorithm to
achieve these excellent properties in Section III-C, and present
the pseudocode of the online algorithm in Section III-D.

A. Transformation of the Objective Function

In our formulation, the objective function is convex but
not differentiable. Therefore, it is necessary to carry out an
equivalent transformation for the mathematical model of the
smooth term. We adopt the method in [29]; we introduce
binary variables bg; to transform (1). The problem is then
equivalent to:

T+w
min Y " [Puet.t — (paiPas + psiPar — Pe))? ©)
t=7
D
+ ZW (ba,t(Pat — Pag—1) — (1 = ba,t)(Pat — Pai—1))
d=1
s.t.: (2) ~ (6)

bat(Pat — Pag—1) >0, Vi
(1 —bas)(Pat — Pig—1) <0, Vt
bd,t S {0, 1}, Vi,

where P,ct .+ = P — pr Pyt is the net power demand in the
MG. Note that this transformation is equivalent to the original
objective. However, it introduces the binary variables, while
the optimization problem is still hard to solve. Thus, further
transformations are necessary. We next define g+ = bq.+Pa

and vg; = (1 — ba¢)Pay, and then (9) is transformed to:

T+w

min Z [(Pret,t — (Pa,t(ttde + vae) + pse P — Pe,t)]2

t=1
D

+ Z n(pa,e — vae — (Pd—1 + Vai—1))
d=1

s.t.: (2) ~ (6)
Hdt — pdt—1 > 0, Vd, Vi
Vap — Va—1 < 0, Vd,Vt
Wt - Vae =0, Vd,Vt,

(10)

where (150 = 0 and vg,0 = 0 in our system.

According to Lemma 2.1 in [29], the nonlinear equality
constraints in (10) are redundant in the actual optimization
solution. Thus (10) can be further simplified to:

T+w

min Z [Pret,t — (pat(pat + vae) + psiPst — Pe,t)]2
t=1

D

+ > 0(ias = var — (Hap-1 + vae-1)) (11)

Mt — pdi—1 = 0, Vd, Vit
Va,t — V-1 < 0, Vd, Vt.

With the above transformations, the optimal energy distribu-
tion in (11) is the same as that in (8). Theorem 1 summarizes
the condition to achieve this result. The proof of Theorem 1
is presented in Appendix A.

Theorem 1. If n > 0, an optimal solution to problem (11) is
also optimal to problem (8). That is, the optimal active power
output of the distributed power generation in the MG solved
by (11), P; = [P}, Pr,, Pr]", is also the optimal scheduling
solved by the original problem (8).

Through the above transformations, the original objective
function (8) becomes (11), which is a differentiable and convex
function and is much easier to solve.

B. Convex Relaxation of the OPF Constraints

Through the above equivalent transformation analysis, the
objective function becomes a continuous, differentiable func-
tion. However, due to the regulation on the reactive power to
keep the voltage at each bus within stable range, the feasible
set constituted by system’s constraints is a typical non-convex
set. The problem is thus a non-convex problem and NP-hard
to solve [27], [30]. Therefore, an appropriate transformation
must be performed on this feasible set as well.

For online optimization of the MG, the solution algorithm
should be fast for real-time operation. To this end, semidefinite
programming (SDP) based interior point method has the
major advantage of avoidance of deriving and computing
the Jacobian matrices and the Hessian matrices for each
problem, which helps to effectively improve the algorithm
speed [30]. Thus we adopt SDP relaxation in this section.
All the constraints are transformed into quadratic equality
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by introducing auxiliary and slack variables. This way, we
transform the classical OPF problem into SDF, and the detailed
transformation is shown in Appendix B. After slacking, the
feasible set becomes convex.

C. Online Optimization Indicator and Conditions

In this section, the AFHC method is employed to develop
an online algorithm for solving the MG scheduling problem.
The online algorithm solution converges asymptotically to the
offline optimal solution. To evaluate the performance of the
algorithm, here we define the online optimization as:

T D
Cm:z (iL(Pt)+Z77|Pd7t—Pd7t1|> , (12)

t=1 d=1

where Cy, denotes the online result and Py ¢ = 0. Correspond-
ingly, the static offline optimization is:

T D
Coff = argpminz <h(Pt) + ) nlPay - Pd7t_1|> , (13)
t=1

t = d=1

where Cyfy is the offline optimization result and Py = 0.

For the AHFC based online optimization algorithm, if the
predicted renewable output power If’nt and load demand 15“,
satisfy assumption (7) in Section II-C and the predicted net
power Pnet’t satisfies condition (14), we have

T N 1 T 2
inf ¢ E. Z Z (AAT <Pnet7t T Z Pnet,t))
t=1n=1

Pnet,t t=1

2 €T, (14)

where A = [pat, pd.t: Ps,t — 1]7, At is the Moore-Penrose
pseudoinverse of A, € is a constant when w, Re, and 7, A is
known; and ¢ = f(Re,w). Here Re affects the convergence
speed of the online optimization to the offline optimal energy
scheduling, but it does not affect the final convergence result.
According to [24], the AFHC algorithm is strictly convergent,
i.e., the following formulation holds true.

R SHP {Ee {Conline - Coffline}} S ¢(T)7
Py ¢, Prt

(15)
and ¢(T) will be 0.

D. The Proposed Online Algorithm

Base on the above analysis, we now present the online
algorithm for power energy distribution in the MG. The online
algorithm is presented in Algorithm 1.

Algorithm 1: Online Algorithm

Step 1: Initialize Py = 0; set the window size w;

Step 2: Set U, = {i : i =m mod (w+ 1)} N[—w,T],
m =20,1,...,w, and then set t = 1 and m = 0;

Step 3: For 7 € ¥,,, and then for ¢t = 7,7 + 1,...,7 + w,
update the renewable power and load demand as (7) in the

entire window, defined as {P,;}/* and {P;;};";

Step 4: Solve the power energy distribution problem given
in (21)~(43) to derive solution {nggjt 71w then

w

1 M
ol 2 Pric (16)

Purrc,: =

Step S: Set m=m+1and t =t + 1;
Step 6: If m > w, reset m = 0; if ¢ < T, go to Step 3;
otherwise, end.

In Section III-C, we discuss the condition of convergence
for our algorithm, and show the bound of difference in online
and offline results in (15) is related to window size w. If the
error of prediction is independent (i.e., error is i.i.d noise),
w can be entire time horizon 7', otherwise it is less than 1T
and a finite constant according to the Corollary 6 in [24].
Thus, in (15), the time-average loss of the online algorithm
goes to zero as 1" grows when it satisfies above conditions.
This means the AHFC algorithm solution for online energy
scheduling in the MG asymptotically converges to the offline
optimal solution. Besides, the proposed algorithm needs to
repeat 1" times loop for the whole operation from Step 3 to 5.
In Step 4, the {ng)c 7% is calculated by solving SDP with
polynomial time [29]’, [37]. Therefore, the running time of our
algorithm can be obtained, which is recorded as 7" multiplied
by a polynomial. For Algorithm 1, 7" is a constant, so the time
complexity of our online algorithm is polynomial as well.

IV. SIMULATION STUDY AND DISCUSSIONS

The performances of proposed online optimal algorithm for
MG scheduling are evaluated in this section by applying it to a
real MG system. We first present the specific parameters and
configuration of the real MG system in Section IV-A. The
convergence performances of the optimal online scheduling
under different conditions are examined in Section IV-B.
The last Section IV-C is focused on the online scheduling
performance considering reactive power.

A. Configuration and Parameters of the MG System

For performance evaluation, we consider a real-world MG
system deployed in the Hekou town, Nantong City, Jianshu
Province, China (GPS coordinates are 32.49°N,120.83°F),
which consists of PVs, diesel generator, a battery energy
storage system, fixed load demand, and elastic load, as shown
in Fig. 2. The detailed parameters of this system are presented
in Table II, where DU represents the distributed unit in
the MG, IC denotes the inverter capacity, AU/AL are the
upper/lower limits for the active power output, and RU/RL
are the upper/lower bounds for reactive power output. The
capacity of the ESS is 100kVA/250kWh. The type of diesel
used in this system is VOLVO-TAD751GE, and the rated
output power of the generator is 120 kW. The efficiencies of
the PV and the ESS inverter are 0.96 and 0.97, respectively,
and the diesel’s output efficiency is 0.91 in this system.

The PV’s power profile is shown in Fig. 3, where the orange
curve indicates the PV power output in a sunny day and the
brown curve is the PV power generation in a cloudy day. The
fixed load demand in our system is mainly from the canteen
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Fig. 2. Configuration of the real-world MG system deployed in the Hekou
town, Nantong City, Jianshu Province, China.

TABLE 11
DISTRIBUTED CAPACITY PARAMETERS IN THE MG

DU 1C AU AL RU RL
(kVA) (kW) (kW) (kVar) (kVar)
Diesel — 120 0 150 -150
Battery 300 50 -55 250 -250
Elastic load — 40 0 30 0
PV 100 90 0 45 -45

and water pumps in a factory in town. The elastic load is
mainly from air conditioners. The load profile is shown in
Fig. 4. We can see that there are three load peaks which
correspond to the cooking times in the morning, at noon, and
in the evening, respectively.

For online optimization of power scheduling, the operation
can be performed every 2 h, 1 h, 0.5 h, or 15 min. The
actual timescale of operation is varied according to users’
power demand. In this paper, the parameter for the AFHC
is set to 30 minutes, as one window size in the MG. For
the proposed online algorithm, during simulation, we run the
proposed online algorithm for one day, and set the time interval
in the model to 5 min. Therefore there are 7' = 288 time
intervals in total.

All the simulations are executed in Matlab to verify the
proposed online optimal algorithm. The SDPA-M Toolbox [38]
is used to solve the reformulated SDP problem (21)~(43). It
only takes 0.04s to solve the reformulated SDP to compute the
optimal energy schedule, which fully satisfies the requirements
for online optimization and real-time control of the power
system. The optimization method proposed in this paper is
not only highly effective for the IEEE-5 system. For island-
based MG, we also applied the proposed online algorithm
to IEEE-14, IEEE-30, and IEEE-39 in our simulations, to
validate the proposed online algorithm. We also compare the
proposed online algorithm with the widely used power flow
optimization solution toolbox Matpower [39]. We find the
method proposed in this paper is far superior to Matpower
with respect to timeliness. The detailed comparison results
are presented in Table III. The simulation study shows that
our proposed algorithm is highly suitable for solving the MG
online optimization problem. Furthermore, our algorithm also
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Fig. 3. PV active power in different weather.
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Fig. 4. Load demand in the MG.

exhibits excellent performance in convergence. The detailed
simulation results are presented and discussed in the rest of
this section.

B. Performance Evaluation

In order to evaluate the performance of the proposed online
algorithm, we formulate the following optimal offline algo-
rithm that minimizes the objective C,¢s over the entire time
horizon T as (17).

min

Cofy a7

s.tr (22) ~ (43).

We consider three cases with different features to test the
convergence of the proposed online algorithm. The first case
is a sunny day with high-accuracy predictions of both PV
power and load demand. The second case is a sunny day
with moderate-accuracy prediction of both PV power and
load demand. The third case is a cloudy day with low-
accuracy predictions of PV power. Generally, the prediction
accuracy of PV power is relatively high when the weather
is fine, with a low standard deviation in prediction error,
while the factors affecting the output power of PV are more
complicated when the weather is cloudy. Under bad weather,
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TABLE III
CPU TIME FOR FOUR TEST SYSTEMS

System | SDP (s) Matpower (s)

IEEE-5 0.04 0.24

IEEE-14 0.105 0.518

IEEE-30 0.347 1.193

IEEE-39 0.468 1.550
TABLE IV

PARAMETERS FOR DIFFERENT CASES

Model | Stdin PV~ Std in Load  Time period
Case 1 3 4 288
Case 2 5 7 288
Case 3 7 4 288

the standard deviation of prediction error will be high. The
specific parameter settings are given in Table IV, where Std
is the standard deviation for forecast error.

The parameters in Table IV all satisfy the inequality con-
ditions in (14). We set n to 0.2 in the objective function,
and the objective value is in US Dollar (USD). We conduct
the corresponding simulations with the above three cases. For
Case 1 and Case 2, we plot the difference and the expected
difference between the online algorithm and offline algorithm
solutions in every time slot, i.e., Con(t) — Cosf(t), in Figs. 5
and 6, respectively. In the figures, the blue line denotes the
difference results in Case 1, and the brown dotted line shows
the difference results in Case 2.

Fig. 5 shows that the difference between the online and
offline solutions is very large initially at the first 6 time slots
(i.e., 30 min). This is caused by the output of diesel. In the
first 6 time slots, according the principle of AFHC discussed
in section II-C, the controllable variables will be increased
slowly. Thus in this short time period, the power output is
less than the load demand. After this period, the difference in
online and offline costs are reduced quickly, only to fluctuate
around O after a few time slots. This verifies that the online
cost is very close to that of the offline optimal solution.

In Fig. 5, we also find that the gap between the online and
offline algorithms in Case 1 (when the PV and load demand
are predicted with high accuracy) are smaller than that in Case
2 (when the predictions are less accurate). But over the entire
time horizon 7', we can see that the online cost converges
gradually to the offline cost in expectation, as shown in Fig. 6.
It can also be seen that the convergence in Case 1 is faster than
that in Case 2, i.e., high prediction accuracy helps to achieve
faster convergence of the online algorithm.

Similar conclusions can be seen in Figs. 7 and 8. The
fluctuation of PV power is very large due to the cloudy
weather, as shown in Fig. 3, and the accuracy of prediction
is low. However, our proposed online scheduling algorithm
still perform very well in this adverse condition. The online
results converge to the offline optimal solution very quickly
in expectation, as shown in Fig. 8.

The simulation results with the three cases clearly show that
the expectation of the difference of online and offline solutions
¢(T) — 0. In fact, even when only part of the forecast
information is available on PV power and load demand, the
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Fig. 5. The difference between the online algorithm and offline algorithm
solutions over time: Case 1 and Case 2.
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Fig. 6. The expected difference between the online algorithm and offline
algorithm solutions over time: Case 1 and Case 2.

proposed online algorithm can still achieve good results as
competitive as global optimization results. This is mainly due
to the assumption on our prediction model in (7), which can
capture the important features for real predictors. Furthermore,
when we try to look ahead further into the future, the quality of
predictions will get lower. This is closer to the actual forecast
in PV power and load demand, and is also very different
with other rolling horizon online methods which assume
perfect prediction within the window and ignore the update
in forecasting. Furthermore, in our model, predictions are
refined over time and they are flexible enough to capture the
forecast error on time series. Based of the above advantages
in our model, the proposed online algorithm can achieve
global optimal asymptotically. The proposed online algorithm
not only achieves a good performance when the prediction
accuracy is high, but also performs well when the prediction
accuracy is low.

C. Online Scheduling Results Considering Reactive Power

In addition to excellent convergence performance, the
AFHC in our system also performs well on smoothing the
output power of the diesel, maximizing the utilization of
renewable resources, and stabilizing every bus voltage. In our
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Fig. 7. The difference between the online algorithm and offline algorithm
solutions over time: Case 3.
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Fig. 8. The expected difference between the online algorithm and offline
algorithm solutions over time: Case 3.

system, the voltage tolerances are set to be [0.95 to 1.05] p.u.,
which totally satisfy the requirement on low voltage power
systems (e.g., voltage range [0.9 to 1.07] p.u. in China).

The detailed schedule for every micro-unit is plotted in
Fig. 9 for Case 1, where the real power in every time is
plotted. It can be seen that the output power of diesel increases
or decreases slowly. During the time with no PV power
output, elastic load is mainly coordinated to achieve the goal
of smoothing the output power of diesel during time slots
7~59 and 215~288. At time slot 88, the PV power gradually
increases. So the diesel output starts to decrease while the
ESS discharges to satisfy the load demand. The diesel output
power gradually decreases until time slot 94, when it reaches 0.
During time slots 111~189, the PV power is sufficient to meet
the load demand. So the ESS is charged first, and then stops
to work after reaching the upper limit of its capacity. Then
the elastic load is fully served, which can not only balance
the supply and demand of the system, but also make full use
of the PV power. Fig. 9 demonstrates the effectiveness of the
proposed scheme for real power distribution.

Another obvious advantage of our proposed online algo-
rithm is that the voltage at every bus in the MG is maintained
within the allowed tolerance range, which guarantees high
power quality in the MG. The results are presented in Fig. 10.
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Fig. 9. Real power scheduling in the MG for Case 1.
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Fig. 10. Voltage in each bus in the MG for Case 1.

The red dotted lines are the upper/lower voltage bounds in our
system. It can be seen from the figure that our results on bus
voltages not only satisfy the requirements for MG stability, but
also far exceed this requirement. Even when the real power of
PV fluctuates particularly violently, the voltage at the PV bus
just varies from -0.96% to 1.37% compared to the standard
voltage. In the MG, the intermittent nature of the renewable
resources and the fluctuation of the load demand always exist.
With the proposed online optimization method, the user can
enjoy high-quality electrical usage all the time.

The maximum and minimum voltages of all the buses in the
MG system are also provided in Table V, which are computed
in per-unit value in our system. From Table V, we find that the
voltage of the diesel engine node is always equal to 1. This is
because from the previous modeling, the diesel engine serves
as the slack bus, i.e., the voltage of this node must remain
constant during the entire operation. The voltage fluctuations at
other buses are all very small. The maximum voltage deviation
occurs at the PV bus, but this deviation is absolutely in line
with the users’ power requirements.

The above-mentioned high-quality electric energy is
achieved by coordinating the reactive power in the MG, so as
to ensure the voltage at each bus always operates within the
allowed range. In order to illustrate the importance of reactive
power in the MG, we also present the simulation results for
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TABLE V
MAXIMUM AND MINIMUM VOLTAGES FOR EACH BUS IN PER-UNIT VALUE

| Diesel ESS Fixed load  Elastic load PV
Maximum | 1.0000  1.0059 1.0082 1.0009 1.0137
Minimum 1.0000  0.9944 0.9885 0.9981 0.9904
8 T T T T
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Fig. 11. Voltage in the load bus with/without considering the reactive power.

the case when the reactive resources are not considered. We
find the simulated bus voltages all exceed the required range
in this simulation. Since the bus voltages are similar, we
take the load bus as an example, which is shown in Fig. 11.
From the figure, the voltages deviate away from the allowed
tolerance evidently when ignoring the reactive power in the
MG. Especially when there is a fluctuation in the load demand,
the voltage changes so drastically, such that the system will
crash if it were the actual MG. On the contrary, the results in
Fig. 10 and Table V demonstrate that our proposed optimal
online algorithm can achieve the long-term objective while
stabilizing the bus voltages.

Overall, the proposed online algorithm exhibits excellent
performances on solving the energy distribution problem. The
simulation results show that the performance of the proposed
online method converges quickly to an optimal offline scheme.
With AFHC, we can not only achieve effective active power
scheduling, but also maintain the system voltages in a stable
range by regulating the reactive power, thereby providing
users with high-quality electrical energy usage, which is very
important for the actual MG.

V. CONCLUSIONS

In this paper, an optimal online algorithm AFHC was
proposed to solve the power energy distribution problem in the
MG. Our problem formulation both maximizes users’ satisfac-
tion and minimizes the fluctuation in the MGEN output. The
objective function of the formulated problem was convex but
not differentiable and the feasible set was non-convex, which
was hard to solve. Equivalent transformation method was
employed to convert the objective function into a continuous,
differentiable function. Furthermore, by introducing auxiliary
variables and slack variables, we transformed the the non-
convex set to convex. Finally the problem was transformed into

an SDP that was easier to solve. To verify the effectiveness
of our algorithm, we applied it to real-world MG. The results
showed that our online algorithm asymptotically converges to
the offline optimal solution. In addition, the proposed AFHC
algorithm could effectively achieve the goals of smoothing
the output of the diesel power and optimizing the distribution
of energy. The importance of reactive power to the stable
operation of the MG is also verified in our simulation study.

APPENDIX A
PROOF OF THEOREM 1

Proof: Since P; € RDPHSYE we definel = D+ S+ E.
Then the objective function (8) can be rewritten as follows.

T+w D
min Y hy(Pas, Pty Peits Prts Pii) + Y 0l Pas — Pag1]
t=T1 d=1

S E
+> [Pt = Popa|+ > Py — Peyl (18)
s=1 e=1

st: ¢=0,0=0,7 € Up,.

Problem (18) has the same solution as problem (8).
We then transform (18) to a continuous, differentiable
convex function as in Section III-A. We have
T+w

min > || Prers — A(u+0)|3 (19)
t=1

!
+ Z E(Nn — Up — (,U/nfl - 'Unfl))
n=1
St oy — pin—1 > 0,0, —vp—1 <0, 7 € U,

where ¢ = [1),6,:]7 and A is the same as that in (14).
Assume (u*,v*) is the optimal solution to problem (19).
Then (p*',v*) = ((u* +v*)T, (u* 4+ v*)~) is also optimal
to (19), and it satisfies constraint u*v* = 0, for all n. For the
case €, > 0, according to LEMMA 2.1 in [29], we have

T4+w l
> Pt — A + 03+ ) enlxh — Xio1)
t=71 n=1
T+w l
<D Pt = A" + 0"+ D enlxs — Xo1)s (20)
t=1 n=1

where X7, = fin, = Ups Xn—1 = Hp1 = Un—1> Xn = Hp — U
and x;_, = py,_, — v, _,. This result contradicts the assump-
tion. Therefore (u*, v*) is a feasible solution to problem (18).
It is also the solution to problem (8). |

APPENDIX B
CONVEX RELAXATION

We introduce the auxiliary variable for active power as &
and ¢ € R?P+S5+E_ For every element & in &, we have
& =1 and £2 = 1. In the same manner, the auxiliary variable
corresponding to the reactive power is described as 7 and
v € RE, for each v; in , it satisfies v; = 1, then 72 = 1.
Then we introduce auxiliary variables [, w, A, 6, A, (] € RM,
where M = 4D + 2S + 2FE + 2B, to convert the non-convex
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constraints to convex. The transformed objective function and
constraints are as follows.

(i) Converted objective function

T+w

min Z {Pﬁet,t + (pd,etde + patvae + ps,tPss — Pe,t)2

t=1
— 2Ppett(patpd,etid,e + pd,t&od,tVd e
+ ps,tgs,tps,t - ge,tPe,t)

D
+ Z NEpd,thtd,r — Evd,tVdt
d=1

—(&ud,i—1t0d,t—1 — Evde—1Va,—1)]} - 2D
(i) Converted constraints
s
D (P2, +Q2,) = Coy, Vt (22)
s=1
D
Z(ad,t(ﬂdﬁt + Ud,t)2 + B(Eud,tttat + Evd,tVd,t)
d=1
D
+ Q0+ Q) =Car— > Aau, Vt (23)
d=1
€g,iPg,i (24)
= leile;Gij — f3Bij) + fi(f;Gij + ¢;Bij)] = Py, Vt
JEB
Eud,ittd,i  Eud,iVd,i (25)

— lei(e;Gij — 1;Bij) + fi(£;Gij + €;Bij)] = Pu, Vt

JjEB
Vi, i Qi (26)
— > [fileGij — [iBij) — ei(f;Gij + ¢ Bi)] = Qui, ¥,
jEB

ud,ittdi + Evd,iVai + Log s + Qog, = PIET, Vit Q7
Eud,ithd,i + Eud,iVd,i — Wid,i - wgd,i = CZ’Z”, vt (28)
odtVdt — Evdi—1Vd -1+ Qog g + g, =0, YVt (29)
ud,thd s — Eudt—1td -1 — Whgt 1 — Wi, =0, YVt (30)
Eg.iPgi + Q) = P, Vit (31)
&g.iPyi —w, ;=PI Vit (32)
Vho,i Qi + Ai’i = Q" vt (33)
VeiQri — Oy = QU™ Vit (34)
SoC,; = SoCs -1 — Ns&s 1Py, VE (35)
T4+w

D (Poy+Q2,) = SoCo — SoC™™, Vit (36)
o

> (Poy —wl,) = SoCy — SoC***, Vit (37)
t=r
€y = €5, Vt (38)
Sp =13, vt (39)
e + ff+ A7 = (V)% vt (40)
e+ f7 = ¢ = (V)2 vt (41)

=1,V
V=1, Vt,

(42)
(43)

for g € G/D,i € B,d € D,k € K,s € S. SoCy is
the initial state of the ESS in the MG, where SOC’;"m <
SoCy < SoC7**. In this way, linear term variable in the
classical OPF problem is reformulated into the quadratic
terms, such as P,; to & ;F;;, and by bringing auxiliary
variable into inequality constraints, the classical OPF problem
is equivalently converted to a quadratic problem with positive
semidefinite constraints and variables [27], [28], [30]. Thus,
the non-convex set is transformed into a convex set, and the
original problem (8) is transformed into an SDP problem,
which is easier to solve.
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