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Abstract—The optimal power energy scheduling of a Microgrid
(MG) is not only related to the active power of distributed
generators, but also dependent on the reactive power and system
operational constraints. It is essential to manage the active and re-
active power simultaneously in optimal energy distribution. This
paper is focused on developing an online algorithm to optimize
the real-time power energy distribution in the MG, considering
both reactive power and system operational constraints. The goal
is to provide high quality electricity usage for users in the MG
and maximize users’ utility. The output power of controllable
generators are also optimized. The proposed online algorithm is
asymptotically optimal, since its solution converges to the offline
optimal solution. The effectiveness of the proposed algorithm is
validated using data traces obtained from a real-world MG.

Index Terms—Energy Management System, Smart Grid, online
algorithm, power quality, Averaging Fixed Horizon Control.

I. INTRODUCTION

The Internet of Things (IoT) is a new paradigm that consists

of a pervasive presence around us of a variety of “things”

or “objects.” The “things” in the IoT are connected to the

Internet through Radio-Frequency Identification (RFID) and

other information-sensing devices [1]. They are also able to

interact with each other and cooperate with their neighbor-

ing “smart” components to achieve common goals, such as

enabling intelligent identification and management [2], [3].

The Smart-grid/Microgrid (SG/MG) is an important domain

of the IoT, which attracts increasing attention for the high

resilience and self-healing features when there exists an attack

or natural disasters caused geographic area outages [4], [5].

Furthermore, SG/MG is widely studied for it is cost-efficient

and environmental friendly. Generally, SG/MG adopts various

IoT technologies, such as RFID, sensors, and communications

to quickly capture and deliver critical signals to guarantee high

resilience and resistance to various cyber attacks [4]–[6]. The

real-time connections among users, power supply companies,

and generators, as enabled by IoT technologies, are critical

to achieve real-time, high-speed, and bi-directional flow of
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information and electricity [6], [7]. These can effectively im-

prove the level of informatization of power systems, promote

the efficiency of renewable energy, and enhance the stability

of Smart-grid/Microgrid, which are important goals of energy

management systems (EMS) [4], [8].

The EMS in the MG has four main function modules, in-

cluding human-computer interaction, data analysis, prediction,

and decision optimization [5], [9], [10]. The optimal decisions

are made in the EMS, which can be day-ahead or in real-

time. For day-ahead EMS, researchers assume that all system

states over time are known a priori, such as load demand, re-

newable power generation, and electricity price. Then optimal

scheduling can be achieved by solving an offline optimization

problem with goals of minimizing the operation cost or energy

loss, maximizing users’ utility or power companies’ profit,

shaping the demand profile, and so on [8]–[12]. However,

when the accuracy of predicted values is low, this method

usually performs poorly. Thus many researchers focus on

promoting the accuracy of prediction in the EMS to mitigate

this problem [13]–[15]. However, perfect forecasting of the

complex SG/MG information is very challenging in practice,

since such systems are inherently highly random (e.g., affected

by future weather conditions and random user behavior).

Another means to tackle this problem is applying stochastic

programming for day-ahead EMS. Based on the probabilistic

characteristics of the uncertainties, several scenarios are first

obtained through Monte Carlo and scene reduction techniques.

Then, deterministic optimization algorithms can be applied to

solve the optimal scheduling problem [16], [17]. With this

approach, the uncertainties are considered day-ahead; how-

ever, it still requires accurate information on the probability

distribution of uncertainties, which could be difficult to obtain.

This approach usually incurs high computational complexity.

To make the optimal power distribution adaptive to real-time

variations in the SG/MG environment, online optimization

algorithms have been recognized to be highly promising for

real-time MG energy scheduling, which only rely on real-time

information or very-short-time-ahead predictions (which are

usually highly accurate) [18]. The optimal controls, decisions,

output generation, consumption level, and the utility gained by

this method are usually closer to the actual situation, and the

information is sent to distributed generators and customers in

a timely fashion [19]–[21].

Many existing online algorithms for MG energy manage-

ment are asymptotically optimal, i.e., their solution converges

to the offline optimal solution although they do not require

future information [19]–[21]. However, these existing works
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only consider the balance of the supply and demand of

active power in the MG. Several other important aspects,

including the actual power laws (e.g., Kirchhoff’s laws) and

system operational constraints (e.g., voltage stable range) have

not been fully considered. Consequently, the optimal control

strategies on power flow and output generation achieved by

these algorithms may violate the actual system constraints.

A real-word MG should operate stably and always provide

high quality electricity to users. It is essential to develop a

comprehensive problem formulation that takes into account all

the important aspects of the MG, as well as effective solution

algorithms with low computational complexity (for real-time

operation of the MG) and optimal performance.

In this paper, we focus on developing an online algorithm

for the MG EMS to achieve optimal energy scheduling,

which takes into account both actual power laws and system

operational constraints. We formulate the online energy distri-

bution as an optimal power flow (OPF) problem with multi-

objective. The objectives of our problem formulation include

maximizing uses’ utility, providing high quality electricity for

users all the time, optimizing the output power of control-

lable generators in the MG system, and keeping the system

operating in an economic style. To solve the online optimal

MG energy distribution problem, Receding Horizon Control

(RHC) has been successfully applied in prior work [20], [22],

[23]. The essence of this method is to replace the process

of solving a static large-scale model optimization problem

by solving a series of small-scale optimization problems,

which can effectively reduce the computational complexity

and adapt to the time-varying environment. However, these

prior works assume prefect prediction of future events in a

fixed operational time window, but ignores future updates on

prediction [20], [22] . They also assume that the uncertainties

of renewable power and load demand are independent [23].

These assumptions may be strong in a real-world MG system.

To address these issues, we propose to employ Averaging

Fixed Horizon Control (AFHC) [24], [25] to solve our online

optimal MG energy distribution problem, which only makes

some mild assumptions on the uncertainties in renewable

power and load demand, and these assumptions are exactly

inline with the real-world situation.

The objective function of the formulated problem is convex

but non-differentiable [26]. The constraints are based on the

physical power system, considering all the key operational fea-

tures, but are non-convex [27], [28]. To solve this challenging

problem, we first apply equivalent transformations to make the

objectives differentiable and convex, which, however, still have

the same optimal solution as the original problem [29]. Then

the slacking method is applied to transform the non-convex

feasible set to convex [30]. Then our online energy scheduling

scheme is converted to a convex problem, and solved with the

semidefinite programming (SDP) based interior point method.

We prove that the energy schedule achieved by our online

algorithm is asymptotically optimal, since it converges to the

offline optimal solution. To validate the performance of the

proposed scheme, we apply it to a real-world MG deployed in

Hekou, Nantong City, Jianshu Province, China. Our simulation

study shows that the online schedule converges to the offline

Custermers

WT

PV

Batteries

MGens
MGCC

EVs

Complex Power flow

Information flow

Fig. 1. System architecture of a Microgrid.

optimal solution in expectation. Furthermore, users can enjoy

high-quality electrical energy in our system even when the real

power of renewable resources and load demand fluctuate rather

violently. Finally, the output power of controllable generators

is optimized and the voltage at every bus in the MG is

maintained within the allowed tolerance range.

The remainder of this paper is organized as follows. We

present the system model and problem statement in Section II.

The proposed online algorithm is developed and analyzed in

Section III. The simulation, validation, and evaluation of our

proposed algorithm are represented in Section IV. Section V

concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an MG integrated with renewable resources,

energy storage system (ESS), Micro-generators (MGENs),

load demand, and an MG control center (MGCC) as shown

in Fig. 1. The renewable energy sources in the MG include

photovoltaic (PV), wind turbine (WT), and so on. The energy

consumption in the MG can come from residential, com-

mercial, and industrial consumers. Such loads are usually

divided into two types [31], [32]. One type is fixed load,

such as refrigerators in houses and manufacturing machines in

factories. The other is elastic loads, such as electric vehicles

(EVs), HVAC (heating, ventilation and air conditioning), and

washer/dryers, which can be flexibly scheduled in the MG.

In AC MG, many loads are induction motors, and both the

active and reactive power demands are satisfied in the system.

The MGCC gathers information from local controllers (LCs),

receives the optimal energy strategies from the EMS, and then

sends the corresponding control commands to the LCs.

The Energy Management System (EMS) in the MG is

used to achieve optimal energy distribution. The MGCC

collects renewable power, users’ load demand, the upper and

lower limits of MGENs’s active/reactive power and voltage in

each node through communications links. Then the optimal

scheduling information will be sent to the generators side

and the consumer side, respectively. Both complex power and

information flow bidirectionally in the MG system.

Moreover, the ESS charges the extra power and discharges

when the demand is larger than DG’s generation. The elastic
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TABLE I
NOTATION

Symbol Description

T the time period of one round
t time slot, t = 1, 2, ..., T
i, j the buses in the power system
e, f the real, imaginary parts of voltage
P the real/active power in the power system
Q the reactive power in the power system

Structure parameters

Gi,j the conductance between node i and j
Bi,j the susceptance between node i and j
αd,t the quadratic coefficient of diesel d at time t
αs,t the quadratic coefficient of battery d at time t
βd,t the linear coefficient of diesel d at time t
λd,t the constant coefficient of diesel d at time t
η the diesel’s smoothing coefficient
ω the prediction window size
Cd,t the cost of all diesels at time t
Cs,t the cost of all batteries at time t

Variables

Pl,t the active power of fixed load demand at time t
Pe,t the active power of elastic load demand at time t
Pr,t the active power of renewable power at time t
Pd,t the active power of diesel’s output power at time t
Ps,t the active power of battery’s output power at time t
Ql,t the reactive power of load demand at time t
Qe,t the reactive power of elastic load demand at time t
Qk,t the reactive power of generator k at time t
ρr,t, ρs,t, ρd,t the efficiency of the converters connected to the PV

array and ESS, and the power loss in MGENs at time t
ei, fi the real and imaginary part of voltage at node i
eref , fref the real and imaginary part of voltage

at reference node
µd,t, υd,t the transformation variables of Pd,t

Ω, ω the variables to relax the upper/lower bounder
of active power from inequality to equation

∆, δ the variables to relax the upper/lower bounder
of reactive power from inequality to equation

Λ, ζ the variables to relax the upper/lower bounder
of voltage from inequality to equation

Pnet,t the net active power demand at time t
SoCs,t the battery s state of charge at time t
ξ, γ the auxiliary variables for real and

reactive power

omax, omin the upper, lower bound of variables
v̂ the predictive value of v
v̄ the average value of v
bd,t the binary variables to relax Pd,t in

absolute value term at time t

Sets

B the set of buses
D, S,E the set of diesels, ESS and elastic load
K the set of reactive power sources

load is also one of the effective ways to consume excess energy

to keep the supply-demand balance and maximize the use of

renewable resources. Furthermore, reactive power resources,

such as ESS, MGENs, SVC (static var compensator), are

regulated to avoid voltage fluctuations at each node that are

caused by the intermittent power of the renewable generation

and load demand.

On the basis of realizing stable operation of the system, the

EMS can achieve maximum user satisfaction for electricity

usage in the MG. The system can operate in an economic

way, and the optimal output power of the adjustable power

generation can be achieved.

In this paper, d denotes the real power output of the MGEN,

d ∈ D = {1, 2, ..., D}, and D is the set of all MGENs in our

MG. We define the set of active powers of ESS as s ∈ S =
{1, 2, ..., S}; and the elastic load is represented as e ∈ E =
{1, 2, ..., E}. The set of real power resources G is constituted

by D, S and E. For reactive power generators, we assume the

set is K, and k ∈ K = {1, 2, ...,K}. Actually, distributed

energy scheduling is related to the structure parameters in the

MG. In our system, the set of buses is B, and i, j ∈ B =
{1, 2, ..., B}. The notation used in this paper is summarized

in Table I.

B. Problem Formulation

In our system, the active load demand is Pl,t at time

t. Correspondingly, the reactive power demand is Ql,t. In

order to maximize the output power of renewable resources,

renewable generators output their maximum active power, and

they are the uncontrollable generators in the MG. Taking

into account the efficiency of the converters connected to the

PV array and ESS, and the power loss in MGENs (let their

efficiency be ρr,t, ρs,t, and ρd,t), the real output powers of

renewable generators, ESS and MGENs are ρr,tPr,t, ρs,tPs,t,

ρd,tPd,t, respectively.

For an MG, user’s electricity demand, the fixed load Pl,t,

should be satisfied at every time, and the elastic load Pe,t

should be adjusted flexibly. In this paper, we maximize users’

utility by coordinating the complex power generation in the

MG [33] and optimizing the operation of MGENs according to

their output features [34], [35]. The cost of the MG is mainly

on the MGENs and ESS, and we assume the costs of MGENs

and ESS are limited [19]. To achieve the above goals, we

formulate the power energy scheduling problem as follows.

min :

T
∑

t=1

{

[Pl,t + Pe,t − (ρd,tPd,t + ρs,tPs,t + ρr,tPr,t)]
2

+

D
∑

d=1

η|Pd,t − Pd,t−1|

}

(1)

s.t.:

D
∑

d=1

(αd,tP
2
d,t + βd,tPd,t + λd,t) ≤ Cd,t (2)

S
∑

s=1

αs,tP
2
s,t ≤ Cs,t. (3)

In probelm (1), the objective consists of two major items:

the first one is to minimize the users’ dissatisfaction, and the

second item is to minimize the fluctuation in the output of

MGENs, where η is the optimal coefficient. Furthermore, Pd,t

and Pd,t−1 are the MGENs’ real power output at time t and

t− 1, respectively, and Pd,0 = 0; Cd,t and Cs,t are the upper

bounds on the costs of MGENs and ESS at time t, respectively;

αd,t, βd,t, and λd,t are the cost coefficients of MGENs; and

αs,t is the cost coefficient of ESS.

In addition to satisfying the balance of supply and demand

of active power in MG, there are usually many inductive

loads in the AC MG system. Therefore, the reactive power
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must be considered simultaneously. Furthermore, the balance

of active and reactive power is related to the bus voltages

and the structural parameters between interconnected nodes.

Therefore, the system’s stable operation constraints should

include:

(i) Power flow constraints:






















Pg,i −
∑

j∈B

[ei(ejGij − fjBij) + fi(fjGij + ejBij)] = Pli

Pd,i −
∑

j∈B

[ei(ejGij − fjBij) + fi(fjGij + ejBij)] = Pli

Qk,i −
∑

j∈B

[fi(ejGij − fjBij)− ei(fjGij + ejBij)] = Qli,

g ∈ G/D, i ∈ B, d ∈ D, k ∈ K, ∀t, (4)

where Qk,i is the reactive power output at time t for reactive

generator k; ei and fi are the real and imaginary part of

voltage at bus i, respectively; Pli and Qli are the active and

reactive power demand at bus i, respectively; Gij and Bij

are the conductance and susceptance between nodes i and j,

respectively. Constraint (4) aims to achieve the supply-demand

balance in both real and reactive power, and this balance is

related to the voltage of each bus and structure parameters in

the MG.

(ii) Limits of active and reactive power, and of the ESS

capacity:






















Pmin
d ≤ Pd,i ≤ Pmax

d , ∀t
Pmin
g ≤ Pg,i ≤ Pmax

g , ∀t
Qmin

k ≤ Qk,i ≤ Qmax
k , ∀t

SoCs,t = SoCs,t−1 − ηsPs,t, ∀t
SoCmin

s ≤ SoCs,t ≤ SoCmax
s , ∀t,

(5)

where xmax and xmin are the upper and lower limits of

variable x. SoCs,t is the state of charge for ESS at time t.
During the optimal operation period, it should be within the

ESS capacity at any time. Ps,t is negative when the ESS is

charging and positive when the ESS is discharging. ηs is the

charge/discharge efficiency of the ESS. Constraint (5) is used

to ensure all generators run in the safety ranges of the real

power and reactive power resources. This is very important to

achieve stable operation in the MG.

(iii) In order to keep the voltage of each bus in the MG

within the stable range, we enforce limits on the voltage

amplitude at each bus and the reference bus, as






(V min
i )2 ≤ (e2i + f2

i ) ≤ (V max
i )2, ∀t

e2ref = e20, ∀t

f2
ref = f2

0 , ∀t,
(6)

where eref and fref are the real and imaginary part of voltage

in the reference bus, respectively. Generally, one MGEN is

chosen as the slack generator.

C. Problem Decomposition based on Time Windows

1) Assumptions on Predictions: It can be seen from (1)

to (6) that if the optimal scheduling is calculated just by the

forecast information, then these results often cannot be used

directly. This is because there is always a deviation between

the predicted and the actual values of the PV power and load

demand. Therefore, some assumptions need to be declared to

make the optimal energy distribution more instructive to the

actual scheduling. In our system, we have some assumptions

on renewable power and users’ load demand before solving the

optimization problem. And these assumptions on predictions

serve as the middle ground between the worse-case and the

stochastic viewpoints [24].

The relationship between the actual value and predicted

value of renewable power Pr,t and load demand Pl,t are

established as:
{

Pl,t = P̂l,t +
∑t

z=1 fl(t− z)el(z)

Pr,t = P̂r,t +
∑t

z=1 fr(t− z)er(z),
(7)

where P̂l,t and P̂r,t are the predictions of Pl,t and Pr,t,

respectively, made at time z < t. Thus, it can be seen

that the prediction error
∑t

z=1 f(t − z)e(z) is modeled as

a weighted linear combination of previous-step noise terms

(i.e., e(z)). We assume that the noise terms are independent

and identically distributed (i.i.d.) with mean zero and positive

definite covariance Re; and that the weight function f(·)
satisfies f(0) = I and f(t) = 0 for t < 0. Furthermore, it

is common for the impulse function to decay as f(z) ∼ 1/zσ .

The forecast value can be updated with time passes according

to (7). This assumption is closer to the actual situation.

2) Averaging Fixed Horizon Control Algorithm: In the

objective function (1), the second term is to achieve a smooth

control on the output power of the MGENs. It can be seen

that global information must be obtained in order to solve

the problem, due to the coupling of MGENs’ output powers

in time series. However, Eq. (7) indicates that when the

prediction horizon is increased, the quality of forecasts on Pl,t

and Pr,t decline in our system. An effective way to resolve this

contradiction is to adopt the RHC algorithm to achieve online

optimization [36], so that in every fixed horizon window, the

accuracy of renewable power and load demand is relatively

high, and the goal of smoothing the output power of MGENs

can be achieved.

However, the optimal results calculated by the RHC are

not good enough for online optimization [25]. To this end,

a promising new algorithm, termed Averaging Fixed Horizon

Control (AFHC) can achieve asymptotically optimal values

from predictions compared with the offline optimization al-

gorithm [24]. In this paper, we employ AFHC to develop an

online algorithm for solving the MG optimization problem;

and show that the optimal scheduling calculated by this online

algorithm is asymptotically convergent to the offline optimal

solution. We will derive the conditions for this algorithm to

achieve the offline optimal in III-C.

Let the active power be Pt = [Pd,t, Ps,t, Pe,t]
T and the

window size of the AFHC be (w + 1). Every set in each

window is defined as: Ψm = {i : i ≡ m mod(w + 1)} ∩
[−w, T ],m = 0, 1, ..., w. To simplify notation, we define

ĥt(Pt) = (Pl,t + Pe,t − (ρd,tPd,t + ρs,tPs,t + ρr,tPr,t))
2
, so

the optimization problem in the mth window becomes:

min

τ+w
∑

t=τ

(

ĥt(Pt) +

D
∑

d=1

η|Pd,t − Pd,t−1|

)

(8)

s.t.: (2) ∼ (6), τ ∈ Ψm.



IEEE INTERNET OF THINGS JOURNAL, VOL #, NO #, MONTH, YEAR 5

Let (P
(k)
FHC)

z+w
t=z represent the solution to (8), and P

(k)
FHC,t = 0

when t ≤ 0. Then for (w+1) versions of FHC, AFHC can be

obtained by averaging the solutions of (w+1) FHC algorithms,

i.e., PAFHC,t = 1/(w + 1)
∑w

m=0 P
m
FHC,t.

III. SOLUTION ALGORITHM

Through the analysis of the mathematical model in Sec-

tions II-B and II-C, it can be seen that the objective function

for smooth control of the MGEN output power is convex

but non-differentiable, which poses a computational challenge

than solving a differentiable function [26]. In addition, as in

Section II-B, in order to ensure stable operation of the MG

system, the reactive power in the system must be coordinated.

However, due to the introduction of reactive power, the optimal

analytic set is not convex anymore [27], [28]. Traditional

convex optimization techniques cannot be used to solve this

problem. To address these challenges, we propose an online

algorithm in this section. We will show that our online

algorithm is asymptotically convergent to the offline optimal

solution, and has a sublinear regret, i.e., the online solution is

equivalent to the offline optimal solution in expectation. We

will derive the conditions for the proposed online algorithm to

achieve these excellent properties in Section III-C, and present

the pseudocode of the online algorithm in Section III-D.

A. Transformation of the Objective Function

In our formulation, the objective function is convex but

not differentiable. Therefore, it is necessary to carry out an

equivalent transformation for the mathematical model of the

smooth term. We adopt the method in [29]; we introduce

binary variables bd,t to transform (1). The problem is then

equivalent to:

min
τ+w
∑

t=τ

[Pnet,t − (ρd,tPd,t + ρs,tPs,t − Pe,t)]
2 (9)

+

D
∑

d=1

η (bd,t(Pd,t − Pd,t−1)− (1− bd,t)(Pd,t − Pd,t−1))

s.t.: (2) ∼ (6)

bd,t(Pd,t − Pd,t−1) ≥ 0, ∀t

(1− bd,t)(Pd,t − Pd,t−1) ≤ 0, ∀t

bd,t ∈ {0, 1}, ∀t,

where Pnet,t = Pl,t − ρr,tPr,t is the net power demand in the

MG. Note that this transformation is equivalent to the original

objective. However, it introduces the binary variables, while

the optimization problem is still hard to solve. Thus, further

transformations are necessary. We next define µd,t = bd,tPd,t

and υd,t = (1− bd,t)Pd,t, and then (9) is transformed to:

min

τ+w
∑

t=τ

[Pnet,t − (ρd,t(µd,t + υd,t) + ρs,tPs,t − Pe,t)]
2

+

D
∑

d=1

η(µd,t − υd,t − (µd,t−1 + υd,t−1)) (10)

s.t.: (2) ∼ (6)

µd,t − µd,t−1 ≥ 0, ∀d, ∀t

υd,t − υd,t−1 ≤ 0, ∀d, ∀t

µd,t · υd,t = 0, ∀d, ∀t,

where µd,0 = 0 and υd,0 = 0 in our system.

According to Lemma 2.1 in [29], the nonlinear equality

constraints in (10) are redundant in the actual optimization

solution. Thus (10) can be further simplified to:

min

τ+w
∑

t=τ

[Pnet,t − (ρd,t(µd,t + υd,t) + ρs,tPs,t − Pe,t)]
2

+

D
∑

d=1

η(µd,t − υd,t − (µd,t−1 + υd,t−1)) (11)

s.t.: (2) ∼ (6)

µd,t − µd,t−1 ≥ 0, ∀d, ∀t

υd,t − υd,t−1 ≤ 0, ∀d, ∀t.

With the above transformations, the optimal energy distribu-

tion in (11) is the same as that in (8). Theorem 1 summarizes

the condition to achieve this result. The proof of Theorem 1

is presented in Appendix A.

Theorem 1. If η > 0, an optimal solution to problem (11) is

also optimal to problem (8). That is, the optimal active power

output of the distributed power generation in the MG solved

by (11), P ∗
t = [P ∗

d,t, P
∗
s,t, P

∗
e,t]

T , is also the optimal scheduling

solved by the original problem (8).

Through the above transformations, the original objective

function (8) becomes (11), which is a differentiable and convex

function and is much easier to solve.

B. Convex Relaxation of the OPF Constraints

Through the above equivalent transformation analysis, the

objective function becomes a continuous, differentiable func-

tion. However, due to the regulation on the reactive power to

keep the voltage at each bus within stable range, the feasible

set constituted by system’s constraints is a typical non-convex

set. The problem is thus a non-convex problem and NP-hard

to solve [27], [30]. Therefore, an appropriate transformation

must be performed on this feasible set as well.

For online optimization of the MG, the solution algorithm

should be fast for real-time operation. To this end, semidefinite

programming (SDP) based interior point method has the

major advantage of avoidance of deriving and computing

the Jacobian matrices and the Hessian matrices for each

problem, which helps to effectively improve the algorithm

speed [30]. Thus we adopt SDP relaxation in this section.

All the constraints are transformed into quadratic equality
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by introducing auxiliary and slack variables. This way, we

transform the classical OPF problem into SDF, and the detailed

transformation is shown in Appendix B. After slacking, the

feasible set becomes convex.

C. Online Optimization Indicator and Conditions

In this section, the AFHC method is employed to develop

an online algorithm for solving the MG scheduling problem.

The online algorithm solution converges asymptotically to the

offline optimal solution. To evaluate the performance of the

algorithm, here we define the online optimization as:

Con =
T
∑

t=1

(

ĥ(Pt) +
D
∑

d=1

η|Pd,t − Pd,t−1|

)

, (12)

where Con denotes the online result and Pd,0 = 0. Correspond-

ingly, the static offline optimization is:

Coff = argmin
Pt

T
∑

t=1

(

h(Pt) +

D
∑

d=1

η|Pd,t − Pd,t−1|

)

, (13)

where Coff is the offline optimization result and Pd,0 = 0.

For the AHFC based online optimization algorithm, if the

predicted renewable output power P̂r,t and load demand P̂l,t

satisfy assumption (7) in Section II-C and the predicted net

power P̂net,t satisfies condition (14), we have

inf
P̂net,t







Ee







T
∑

t=1

N
∑

n=1

(

AA†

(

Pnet,t −
1

T

T
∑

t=1

Pnet,t

))2












≥ εT, (14)

where A = [ρd,t, ρd,t, ρs,t − 1]T , A† is the Moore-Penrose

pseudoinverse of A, ε is a constant when w, Re, and η,A is

known; and ε = f(Re,w). Here Re affects the convergence

speed of the online optimization to the offline optimal energy

scheduling, but it does not affect the final convergence result.

According to [24], the AFHC algorithm is strictly convergent,

i.e., the following formulation holds true.

sup
P̂l,t,P̂r,t

{Ee {Conline − Coffline}} ≤ φ(T ), (15)

and φ(T ) will be 0.

D. The Proposed Online Algorithm

Base on the above analysis, we now present the online

algorithm for power energy distribution in the MG. The online

algorithm is presented in Algorithm 1.

Algorithm 1: Online Algorithm

Step 1: Initialize P0 = 0; set the window size w;

Step 2: Set Ψm = {i : i ≡ m mod (w + 1)} ∩ [−w, T ],
m = 0, 1, ..., w, and then set t = 1 and m = 0;

Step 3: For τ ∈ Ψm, and then for t = τ, τ + 1, ..., τ + w,

update the renewable power and load demand as (7) in the

entire window, defined as {Pr,t}
τ+w
t=τ and {Pl,t}

τ+w
t=τ ;

Step 4: Solve the power energy distribution problem given

in (21)∼(43) to derive solution {P
(m)
FHC,t}

τ+w
t=τ , then

PAFHC,t =
1

w + 1

w
∑

m=0

Pm
FHC,t; (16)

Step 5: Set m = m+ 1 and t = t+ 1;

Step 6: If m ≥ w, reset m = 0; if t ≤ T , go to Step 3;

otherwise, end.

In Section III-C, we discuss the condition of convergence

for our algorithm, and show the bound of difference in online

and offline results in (15) is related to window size w. If the

error of prediction is independent (i.e., error is i.i.d noise),

w can be entire time horizon T , otherwise it is less than T
and a finite constant according to the Corollary 6 in [24].

Thus, in (15), the time-average loss of the online algorithm

goes to zero as T grows when it satisfies above conditions.

This means the AHFC algorithm solution for online energy

scheduling in the MG asymptotically converges to the offline

optimal solution. Besides, the proposed algorithm needs to

repeat T times loop for the whole operation from Step 3 to 5.

In Step 4, the {P
(m)
FHC,t}

τ+w
t=τ is calculated by solving SDP with

polynomial time [29], [37]. Therefore, the running time of our

algorithm can be obtained, which is recorded as T multiplied

by a polynomial. For Algorithm 1, T is a constant, so the time

complexity of our online algorithm is polynomial as well.

IV. SIMULATION STUDY AND DISCUSSIONS

The performances of proposed online optimal algorithm for

MG scheduling are evaluated in this section by applying it to a

real MG system. We first present the specific parameters and

configuration of the real MG system in Section IV-A. The

convergence performances of the optimal online scheduling

under different conditions are examined in Section IV-B.

The last Section IV-C is focused on the online scheduling

performance considering reactive power.

A. Configuration and Parameters of the MG System

For performance evaluation, we consider a real-world MG

system deployed in the Hekou town, Nantong City, Jianshu

Province, China (GPS coordinates are 32.49◦N, 120.83◦E),

which consists of PVs, diesel generator, a battery energy

storage system, fixed load demand, and elastic load, as shown

in Fig. 2. The detailed parameters of this system are presented

in Table II, where DU represents the distributed unit in

the MG, IC denotes the inverter capacity, AU/AL are the

upper/lower limits for the active power output, and RU/RL

are the upper/lower bounds for reactive power output. The

capacity of the ESS is 100kVA/250kWh. The type of diesel

used in this system is VOLVO-TAD751GE, and the rated

output power of the generator is 120 kW. The efficiencies of

the PV and the ESS inverter are 0.96 and 0.97, respectively,

and the diesel’s output efficiency is 0.91 in this system.

The PV’s power profile is shown in Fig. 3, where the orange

curve indicates the PV power output in a sunny day and the

brown curve is the PV power generation in a cloudy day. The

fixed load demand in our system is mainly from the canteen
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345

Diesel Fixed load

PVStorage systemElastic load

G

G G

Fig. 2. Configuration of the real-world MG system deployed in the Hekou
town, Nantong City, Jianshu Province, China.

TABLE II
DISTRIBUTED CAPACITY PARAMETERS IN THE MG

DU IC AU AL RU RL
(kVA) (kW) (kW) (kVar) (kVar)

Diesel — 120 0 150 -150
Battery 300 50 -55 250 -250
Elastic load — 40 0 30 0
PV 100 90 0 45 -45

and water pumps in a factory in town. The elastic load is

mainly from air conditioners. The load profile is shown in

Fig. 4. We can see that there are three load peaks which

correspond to the cooking times in the morning, at noon, and

in the evening, respectively.

For online optimization of power scheduling, the operation

can be performed every 2 h, 1 h, 0.5 h, or 15 min. The

actual timescale of operation is varied according to users’

power demand. In this paper, the parameter for the AFHC

is set to 30 minutes, as one window size in the MG. For

the proposed online algorithm, during simulation, we run the

proposed online algorithm for one day, and set the time interval

in the model to 5 min. Therefore there are T = 288 time

intervals in total.

All the simulations are executed in Matlab to verify the

proposed online optimal algorithm. The SDPA-M Toolbox [38]

is used to solve the reformulated SDP problem (21)∼(43). It

only takes 0.04s to solve the reformulated SDP to compute the

optimal energy schedule, which fully satisfies the requirements

for online optimization and real-time control of the power

system. The optimization method proposed in this paper is

not only highly effective for the IEEE-5 system. For island-

based MG, we also applied the proposed online algorithm

to IEEE-14, IEEE-30, and IEEE-39 in our simulations, to

validate the proposed online algorithm. We also compare the

proposed online algorithm with the widely used power flow

optimization solution toolbox Matpower [39]. We find the

method proposed in this paper is far superior to Matpower

with respect to timeliness. The detailed comparison results

are presented in Table III. The simulation study shows that

our proposed algorithm is highly suitable for solving the MG

online optimization problem. Furthermore, our algorithm also
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Fig. 3. PV active power in different weather.
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Fig. 4. Load demand in the MG.

exhibits excellent performance in convergence. The detailed

simulation results are presented and discussed in the rest of

this section.

B. Performance Evaluation

In order to evaluate the performance of the proposed online

algorithm, we formulate the following optimal offline algo-

rithm that minimizes the objective Coff over the entire time

horizon T as (17).

min Coff (17)

s.t.: (22) ∼ (43).

We consider three cases with different features to test the

convergence of the proposed online algorithm. The first case

is a sunny day with high-accuracy predictions of both PV

power and load demand. The second case is a sunny day

with moderate-accuracy prediction of both PV power and

load demand. The third case is a cloudy day with low-

accuracy predictions of PV power. Generally, the prediction

accuracy of PV power is relatively high when the weather

is fine, with a low standard deviation in prediction error,

while the factors affecting the output power of PV are more

complicated when the weather is cloudy. Under bad weather,
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TABLE III
CPU TIME FOR FOUR TEST SYSTEMS

System SDP (s) Matpower (s)

IEEE-5 0.04 0.24
IEEE-14 0.105 0.518
IEEE-30 0.347 1.193
IEEE-39 0.468 1.550

TABLE IV
PARAMETERS FOR DIFFERENT CASES

Model Std in PV Std in Load Time period

Case 1 3 4 288
Case 2 5 7 288
Case 3 7 4 288

the standard deviation of prediction error will be high. The

specific parameter settings are given in Table IV, where Std

is the standard deviation for forecast error.

The parameters in Table IV all satisfy the inequality con-

ditions in (14). We set η to 0.2 in the objective function,

and the objective value is in US Dollar (USD). We conduct

the corresponding simulations with the above three cases. For

Case 1 and Case 2, we plot the difference and the expected

difference between the online algorithm and offline algorithm

solutions in every time slot, i.e., Con(t) − Coff (t), in Figs. 5

and 6, respectively. In the figures, the blue line denotes the

difference results in Case 1, and the brown dotted line shows

the difference results in Case 2.

Fig. 5 shows that the difference between the online and

offline solutions is very large initially at the first 6 time slots

(i.e., 30 min). This is caused by the output of diesel. In the

first 6 time slots, according the principle of AFHC discussed

in section II-C, the controllable variables will be increased

slowly. Thus in this short time period, the power output is

less than the load demand. After this period, the difference in

online and offline costs are reduced quickly, only to fluctuate

around 0 after a few time slots. This verifies that the online

cost is very close to that of the offline optimal solution.

In Fig. 5, we also find that the gap between the online and

offline algorithms in Case 1 (when the PV and load demand

are predicted with high accuracy) are smaller than that in Case

2 (when the predictions are less accurate). But over the entire

time horizon T , we can see that the online cost converges

gradually to the offline cost in expectation, as shown in Fig. 6.

It can also be seen that the convergence in Case 1 is faster than

that in Case 2, i.e., high prediction accuracy helps to achieve

faster convergence of the online algorithm.

Similar conclusions can be seen in Figs. 7 and 8. The

fluctuation of PV power is very large due to the cloudy

weather, as shown in Fig. 3, and the accuracy of prediction

is low. However, our proposed online scheduling algorithm

still perform very well in this adverse condition. The online

results converge to the offline optimal solution very quickly

in expectation, as shown in Fig. 8.

The simulation results with the three cases clearly show that

the expectation of the difference of online and offline solutions

φ(T ) → 0. In fact, even when only part of the forecast

information is available on PV power and load demand, the
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Fig. 5. The difference between the online algorithm and offline algorithm
solutions over time: Case 1 and Case 2.
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Fig. 6. The expected difference between the online algorithm and offline
algorithm solutions over time: Case 1 and Case 2.

proposed online algorithm can still achieve good results as

competitive as global optimization results. This is mainly due

to the assumption on our prediction model in (7), which can

capture the important features for real predictors. Furthermore,

when we try to look ahead further into the future, the quality of

predictions will get lower. This is closer to the actual forecast

in PV power and load demand, and is also very different

with other rolling horizon online methods which assume

perfect prediction within the window and ignore the update

in forecasting. Furthermore, in our model, predictions are

refined over time and they are flexible enough to capture the

forecast error on time series. Based of the above advantages

in our model, the proposed online algorithm can achieve

global optimal asymptotically. The proposed online algorithm

not only achieves a good performance when the prediction

accuracy is high, but also performs well when the prediction

accuracy is low.

C. Online Scheduling Results Considering Reactive Power

In addition to excellent convergence performance, the

AFHC in our system also performs well on smoothing the

output power of the diesel, maximizing the utilization of

renewable resources, and stabilizing every bus voltage. In our
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Fig. 7. The difference between the online algorithm and offline algorithm
solutions over time: Case 3.
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Fig. 8. The expected difference between the online algorithm and offline
algorithm solutions over time: Case 3.

system, the voltage tolerances are set to be [0.95 to 1.05] p.u.,

which totally satisfy the requirement on low voltage power

systems (e.g., voltage range [0.9 to 1.07] p.u. in China).

The detailed schedule for every micro-unit is plotted in

Fig. 9 for Case 1, where the real power in every time is

plotted. It can be seen that the output power of diesel increases

or decreases slowly. During the time with no PV power

output, elastic load is mainly coordinated to achieve the goal

of smoothing the output power of diesel during time slots

7∼59 and 215∼288. At time slot 88, the PV power gradually

increases. So the diesel output starts to decrease while the

ESS discharges to satisfy the load demand. The diesel output

power gradually decreases until time slot 94, when it reaches 0.

During time slots 111∼189, the PV power is sufficient to meet

the load demand. So the ESS is charged first, and then stops

to work after reaching the upper limit of its capacity. Then

the elastic load is fully served, which can not only balance

the supply and demand of the system, but also make full use

of the PV power. Fig. 9 demonstrates the effectiveness of the

proposed scheme for real power distribution.

Another obvious advantage of our proposed online algo-

rithm is that the voltage at every bus in the MG is maintained

within the allowed tolerance range, which guarantees high

power quality in the MG. The results are presented in Fig. 10.
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Fig. 9. Real power scheduling in the MG for Case 1.
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Fig. 10. Voltage in each bus in the MG for Case 1.

The red dotted lines are the upper/lower voltage bounds in our

system. It can be seen from the figure that our results on bus

voltages not only satisfy the requirements for MG stability, but

also far exceed this requirement. Even when the real power of

PV fluctuates particularly violently, the voltage at the PV bus

just varies from -0.96% to 1.37% compared to the standard

voltage. In the MG, the intermittent nature of the renewable

resources and the fluctuation of the load demand always exist.

With the proposed online optimization method, the user can

enjoy high-quality electrical usage all the time.

The maximum and minimum voltages of all the buses in the

MG system are also provided in Table V, which are computed

in per-unit value in our system. From Table V, we find that the

voltage of the diesel engine node is always equal to 1. This is

because from the previous modeling, the diesel engine serves

as the slack bus, i.e., the voltage of this node must remain

constant during the entire operation. The voltage fluctuations at

other buses are all very small. The maximum voltage deviation

occurs at the PV bus, but this deviation is absolutely in line

with the users’ power requirements.

The above-mentioned high-quality electric energy is

achieved by coordinating the reactive power in the MG, so as

to ensure the voltage at each bus always operates within the

allowed range. In order to illustrate the importance of reactive

power in the MG, we also present the simulation results for
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TABLE V
MAXIMUM AND MINIMUM VOLTAGES FOR EACH BUS IN PER-UNIT VALUE

Diesel ESS Fixed load Elastic load PV

Maximum 1.0000 1.0059 1.0082 1.0009 1.0137
Minimum 1.0000 0.9944 0.9885 0.9981 0.9904
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Fig. 11. Voltage in the load bus with/without considering the reactive power.

the case when the reactive resources are not considered. We

find the simulated bus voltages all exceed the required range

in this simulation. Since the bus voltages are similar, we

take the load bus as an example, which is shown in Fig. 11.

From the figure, the voltages deviate away from the allowed

tolerance evidently when ignoring the reactive power in the

MG. Especially when there is a fluctuation in the load demand,

the voltage changes so drastically, such that the system will

crash if it were the actual MG. On the contrary, the results in

Fig. 10 and Table V demonstrate that our proposed optimal

online algorithm can achieve the long-term objective while

stabilizing the bus voltages.

Overall, the proposed online algorithm exhibits excellent

performances on solving the energy distribution problem. The

simulation results show that the performance of the proposed

online method converges quickly to an optimal offline scheme.

With AFHC, we can not only achieve effective active power

scheduling, but also maintain the system voltages in a stable

range by regulating the reactive power, thereby providing

users with high-quality electrical energy usage, which is very

important for the actual MG.

V. CONCLUSIONS

In this paper, an optimal online algorithm AFHC was

proposed to solve the power energy distribution problem in the

MG. Our problem formulation both maximizes users’ satisfac-

tion and minimizes the fluctuation in the MGEN output. The

objective function of the formulated problem was convex but

not differentiable and the feasible set was non-convex, which

was hard to solve. Equivalent transformation method was

employed to convert the objective function into a continuous,

differentiable function. Furthermore, by introducing auxiliary

variables and slack variables, we transformed the the non-

convex set to convex. Finally the problem was transformed into

an SDP that was easier to solve. To verify the effectiveness

of our algorithm, we applied it to real-world MG. The results

showed that our online algorithm asymptotically converges to

the offline optimal solution. In addition, the proposed AFHC

algorithm could effectively achieve the goals of smoothing

the output of the diesel power and optimizing the distribution

of energy. The importance of reactive power to the stable

operation of the MG is also verified in our simulation study.

APPENDIX A

PROOF OF THEOREM 1

Proof: Since Pt ∈ RD+S+E , we define l = D + S + E.

Then the objective function (8) can be rewritten as follows.

min

τ+w
∑

t=τ

ĥt(Pd,t, Ps,t, Pe,t, Pr,t, Pl,t) +

D
∑

d=1

η|Pd,t − Pd,t−1|

+

S
∑

s=1

ς|Ps,t − Ps,t−1|+

E
∑

e=1

ι|Pe,t − Pe,t−1| (18)

s.t.: ς = 0, ι = 0, τ ∈ Ψm.

Problem (18) has the same solution as problem (8).

We then transform (18) to a continuous, differentiable

convex function as in Section III-A. We have

min

τ+w
∑

t=τ

‖Pnet,t −A(µ+ υ)‖22 (19)

+
l
∑

n=1

ε(µn − υn − (µn−1 − υn−1))

s.t.: µn − µn−1 ≥ 0, υn − υn−1 ≤ 0, τ ∈ Ψm,

where ε = [η, ς, ι]T and A is the same as that in (14).

Assume (µ∗, υ∗) is the optimal solution to problem (19).

Then (µ∗′

, υ∗′

) = ((µ∗ + υ∗)+, (µ∗ + υ∗)−) is also optimal

to (19), and it satisfies constraint µ∗υ∗ = 0, for all n. For the

case εn > 0, according to LEMMA 2.1 in [29], we have

τ+w
∑

t=τ

‖Pnet,t −A(µ∗′

+ υ∗′

)‖22 +

l
∑

n=1

εn(χ
∗′

n − χ∗′

n−1)

≤

τ+w
∑

t=τ

‖Pnet,t −A(µ∗ + υ∗)‖22 +

l
∑

n=1

εn(χ
∗
n − χ∗

n−1), (20)

where χ∗
n = µ∗

n−υ∗
n, χ∗

n−1 = µ∗
n−1−υ∗

n−1, χ∗′

n = µ∗′

n −υ∗′

n ,

and χ∗′

n−1 = µ∗′

n−1−υ∗′

n−1. This result contradicts the assump-

tion. Therefore (µ∗, υ∗) is a feasible solution to problem (18).

It is also the solution to problem (8).

APPENDIX B

CONVEX RELAXATION

We introduce the auxiliary variable for active power as ξ
and ξ ∈ R2D+S+E . For every element ξi in ξ, we have

ξi = 1 and ξ2i = 1. In the same manner, the auxiliary variable

corresponding to the reactive power is described as γ and

γ ∈ RK , for each γi in γ, it satisfies γi = 1, then γ2
i = 1.

Then we introduce auxiliary variables [Ω, ω,∆, δ,Λ, ζ] ∈ RM ,

where M = 4D + 2S + 2E + 2B, to convert the non-convex
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constraints to convex. The transformed objective function and

constraints are as follows.

(i) Converted objective function

min

τ+w
∑

t=τ

{P 2
net,t + (ρd,tµd,t + ρd,tυd,t + ρs,tPs,t − Pe,t)

2

− 2Pnet,t(ρd,tξµd,tµd,t + ρd,tξυd,tυd,t

+ ρs,tξs,tPs,t − ξe,tPe,t)

+

D
∑

d=1

η[ξµd,tµd,t − ξυd,tυd,t

−(ξµd,t−1µd,t−1 − ξυd,t−1υd,t−1)]} . (21)

(ii) Converted constraints

S
∑

s=1

(αs,tP
2
s,t +Ω2

s,t) = Cs,t, ∀t (22)

D
∑

d=1

(αd,t(µd,t + υd,t)
2 + β(ξµd,tµd,t + ξυd,tυd,t)

+ Ω2
µd,t +Ω2

υd,t) = Cd,t −
D
∑

d=1

λd,t, ∀t (23)

ξg,iPg,i (24)

−
∑

j∈B

[ei(ejGij − fjBij) + fi(fjGij + ejBij)] = Pli, ∀t

ξµd,iµd,i + ξυd,iυd,i (25)

−
∑

j∈B

[ei(ejGij − fjBij) + fi(fjGij + ejBij)] = Pli, ∀t

γk,iQk,i (26)

−
∑

j∈B

[fi(ejGij − fjBij)− ei(fjGij + ejBij)] = Qli, ∀t,

ξµd,iµd,i + ξυd,iυd,i +Ω2
µd,i +Ω2

υd,i = Pmax
d,i , ∀t (27)

ξµd,iµd,i + ξυd,iυd,i − ω2
µd,i − ω2

υd,i = Pmin
d,i , ∀t (28)

ξυd,tυd,t − ξυd,t−1υd,t−1 +Ω2
υd,t−1 +Ω2

υd,t = 0, ∀t (29)

ξµd,tµd,t − ξµd,t−1µd,t−1 − ω2
µd,t−1 − ω2

µd,t = 0, ∀t (30)

ξg,iPg,i +Ω2
g,i = Pmax

g,i , ∀t (31)

ξg,iPg,i − ω2
g,i = Pmin

g,i , ∀t (32)

γk,iQk,i +∆2
k,i = Qmax

k,i , ∀t (33)

γk,iQk,i − δ2k,i = Qmin
k,i , ∀t (34)

SoCs,t = SoCs,t−1 − ηsξs,tPs,t, ∀t (35)

τ+w
∑

t=τ

(Ps,t +Ω2
s,t) = SoC0 − SoCmin

s , ∀t (36)

τ+w
∑

t=τ

(Ps,t − ω2
s,t) = SoC0 − SoCmax

s , ∀t (37)

e2ref = e20, ∀t (38)

f2
ref = f2

0 , ∀t (39)

e2i + f2
i + Λ2

i = (V max
i )2, ∀t (40)

e2i + f2
i − ζ2i = (V min

i )2, ∀t (41)

ξ2i = 1, ∀t (42)

γ2
i = 1, ∀t, (43)

for g ∈ G/D, i ∈ B, d ∈ D, k ∈ K, s ∈ S. SoC0 is

the initial state of the ESS in the MG, where SoCmin
s ≤

SoC0 ≤ SoCmax
s . In this way, linear term variable in the

classical OPF problem is reformulated into the quadratic

terms, such as Pg,i to ξg,iPg,i, and by bringing auxiliary

variable into inequality constraints, the classical OPF problem

is equivalently converted to a quadratic problem with positive

semidefinite constraints and variables [27], [28], [30]. Thus,

the non-convex set is transformed into a convex set, and the

original problem (8) is transformed into an SDP problem,

which is easier to solve.
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