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Abstract We develop a unified model, known as MgNet, that simultaneously recovers some convolutional
neural networks (CNN) for image classification and multigrid (MG) methods for solving discretized partial
differential equations (PDEs). This model is based on close connections that we have observed and uncovered
between the CNN and MG methodologies. For example, pooling operation and feature extraction in CNN
correspond directly to restriction operation and iterative smoothers in MG, respectively. As the solution space
is often the dual of the data space in PDEs, the analogous concept of feature space and data space (which are
dual to each other) is introduced in CNN. With such connections and new concept in the unified model, the
function of various convolution operations and pooling used in CNN can be better understood. As a result,
modified CNN models (with fewer weights and hyperparameters) are developed that exhibit competitive and
sometimes better performance in comparison with existing CNN models when applied to both CIFAR-10 and
CIFAR-100 data sets.
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1 Introduction

This paper is devoted to the study of convolutional neural networks (CNN) [12,27,29] in machine learn-
ing by exploring their relationship with multigrid methods for numerically solving partial differential
equation [15,48,50]. CNN has been successfully applied in many areas, especially computer vision [30].
Important examples of CNN include the LeNet-5 model of LeCun et al. [29] in 1998, the AlexNet of
Hinton et al. [27] in 2012, residual network (ResNet) of He et al. [18] in 2015 and other variants of CNN
in [22,46,47]. Given the great success of CNN models, it is of both theoretical and practical interest to
understand why and how CNN works.

In 1990s, the mathematical analysis of deep neural network (DNN) mainly focus on the approximation
properties for DNN and CNN models. The first approximation results for DNN are obtained for a
feedforward neural network with a single hidden layer separately in [20] and [5]. From 1989 to 1999, many
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results about the so-called expressive power of single hidden neural networks are derived [1,9,42]. Recently,
many new DNN structures with ReLU [40] activation functions have been studied in connection with:
wavelets [44], finite element [16], sparse grid [39] and polynomial expansion [8]. By using a connection of
CNN and DNN that a convolution with large enough kernel can recover any linear mapping, Zhou [55]
presented an approximate result with convergence rate by deep CNNs for functions in the Sobolev space
H" () with r > 2 + d/2 (see also most recent result of [45]).

These function approximation theories for deep learning, are far from being adequate to explain why
deep neural network, especially for CNN, works and to understand the efficiency of some successful models
such as ResNet. One goal of this paper is to offer some mathematical insights into CNN by using ideas
from multigrid methods and by developing a theoretical framework for these two methodologies from
different fields. Furthermore, such insight is used to develop more efficient CNN models.

In the existing deep learning literature, ideas and techniques from multigrid methods have been used
for the development of efficient deep neural networks. As a prominent example, the ResNet and iResNet
developed in [18,19], are motivated in part by the hierarchical use of “residuals” in multigrid methods as
mentioned by the authors. As another example, in [38,43], a CNN model with almost the same structure
as the V-cycle multigrid is proposed to deal with volumetric medical image segmentation and biomedical
image segmentation. More recently, multi-resolution images have been used as the input into the neural
network in [13]. Ke et al. [25] used different networks to deal with multi-resolution images separately
with a CNN to glue them together.

A dynamic system viewpoint has also been explored in many papers such as 7,13, 36] to understand
the iterative structure in ResNet type models such as the iResNet model in [19]:

=2 4 fiath), (1.1)

Such an idea is further explored by Li and Shi [31] to use some flow model to interpret the date flow in
ResNet as the solution of transport equation following the characteristic line. Chang et al. [3] proposed
a multi-level training algorithm for the ResNet model by training a shallow model first and then pro-
longating its parameters to train a deeper model. Lu et al. [36] used the idea of time discretization in
dynamic systems to interpret PloyNet [54], FractalNet [28] and RevNet [11] as different time discretization
schemes. Then they proposed the LM-ResNet based on the idea of linear multi-step schemes in numerical
ODEs with a stochastic learning strategy. Long et al. [34,35] constructed the PDE-Net models to learn
the PDE model from data connecting discrete differential operators and convolutions.

In a different direction, new multigrid methods for numerical PDEs can be motivated by deep learning.
For example, in [24] a deep multigrid method is proposed where the restriction and prolongation matrices
with a given sparsity pattern are trained by minimizing the Frobenius norm of a large power of the
multigrid error propagation matrix with a sampling technique similar to what is used in machine learning.
In [21], a linear U-net structure is proposed as a solver for linear PDEs on the regular mesh.

In this paper, we explore the connection between multigrid and convolutional neural networks, in
several directions. First of all, we view the multi-scale of images used in CNN as piecewise (bi-)linear
functions as used in multigrid methods, and we relate the pooling operation in CNN with the restriction
operation in multigrid.

To examine further connections between CNN and multigrid, we introduce the so-called data and
feature space for CNN, which is analogous to the function space and its duality in the theory of multigrid
methods [51]. With this new concept for CNN, we propose the data-feature mapping model in every
grid as

Alw) = f, (1.2)
where f belongs to the data space and u belongs to the feature space. The feature extraction process
can then be obtained through an iterative procedure for solving the above system, namely,

u' =u" 4+ BY(f - A(TY), i=1:v, (1.3)

with w ~ u”. The above iterative scheme (1.3) can be interpreted as both the feature extraction step in
ResNet type models and the smoothing step in multigrid method.
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Using the above observations and new concepts, we develop a unified framework, called MgNet, that
simultaneously recovers some convolutional neural networks and multigrid methods. Furthermore, we
establish connections between several ResNet type models using the MgNet framework. We provide
improvements/generalizations of several ResNet type models that are as competitive as and sometimes
more efficient than existing models, as demonstrated by numerically experiments for both CIFAR-10 and
CIFAR-100 [26].

The remaining sections are organized as follows. In Section 2, we introduce some notation and pre-
liminary results in supervised learning especially for the image classification problem. In Section 3, we
present the idea that we need to distinguish the data and the feature space in CNN models and introduce
some related mappings. In Section 4, we explore the structures and operators when we consider images
as (bi-)linear functions in multilevel grids. In Section 5, we introduce multigrid by splitting it into two
phases. In Section 6, we give an abstract form of MgNet as a framework for multigrid and convolutional
neural network with details. In Section 7, we introduce some classical CNN structures with rigorous
mathematical definition. In Section 8, we construct some relations and connections between MgNet and
classic models. In Section 9, we present some numerical results to show the efficiency of MgNet. Finally
in Section 10 we give concluding remarks.

2 Supervised learning on image classification

We consider a basic machine learning problem for classifying a collection of images into x distinctive
classes. As an example, we consider a two-dimensional image which is usually represented by a tensor

feD =R

Here,
1, for grayscale image,

c= (2.1)
3, for color image.

A typical supervised machine learning problem begins with a data set (training data)

D= {(fi,y)},,

with {f;}Y, C D, and y; € R" is the label for data f;, with [y;]; as the probability for f; in classes j.

Roughly speaking, a supervised learning problem can be thought as a data fitting problem in a high
dimensional space D. Namely, we need to find a mapping H : R™*"*¢ — R", such that, for a given
feD,

H(f)=~e; € R, (2.2)
if fisin class i, for 1 < ¢ < k. For the general setting above, we use a probatilistic model for understanding
the output H(f) € R”* as a discrete distribution on {1,...,x}, with [H(f)]; as the probability for f in
the class i, namely,

OS[H(NL <L, Y [H(i=1 (2.3)
i=1

At last, we finish our model with a simple strategy to choose

arggnax{[H(f)]i ci1=1:k}, (2.4)

as the label for a test data f, which ideally is close to (2.2). The remaining key issue is the construction
of the classification mapping H.
The main step in the construction of H is to construct a nonlinear mapping

Hy:Dw— VJ, (25)
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with
Vi = R™Ixmrxes, (2.6)

To be consistent with the notation for CNN which will be described below, here the subscript J refers
to the number of coarsening girds in CNN. Roughly speaking, the map Hy plays two roles. The first
role is to conduct a dimensionality reduction, namely mjnjc; < mnc. The second role is to map a
complicated set of data into a set of data that are linearly separable. As a result, the simple logistic
regression procedure can be applied.

The first step in a logistic regression is to introduce a linear mapping

0:D — R",
as
O(z) = Wa + b, (2.7)
where W = (w;;) € RUmuxnuxes)xs ¢ R¥,
We then use the soft-max function
[S(2)]; = [Solftmax(2)]; = ——— (2.8)
Zj €=
to obtain a logistic regression model
So@ : RMIXMIXET 1y RF, (2.9)

By combining the nonlinear mapping H in (2.5) and the logistic regression (2.9), we obtain the following
classifier:
H=S000H, (210)

Given the model (2.10), we finish the training phase with solving the next optimization problem
N
min S 1H (), u5), (2.11)
j=1

where [(H(f;),y;) is a loss function that measures the predicted result H(f;) and the real label y;. In
logistic regression, the following cross-entropy loss function is often used:

K

UH(f),y) = ~[ylilog[H(f)];.

=1

3 Data space, feature space and relevant mappings

We are given the data
feR™™ or [fl;eR™", i=1:¢, (3.1)

where m x n is called the spatial dimension and c is the channel dimension.
For the given data f in (3.1), we look for some feature vector, denoted by w, associated with f:

u € Rmxmxh, (3.2)

We make an assumption that the data f and feature u are related by a mapping (which can be either
linear or nonlinear)
A Rmxnxh — RMXnxc (3_3)

so that
A(u) = f. (3.4)
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A mapping
B : RMXnXc Rmxnxh7

is called a feature extractor if B ~ A~! and

v = B(f), (3.5)

is such that v = u.

The data-feature relationship (3.4) or (3.5) is not unique. Different relationships give rise to different
features. We can view the data-feature relationship given in (3.4) as a model that we propose. Here, the
mapping A, which can be either linear or nonlinear, is unknown and needs to be trained.

We point out that the data space and feature space may have different numbers of channels.

3.1 A special linear mapping: Convolution
One important class of linear mapping is the so-called convolution
g - RMXnXC Rmxnxh

that can be defined by

[0(f)]e ZZKi,t*[f]i-f'btl ER™" t=1:h, (3.6)
where 1 € R™*" is an m X n matrix with all elements being 1, and for g € R™*",
k
[Kxglij= Y Kipitphiitqitpite i=1:m, j=1:n. (3.7)
p,gq=—k

The coefficients in (3.7) constitute a kernel matrix
K c R(2k+l)><(2k+1)7 (38)

where k is often taken as small integers. Here, padding means how to choose X, j+q when (i+p,j+q)
is out of 1 : m or 1:n. Those next three choices are often used:

0, zero padding,
fi+p»j+q = f(i—i—p) (mod m),(s+¢q) (mod n); PeriOdiC Padding» (39)
Jli—14p),lj—1+4|» reflected padding,
if
i+pe¢{1,2,...,m} or j+q¢{1,2,...,n} (3.10)
Here, d (mod m) € {1,...,m} means the remainder when d is divided by m.
If we formally write
fi
f=1:1 (3.11)
fe
we can then write the operation (3.6) as
0(f) =K *[f+b, (3.12)
where
K = (sz) c R[(2k+l)><(2k+1)]><h><c
and
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The operation (3.12) is also called a convolution with stride 1. More generally, given an integer s > 1,
a convolution with stride s for f € R"™*™ is defined as

k
. m , n
[K *5 flij = Z Kpqfs(i—1)+14p,s(G-1)+1+q, =1 {—‘7 Jj=1: {—‘ (3.13)
p,q=—k

m

Here, [7] denotes the smallest integer that is greater than . In CNN, we often take s = 2.

3.2 Some linear and nonlinear mappings and extractors

A data-feature map A and feature extractor B can be either linear or nonlinear. The nonlinearity can
be obtained from appropriate application of an activation function

oc:R—=R. (3.14)

In this paper, we mainly consider a special activation function, known as the rectified linear unit (ReLU),
which is defined by

o(zx) = ReLU(z) := max(0,z), z€R. (3.15)
By applying the function to each component, we can extend this as
o RMXXE sy RTXTXC (3.16)
A linear data-feature mapping can be simply given by a convolution as in (3.7):
A(u) = € * u. (3.17)
A nonlinear mapping can be given by compositions of convolution and activation functions
A=¢ooon (3.18)
and
B=ocoyoo. (3.19)

Here, &, n and ~y are all appropriate convolution mappings.

3.3 Iterative feature extraction schemes

One key idea in this paper is that we consider different iterative processes to approximately solve (3.4)
and relate them to many existing popular CNN models. Here, let us assume that the feature-data
mapping (3.4) is given as a linear form (3.17). We next propose some iterative schemes to solve (3.4) for
an appropriately chosen u'.

e Residual correction method,
u=u" 4+ BY(f - A@TY), i=1:v. (3.20)

Here, B® can be chosen as linear like B*(f) = 1" * f or nonlinear like (3.19). The reason why B’ is taken
the nonlinear form as in (3.19) will be discussed later based on our main discovery about the relationship
between MgNet and iResNet as discussed in Sections 7 and 8. We refer to [48] for more discussion on
iterative schemes in the form of (3.20).

e Semi-iterative method for accelerating the residual correction iterative scheme,

i—1
ut =Y oyl + Bi(f — A()), i=1:v, (3.21)

Jj=0
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where aé > 0 and Z;;E aé = 1. Let the residual r/ = f — A(u?) for j = 0 : i. The following iterative

scheme for 77 is implied by (3.21),
i—1

rt =" al(I- AB)(r), (3.22)

j=0
because of the linearity of A. This scheme is analogous to the DenseNet [22] which will be discussed
more in Section 7 and below. More discussion on semi-iterative method for linear system can be found
in [10,14].
e Chebyshev semi-iterative method,

u' =W (u F B(f - A TYH) + (1 —wHu T =1 (3.23)

The above scheme can be obtained from the above semi-iterative form by applying the Chebyshev poly-
nomial theory [10,14]. Similar to the previous case, by considering the iterative form of the residual
ri = f — A(u?), (3.23) implies that

rt =i (1= wH)riT? — ABY L (3.24)

This scheme corresponds to the LM-ResNet in [36] which was obtained as a linear multi-step scheme for
some underlying ODEs.

4 Piecewise (bi-)linear functions on multilevel grids

An image can be viewed as a function on a grid. Images with different resolutions can then be viewed
as functions on grids of different sizes. The use of such multiple-grids is a main technique used in the
standard multigrid method for solving discretized partial differential equations [48,50], and it can also
be interpreted as a main ingredient used in convolutional neural networks (CNN).

Without loss of generality, for simplicity, we assume that the initial grid, 7T, is of size

m=2"+1, n=2"'+1,

for some integers s,¢ > 1. Starting from 7; = T, we consider a sequence of coarse grids (as depicted in
Figure 1 with J = 4):
,7-]:”7-27"'7%7 (41)

such that T, (¢ =1,...,J) consist of my X n, grid points, with
me=2"F141, ny=2"1 41 (4.2)
The grid points of these grids can be given by

¢ . ¢ . . .
xizlhl,ﬁa yj:]h2,€7 2217...,7’774[, jzla"'anf-

T T2 T3 Ta

Figure 1 Multilevel grids for piecewise linear functions
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Here, hy o = 275t~1q and hoe = 27t =1p for some a,b > 0. The above geometric coordinates (xf,yf)
are usually not used in image precess literatures, but they are relevant in the context of multigrid
method for the numerical solution of PDEs. We now consider piecewise linear functions on the sequence
of grids (4.1) and we obtain a nested sequence of linear vector spaces

ViDVeD---DVj. (4.3)

Here, each V, consists of all piecewise bilinear (or linear) functions with respect to the grid (4.1) and (4.2).
Each Vy has a set of basis functions: qbfj € Vy satisfying

Loif (p.q) = (i,4),

J( > Ya) (4,9)+(p,q) 0, it (p,q)# (i, ).

Thus, for each v € V;, we have
’U(l’,y) = vaj f](x7y) (44)
i,J
4.1 Prolongation

Given a piecewise (bi-)linear function v € Vy41, the nodal values of v on my41 Xne41 grids point constitute

a tensor
UZJrl c R™Me+1 XNyl .

We note that v € V; thanks to (4.3) and the nodal values of v on 7; constitute a tensor
vl e RMexne
By using the property of piecewise (bi-)linear functions, it is easy to see that
vt = }5[2_10”1, (4.5)

where
Pl Rmesxnes oy Rmexne (4.6)

which is called a prolongation in multigrid terminology. More specifically,

Ugi—l,Qj—l = ”f,—;l (4.7)
with 1 ]
Uézel,zj = 5(“5?1 + Uf;h)’ ’Ugi,ijl = 5(”%1 + Uﬁ%]) (4.8)
and
, i(vfjl + vfill’ i+ vf}il + Ufill’ ji1), if o' is piecewise bilinear,
Y2i25 <\ ¢ 41 041 e b (4.9)
§(Ui+17j + v 41 if v* is piecewise linear.

4.2 Pooling, restriction and interpolation

The prolongation given by (4.6) can be used to transfer feature from a coarse grid to a fine grid. On the
other hand, we also need a mapping, known as restriction, that transfer data from fine grid to corse grid

Rﬁ-&—l S RMEXTe Ly R X T (4.10)

In multigrid for solving the discretized partial differential equation, the restriction is often taken to be
transpose of the prolongation given by (4.6):

Ry = [Pfa]" (4.11)
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Lemma 4.1. If Pf_H takes the form of prolongation in multigrid methods for linear finite element
functions on the above grids, then Rg“ 18 a convolution with stride 2 and a 3 X 3 kernel as

R f=Kp# f, (4.12)
where, if Vy is piecewise bilinear,
111
121
—_ 111
Kp=1513], (4.13)
111
121
or, if Vy is piecewise linear,
11
0332
_ 141
11
3320

In addition, all these convolutions are applied with zero padding as in (3.9), which is consistent with
the Neumann boundary condition for applying finite element method (FEM) to numerical PDEs. More
details will be discussed in Subsection 4.2.

In the deep learning literature, the restriction such as (4.10) is often known as pooling operation. One
popular pooling is a convolution with stride s, with some small integer s > 1.

Some other fixed (or untrained) poolings are also often used. One popular pooling is the so-called
average pooling R,,, which can be a convolution with stride 2 or bigger using the kernel K in the form of

(e
K=g|111]. (4.15)
111

Nonlinear pooling operator is also used, for the example the (2k + 1) x (2k + 1) max-pooling operator
with stride s as follows:

[Rmax(f)]ij = max k{fs(i—1)+1+p,s(j—1)+1+q}' (4.16)

—k<p,q<

Another approach to the construction of restriction of pooling can be obtained by using interpolation.
Given

,Uf c ngxn[’

let v € V; be the function whose nodal values are precisely given by v’ as in (4.4). Any reasonable linear
operator

II:v,— Vl+17 (4.17)

such as nodal value interpolation, Scott-Zhang interpolation and L? projection [49], would give rise to a
mapping
[T Rmexne oy RMer1Xnen (4.18)

such that

ot = Hﬁ"'lvz.
As situations permit, we can use these a priori given restrictions to replace unknown pooling operators
to reduce the number of parameters.
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5 Multigrid methods for numerical PDEs

Let us first briefly describe a geometric multigrid method used to solve the following boundary value
problem:

SAu=f w9 S0 o 90, Q=017 (5.1)

We consider a continuous linear finite element discretization of (5.1) on a nested sequence of grids of
sizes ny x ng with ny = 27741 £ 1, as shown in the left part of Figure 1 and the corresponding sequence
of finite element spaces (4.3).

Based on the grid T = 7Ty, the discretized system is

Au = f. (5.2)
Here, A : R™*™ — R™*" is a tensor satisfying
(Au)ij = 4w = Uiprj — Uio1j = i1 = Uij—1, (5.3)

which holds for 1 < 4,j < n with zero padding. Here we notice that, there exists a 3 x 3 kernel as

0 -1 0
Ki=|-14 -1 (5.4)
0 -1 0
with
Au = Ky *u, (5.5)

where * is the standard convolution operation with zero padding like (3.7). We now briefly describe
a simple multigrid method by a mixed use of the terminologies from deep learning [12] and multigrid
methods.

The first main ingredient in geometric multigrid (GMG) method is a smoother. A commonly used
smoother is a damped Jacobi with damped coefficient w with w € (0,2), which can be written as Sy :
R™ ™ — R™*"™ gatisfying

(Sof)is = 7 Fis (5.6)

for (5.2) with initial guess zero. If we apply the Jacobian iteration twice, then

S1(f) = Sof +S(f = A(Sof))

with element-wise form

2
[S1()ig = iw(Q —w)fij+ %(fi—i—l,j + fie1g + fige1 + fij-1)- (5.7)
Then we have
Kg, = % (5.8)
and ,
0 % 0
Kg, = | @ eCre) o | (5.9)
0« 0
such that
Sof = Ks, x f, Si1f=Kg, *f. (5.10)

Similarly, we can define
S@ . Rngxng N Rngxng.
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We use prolongation
P;Jrl . R+t XMpq1 — R X1y

as defined in (4.6) and the restriction R)** = (P 1) " Furthermore, we use the following relationship to
define coarse operation:
AL = RIVIAPL =101 (5.11)
with Al = A.
Using the smoother S*, prolongation Pf 1, restriction REH and mapping A’ as given in (5.11), we can
formulate the following algorithm as a major component of a multigrid algorithm:

Algorithm 1 (uf¥t : £ =1:J) = MGO(f; J,v1,...,v5)

1: Set up
fl=f ut?=0

2: Smoothing and restriction from fine to coarse level (nested)
3: for¢=1:Jdo

4: Pre-smoothing:

5 fori=1:vy, do

6

ubi = i1 4 §E(FE — ALy, (5.12)
7 end for
8: Form restricted residual and set initial guess:
N R§+1(fe — Abubve),
9: end for

Using Algorithm 1, there are different multigrid algorithms such as: \-cycle, V-cycle and W-cycle. Let
us now only give one special form of multigrid algorithm as follows (see Algorithm 2):

Algorithm 2 u = \-MG(f;J,v1,...,vJ)
1: Call Algorithm 1,

(ue’”Z L=1:J)=MGO(f;J,v1,...,v5).

2: Prolongation and restriction from coarse to fine level

3: for{=J—-1:1do
4:  Coarse grid correction (residual)
ubve e ubve 4 Pl T vens (5.13)
5: end for
6: Output
w=u""1

6 MgNet: A new network structure

In this section, we introduce a new neural network structure, named as MgNet, motivated by the multigrid
algorithm, Algorithm 1, as discussed in the previous section.
First, given the data-feature equation (3.4), we consider its restrictions to grid ¢ as follows:

Aty =f5 1=1:7 (6.1)

where
ff 6 RszneXnyg (62)

and
u@ c R7n[><ng><cu1g. (63)
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* MgNet Block

G [ ]

l%

‘

Figure 2 (Color online) Structure of MgNet

We are now in a position to state the main algorithm, namely MgNet as follows:

Algorithm 3  u’ = MgNet(f;J,v1,...,v7)

1: Initialization: f! = fin(f), u»% =0
2: for{=1:J do
3: fori=1:v, do

4: Feature extraction (smoothing):
ué,z — ué,z—l + Bé,z(fé _ Aé(ué,z—l)). (6.4)

5: end for
6: Note: ut = ubve
7 Interpolation and restriction:

ul 0 = it lyf (6.5)

f2+1 — R§+1(f£ _ Al(ul)) + AZ+1(UZ+1,O). (66)
8: end for

Here, fin(-) is the data initialization process as a usual step in many classical CNNs [18,19,22,27]. Tt
may depend on different data sets and problems. We will discuss it later in Subsection 6.1 and Section 7.
For the main structure, the next diagram (see Figure 2) gives a brief illustration for the schema of MgNet
as shown in Algorithm 3 with (3.17) and (3.19).

Here, we may have some more general MgNet structures by replacing the feature extraction (smoothing)
step (6.4) with some other iterative schemes such as:

(Single step) MgNet.

ubi = b1 4 BRI — A WTY)), i=1: . (6.7)
Multi-step MgNet.
i—1
i Cig 0 £, g .
ut = 30w + B - AT w)), =1 (6.8)
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Chebyshev-semi MgNet.
u@,i — wé,i(ul,ifl + BZ,i(fZ o Aé(uﬁ,ifl))) + (1 o wé,i)ué,z??, i=1: v, (69)

where B%' and Bf’i can be some appropriate nonlinear forms such as (3.19) in the basic MgNet in
Algorithm 3 which can relate to iResNet model naturally. Roughly speaking, multi-step MgNet structure
and Chebyshev-semi MgNet may be related to DenseNet [22] and LM-ResNet [36] with a special choice
of the nonlinear form of Bf’i and B%".

Let us focus on the basic MgNet form in Algorithms 3. The first important property of MgNet is that
it recovers the fine to coarse process of multigrid methods as in Algorithm 1.

Theorem 6.1. If A’, Rﬁ“ and B%" = S* are all linear operations as described in multigrid method
in Section 5, then Algorithm 1 is equivalent to Algorithm 3 with any choice of Hg“.

Proof.  Here, we replace v/ and f¢ by @%" and f¢ in MgNet. What we want to prove are
fr=f+Aa" and Wb =t — @t (6.10)

with u%%, f¢ in Algorithm 1 and %%, f* in Algorithm 3 for any choice of TI{*!. We prove this result by
induction.

e It is easy to check that £ =1 is right by taking 6 = id.

e Once the above equation (6.10) is right for ¢, let us prove the corresponding result for ¢ + 1.

e For fi+1 as the definition in Algorithm 3, we have

f€+1 — R§+1(f€ _AK{/,V[) +A€+1a€+1,0
:R§+1(f€+AZﬂZ,O _Alﬂﬂ,w)_’_AZ-i-lﬂé—i-l,O
_ R£+1(f£ 7146(@2,1/@ 7ué,0)) +AZ+11~/+1,0

:R§+1(fe—A£UZ’V[)—|—A£+1’L~LZ+1’O

_ pUE 4 AELGELO. (6.11)
e For u!*t1? first we have
W0 — g = gttL0 _ gtto. (6.12)
and then we prove
w10 (6.13)

by induction for .
We assume (6.13) holds for 0,1,...,i — 1. Let us miner @**% on both sides of the smoothing
process (6.4) in Algorithm 3. Then we have

GULE L0 _ girlisl g0 Bé+1,i(f€+1 _ A”la”l’ifl)

— gltli=l _ ge+10 _|_B£+1,i(fe+1 1 ALHLGEFL0 _ Az+1ﬂe+1,z‘f1)

— u€+1,i—1 4 BE+1,i(f€+1 _ A€+1u€+1,1’—1). (614)

This is exactly the smoothing process in Algorithm 1 as we take Bt = gé+1, O

Similar to Algorithm 2 in \-MG or the corresponding version in V-cycle multigrid, there exists a related
V-MgNet (see Algorithm 4) that includes a process from coarse to fine grids. This type of V-MgNet makes
use of prolongation operators that correspond directly to the co-called deconvolution operations in CNN
models [41]. In addition, the correction steps such as (6.15) correspond directly to the symmetric skip
connection in many autoencoder type models such as U-net [43] and others [32,33,37]. Furthermore, we
can actually recover these U-net type CNN models from V-MgNet with similar situation to that as in
MgNet and iResNet which we will discuss later in Section 8.

Despite of the simplicity look of Algorithm 3, there are rich mathematical structures and variants
which we briefly discuss below.
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Algorithm 4 u! = V-MgNet(f; J,v1,..., v, ..., v%)
1: Call Algorithm 3,

(a1’07a17 f17a2’07ﬂ27 f27 AR aJ707 aJ? fJ) - MgNet(f; J? Vl’ et VJ)'

2: for{=J—-1:1do
3:  Prolongation (deconvolution) and correction (shortcut connection)

ub0 gt + Pf+1(u”1 — glt10). (6.15)
4: fori=1:v,do
5: Feature extraction (post-smoothing)

uht e ub T By (ff - AfBT). (6.16)
6: end for
7

ul — ubve,

8: end for

6.1 Initialization: Feature space channels
Initially for ¢ = 1, we take m; = m and n; = n and we may define the linear mapping
9 :RanXC’_}Rm1XTL1XC1 (617)

to obtain f! = fi,(f) = O(f) with ¢ given in (2.1) changed to the channel of the initial data space to c;.
Usually,

c1 = c. (6.18)

One possibility is that we choose ¢; = ¢. In this case, we choose § = identity. But in general, we may
need to choose ¢; > ¢. One possible advantage of preprocessing the red, green and blue colors (¢ = 3) to
different color spaces is that we can better choose what kind of features the CNN can detect, and under
what conditions those detections will be invariant.

One possibility of understanding and modifying this step is to decompose the data f into a number of
more specialized data

f=> &fi=¢"1" (6.19)
k=1

We may use some knowledge from image processing or physics to design a procedure to obtain the right
decomposition of (6.19), or we can just train it. Conceivably, we may view f! = 0(f) as a special
approximation solution of (6.19) with the same sparsity pattern to &.

6.2 Extracted units: uf and channels

The first new feature and the main new ingredient in the proposed neural network is the introduction of
feature variables u’ in (6.3), which will be known as the extracted units.

One main ingredient in our MgNet in addition to the data variables is the introduction of feature
variables u’ in (6.3), known as the extracted-units. The so-called dual path networks (DPN) model in [4]
also makes use of additional variables. DPN is a special CNN obtained by combining two different CNN
models such as ResNet and DenseNet. If we view u? and f¢ as two different paths, MgNet can be related
to DPN model. We note that, u** and f¢ communicate to each other with a special version as in (6.4)
with a special restriction form as in (6.6). We can recover DPN from MgNet by using two different
smoothing processes and combining them.

We emphasize that the extracted-units u*? and the data f¢ can have different numbers of channels:

ubt € Rmexmexcue  fl c REmuxnexere (6.20)
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One possibility is that the number of channels for both u and f remains unchanged in different grids:
cre=cg, CL=1:J (6.21)
and
Cup =Cy, L=1:J. (6.22)

Both c¢f and ¢, are two super-parameters that need to be tuned, and we may even take ¢, = cy.
6.3 Poolings: Hﬁ'H and Rf"H

The pooling Hﬁ“ in (4.12) and Rf“ in (6.6) are in general different. They can be trained in general,
but they may be a priori chosen.
There are many different possibilities to choose Hf,“. The simplest choice of Hf}"'l is

et = o. (6.23)

A more sophisticated choice can be obtained by considering an interpolation from fine grid to coarse
(that, for example preserves linear function locally). Namely,

I =15 ® I, e, (6.24)

with ﬂf}“ given by (4.18). It can be implemented by group convolution [53] with channels as groups
number.

6.4 Data-feature mapping: A*

The second new feature of MgNet is that this data-feature mapping only depends on the grid 7y, and it
does not depend on layers within the same grid. This amounts to a significant saving of the number of
parameters especially for deep ResNet models. In comparison, the existing CNN, such as iResNet, can
be interpreted as a network related to the case that A’ is replaced by A%* namely,

uz,z‘ — ué,ifl + BZ,i(fZ _ Aé,i(uf,ifl))7 (625)

which will be discussed later in Section 8.
The data-feature mapping: A* can be either linear (3.17), or nonlinear (3.18). The underlying convo-
lution kernels can be different on different grids and they can all be trained.

6.5 Feature extractors: B%*

There are some freedoms in choosing these feature extrators. One common choice of extractors is given
by (3.19), namely,
Bt =gonhioo. (6.26)
Other than the level dependent extractors, the following different strategies can be used:
Constant extractors. B% = Bffori=1:uv,.
Scaled extractors. BY% =q;Bfori=1:.
Variable extractors. B%?.

This brief framework gives us the basic principle on designing a CNN models for classification. All
models are seen as the special choice of data-feature mapping A¢, feature extractors B%* and the pooling
operators Hi“ with ng“.

7 Some classic CNN models

In this section, we will use the notation introduced above to give a brief description of some classic CNN
models.
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7.1 LeNet-5, AlexNet and VGG

The LeNet-5 [29], AlexNet [27] and VGG [46] can be written as:

fro=0°(f),
for (=1:J
for 1=1:u
Fhi = gbi o o (fLI1), (7.1)
end for
f£+1,0 — R§+1(fz,m+e),

end for,

where Ri“ can be general pooling operators and #%% can be convolution with stride 1, or fully connected
operators. Then the CNN model will be defined by

Ho(f) = f"". (7.2)

In these three classic CNN models, they still need some extra fully connected layers after Hy(f) but
before the logistic regression (2.9). These fully connected layers are removed in ResNet to be described
below.

7.2 ResNet

The ResNet [18] can be written as

0= fin(f),
for ¢=1:J
for i=1:1
fz,i — O.(fz,ifl 4 ]:E,i(fl,ifl))’
end for
RO = (R () + FEO(f0)),
end for
Ho(f) = Rave(f5*).

(7.3)

Here, fi,(+) may depend on different data set and problems such as fi, (f) = 0 06°(f) for CIFAR [26] and
fin(f) = Rmax 000 60°(f)
for ImageNet [6] as in [18]. In addition,
o(fLi=L 4 Fli(plic1y)
is often called the basic ResNet block with
FH(F) = E oo oni (7).

Generally, €4 and 7*? take the form of with zero padding and stride 1, except, 7 is taken as convolution
with stride 2 with the same output dimension of Rﬁ“.



7.3 1iResNet

The iResNet [19] can be written as:

for
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fLO = fin(f)7

f=1:J

for i=1:1,

ff,i — f@,ifl _|_]:Z,i(f€,i71),

end for

fé+170 _ RﬁJrl(fﬁ,w) _|_j_'£,0(f€,w)7

end for
Ho(f) = Rave(fL’W)a

17

(7.4)

where fi,(-) shares the same setup with ResNet but F&i(f%~1) = ¢4 o g o n®ia(f%*~1). The only

difference between ResNet and iResNet can be viewed as putting a ¢ in different places.

7.4 DenseNet

The DenseNet [22] model can be written as:

fl,O = fin(f)v
for (=1:J
for i=1:1p
i—1
po= o i g
2 (1.5)
end for
FEARO = RN, FE)),
end for
Ho(f) = Rave(fL’w)-
Here, [f%9, ..., f%%] represents the collection of all the previous output in f-th grids after i-th smoother
in the channel dimension, and
B = (88410, ..., [0%4],_1) : R (T k) oy emexmcs (7.5

where [§41]; @ Rmexnexks oy Rmexnexki for j = 0 :§ — 1. Roughly speaking, the main iterative step
in DenseNet is almost the same as the semi-iterative iterative process (3.21) if we ignore the nonlinear
activation function o and fix the channel dimension k;.

In our paper, we mainly consider the connection between MgNet and ResNet type models from the
viewpoint of single step (residual correction) iterative scheme. In addition, we also make some discussion
about the relationship between Multi-step MgNet and DenseNet using the idea of multi-iterative method.

The development of the first three models is often shown with the following diagrams (see Figure 3):

¢ Classical CNNx * ResNetBlock . * iResNetBlock .
l l IREL
l ReLU l ReLU l RelU
—
l ReLU EL
| Rewu | Reto—
o(x + F(x)) x+ Foalx)
Figure 3 (Color online) Comparison of CNN Structures
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Without loss of generality, we extract the key feedforward steps on the same grid in different CNN
models as follows.

Classic CNN.

frr=goa(f4h) o [ =0ogl (S, (7.7)
ResNet.
FU = o (fU1 4 €5 0 0 0 pbi(fE1). (7.8)
iResNet.
foi= il ebiogontio o(fl’i_l). (7.9)
DenseNet.

ffi=o ( ii[a“}j * f”) . (7.10)

Jj=0

8 Variants and generalizations of MgNet

The MgNet model algorithm is one very basic algorithm and it can be generalized in many different ways.
It can also be used as a guidance to modify and extend many existing CNN models.
The following result show how MgNet is related to he iResNet [19].

Theorem 8.1.  The MgNet model Algorithm 3, with A = £° and B%" = con®' oo, admits the following
identities:
flri=ft —togontioo(fTY), i=1:u, (8.1)

where
For= gt g ), (8.2)
Furthermore, (8.1) represents iResNet [19] as shown in (7.9).

Proof.  Because of the linearity of ¢ and invariant within the same grid ¢, we can apply & on both
sides of (6.4) and minus with f*. Thus we have

f@ _ g[(uf,i) — fE _ g[(ué,i—l) _ f@ coo 772,1' ° O'(fz _ gé(uf,i—l)).
This finishes the proof with definition in (8.2). O

The above result is very simple but critically important. In view of Theorem 8.1, it shows how multigrid
and CNN are intimately related. Furthermore, it provides a different version of iResNet, which can be
viewed as the dual version of the original iResNet. This relation is quit similar to the dual relation of
and f in multigrid method [51].

Lemma 8.2.  The ResNet [18] step as in (7.8) admits the following relation:

PO = o(7471) — €8 0 g oy o o471, (5.3

where
ff,z — f[,zfl _ 52,1 oo o né,z(fl,zfl). (84)
Proof.  First, we apply ¢! o o o+ on both sides of (7.8) and get

€£,i+1 oo o né,i+1(f€,i) — €1€,i+1 oo o né,i+1 o U(Jze,i). (8.5)
Subtract f%* from both sides of the above equation and recall the definition in (8.4). We have
FUitl = pli _gbitl o 5 o plitl o g f0),

By the definition of f%* = o(f%?%), we finish this proof. O
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We call the above form (8.3) as o-ResNet. Similar to the MgNet we replace £ by &¢ and get the next
Mg-ResNet form as:

JH = o (7 oo oo (f ), (56)

If we take these pooling and prolongation operators as discussed in the previous sections and focus on
the iterative forms on a certain grid ¢, we may compare them as below (see Table 1).

We can have these connections for all iterative scheme in data space:

8.4 L, ol £,i—1 £i—1 £, ol

ResNet <22 5-ResNet 2%, Mg-ResNet QU ert, Mg-iResNet £ {ResNet. (8.7)

In this sense, these MgNet related models can be understood as models between iResNet and ResNet.

In addition, all these models can be understood as iteration in the data space as a dual relationship with

feature space as MgNet.
The rationality of replacing £%% by layer independent £¢ may be justified by the following theorem.

Theorem 8.3.  On each grid Ty, the following hold:
(1) Any CNN model with

ff,i _ Xf,i o o'(f“*l) (8.8)
can be written as
f“ = g(fevi*l) —{eoaon“ oa(fe’ifl). (8.9)
(2) Any CNN model with
Fhi—go Xﬂ,i(f&i—l) (8.10)
can be written as
f@,z — O_(f@,z—l _ f@ oo o nf,l(ffﬂ—l)). (811)

Proof.  Let us prove the first case as an example. The second case can be proven with the same process.
With the similar structure in MgNet, we can take

e =06%=[b1,...,0¢,] (8.12)
and
ntt = [ide,, —ide,] o (X —id,,). (8.13)
Here,
id,, : RMexnexce y Rrexnexce (8.14)
is the identity map and
O Rnexmex2ee y rexne (8.15)

Table 1 Comparison for MgNet and ResNet type iterative forms

Primal-Dual Model Iterative forms
Abstract-MgNet Solving A¢(uf) = f*
Single step MgNet ub? = b=l 4 BEI(F — AL(ubiTY)
Feature space Multi-step MgNet ubt = Z;;é af’i(u“' + Bf‘i(f"' — Alub9)))
Chebyshev-semi MgNet ubt = Whi(ubi=1 4 BHI(F — Al(ubi 1)) 4 (1 — wh)ubi—2
MgNet ubt = i1 +oo0 ni,i ° U(fe _ gl(ué,i—l))
iResNet Fhi = fi=1 _gbiogonbiog(fli-l)
Mg-iResNet for = izl _elogonbioo(fii-1)
Data space Mg-ResNet ot =o(foi=t) —elooonbioa(fii-1)
o-ResNet f@,i — o.(fé,ifl) _ gl,i oo o né,i ° O.(fl,ifl)

ResNet f@,i — o.(fé,ifl _ gl,i oo o né,i(fé,ifl))
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with

ok ([X, Y]) = —=([X] + [Y]k), (8.16)
for any X,Y € RMexnexce and [X,Y] € Rmexnex2ee,

i

First, we see that 7! with the above form is a convolution from R™¢XneXce to Rmexnex2¢  Then we

have a special MgNet model because of the identity
ReLU(x) 4+ ReLU(—2z) = =, (8.17)

and the definition of £, i.e
et =4t (8.18)

For more details, we can give an exact form of 6 as in (8.16) with
o =10,...,0,—6,...,0;0,...,0,—6,...,0], k=1:c, (8.19)

where J is the identity kernel in one channel.
Furthermore, we have

[fl o0 o [ide,, —ide,|(z)]K = [55 oo o[z,

S (8.20)

That is to say,
¢ ooolid,,, —ide,] = —id,,. (8.21)

Then the modified dual form of MgNet in (8.3) becomes

:U(fl,z 1) ngOUOT] Oo_(fé,i—l)

=o(f4 1) — (Yoo oide,, —ide,]) o (X' —id,,) 0 o (f457Y)

:(J’(fgZ ) (Xel_ldcz)oa(fll 1)

= X/,v o O'(fe i— 1) (8.22)
This covers (8.9). -

Remark 8.4. Theorem 8.3 shows that general CNN in the forms of either (8.8) or (8.10) can be written
recast as (8.9) or (8.11) with the data-feature mapping A* = ¢* that is not only independent of the layers,
but is actually given a priori as in (8.12). In view of Theorems 8.1 and 8.3, the classic CNN models can
be essentially recovered from MgNet by choosing ¢ a priori as in (8.12). We believe that general and
well-defined mathematical structure of MgNet would provide mathematical insights for understanding
and developing these CNN models.

9 Numerical experiments

In this section, we present some numerical results to illustrate the efficiency and potential of MgNet as
described in Algorithm 3.

9.1 Data sets and model structure

We choose CIFAR-10 and CIFAR-100 [26] as two data sets for numerical tests. Here, the CIFAR-10
dataset consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class. The CIFAR-100
dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. We split these
two data sets with 50,000 training images and 10,000 test images.
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We will mainly carry out a comparison with study between MgNet and ResNet [18] on these two data
sets, so we choose some similar process techniques in ResNet such as there will be an average pooling
before linear regression layers

Raye : RMI-1XMI—1XCT—1 oy RET-1, (9.1)

Here, we can recover this average operator by taking vy = 0 in MgNet and
w! = w0 = I _u? vt g RoI-1
with H§71 = Rave. This can be true also thanks to our structure that
Cup =Cy, 1L (9.2)
Given an image f, similar to ResNet, we apply our MgNet as follows:
y==So0ou’(f), (9.3)

where u”(f) is the output from our MgNet as described in Algorithm 3, S is the soft-max mapping
in (2.8) and
0 : R — R", (9.4)

represents a fully linear layer with k = 10 for CIFAR-10 and x = 100 for CIFAR-100.

We will make the following choice of hyperparameters for the MgNet:

e fi: data initialization process. Similar to ResNet, we take fi,(f) = o o 0°(f) as discussed in
Subsection 6.1 and Section 7.

e J: the number of grids. As all images in CIFAR-10 or CIFAR-100 are 32 x 32 x 3, we choose J =5
to be consistent with ResNet.

e vp: the number of smoothings in each grids. To be consistent with ResNet-18 or ResNet-34 we
choose vy = 2 or v, = 4.

e c, and cy: the number of feature and data channels.

e A’ the data-feature mapping. We choose the linear case in (3.17).

e B%’: the feature extractor. We choose the constant extractors as in Subsection 6.5.

. Rf“: the restriction operator in (6.6). Here, we choose it as a convolution with stride 2 which needs
to be trained.

. Hﬁ“: the interpolation operator in (6.5). Here, we compare these next three different choices:

1. IIy: zero interpolation, i.e., Hg“ = 0;

2. II;: convolution with stride 2 which needs to be trained;

3. IIy: channel-wise interpolation as in (6.24) with II™ as a convolution with one channel and stride 2
which also needs to be trained.

9.2 Training algorithm

While there are many different choices of training algorithms [2], in our test, we adopt the popular
stochastic gradient descent (SGD) with mini-batch and momentum for cross-entropy loss function (see
Algorithm 5).
Here, we have
hi(we) = L(H (fi;we), vi)

as defined in (2.11), where w; denotes all free parameters in MgNet and 6 in (9.4). We use the SGD with
momentum of 0.9. The mini-batch size is chosen as m = 128. The learning rate starts from 0.1 and is
divided by 10 for every 30 epochs, and the models are trained for up to K = 120 epochs. We adopt batch
normalization (BN) after each convolution and before activation, following [23]. Initialization strategy is
the same with ResNet as in [17]. We do not use weight decay and dropout. The final Top-1 test accuracy
is shown in Table 2.
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Algorithm 5 SGD with mini-batch and momentum

1: Input: learning rate 7, batch size m, parameter Initialization wp, number of epochs K.
2: for Epoch £k =1: K do
3: Shuffle data and get mini-batch Bi,..., By, choose mini-batch as: B;, with

N
i+ =t mod (—)
m

1
gt = ng Z hi(we).

4: Compute the gradient on Bj,:

i€B;,
5: Compute the momentum:
vt = avg—1 — Negt, vo = 0. (9.5)
6: Update w:
Wiyl = Wt + Vt. (9.6)

7: end for

Table 2 ResNet and MgNet on CIFAR-10 and CIFAR-100. Our methods are named with v¢, (cu, ¢f) and H§+1 by
definition above

Models CIFAR-10 CIFAR-100 Params
ResNet-18 92.24 71.96 11.2M
ResNet-34 92.80 71.93 21.3M

2, (256, 256), Iy 92.02 68.29 7.1M
2, (256, 256), II; 93.04 72.32 8.9M
2, (256,512), II; 93.20 72.42 19.5M
2, (256,512), Il 93.53 74.26 17.7M

From the above numerical results, we find that the modified CNN models based on MgNet structure
have competitive and sometimes better performance in comparison with standard ResNet models when
applied to both CIFAR-10 and CIFAR-100 data sets. Generally speaking, the more channels the better
performance we can achieve (see WideResNet [52] for similar observation). Furthermore, II; and II,
work better than Iy, and Il5 can even work better than II; with fewer parameters for big enough channel
numbers.

10 Concluding remarks

By carefully studying the connections between the traditional multigrid method and the convolutional
neural network (especially the ResNet type) models, the MgNet established in this paper provides a
unified framework that connects both multigrid and CNN in a technical level. Comparing with other
existing works that discuss the connection between multigrid and CNN, MgNet goes beyond formal or
qualitative comparisons and identifies key model components that play the same corresponding roles, from
an abstract viewpoint, for these two different methodologies. As a result, how and why CNN models
work can be mathematically understood in a similar fashion as for multigrid method which has a much
more mature and better developed theory. Motivated from various known techniques from multigrid
method, many variants and improvements of CNN can then be naturally obtained. For example, as
demonstrated from our preliminary numerical experiments, the resulting modified CNN models equipped
with fewer weights and hyperparameters actually exhibit competitive and sometimes better performance
than standard ResNet models.

The MgNet framework opens a new door to the mathematical understanding, analysis and improve-
ments of deep learning models. The very preliminary results presented in this paper have demonstrated
the great potential of MgNet from both theoretical and practical viewpoints. Obviously many aspects of
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MgNet should be further explored and expect to be much improved. In fact, only very few techniques
from multigrid method have been tried in this paper and many more in-depth techniques from multigrid
require further study for deep neural networks, especially CNN. In particular, we believe that the MgNet
framework will lead to improved CNN that only has a small fraction of the number of weights that are
required by the current CNN. On the other hand, the techniques in CNN can also be used to develop
new generation of multigrid and especially algebraic multigrid methods [51] for solving partial differential
equations. Our ongoing works have demonstrated great potentials for research in these directions and
many more results will be reported in future papers.
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