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Abstract
In phase retrieval, we want to recover an unknown signal x ∈ C

d from n quadratic
measurements of the form yi = |〈ai , x〉|2 + wi , where ai ∈ C

d are known sensing
vectors and wi is measurement noise. We ask the following weak recovery question:
What is the minimum number of measurements n needed to produce an estimator
x̂( y) that is positively correlated with the signal x? We consider the case of Gaussian
vectors ai . We prove that—in the high-dimensional limit—a sharp phase transition
takes place, and we locate the threshold in the regime of vanishingly small noise. For
n ≤ d−o(d), no estimator can do significantly better than randomand achieve a strictly
positive correlation. For n ≥ d + o(d), a simple spectral estimator achieves a posi-
tive correlation. Surprisingly, numerical simulations with the same spectral estimator
demonstrate promising performance with realistic sensing matrices. Spectral methods
are used to initialize non-convex optimization algorithms in phase retrieval, and our
approach can boost the performance in this setting as well. Our impossibility result is
based on classical information-theoretic arguments. The spectral algorithm computes
the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp
characterization of the spectral properties of this random matrix using tools from free
probability and generalizing a recent result by Lu and Li. Both the upper bound and
lower bound generalize beyond phase retrieval to measurements yi produced accord-
ing to a generalized linear model. As a by-product of our analysis, we compare the
threshold of the proposed spectral method with that of a message passing algorithm.
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1 Introduction

In this work, we consider the problem of recovering a signal x of dimension d, given
n generalized linear measurements. More specifically, the measurements are taken
independently according to the conditional distribution

yi ∼ p(y | 〈x, ai 〉), i ∈ {1, . . . , n}, (1)

where 〈·, ·〉 denotes the inner product, {ai }1≤i≤n is a set of known sensing vector, and
p(· | 〈x, ai 〉) is a known probability density function. This model appears in many
problems in signal processing and statistical estimation, e.g., photon-limited imaging
[72,81], signal recovery from quantized measurements [62], and phase retrieval [34,
65]. For the problem of phase retrieval, the model (1) is specialized to

yi = |〈x, ai 〉|2 + wi , i ∈ {1, . . . , n}, (2)

where wi is noise. Applications of phase retrieval arise in several areas of science
and engineering, including X-ray crystallography [38,52], microscopy [51], astron-
omy [35], optics [76], acoustics [4], interferometry [25], and quantummechanics [22].

Popular methods to solve the phase retrieval problem are based on semi-definite
programming relaxations [14,15,17,75]. However, these algorithms rapidly become
prohibitive from a computational point of view when the dimension d of the sig-
nal increases, which makes them impractical in most of the real-world applications.
For this reason, several algorithms have been developed in order to solve directly
the non-convex least-squares problem, including the error reduction schemes dating
back to Gerchberg–Saxton and Fienup [34,36], alternating minimization [57], approx-
imatemessage passing (AMP) [64],Wirtinger Flow [16], iterative projections [47], the
Kaczmarz method [80], and a number of other approaches [13,20,33,68,77–79,83].
Furthermore, recently a convex relaxation that operates in the natural domain of the
signal was independently proposed by two groups of authors [2,37]. All these tech-
niques require an initialization step, whose goal is to provide a solution x̂ that is
positively correlated with the unknown signal x. To do so, spectral methods are widely
employed: The estimate x̂ is given by the principal eigenvector of a suitable matrix
constructed from the data. A similar strategy (initialization step followed by an itera-
tive algorithm) has proved successful for many other estimation problems, e.g., matrix
completion [40,44], blind deconvolution [46,48], sparse coding [1], and joint align-
ment from pairwise noisy observations [19].

We focus on a regime inwhich both the number ofmeasurement n and the dimension
of the signald tend to infinity, but their ration/d tends to a positive constant δ. Theweak
recovery problem requires to provide an estimate x̂( y) that has a positive correlation
with the unknown vector x:

lim inf
n→∞ E

{ |〈x̂( y), x〉|∥∥x̂( y)
∥∥
2 ‖x‖2

}
> ε, (3)

for some ε > 0.
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In this paper,we consider either x ∈ R
d or x ∈ C

d and assume that themeasurement
vectors ai are standard Gaussian (either real or complex). In the general setting of
model (1), we present two types of results:

1. We develop an information-theoretic lower bound δ�: For δ < δ�, no estimator can
output non-trivial estimates. In other words, the weak recovery problem cannot be
solved.

2. We establish an upper bound δu based on a spectral algorithm: For δ > δu, we
can achieve weak recovery [see (3)] by letting x̂ be the principal eigenvector of
a matrix suitably constructed from the data. We also show that δu is the optimal
threshold for spectral methods.

The values of the thresholds δ� and δu depend on the conditional distribution p(· |
〈x, ai 〉). For the special case of phase retrieval [see (2)], we evaluate these bounds and
we show that they coincide in the limit of vanishing noise.

Theorem Let x be uniformly distributed on the d-dimensional complex sphere with
radius

√
d and assume that {ai }1≤i≤n ∼i .i .d. CN(0d , Id/d). Let y ∈ R

n be given by
(2), with {wi }1≤i≤n ∼ N(0, σ 2), and n, d → ∞ with n/d → δ ∈ (0,+∞). Then,

– For δ < 1, no algorithm can provide non-trivial estimates on x;
– For δ > 1, there exists σ0(δ) > 0 and a spectral algorithm that returns an estimate

x̂ satisfying (3), for any σ ∈ [0, σ0(δ)].
The assumption that x is uniform on the sphere can be dropped for the upper bound
part. We also show that σ0(δ) scales as

√
δ − 1 when δ is close to 1. In the ‘real

case’ x ∈ R
d with ‖x‖22 = d and {ai }1≤i≤n ∼i .i .d. N(0d , Id/d), we prove that an

analogous result holds and that the threshold moves from 1 to 1/2. This is reminiscent
of how the injectivity thresholds are δ = 4 and δ = 2 in the complex and the real case,
respectively [4,5,21]. A possible intuition for this halving phenomenon comes from
the fact that the complex problem has twice as many variables but the same amount of
equations of the real problem. Hence, it is reasonable that the complex case requires
twice the amount of data with respect to the real case.

Let us emphasize that we are considering the problem of weak recovery. Therefore,
wemay need less than n samples in order to obtain positive correlation on n unknowns.
For instance, in the linear case yi = 〈ai , x〉 + wi , weak recovery is possible for any
δ > 0. Consequently, it is not surprising that for phase retrieval in the real case weak
recovery can be achieved for δ below one.

Our information-theoretic lower bound is proved by estimating the conditional
entropy via the second-moment method. In general, this might not match the spectral
upper bound. We provide an example in which there is a strictly positive gap between
δ� and δu in Remark 3 at the end of Sect. 3.

As in earlier work (see Sect. 1.1), we consider spectral algorithms that compute the
eigenvector corresponding to the largest eigenvalue of a matrix of the form:

Dn = 1

n

n∑
i=1

T (yi )ai a∗
i , (4)
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where T : R → R is a pre-processing function. For δ large enough (and a suitable
choice of T ), we expect the resulting eigenvector x̂( y) to be positively correlated with
the true signal x. The recent paper [49] computed exactly the threshold value δu, under
the assumption that the measurement vectors are real Gaussian, and T is nonnegative.

Here, we generalize the result of [49] by removing the assumption that T (y) ≥ 0
and by considering the complex case. The main technical lemma of this generalization
consists in the computation of the largest eigenvalue of a matrix of the form UMnU∗,
where the entries of U are ∼i .i .d. CN(0, 1) and Mn is independent of U and has
known empirical spectral distribution. The case in which Mn is PSD is handled in [3].
In this paper, by using tools from free probability, we solve the case in which Mn is
not necessarily PSD. To do so, it is not sufficient to compute the weak limit of the
empirical spectral distribution of UMnU∗, but we also need to compute the almost
sure limit of its principal eigenvalue. Armed with this result, we compute the optimal
pre-processing function T ∗

δ (y) for the general model (1). This pre-processing function
is optimal in the sense that it provides the smallest possible weak recovery threshold
for the spectral method. Our upper bound δu is the phase transition location for this
optimal spectral method. In the case of phase retrieval (as σ → 0), the optimal pre-
processing function is given by

T ∗
δ (y) = y − 1

y + √
δ − 1

, (5)

and achieves weak recovery for any δ > δu = 1. In the limit δ ↓ 1, this converges to
the limiting function T ∗(y) = 1 − (1/y).

While expression (5) is remarkably simple, it is somewhat counterintuitive. Earlier
methods [16,18,49] use T (y) ≥ 0 and try to extract information from the large values
of yi . Function (5) has a large negative part for small y, in particular when δ is close
to 1. Furthermore, it extracts useful information from data points with yi small. One
possible interpretation is that the points in which the measurement vector is basically
orthogonal to the unknown signal are not informative; hence, we penalize them.

Our analysis applies to Gaussian measurement matrices. However, the proposed
spectral methodworkswell also on real images and realisticmeasurementmatrices. To
illustrate this fact, in Fig. 1we test our algorithm on a digital photograph of the painting
“The birth of Venus” by Sandro Botticelli. We consider a type of measurements that
falls under the category of coded diffraction patterns (CDP) [15,20]: Themeasurement
matrix is given by the product of δ copies of a Fourier matrix and a diagonal matrix
with entries i.i.d. and uniform in {1,−1, i,−i}, where i denotes the imaginary unit.
We compare our method with the truncated spectral initialization proposed in [20],
which consists in discarding the measurements larger than an assigned threshold and
leaving the others untouched. The proposed choice of the pre-processing function
allows to recover a good estimate of the original image already when δ = 4, while the
truncated spectral initialization of [20] requires δ = 12 to obtain similar results.

In general, our proposed spectral method can be thought of as a first step of the fol-
lowing two-round algorithm: First, use spectral initialization to performweak recovery
and then improve the solutionwith an iterative algorithm, e.g., AMPorWirtinger Flow.
By using optimal truncation methods, the weak recovery threshold is smaller, which
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Fig. 1 Performance comparison between the proposed spectral method and the truncated spectral initial-
ization of [20] for the recovery of a digital photograph from coded diffraction patterns. a Original image,
b proposed—δ = 4, c truncated—δ = 4, d proposed—δ = 6, e truncated—δ = 6, f proposed—δ = 12, g
truncated—δ = 12
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means that less measurements are required in order to successfully complete the first
step of the algorithm. If a different truncation is used, the resulting performances are
limited by the corresponding weak recovery threshold.

Note that the pre-processing function (5) is optimal in the sense that it minimizes
the weak recovery threshold associated with the spectral method. Hence, for a given
correlation ε̄ ∈ (0, 1), the exact expression of the optimal pre-processing function that
allows to obtain a correlation ε̄ between x̂( y) and x might be different and it might
depend on ε̄. However, we observe that (5) provides excellent empirical performance
and outperforms state-of-the-art methods for a wide range of target correlations (see
the simulation results of Sect. 7).

The rest of the paper is organized as follows. In Sect. 2, after introducing the
necessary notation, we define formally the problem. We then state our general
information-theoretic lower bound and our spectral upper bound for the case of com-
plex signal x and complex measurement vectors ai . The main results for the real case
are stated in Sect. 3. In Sects. 4 and 5, we present the proof of the information-theoretic
lower bound and of the spectral upper bound, respectively. In Sect. 6, we compare the
spectral approach to a message passing algorithm. In particular, we show that the lat-
ter cannot have a better threshold than δu and that δu is the threshold for a linearized
version of message passing. In Sect. 7, we present some numerical simulations that
illustrate the behavior of the proposed spectral method for the phase retrieval problem.
The proofs of several results are deferred to the various appendices.

1.1 RelatedWork

Precise asymptotic information on high-dimensional regression problems has been
obtained by several groups in recent years [8,10,31,32,43,58–60,70,71,82]. In par-
ticular, information-theoretically optimal estimation was considered for compressed
sensing [29] and random linear estimation [7,63]. Minimax optimal estimation is con-
sidered, among others, in [31,70,73].

The performance of the spectral methods for phase retrieval was first considered
in [57]. In the present notation, [57] uses T (y) = y and proves that there exists a
constant c1 such that weak recovery can be achieved for n > c1 · d · log3 d. The
same paper also gives an iterative procedure to improve over the spectral method, but
the bottleneck is in the spectral step. The sample complexity of weak recovery using
spectral methods was improved to n > c2 ·d ·log d in [16] and then to n > c3 ·d in [20],
for some constants c2 and c3. Both of these papers also prove guarantees for exact
recovery by suitable descent algorithms. The guarantees on the spectral initialization
are proved by matrix concentration inequalities, a technique that typically does not
return exact threshold values.

In [37], the authors introduce the PhaseMax relaxation and prove an exact recovery
result for phase retrieval, which depends on the correlation between the true signal and
the initial estimate given to the algorithm. The same idea was independently proposed
in [2]. Furthermore, the analysis in [2] allows to use the same set of measurements
for both initialization and convex programming, whereas the analysis in [37] requires
fresh extra measurements for convex programming. By using our spectral method to
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obtain the initial estimate, it should be possible to improve the existing upper bounds
on the number of samples needed for exact recovery.

As previouslymentioned, our analysis of spectralmethods builds on the recentwork
of Lu and Li [49] that compute the exact spectral threshold for a matrix of the form (4)
withT (y) ≥ 0.Here,we generalize this result to signed pre-processing functionsT (y)

and construct a function of this type that achieves the information-theoretic threshold
for phase retrieval. Our proof indeed implies that nonnegative pre-processing functions
lead to an unavoidable gap with respect to the ideal threshold.

Finally, while this paper was under completion, two works appeared that address
related problems. In [6], the authors characterize the information-theoretically opti-
mal estimation error for a broad class of models of the form (1). However, note that
this analysis does not prove—in general—the existence of an efficient estimation algo-
rithm (for instance in the case of phase retrieval). The paper [27] studies the PhaseMax
approach [2,37] to phase retrieval and uses the non-rigorous replica method from sta-
tistical physics to derive exact thresholds for this algorithm. The rigorous performance
analysis of PhaseMax under Gaussian measurements in the large system limit is pro-
vided in [28].

2 Main Results: Complex Case

2.1 Notation and SystemModel

We use [n] as a shortcut for {1, . . . , n}. We use uppercase letters (e.g., X , Y , Z , . . .) to
denote random variables when we are taking operators such as expectation, variance,
or mutual information.We denote by 0n the vector consisting of n 0s. Given a vector x,
we denote by ‖x‖2 its �2 norm. Given a matrix A, we denote by ‖A‖F its Frobenius
norm, by ‖A‖op its operator norm, by AT its transpose, and by A∗ its conjugate

transpose. Given two vectors x, y ∈ C
d , we denote by 〈x, y〉 = ∑d

i=1 xi y∗
i their

scalar product. We take logarithms in the natural basis and we measure entropies in
nats. Given c ∈ C, we denote by�(c) and�(c) its real and imaginary part, respectively.

We use
P−→ and

a.s.−→ to denote the convergence in probability and the almost sure
convergence, respectively.

Let x ∈ C
d be chosen uniformly at random on the d-dimensional complex sphere

with radius
√

d , i.e.,

x ∼ Unif(
√

dSd−1
C

). (6)

Let the sensing vectors {ai }1≤i≤n , with ai ∈ C
d , be independent and identically

distributed according to a circularly symmetric complex normal distribution with vari-
ance 1/d, i.e.,

{ai }1≤i≤n ∼i .i .d. CN(0d , Id/d). (7)

Given gi = 〈x, ai 〉, the vector of measurements y ∈ R
n is obtained by drawing

each component independently according to the following distribution:
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yi ∼ p(y | |gi |), i ∈ [n]. (8)

For the special case of phase retrieval, the measurements are given by the squared
scalar product corrupted by additive Gaussian noise with variance σ 2, i.e.,

pPR(y | |gi |) = 1

σ
√
2π

exp

(
− (y − |gi |2)2

2σ 2

)
. (9)

Let δn = n/d and assume that, as n → ∞, δn → δ for some δ ∈ (0,∞).

2.2 Information-Theoretic Lower Bound

The main result of this section establishes the following: There is a critical value δ�

such that, for any δ < δ�, the optimal estimator has the same performance as a trivial
estimator that does not have access to any measurement. The value of δ� depends on
the distribution (8) of the measurements, and we provide an expression to compute it.

In order to state formally the result, we need to introduce a few definitions. Consider
the function f : [0, 1] → R, given by

f (m) =
∫
R

EG1,G2 {p(y | |G1|)p(y | |G2|)}
EG {p(y | |G|)} dy, (10)

with

G ∼ CN(0, 1), (G1, G2) ∼ CN
(
02,
[
1 c
c∗ 1

])
, (11)

and m = |c|2. Note that the RHS of (10) depends only on m = |c|2. Indeed, by
applying the transformation (G1, G2) → (eiθ1G1, eiθ2G2), f (m) does not change,
but the correlation coefficient c is mapped into cei(θ1−θ2). A more explicit formula for
f (m) is provided by Lemma 6 in Appendix A. The function f (m) is related to the
conditional entropy H(Y1, . . . , Yn | A1, . . . , An), as clarified in the proof of Lemma 1
in Sect. 4.1. Furthermore, set

Fδ(m) = δ log f (m) + log(1 − m). (12)

Note that when m = 0, G1 and G2 are independent. Hence, f (0) = 1, which implies
that Fδ(0) = 0 for any δ > 0. We define the information-theoretic threshold δ� as the
largest value of δ such that the maximum of Fδ(m) is attained at m = 0, i.e.,

δ� = sup{δ | Fδ(m) < 0 for m ∈ (0, 1]}. (13)

Let us now define the error metric. The setting is the following: We observe the
vector of n measurements y and, given a new sensing vector an+1, we want to estimate
some function φ(|〈x, an+1〉|) given by

123



Foundations of Computational Mathematics (2019) 19:703–773 711

φ(|〈x, an+1〉|) =
∫
R

ϕ(y)p(y | |〈x, an+1〉|) dy. (14)

Then, the minimum mean square error is defined as

MMSE(δn) = E

{(
φ(|〈X, An+1〉|) − E

{
φ(|〈X, An+1〉|)

∣∣Y , {Ai }1≤i≤n
})2}

, (15)

where E
{
φ(|〈X, An+1〉|) | Y , {Ai }1≤i≤n

}
represents the optimal estimator of the

quantityφ(|〈x, an+1〉|) and the expectation of the square error is to be intended over all
the randomness of the system, i.e., over X , An+1,Y , and {Ai }1≤i≤n . Note that this error
metric depends on the choice of the function φ. Furthermore, observe that if we do not
have access to the vector of measurements Y , the trivial estimator E {φ(|〈X, An+1〉|)}
has a mean square error given by

E

{(
φ(|〈X, An+1〉|) − E

{
φ(|〈X, An+1〉|)

})2} = Var
{
φ(|〈X, An+1〉|)

}
. (16)

At this point, we are ready to state our main result, which is proved in Sect. 4.1.

Theorem 1 (Information-theoretic lower bound for general complex sensing model)
Let x, {ai }1≤i≤n+1, and y be distributed according to (6), (7), and (8), respectively.
Let n/d → δ and define δ� as in (13). Furthermore, assume that the function ϕ that
appears in (14) is bounded. Then, for any δ < δ�, we have that

lim
n→∞MMSE(δn) = Var

{
φ(|〈X, An+1〉|)

}
. (17)

Let us point out that the requirement that the function ϕ is bounded can be relaxed
when the tails of the distribution ofY are sufficiently light (e.g., sub-Gaussian). Indeed,
this is what happens for the special case of phase retrieval, which is considered imme-
diately below.

For the special case of phase retrieval, a more explicit error metric is given by the
matrix minimum mean square error, defined as

MMSEPR(δn) = 1

d2E

{∥∥∥XX∗ − E
{
XX∗ | Y , {Ai }1≤i≤n

}∥∥∥2
F

}
. (18)

Indeed, the vector x can be recovered only up to a sign change, since we observe a
function of the scalar products |〈x, ai 〉|. Clearly,MMSE(δn) ∈ [0, 1] andMMSE(δn) =
1 implies that the optimal estimator coincides with the trivial estimator that outputs
the all-0 vector.

The corollary below provides the exact value of δ� for the case of phase retrieval,
and it is proved in Appendix A.

Corollary 1 (Information-theoretic lower bound for phase retrieval) Let x, {ai }1≤i≤n,
and y be distributed according to (6), (7), and (9), respectively. Let n/d → δ. Then,
for any δ < 1, we have that

123



712 Foundations of Computational Mathematics (2019) 19:703–773

lim
σ→0

lim
n→∞MMSEPR(δn) = 1. (19)

2.3 Upper Bound via Spectral Method

The main result of this section establishes the following: There is a critical value δu
such that, for any δ > δu, the principal eigenvector of a suitably constructed matrix,
call it Dn , provides an estimate x̂ that satisfies (3). The threshold δu is defined as

δu = 1∫
R

(
EG
{

p(y | |G|)(|G|2 − 1)
})2

EG {p(y | |G|)} dy

, (20)

with G ∼ CN(0, 1). Given the measurements {yi }1≤i≤n , we construct the matrix Dn

as

Dn = 1

n

n∑
i=1

T (yi )ai a∗
i , (21)

where T : R → R is a pre-processing function.
At this point, we are ready to state our main result, which is proved in Sect. 5.

Theorem 2 (Spectral upper bound for complex general sensing model) Let x,
{ai }1≤i≤n, and y be distributed according to (6), (7), and (8), respectively. Let n/d → δ

and define δu as in (20). Let x̂ be the principal eigenvector of the matrix Dn defined
in (21). For any δ > δu, set the pre-processing function T to the function T ∗

δ given by

T ∗
δ (y) =

√
δu · T ∗(y)√

δ − (
√

δ − √
δu)T ∗(y)

, (22)

where

T ∗(y) = 1 − EG {p(y | |G|)}
EG
{

p(y | |G|) · |G|2} . (23)

Then, we have that, almost surely,

lim
n→∞

|〈x̂, x〉|∥∥x̂∥∥2 ‖x‖2
> ε, (24)

for some ε > 0. Furthermore, for any δ ≤ δu, there is no pre-processing function T
such that, almost surely, (24) holds.

Let us highlight that the pre-processing function (22) provides the optimal threshold
among spectral methods that use matrices of the form (4) in the sense that it achieves
weak recovery for δ > δu and no function achieves weak recovery for δ ≤ δu. Note
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also that the assumption that x is uniform on the sphere can be dropped (see the
beginning of the proof of Lemma 2 in Sect. 5).

As a by-product of our analysis, we also give guarantees on the value of δ sufficient
to achieve an assigned correlation with the ground truth, using the spectral method,
see (84) in the statement of Lemma 2 in Sect. 5. Hence, we can combine our upper
bound with existing non-convex optimization algorithms, in order to obtain provable
performance guarantees.

The corollary below provides the exact value of δu and an explicit expression for
T ∗

δ (y) for the case of phase retrieval. Its proof is contained in Appendix B. Note
that, for phase retrieval, δu = δ� = 1, i.e., the spectral upper bound matches the
information-theoretic lower bound.

Corollary 2 (Spectral upper bound for phase retrieval) Let x, {ai }1≤i≤n, and y be
distributed according to (6), (7), and (9), respectively. Let n/d → δ. Let x̂ be the
principal eigenvector of the matrix Dn defined in (21). For any δ > 1, set the pre-
processing function T to the function T ∗

δ given by (with y+ ≡ max(0, y)):

T ∗
δ (y) = y+ − 1

y+ + √
δ − 1

. (25)

Then, we have that, almost surely,

lim
σ→0

lim
n→∞

|〈x̂, x〉|∥∥x̂∥∥2 ‖x‖2
> ε, (26)

for some ε > 0.

Notice that this statement is stronger than the claim that δu(σ
2) → 1 as σ 2 → 0,

where δu(σ
2) is the spectral threshold at noise level σ 2. Indeed, it requires proving

that the scalar product |〈x̂, x〉| stays bounded away from 0, as σ 2 → 0. Furthermore,
this is achieved with the pre-processing function (25) that does not require to estimate
σ , which can be challenging with real data.

We also characterize the scaling between δu and σ 2 when σ 2 is close to 0: δu(σ 2) =
1 + σ 2 + o(σ 2) (see Lemma 8 in Appendix B).

3 Main Results: Real Case

Let us now briefly discuss what happens in the real case. Let x ∈ R
d be chosen

uniformly at random on the d-dimensional real sphere with radius
√

d , i.e.,

x ∼ Unif(
√

dSd−1
R

). (27)

Let the sensing vectors {ai }1≤i≤n , with ai ∈ R
d being independent and identically

distributed according to a normal distribution with zero mean and variance 1/d, i.e.,

{ai }1≤i≤n ∼i .i .d. N(0d , Id/d). (28)
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Given gi = 〈x, ai 〉, the vector of measurements y ∈ R
n is obtained by drawing each

component independently according to the following distribution:

yi ∼ p(y | gi ), i ∈ [n]. (29)

We can define the “real” phase retrieval model, whereby the measurements are given
by the squared scalar product corrupted by additive Gaussian noise with variance σ 2,
i.e.,

pPR(y | gi ) = 1

σ
√
2π

exp

(
− (y − g2

i )2

2σ 2

)
. (30)

We first present the information-theoretic lower bound. Consider the function f :
[−1, 1] → R, given by

f (m) =
∫
R

EG1,G2 {p(y | G1)p(y | G2)}
EG {p(y | G)} dy, (31)

with

G ∼ N(0, 1), (G1, G2) ∼ N
(
02,
[
1 m
m 1

])
. (32)

Furthermore, set

Fδ(m) = δ log f (m) + 1

2
log(1 − m2). (33)

Again, Fδ(0) = 0 for any δ > 0. We define the information-theoretic threshold δ� as
the largest value of δ such that the maximum of Fδ(m) is attained at m = 0, i.e.,

δ� = sup{δ | Fδ(m) < 0 for m ∈ [−1, 1]\{0}}. (34)

As for the error metric, we observe the vector of n measurements y and, given a
new sensing vector an+1, we want to estimate some function φ(〈x, an+1〉) given by

φ(〈x, an+1〉) =
∫
R

ϕ(y)p(y | 〈x, an+1〉)dy. (35)

Then, the minimum mean square error is defined as

MMSE(δn) = E

{(
φ(〈X, An+1〉) − E

{
φ(〈X, An+1〉)

∣∣Y , {Ai }1≤i≤n
})2}

. (36)
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Recall that, if we do not have access to the vector of measurements y, the trivial
estimator E {φ(〈X, An+1〉)} has a mean square error given by

E

{(
φ(〈X, An+1〉) − E

{
φ(〈X, An+1〉)

})2} = Var
{
φ(〈X, An+1〉)

}
. (37)

At this point, we are ready to state the information-theoretic lower bound, which is
proved in Sect. 4.2.

Theorem 3 (Information-theoretic lower bound for real general sensing model) Let
x, {ai }1≤i≤n+1, and y be distributed according to (27), (28), and (29), respectively.
Let n/d → δ and define δ� as in (34). Furthermore, assume that the function ϕ that
appears in (35) is bounded. Then, for any δ < δ�, we have that

lim
n→∞MMSE(δn) = Var

{
φ(〈X, An+1〉)

}
. (38)

Remark 1 (Information-theoretic lower bound for real phase retrieval) For the special
case of phase retrieval, a more explicit error metric is given by the matrix minimum
mean square error, defined as

MMSEPR(δn) = 1

d2E

{∥∥∥XXT − E
{
XXT | Y , {Ai }1≤i≤n

}∥∥∥2
F

}
. (39)

By calculations similar to those in Lemma 7 contained in Appendix A, one can prove
that, if the distribution p(· | G) appearing in (31) is given by (30), then

lim
σ→0

δ�(σ
2) = 1/2. (40)

Consequently, by following a proof analogous to that of Corollary 1 in Appendix A,
we conclude that, for any δ < 1/2,

lim
σ→0

lim
n→∞MMSEPR(δn) = 1. (41)

Let us now move to the spectral upper bound. The threshold δu is defined as

δu = 1∫
R

(
EG
{

p(y | G)(G2 − 1)
})2

EG {p(y | G)} dy

, (42)

with G ∼ N(0, 1). Given the measurements {yi }1≤i≤n , we construct the matrix Dn as

Dn = 1

n

n∑
i=1

T (yi )ai aTi , (43)

where T : R → R is a pre-processing function.
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The proof of the following spectral upper bound is discussed in Remark 7 at the
end of Sect. 5.

Theorem 4 (Spectral upper bound for real general sensing model) Let x, {ai }1≤i≤n,
and y be distributed according to (27), (28), and (29), respectively. Let n/d → δ and
define δu as in (42). Let x̂ be the principal eigenvector of the matrix Dn defined in
(43). For any δ > δu, set the pre-processing function T to the function T ∗

δ given by

T ∗
δ (y) =

√
δu · T ∗(y)√

δ − (
√

δ − √
δu)T ∗(y)

, (44)

where

T ∗(y) = 1 − EG {p(y | G)}
EG
{

p(y | G) · G2
} . (45)

Then, we have that, almost surely,

lim
n→∞

|〈x̂, x〉|∥∥x̂∥∥2 ‖x‖2
> ε, (46)

for some ε > 0. Furthermore, for any δ ≤ δu, there is no pre-processing function T
such that, almost surely, (46) holds.

Remark 2 (Spectral upper bound for real phase retrieval) By calculations similar to
those in Lemma 8 contained in Appendix B, one can prove that, if the distribution
p(· | G) appearing in (31) is given by (30), then

lim
σ→0

δu(σ
2) = 1/2. (47)

Furthermore, by following a proof analogous to that of Corollary 2 in Appendix B,
one can prove the following result. For any δ > 1/2, set the pre-processing function
T to the function T ∗

δ given by (with y+ = max(y, 0))

T ∗
δ (y) = y+ − 1

y+ + √
2δ − 1

. (48)

Then, we have that, almost surely,

lim
σ→0

lim
n→∞

|〈x̂, x〉|∥∥x̂∥∥2 ‖x‖2
> ε, (49)

for some ε > 0. Note that, for real phase retrieval, the spectral upper bound matches
the information-theoretic lower bound.

In the following remark, we provide an example in which there is a strictly positive
gap between δ� and δu.
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Remark 3 (Gap between δ� and δu) Let us define

H(a) = EG

{
tanh2(a G) (G2 − 1)

}
, (50)

where G ∼ N(0, 1). Note that H(0) = 0 and lima→∞ H(a) = 0. Hence, there exists
a2 > a1 such that H(a1) = H(a2).

Consider the following distribution for the components of the vector of measure-
ments y:

p(y | g) =
{
tanh2(a2 g) − tanh2(a1 g), for y ∈ [1, 2],
1 − (tanh2(a2 g) − tanh2(a1 g)), for y ∈ [−2,−1]. (51)

Then, we have that, for any y ∈ R,

EG

{
p(y | G) (G2 − 1)

}
= 0, (52)

which, by definition (42), immediately implies that δu = ∞. Note that this argument
works when we substitute tanh2(x) with any function which is even, increasing for
x ≥ 0 and bounded between 0 and 1.

Let us now show that δ� is finite. Consider the function f (m) defined in (31). As
previously mentioned, f (0) = 1. Furthermore,

f (1) =
∫
R

EG
{
(p(y | G))2

}
EG {p(y | G)} dy

=
∫
R

(EG {p(y | G)})2 + Var {p(y | G)}
EG {p(y | G)} dy

= 1 +
∫
R

Var {p(y | G)}
EG {p(y | G)} dy > 1.

(53)

Consequently, there exists m∗ ∈ (0, 1) such that f (m∗) > 1. Set

δ∗ = − log(1 − m2∗)
2 log f (m∗)

+ 1. (54)

Then, we have that, for any δ ≥ δ∗,

Fδ(m∗) ≥ Fδ∗(m∗) = 1 > 0. (55)

Hence, by definition (34), we conclude that δ� < δ∗, which implies that δ� is finite.
Note that this upper bound on δ� applies to any p(y | G) which is not constant in G
on a set of positive measure. As a result, there is a strictly positive gap between δ� and
δu.1

1 This gap is not due to the looseness of our lower bound. Indeed, by using the result of [6], one can show
that the actual information-theoretic threshold is finite.
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4 Proof of Theorems 1 and 3: Information-Theoretic Lower Bound

4.1 Complex Case

The crucial point of the proof consists in the computation of the conditional entropy
H(Y | A), which is contained in Lemma 1. Then, we use this result to compute
the mutual information for the considered model. Finally, we provide the proof of
Theorem 1.

Lemma 1 (Conditional entropy) Let x ∼ Unif(
√

dSd−1
C

), A = (a1, . . . , an) with
{ai }1≤i≤n ∼i .i .d. CN(0d , Id/d), and y = (y1, . . . , yn) with yi ∼ p(· | |gi |) and
gi = 〈x, ai 〉. Let n/d → δ and define δ� as in (13). Then, for any δ < δ�, we have
that

lim
n→∞

1

n
H(Y | A) = H(Y1). (56)

Proof We divide the proof into two steps. The first step consists in showing that

− 1

n

⎛
⎝
∫
R

d

EA
{
(p( y | A))2

}
EA {p( y | A)} d y − 1

⎞
⎠ ≤ 1

n
H(Y | A) − H(Y1) ≤ 0, (57)

which holds for all n ∈ N and for all δ > 0. The proof of (57) does not require any
assumption on the distribution of x and on the distribution of {ai }1≤i≤n (as long as
the vectors {ai }1≤i≤n are independent).

The second step consists in showing that

lim
n→+∞

1

n

⎛
⎝
∫
R

d

EA
{
(p( y | A))2

}
EA {p( y | A)} d y − 1

⎞
⎠ = 0. (58)

It is clear that (57) and (58) imply the thesis.

First step. By definition of conditional entropy, we have that

1

n
H(Y | A) = 1

n

∫
EA {−p( y | A) log p( y | A)} d y. (59)

By using the definition of yi and the fact that they are independent, we can rewrite
EA {p( y | A)} as follows

EA {p( y | A)} = EA,X {p( y | A, X)}

= EA,X

{
n∏

i=1

p(yi | |〈X, Ai 〉|)
}

(60)
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=
n∏

i=1

EGi {p(yi | |Gi |)} ,

where we set Gi = 〈X, Ai 〉.
Let us now give an upper bound on the RHS of (59):

1

n

∫
Rd

EA {−p( y | A) log p( y | A)} d y
(a)≤ 1

n

∫
Rd

−EA {p( y | A)} logEA {p( y | A)} d y

(b)= 1

n

∫
Rd

−
n∏

i=1

EGi {p(yi | |Gi |)}
n∑

j=1

logEG j

{
p(y j | G j )

}
d y

= 1

n

n∑
i=1

∫
R

−EGi {p(yi | |Gi |)} logEGi {p(yi | |Gi |)} dyi

= H(Y1),

where in (a) we apply Jensen’s inequality as the function g(x) = −x log x is concave,
and in (b) we use (60). This immediately implies that

1

n
H(Y | A) − H(Y1) ≤ 0. (61)

Note that the upper bound (61) is based on the inequality

EA {−p( y | A) log p( y | A)} − (−EA {p( y | A)} logEA {p( y | A)}) ≤ 0.

Let us now find a lower bound to this quantity:

EA {−p( y | A) log p( y | A)} − (−EA {p( y | A)} logEA {p( y | A)})
= EA

{
−p( y | A) log

p( y | A)

EA {p( y | A)}
}

(a)= EA {p( y | A)}EZ {−Z log Z}
(b)= EA {p( y | A)}EZ {−Z log Z + Z − 1}
(c)≥ −EA {p( y | A)}EZ

{
(Z − 1)2

}
(d)= −EA {p( y | A)}

(
EZ

{
Z2
}

− 1
)

= −
(
EA
{
(p( y | A))2

}
EA {p( y | A)} − EA {p( y | A)}

)
,

(62)
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where in (a) we set Z = p( y | A)/EA {p( y | A)}, in (b) we use that EZ {Z} = 1, in
(c) we use that −z log z + z − 1 ≥ −(z − 1)2 for any z ≥ 0, and in (d) we use again
that EZ {Z} = 1. Therefore,

1

n
H(Y | A) − H(Y1) = 1

n

∫
(EA {−p( y | A) log p( y | A)}

− (−EA {p( y | A)} logEA {p( y | A)})) d y
(a)≥ −1

n

∫
R

d

(
EA
{
(p( y | A))2

}
EA {p( y | A)} − EA {p( y | A)}

)
d y,

(b)= −1

n

⎛
⎝
∫
R

d

EA
{
(p( y | A))2

}
EA {p( y | A)} d y − 1

⎞
⎠ ,

where in (a) we use (62) and in (b) we use that the integral of p( y | A) is 1. This
concludes the proof of (57).

Second step. As X ∼ Unif(
√

dSd−1
C

) and Ai ∼ CN(0d , Id/d), we have that

{Gi }1≤i≤n ∼i .i .d. CN (0, 1) .

Let us rewrite the quantity EA
{
(p( y | A))2

}
as follows:

EA

{
(p( y | A))2

}
= EA

⎧⎨
⎩
(
EX

{
n∏

i=1

p(yi | |〈X, Ai 〉|)
})2

⎫⎬
⎭

(a)= EA

{
EX1,X2

{
n∏

i=1

p(yi | |〈X1, Ai 〉|) · p(yi | |〈X2, Ai 〉|)
}}

(63)

(b)= EC

{
n∏

i=1

EGi,1,Gi,2

{
p(yi | |Gi,1|) · p(yi | |Gi,2|)

}}
,

where in (a) X1 and X2 are independent and in (b) we set Gi,1 = 〈X1, Ai 〉, Gi,2 =
〈X2, Ai 〉, and

C = 〈X1, X2〉
‖X1‖2 ‖X2‖2 .

Then, given C = c, as X1, X2 ∼i .i .d. Unif(
√

dSd−1
C

) and Ai ∼ CN(0d , Id/d), we
have that

{(Gi,1, Gi,2)}1≤i≤n ∼i .i .d. CN
(
02,
[
1 c
c∗ 1

])
.
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Hence,

1

n

∫
R

d

EA
{
(p( y | A))2

}
EA {p( y | A)} d y

(a)= 1

n

∫
R

d
EC

{
n∏

i=1

EGi,1,Gi,2

{
p(y | |Gi,1|)p(y | |Gi,2|)

}
EGi {p(y | |Gi |)}

}
d y

= 1

n
EC

{
n∏

i=1

∫
R

EGi,1,Gi,2

{
p(y | |Gi,1|)p(y | |Gi,2|)

}
EGi {p(y | |Gi |)} dyi

}

(b)= 1

n
EM

{
( f (M))n}

(c)= d − 1

n

∫ 1

0
( f (m))n(1 − m)d−2 dm,

where in (a) we use (60) and (63); in (b) we use the fact that f depends only on
m = |c|2, which is clear from the explicit expression provided by Lemma 6 contained
in Appendix A; and in (c) we use that M ∼ Beta(1, d − 1) by Lemma 9 contained in
Appendix C.

Set d ′ = d − 2 and δ′
n = n/d ′. Thus,

∫ 1

0
( f (m))n(1 − m)d−2 dm =

∫ 1

0
exp

(
n · Fδ′

n
(m)
)
dm, (64)

where Fδ′
n
(m) is given by (12). Define

F̃δ(m) = δmax(log f (m), 0) + log(1 − m). (65)

As δ < δ� and n/d ′ → δ, there exists δ∗ ∈ (δ, δ�) such that δ′
n < δ∗ for n sufficiently

large. As Fδ′
n
(m) ≤ F̃δ′

n
(m) and F̃δ(m) is non-decreasing in δ, we have that

∫ 1

0
exp

(
n · Fδ′

n
(m)
)
dm ≤

∫ 1

0
exp

(
n · F̃δ∗(m)

)
dm. (66)

Note that F̃δ∗(m) < 0 if and only if Fδ∗(m) < 0. Thus, by definition of δ�, we have
that F̃δ∗(m) < 0 for m ∈ (0, 1] when n is sufficiently large. Furthermore, F̃δ∗(0) = 0
and F̃δ∗ is a continuous function. As a result, by Lemma 11, the integral in (66) tends
to 0 as n → ∞ and the claim immediately follows. ��
Remark 4 (Mutual information) An immediate consequence of Lemma 1 is that one
can compute the mutual information I (X;Y , A) for any δ < δ�:

lim
n→+∞

1

n
I (X;Y , A) = H (EG {p(· | |G|)}) − EG {H(p(· | |G|))} , (67)

where G ∼ CN(0, 1).

Proof (Proof of Theorem 1) Define y1:n = (y1, . . . , yn) and a1:n = (a1, . . . , an). We
divide the proof into two steps. The first step consists in showing that the mutual
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information between the next observation yn+1 and the previous observations y1:n
tends to 0. More formally, we will prove that

I (Yn+1;Y1:n, A1:n | An+1) = on(1). (68)

The second step consists in showing that the estimate obtained on φ(|〈x, an+1〉|)
given the observations y1:n is similar to the estimate on φ(|〈x, an+1〉|)when no obser-
vation is available. This means that the observations y1:n do not provide any help.
More formally, we will prove that

EY1:n ,A1:n+1

{(
E
{
φ(|〈X, An+1〉|)

}− E
{
φ(|〈X, An+1〉|)

∣∣Y1:n, A1:n
})2} = on(1),

(69)

where φ is defined in (14).
Furthermore, we have that

E

{(
φ(|〈X, An+1〉|) − E

{
φ(|〈X, An+1〉|)

∣∣Y1:n, A1:n
})2}

−
(
E
{
φ(|〈X, An+1〉|)

}− E
{
φ(|〈X, An+1〉|)

∣∣Y1:n, A1:n
})2

= E

{(
φ(|〈X, An+1〉|) − E

{
φ(|〈X, An+1〉|)

})2}

= Var
{
φ(|〈X, An+1〉|)

}
.

(70)

By applying (69) and (70), the proof of Theorem 1 follows.
First step.By using the chain rule of entropy and that yi is independent from ai+1:n+1,
we obtain that

1

n + 1
H(Y1:n+1 | A1:n+1) = 1

n + 1

n+1∑
i=1

H(Yi | Y1:i−1, A1:n+1)

= 1

n + 1

n+1∑
i=1

H(Yi | Y1:i−1, A1:i ).

The sequence sn = H(Yn | Y1:n−1, A1:n) is decreasing, as conditioning reduces
entropy. Hence, sn has a limit, and this limit must be equal to H(Y1) by Lemma 1.
Since the Yi are i.i.d., we obtain that

H(Yn+1 | Y1:n, A1:n+1) = H(Yn+1) + on(1).

By using again that conditioning reduces entropy, we also obtain that

H(Yn+1 | An+1) = H(Yn+1) + on(1).
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By putting these last two equations together, we deduce that (68) holds.
Second step. Given two probability distributions p and q, let DKL(p||q) and
‖p − q‖TV denote their Kullback–Leibler divergence and their total variation dis-
tance, respectively. Then,

I (Yn+1;Y1:n, A1:n | An+1)

= EY1:n ,A1:n+1 {DKL(p(yn+1 | Y1:n, A1:n+1)||p(yn+1 | An+1))}
(a)≥ 1

2
· EY1:n ,A1:n+1

{(‖p(yn+1 | Y1:n, A1:n+1) − p(yn+1 | An+1))‖TV
)2}

(b)≥ 1

2K 2 · EY1:n ,A1:n+1

{(∫
R

p(yn+1 | Y1:n, A1:n+1)ϕ(yn+1) dyn+1

−
∫
R

p(yn+1 | An+1)ϕ(yn+1) dyn+1

)2}

(c)= 1

2K 2 · EY1:n ,A1:n+1

{(∫
Cd

p(x | Y1:n, A1:n)

∫
R

p(yn+1 | x,Y1:n, A1:n+1)ϕ(yn+1) dyn+1 dx

−
∫
Cd

p(x)

∫
R

p(yn+1 | x, An+1)ϕ(yn+1) dyn+1 dx
)2}

(d)= 1

2K 2 · EY1:n ,A1:n+1

{
(E {φ(|〈X, An+1〉|)} − E {φ(|〈X, An+1〉|) | Y1:n, A1:n})2

}
,

(71)

where in (a) we use Pinsker’s inequality; in (b) we use that ϕ is bounded and we
set ‖ϕ‖∞ = K ; in (c) we use that X and An+1 are independent; and in (d) we use
definition (14). By combining (68) and (71), (69) immediately follows. ��

4.2 Real Case

The proof is very similar to the one provided in Sect. 4.1 for the complex case. In
particular, the crucial point consists in showing that

lim
n→∞

1

n
H(Y | A) = H(Y1), (72)

where x ∼ Unif(
√

dSd−1
R

), a = (a1, . . . , an)with {ai }1≤i≤n ∼i .i .d. N(0d , Id/d), and
y = (y1, . . . , yn) with yi ∼ p(· | gi ) and gi = 〈x, ai 〉. Then, the proof of Theorem 3
follows similar passages as the proof of Theorem 1.

In order to prove (72), we show that (57) and (58) hold. The proof of (57) follows
the same passages as the first step of the proof of Lemma 1; hence, it is omitted. The
proof of (58) is slightly different, and we detail what changes in the remaining part of
this section.

Similarly to (60), we have that

EA {p( y | A)} =
n∏

i=1

EGi {p(yi | Gi )} ,
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where Gi = 〈X, Ai 〉 ∼ N(0, 1). Furthermore, similarly to (63), we also have that

EA

{
(p( y | A))2

}
= EM

{
n∏

i=1

EGi,1,Gi,2

{
p(yi | Gi,1) · p(yi | Gi,2)

}}
,

where Gi,1 = 〈X1, Ai 〉, Gi,2 = 〈X2, Ai 〉, and we define

M = 〈X1, X2〉
‖X1‖2 ‖X2‖2 .

Then, given M = m, as X1, X2 ∼i .i .d. Unif(
√

dSd−1
R

) and Ai ∼ N(0d , Id/d), we
have that

{(Gi,1, Gi,2)}1≤i≤n ∼i .i .d. N
(
02,
[
1 m
m 1

])
.

Hence,

1

n

∫
R

d

EA
{
(p( y | A))2

}
EA {p( y | A)} d y

(a)= 1

n
EM

{
( f (M))n}

(b)= 1

n

Γ ( d
2 )√

πΓ ( d−1
2 )

∫ 1

−1
( f (m))n(1 − m2)

d−3
2 dm,

(73)

where in (a) we use definition (33) of f and in (b) we plug in the distribution of M
obtained from Lemma 10 contained in Appendix C. Note that

lim
d→∞

Γ ( d
2 )

d
2 · Γ ( d−1

2 )
= 1.

Therefore, by showing that the integral in the RHS of (73) tends to 0, the claim
immediately follows.

Set d ′ = d − 3 and δ′
n = n/d ′. Thus,

∫ 1

−1
( f (m))n(1 − m2)

d−3
2 dm =

∫ 1

−1
exp

(
n · Fδ′

n
(m)
)
dm, (74)

where Fδ′
n
(m) is defined in (33). Define

F̃δ(m) = δmax(log f (m), 0) + 1

2
log(1 − m2). (75)
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As δ < δ� and n/d ′ → δ, there exists δ∗ ∈ (δ, δ�) such that δ′
n < δ∗ for n sufficiently

large. As Fδ′
n
(m) ≤ F̃δ′

n
(m) and F̃δ(m) is non-decreasing in δ, we have that

∫ 1

0
exp

(
n · Fδ′

n
(m)
)
dm ≤

∫ 1

0
exp

(
n · F̃δ∗(m)

)
dm. (76)

Note that F̃δ∗(m) < 0 if and only if Fδ∗(m) < 0. Thus, by definition of δ�, we have
that F̃δ∗(m) < 0 for m �= 0 when n is sufficiently large. Furthermore, F̃δ∗(0) = 0 and
F̃δ∗ is a continuous function. As a result, by Lemma 11, the integral in (76) tends to 0
as n → ∞ and the claim immediately follows.

5 Proof of Theorems 2 and 4: Spectral Upper Bound

We will consider the complex case. The proof for the real case is essentially the same,
and it is briefly discussed in Remark 7 at the end of this section.

A crucial ingredient of the proof consists in Lemma 2, which is a generalization
of Theorem 1 of [49]. Before stating this result, we need some definitions. Let G ∼
CN(0, 1), Y ∼ p(· | |G|), and Z = T (Y ). Assume that Z has bounded support and
let τ be the supremum of this support, i.e.,

τ = inf{z : P(Z ≤ z) = 1}. (77)

For λ ∈ (τ,∞) and δ ∈ (0,∞), define

φ(λ) = λ · E
{

Z · |G|2
λ − Z

}
, (78)

and

ψδ(λ) = λ

(
1

δ
+ E

{
Z

λ − Z

})
. (79)

Note that φ(λ) is a monotone non-increasing function and that ψδ(λ) is a convex
function. Let λ̄δ be the point at which ψδ attains its minimum, i.e.,

λ̄δ = argmin
λ≥τ

ψδ(λ). (80)

For λ ∈ (τ,∞), define also

ζδ(λ) = ψδ(max(λ, λ̄δ)). (81)

Lemma 2 (GeneralizationofTheorem1of [49])Let x ∼ Unif(Sd−1
C

), {ai }1≤i≤n ∼i .i .d.

CN(0d , Id), and y be distributed according to (8). Let n/d → δ, G ∼ CN(0, 1) and
define Z = T (Y ) for Y ∼ p( · | |G|). Assume that Z satisfies P(Z = 0) < 1 and that
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it has bounded support. Let τ be defined in (77). Assume further that, as λ approaches
τ from the right, we have

lim
λ→τ+ E

{
Z

(λ − Z)2

}
= lim

λ→τ+ E

{
Z · |G|2
λ − Z

}
= ∞. (82)

Let x̂ be the principal eigenvector of the matrix Dn, defined as in (21). Then, the
following results hold:

(1) The equation

ζδ(λ) = φ(λ) (83)

admits a unique solution, call it λ∗
δ , for λ > τ .

(2) As n → ∞,

|〈x̂, x〉|2∥∥x̂∥∥22 ‖x‖22
a.s.−→

⎧⎨
⎩
0, if ψ ′

δ(λ
∗
δ ) ≤ 0,

ψ ′
δ(λ

∗
δ )

ψ ′
δ(λ

∗
δ ) − φ′(λ∗

δ )
, if ψ ′

δ(λ
∗
δ ) > 0,

(84)

where ψ ′
δ and φ′ denote the derivatives of these two functions.

(3) Let λ
Dn
1 ≥ λ

Dn
2 denote the two largest eigenvalues of Dn. Then, as n → ∞,

λ
Dn
1

a.s.−→ ζδ(λ
∗
δ ),

λ
Dn
2

a.s.−→ ζδ(λ̄δ).
(85)

Before proceeding with the proof, we discuss these results in more detail and we
describe in what sense Lemma 2 provides a generalization of Theorem 1 of [49].

Remark 5 (Two different regimes) The results of Lemma 2 imply that, according to
the value of δ, we can distinguish between two possible regimes.

On the one hand, suppose that φ(λ̄δ) > ψδ(λ̄δ). Recall that φ(λ) is non-increasing
and that λ̄δ is the point in which ψδ(λ) attains its minimum. Thus, λ̄δ < λ∗

δ , which
implies that ψ ′

δ(λ
∗
δ ) > 0 and that ζδ(λ

∗
δ ) > ζδ(λ̄δ). This means that the scalar product

|〈x̂, x〉| is bounded away from zero and that there is a strictly positive gap between
the two largest eigenvalues of Dn . In this regime, the spectral method that outputs x̂
solves the weak recovery problem and (24) holds for some ε > 0.

On the other hand, suppose that φ(λ̄δ) ≤ ψδ(λ̄δ). Thus, λ̄δ ≥ λ∗
δ , which implies

thatψ ′
δ(λ

∗
δ ) ≤ 0 and that ζδ(λ

∗
δ ) = ζδ(λ̄δ). In words, this means that the scalar product

|〈x̂, x〉| converges to zero and that there is no strictly positive gap between the two
largest eigenvalues of Dn . In this regime, the spectral method that outputs x̂ does not
solve the weak recovery problem.

Remark 6 (Lemma 2 and Theorem 1 of [49]) Lemma 2 generalizes Theorem 1 of [49]
in the following two regards:
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– x and {ai }1≤i≤n are complex vectors, while Theorem 1 of [49] considers the real
case;

– Z can also be negative, while Theorem 1 of [49] assumes that Z ≥ 0.

The first generalization does not require additional work as the whole argument
of [49] generalizes in the natural way to the complex case: Gaussian random variables
become circularly symmetric complex Gaussian random variables, transposes of vec-
tors andmatrices become conjugate transposes, squares becomemodulus squares, and
so on.

On the contrary, the second generalization is more challenging, as it requires the
result of Lemma 3, which is stated below and proved in Appendix D.

As a final observation, let us point out that Theorem 1 of [49] assumes also that
E
{

Z · |G|2} > E {Z}. A careful check shows that this hypothesis is never used in the
proof of that theorem, but it is required only in the proof of some additional results
of [49].

Lemma 3 (Generalization of [3] to non-PSD matrices) Consider the random matrix

Sn = 1

n
UMnU∗, (86)

where the entries of U ∈ C
(d−1)×n are ∼i .i .d. CN(0, 1), and Mn ∈ C

n×n is indepen-
dent of U . Let λ

Mn
1 denote the largest eigenvalue of Mn. Assume that the empirical

spectral measure of the eigenvalues of Mn almost surely converges weakly to the
probability distribution H, where H is the law of the random variable Z. Let ΓH be
the support of H and let τ be the supremum of ΓH . Assume also that, as n → ∞,

λ
Mn
1

a.s.−→ α∗ /∈ ΓH . (87)

Let n/d → δ, denote by λ
Sn
1 the largest eigenvalue of the matrix (86), and define ψδ

as in (79). Then, as n → ∞,

λ
Sn
1

a.s.−→ ψδ(α∗), if ψ ′
δ(α∗) > 0,

λ
Sn
1

a.s.−→ min
λ>τ

ψδ(λ), if ψ ′
δ(α∗) ≤ 0.

(88)

Proof (Proof of Lemma 2) In this proof, we follow closely the approach detailed in
Section III of [49]. First of all, let us write the matrix Dn defined in (21) as

Dn = 1

n
AZA∗, (89)

where A = [a1, . . . , an], Z is a diagonal matrix with entries zi = T (yi ) for i ∈ [n],
the random variables yi are independent and distributed according to p(· | |gi |),
and {gi }1≤i≤n ∼i .i .d. CN(0, 1). As the sensing vectors {ai }1≤i≤n are drawn from the
circularly symmetric complex normal distribution, we can assume without loss of
generality that x = e1, where e1 is the first element of the canonical basis of Cd .
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Consider a matrixU ∈ C
(d−1)×n independent of {gi }1≤i≤n and Z. Let the elements

of U be ∼i .i .d. CN(0, 1). Define

Pn = 1

n
UZU∗, (90)

and

qn = 1

n
Uv, (91)

where v = [z1g1, . . . , zngn]∗. Then, (89) can be rewritten as

Dn =
[

an q∗
n

qn Pn

]
, (92)

where an =∑n
i=1 zi |gi |2/n is a scalar that converges almost surely to E(Z · |G|2) as

n → ∞, with G ∼ CN(0, 1).
Next, consider a parametric family of matrices {Pn +μqnq

∗
n} and let Ln(μ) denote

their largest eigenvalues, i.e.,

Ln(μ) = λ1(Pn + μqnq
∗
n).

The idea is to compute the largest eigenvalue of Dn , call it λ
Dn
1 , and the scalar product

between X̂ and e1 via a fixed-point equation involving Ln(μ).
To do so, we first need an intermediate result holding for any matrix D that can be

written in the form

D =
[

a q∗
q P

]
,

where a ∈ R, P ∈ C
(d−1)×(d−1) is a Hermitian matrix and q ∈ C

d−1 is such that
‖q‖ �= 0. Note that the matrix Dn defined in (21) fulfills such requirements, since the
matrix Pn defined in (90) is Hermitian and qn defined in (91) is such that

∥∥qn

∥∥ �= 0
with high probability, as P(Z = 0) < 1.

Let λP
1 ≥ λP

2 ≥ · · · ≥ λP
d−1 be the set of eigenvalues of P , and let

w1,w2, . . . ,wd−1 be a corresponding set of eigenvectors. For λ ∈ (max{λP
i :

〈q,wi 〉 �= 0},∞), define

R(λ) = q∗(P − λI)−1q =
d−1∑
i=1

|〈q,wi 〉|2
λP

i − λ
. (93)

Note that R(λ) increases monotonically from −∞ to 0. Hence, it admits an inverse,
call it R−1(x), for x < 0. Then, the maximum eigenvalue L(μ) = λ1(P + μqq∗) is
given by
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L(μ) = max(R−1(−1/μ), λP
1 ). (94)

The proof of (94) is standard, cf., e.g., Lemma 1 in [49]. Note that L(μ) is a non-
decreasing function such that

lim
μ→∞ L(μ) = ∞.

Indeed, by construction, R−1(−1/μ) is strictly increasing and

lim
μ→∞ R−1(−1/μ) = ∞.

Furthermore, L(μ) is convex since it is the maximum of a set of linear functions, as

L(μ) = λ1(P + μqq∗) = max
x:‖x‖=1

x∗(P + μqq∗)x.

Let μ∗ > 0 be the solution to the fixed-point equation

μ = (L(μ) − a)−1. (95)

This solution is unique, since L(μ) is a non-decreasing functionwith limμ→∞ L(μ) =
∞. Then,

λD
1 = L(μ∗), (96)

and

|〈x̂, e1〉|2 ∈
[

∂−L(μ∗)
∂−L(μ∗) + (1/μ∗)2

,
∂+L(μ∗)

∂+L(μ∗) + (1/μ∗)2

]
, (97)

where ∂−L(μ∗) and ∂+L(μ∗) denote the left and right derivative of L(μ), respectively.
In particular, if L(μ) is differentiable at μ∗, then

|〈x̂, e1〉|2 = L ′(μ∗)
L ′(μ∗) + (1/μ∗)2

. (98)

The proof of (96), (97), and (98) uses the characterization (94), and it is analogous to
the proof of Proposition 2 in [49].

At this point, we need to compute Ln(μ) for the matrix Dn defined in (92). The
eigenvalues of a low-rankperturbation of a randommatrix are studied in [12].However,
we cannot apply those results, as Pn and qn are dependent. Hence, we write

Pn + μqnq
∗
n = 1

n
UMnU∗,
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where Mn is independent of U with

Mn = Z + μ

n
vv∗.

We start by studying the spectrum of Mn . Let λ
Mn
1 ≥ λ

Mn
2 ≥ · · · ≥ λ

Mn
n be the set of

eigenvalues of Mn and let

f Mn = 1

n − 1

n∑
i=2

δ
λ
Mn
i

be the empirical spectral measure of the last n − 1 eigenvalues.
Then, standard interlacing theorems (see [39, Section 4.3]) yield that f Mn almost

surely converges weakly to the probability law of Z . Furthermore, by using the char-
acterization (94), we can show that

λ
Mn
1

a.s.−→ λμ = Q−1(1/μ), (99)

where Q−1 is the inverse of the function

Q(λ) = E

{
Z2 · |G|2
λ − Z

}
.

The proof of these results is the same as the proof of Proposition 3 in [49].
Note that Q(λ) is defined for λ ∈ (τ,∞), it is continuous and strictly decreasing

with Q(∞) = 0. Furthermore, by hypothesis (82), we have that limλ→τ+ Q(λ) = ∞.
Thus, Q(λ) admits an inverse and Q−1(1/μ) is well defined for all μ > 0.

Let us now consider the matrix 1
nUMnU∗. First, if Z ≥ 0, then Mn is positive

semi-definite (PSD) and we can apply results from [3] to compute the limit of Ln(μ).
If Mn is not necessarily PSD, we use Lemma 3 with α∗ = λμ to conclude that

Ln(μ)
a.s.−→ ψδ(λμ), if ψ ′

δ(λμ) > 0,

Ln(μ)
a.s.−→ min

λ>τ
ψδ(λ), if ψ ′

δ(λμ) ≤ 0.
(100)

The remaining part of the proof follows the argument of Section III-D in [49]. For
the sake of readability, we reproduce it below.

We start by proving the first claim of the lemma. For n ≥ 1, let μn be the unique
solution to the fixed-point equation (95). Then,

Ln(μn) − 1/μn = an .

Now, fix any μ > 0. Then, by using definition (81) and the fact that λμ = Q−1(1/μ),
(100) immediately implies that, as n → ∞,

Ln(μ) − 1/μ
a.s.−→ ζδ(Q−1(1/μ)) − 1/μ. (101)
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Note that, as n → ∞, an
a.s.−→ E(Z · |G|2). Furthermore, as Ln(μ) and ζδ(μ) are

non-decreasing, the two functions on both sides of (101) are strictly increasing. Con-
sequently, by Lemma 3 in Appendix E of [49], we conclude that

μn
a.s.−→ μ∗, (102)

where μ∗ is the unique fixed point such that

ζδ(Q−1(1/μ∗)) = E(Z · |G|2) + 1/μ∗. (103)

Define

λ∗ = Q−1(1/μ∗). (104)

Then, (103) can be rewritten as

ζδ(λ
∗) = E(Z · |G|2) + Q(λ∗) = φ(λ∗), (105)

where φ is defined in (78). By construction, ζδ(λ) is a non-decreasing continuous
function on (τ,∞) and φ(λ) is a strictly decreasing continuous function. Furthermore,
by hypothesis (82), we have that limλ→τ+ φ(λ) = ∞. Hence, the existence and the
uniqueness of λ∗ satisfying (105) are guaranteed. This suffices to prove the first claim
of the lemma.

Let us now move on to the proof of the second claim of the lemma. Suppose that
ζδ(Q−1(1/μ)) is differentiable at μ = μ∗. Then, as Ln(μ) is convex for any n ≥ 1,
by Lemma 4 in Appendix E of [49], we have that

∂−Ln(μn)
a.s.−→ dζδ(Q−1(1/μ))

dμ

∣∣∣∣
μ=μ∗

= −ζ ′
δ(Q−1(1/μ∗))

Q′(Q−1(1/μ∗)) · (μ∗)2
.

Similarly,

∂+Ln(μn)
a.s.−→ −ζ ′

δ(Q−1(1/μ∗))
Q′(Q−1(1/μ∗)) · (μ∗)2

.

By using (97), we obtain that

|〈x̂, e1〉|2 a.s.−→ ζ ′
δ(Q−1(1/μ∗))

ζ ′
δ(Q−1(1/μ∗)) − Q′(Q−1(1/μ∗))

= ζ ′
δ(λ

∗)
ζ ′
δ(λ

∗) − φ′(λ∗)
,

where the equality follows from definition (104) of λ∗ and from the fact that Q′(λ) =
φ′(λ). In order to prove the second claim of the lemma, it suffices to note that, by its
definition in (81), ζ ′

δ(λ) = ψ ′
δ(λ) if ψ ′

δ(λ) > 0, and ζ ′
δ(λ) = 0 if ψ ′

δ(λ) < 0.
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Finally, let us prove the third claim of the lemma. By using (96), we immediately
obtain that λ

Dn
1 = Ln(μn). By applying (102) and Lemma 3 in Appendix E of [49],

we conclude that

λ
Dn
1

a.s.−→ ζδ(λ
∗).

As Pn is obtained by deleting the first row and column of Dn , by applying Cauchy
interlacing theorem (see, e.g., [39, Theorem 4.3.17]), we also have that

λ
Pn
2 ≤ λ

Dn
2 ≤ λ

Pn
1 .

Furthermore, the upper edge of the support of the limiting spectral distribution of Pn

is given by [67, Section 4] and [3, Lemma 3.1]

min
λ>τ

ψδ(λ) = ζδ(λ̄δ),

where λ̄δ is defined in (80). Therefore,

λ
Dn
2

a.s.−→ ζδ(λ̄δ),

which concludes the proof. ��
At this point, we are ready to prove our spectral upper bound.

Proof (Proof of Theorem 2) Note that the normalization of x and {ai }1≤i≤n required
in Lemma 2 is different from the normalization required in Theorem 2. However, the
scalar product 〈x, ai 〉 is the same and the data matrix Dn changes by a factor d. Hence,
the principal eigenvector x̂ is not affected by this change in the normalization.

Let G ∼ CN(0, 1), Y ∼ p(· | |G|) and Z = T (Y ), where p is defined in (8)
and T is some pre-processing function that we will choose later on. We will assume
that the supremum τ of the support of Z is strictly positive and that conditions (82)
are satisfied, and will verify later that our choice of the function T satisfies these
requirements. Recall that the function ψδ(λ) defined in (79) is convex and that it
attains its minimum at the point λ̄δ . Since by condition (82) ψδ(λ) ↑ ∞ as λ ↓ 0,
we have λ̄δ ∈ (τ,∞). Hence, ψ ′

δ(λ̄δ) = 0. By calculating the derivative of ψδ(λ) and
setting it to 0, we have

E

{
Z2

(λ̄δ − Z)2

}
= 1

δ
. (106)

Furthermore, as pointed out in Remark 5, (24) holds for some ε > 0 if and only if

φ(λ̄δ) > ψδ(λ̄δ). (107)

As τ > 0, we also have that λ̄δ > 0. Consider now the matrix D′
n = Dn/α for

someα > 0. Then, the principal eigenvector of D′
n is equal to the principal eigenvector
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of Dn . Hence, we can assume without loss of generality that λ̄δ = 1. Consequently,
conditions (106) and (107) can be, respectively, rewritten as

E

{
Z2

(1 − Z)2

}
= 1

δ
, (108)

E

{
Z(|G|2 − 1)

1 − Z

}
>

1

δ
. (109)

Furthermore, as Z = T (Y ), we also obtain that

E

{
Z2

(1 − Z)2

}
=
∫
R

( T (y)

1 − T (y)

)2

EG {p(y | |G|)} dy,

E

{
Z(|G|2 − 1)

1 − Z

}
=
∫
R

T (y)

1 − T (y)
EG

{
p(y | |G|) · (|G|2 − 1)

}
dy.

(110)

Let T ∗(y) be defined in (23). Note that, if we substitute T (y) = T ∗(y) into the RHS
of (110), then

E

{
Z2

(1 − Z)2

}
= E

{
Z(|G|2 − 1)

1 − Z

}
= 1

δu
,

where δu is defined in (20). Let T ∗
δ (y) be defined in (22). Then,

T ∗
δ (y)

1 − T ∗
δ (y)

=
√

δu

δ

T ∗(y)

1 − T ∗(y)
,

which immediately implies that

E

{
(T ∗

δ (Y ))2

(1 − T ∗
δ (Y ))2

}
= 1

δ
, (111)

E

{
T ∗

δ (Y )(|G|2 − 1)

1 − T ∗
δ (Y )

}
= 1√

δ·δu > 1
δ
. (112)

As a result,we need to show that the functionT ∗
δ (y) fulfills the following requirements:

(1) T ∗
δ (y) is bounded;

(2) P(T ∗
δ (Y ) = 0) < 1;

(3) the supremum τ of the support of T ∗
δ (Y ) is strictly positive;

(4) condition (82) holds.

Note that T ∗
δ (y) is bounded, as T ∗(y) ≤ 1. Furthermore, if

EG {p(y | |G|)} = EG

{
p(y | |G|)|G|2

}
, (113)
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identically, then δu = ∞ and the claim of Theorem 2 trivially holds. Hence, we can
assume that (113) does not hold, which implies that the function T ∗ is not equal to
the constant value 0. Consequently, P(T ∗

δ (Y ) = 0) < 1.
By definition (23) of T ∗, we have that

EY

{
1

1 − T ∗(Y )

}
=
∫
R

EG

{
p(y | |G|) · |G|2

}
dy = EG

{
|G|2

}
= 1. (114)

Hence, P(T ∗(Y ) > 0) > 0, which implies that P(T ∗
δ (Y ) > 0) > 0. Consequently,

the supremum τ of the support of T ∗
δ (Y ) is strictly positive.

If P(T ∗
δ (Y ) = τ) > 0, then condition (82) is satisfied. Suppose now that

P(T ∗
δ (Y ) = τ) = 0. Then, for any ε1 > 0, there exists Δ1(ε1) such that

0 < P
(
T ∗

δ (Y ) ∈ (τ − Δ1(ε1), τ )
) ≤ ε1. (115)

Define

T ∗
δ (y, ε1) =

⎧⎨
⎩
T ∗

δ (y), if T ∗
δ (y) ≤ τ − Δ1(ε1),

τ − Δ1(ε1), otherwise.
(116)

Clearly, the random variable T ∗
δ (Y , ε1) has a point mass; hence, condition (82) is

satisfied.
As a final step, we show that we can take ε1 = 0. Define

Dn(ε1) = 1

n

n∑
i=1

T ∗
δ (yi , ε1)ai a∗

i .

Define also

Dn = 1

n

n∑
i=1

T ∗
δ (yi )ai a∗

i .

Let x̂(ε1) and x̂ be the principal eigenvectors of Dn(ε1) and of Dn , respectively. Then,

‖Dn(ε1) − Dn‖op ≤ C1 · Δ1(ε1), (117)

where the constant C1 depends only on n/d. By Lemma 2, there is a strictly positive
gap, call it θ , between the first and the second eigenvalue of Dn(ε1). Consequently,
by the Davis–Kahan theorem [23], we conclude that

∥∥x̂(ε1) − x̂
∥∥
2 ≤ C2 · Δ1(ε1), (118)

where the constant C2 depends only on n/d and on θ . In words, for any n, as ε1 tends
to 0, the principal eigenvector of Dn(ε1) tends to the principal eigenvector of Dn . This
means that we can set T = T ∗

δ and have that, almost surely, (24) holds.
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In order to conclude the proof, it remains to show that δu is the optimal threshold
for the spectral method, namely for any δ < δu, there is no pre-processing function T
such that (24) holds almost surely. To do so, note that (24) holds almost surely if and
only if (108) and (109) are satisfied. By setting u(y) = T (y)/(1 − T (y)) and using
(110), we have that these conditions can be rewritten as

∫
R

(u(y))2EG {p(y | |G|)} dy = 1

δ
, (119)

E

{
Z(|G|2 − 1)

1 − Z

}
=
∫
R

u(y)
√
EG {p(y | |G|)}EG

{
p(y | |G|) · (|G|2 − 1)

}
√
EG {p(y | |G|)} dy >

1

δ
.

(120)

By Cauchy–Schwarz inequality, we also have that

∫
R

u(y)
√
EG {p(y | |G|)}EG

{
p(y | |G|) · (|G|2 − 1)

}
√
EG {p(y | |G|)} dy

≤
√∫

R

(u(y))2EG {p(y | |G|)} dy

√∫
R

(
EG
{

p(y | |G|) · (|G|2 − 1)
})2

EG {p(y | |G|)} dy.

(121)

By combining (119), (120) and (121) with definition (20) of δu, we conclude that

1√
δu

1√
δ

>
1

δ
, (122)

which implies that δ > δu. Consequently, for δ ≤ δu, no pre-processing function
achieves weak recovery and the proof is complete. ��
Remark 7 (Proof of spectral upper bound for the real case) First, we need to prove
a result analogous to that of Lemma 2, where x ∼ Unif(Sd−1

R
), {ai }1≤i≤n ∼i .i .d.

N(0d , Id), y is distributed according to (29), and G ∼ N(0, 1). To do so, one can
follow the proof of Theorem 1 of [49]. The technical difficulty consists in the fact
that the matrix Mn is not necessarily PSD. In order to solve this issue, we apply the
version of Lemma 3 for the real case discussed in Remark 8 at the end of Appendix
D. At this point, the proof of Theorem 4 follows from the same argument as the proof
of Theorem 2.

6 Comparison with Message Passing Algorithms

6.1 Motivation and Background

Message passing algorithms have proved successful in a broad range of statistical esti-
mation problems, including high-dimensional regression [10], robust regression [32],
low-rank matrix estimation [26,42,45,53], and network structure estimation [24,55,
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56]. A bold conjecture from statistical physics suggests that—for these and other
problems—message passing approaches achieve optimal statistical performances
among polynomial-time algorithms. In view of this conjecture, it is interesting to
compare our spectral approach to message passing algorithms. We will present two
types of results (with δu the spectral threshold defined in (42)):

1. We prove that, for δ < δu (i.e., in the regime in which the spectral approach fails),
message passing converges to an un-informative fixed point, even if initialized in
a state that is correlated with the true signal x.

2. Vice versa, for δ > δu (when the spectral algorithm achieves weak recovery), we
consider a linearized message passing algorithm and prove that the un-informative
fixed point is unstable. The proof of this fact builds on the analysis contained in
the previous pages.

Let us point out that the techniques described in Sect. 5 to compute the spectral
threshold δu are different from those described in this section to analyze message
passing algorithms. Hence, we find very interesting fact that the spectral threshold
is closely related to the performance of message passing. In particular, our findings
suggest the conjecture that δu represents the fundamental limit for all polynomial-time
algorithms.

Note also that message passing often allows to further refine the spectral estimate,
in order to provide an exact recovery of the signal. Hence, combining the analyses of
message passing and of the spectral method to provide a threshold for exact recovery
constitutes an interesting direction for future research (see [54] for an example in
which this program is carried out).

For the sake of simplicity, we will assume that the signal x and the measurement
matrix A are real. Of particular interest for the present setting is approximate mes-
sage passing (AMP) [9,30]: This is a broad class of iterative methods that operates
with dense random matrices (as the sensing matrix A in the present case). In partic-
ular, in [61] it was proposed a “generalized approximate message passing” (GAMP)
scheme, which is an AMP algorithm for Bayesian estimation in nonlinear regression
models. This approach was further developed in the context of phase retrieval in [64].
Wewill follow the sameBayesian formulation here, by considering anAMP algorithm
that is equivalent to GAMP although somewhat simpler.

In order to minimize technical overhead, we assume throughout this section that the
conditional density p(y | g) is bounded and two times differentiable with respect to g.
Denote by ∂g p(y | g) and ∂2g p(y | g) the first and the second derivative of p(y | g),
respectively. Let G ∼ N(0, 1) and define the function

F(x, y; q̄) = EG{∂g p(y | q̄ x + √
q̄G)}

EG{p(y | q̄ x + √
q̄G)} . (123)

We further define the following “state evolution” recursion:

μt+1 = δ · h(qt ),

qt = μt

1 + μt
,

(124)
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where

h(q) =
∫
R

EG0

{(
EG1{∂g p(y | √

qG0 + √
1 − qG1)}

)2
EG1{p(y | √

qG0 + √
1 − qG1)}

}
dy, (125)

with G0, G1 ∼i .i .d. N(0, 1).
Given the sensing matrix A = (a1, . . . , an)T ∈ R

n×d , and the vector of measure-
ments y = (y1, . . . , yn) ∈ R

n , the message passing algorithm updates iteratively the
estimate zt ∈ R

d of the signal x ∈ R
d , with ‖x‖2 = √

d , according to the iteration

zt+1 = AT ft ( ẑ
t ; y) − bt zt ,

ẑt = Azt − ft−1( ẑ
t−1; y). (126)

Here, the function ft ( ẑ; y) = ( ft (ẑ1; y1), . . . , ft (ẑn; yn)) is understood to be applied
component-wise to its arguments and bt is defined as

ft (ẑ; y) = F(ẑ, y; 1 − qt ), (127)

and the “Onsager coefficient” bt is defined as

bt = δ · E{ f ′
t (μt G0 + √

μt G1; Y )} , (128)

where f ′
t (ẑ; y) denotes the derivative of ft (ẑ; y)with respect to ẑ, and the expectation

is with respect to G0, G1 ∼i .i .d. N(0, 1) and Y ∼ p( · |G0). The recursion (126) is
initialized with z0 ∈ R

d and it is understood that f−1(· ; ·) = 0n .
State evolution precisely tracks the asymptotics of AMP. The next statement is a

consequence of [9,41]. We refer to Appendix E for its proof.

Lemma 4 (State evolution for AMP iteration (126)) Let x ∈ R
d denote the unknown

signal such that ‖x‖2 = √
d, A = (a1, . . . , an)T ∈ R

n×d with {ai }1≤i≤n ∼i .i .d.

N(0d , Id/d), and y = (y1, . . . , yn) with yi ∼ p(· | 〈x, ai 〉). Consider the AMP
iterates zt , ẑt defined in (126), where ft (ẑ; y) and bt are given by (127) and (128),
respectively. Assume that the initialization z0 is independent of A and that, almost
surely,

lim
n→∞

1

d
〈x, z0〉 = μ0, lim

n→∞
1

d
‖z0‖2 = μ2

0 + μ0. (129)

Let the state evolution recursion qt , μt be defined as in (124) with initialization μ0.
Then, for any t, and for any function ψ : R

2 → R such that |ψ(u) − ψ(v)| ≤
L(1 + ‖u‖2 + ‖v‖2)‖u − v‖2 for some L ∈ R, we have that, almost surely,

lim
n→∞

1

n

n∑
i=1

ψ(xi , zt
i ) = E

{
ψ(X0, μt X0 + √

μt G)
}
, (130)

where the expectation is taken with respect to X0, G ∼i .i .d. N(0, 1).
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Informally, this lemma states that zt is a noisy version of the signal x, namely
zt ≈ μt x + √

μt g, with g ∼ N(0d , Id), and that this approximation holds for
empirical averages.

6.2 Results

In order to obtain a nonvanishing weak recovery threshold, we assume that the obser-
vation model satisfies the condition

EG{∂g p(y | G)} = 0, (131)

where the expectation iswith respect toG ∼ N(0, 1). Notice that this implies h(0) = 0;
therefore,μt = qt = 0 is a fixed point of state evolution. Furthermore, F(0, y; 1) = 0;
therefore, qt = 0, zt = 0d is a fixed point of the message passing algorithm. We
will refer to this as to the “un-informative fixed point.” Note that condition (131)
holds—among others—for the phase retrieval problem.

Vice versa, if EG{∂g p(y | G)} �= 0, then μ1 > 0 even if μ0 = 0, for any δ > 0.
Thanks to Lemma 4, this implies that weak recovery is possible for all δ > 0. Hence,
we will assume that condition (131) holds.

The first result of this section establishes the following: For δ < δu, the message
passing algorithm fails even if the initial condition has a positive correlation with the
unknown signal. We refer to Appendix E for its proof.

Theorem 5 (Message passing fails for δ < δu) Let x ∈ R
d denote the unknown

signal such that ‖x‖2 = √
d. Let A = (a1, . . . , an)

T ∈ R
n×d with {ai }1≤i≤n ∼i .i .d.

N(0d , Id/d), and y = (y1, . . . , yn) with yi ∼ p(· | 〈x, ai 〉). Let n/d → δ and define
δu as in (42). Let G ∼ N(0, 1) and assume that the condition (131) holds for any
y ∈ R.

Consider the AMP algorithm defined in (126) and assume that the initial condition
z0 is such that

lim
n→∞

〈z0, x〉∥∥z0∥∥2 ‖x‖2
= ε. (132)

Then, for any δ < δu, there exists ε0(δ) such that for any ε ∈ (0, ε0(δ)), almost surely,

lim
t→∞ lim

n→∞
1

d

∥∥zt
∥∥
2 = 0d . (133)

Next, we consider the case δ > δu and we linearize the iteration (126) around the
non-informative fixed point.

Lemma 5 (Linearized AMP Equations) Consider the one-step map defined in (126)
and assume that condition (131) holds. Define Rt = ‖zt‖2+‖ ẑt−1‖2. Then, as Rt → 0
and qt → 0, we obtain
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(
zt+1

ẑt

)
= Ln

(
zt

ẑt−1

)
+ o(Rt ) + Rt oqt (1), (134)

where Ln ∈ R
(n+d)×(n+d) is defined as

Ln =
(
AT J A −AT J2

A −J

)
, (135)

and J ∈ R
n×n is a diagonal matrix with entries ji = F′(0, yi ; 1) for i ∈ [n], with F′

denoting the derivative of F with respect to the first argument.

The second result of this section establishes the following: For δ > δu, the un-
informative fixed point is unstable for iteration (126), i.e., the matrix Ln has an
eigenvalue that is larger than 1 in modulus. To do so, we will relate the matrix J
appearing in (135) to the optimal pre-processing function defined in (45) [see Eq. (237)
in Appendix F]. We refer to Appendix F for the complete proof.

Theorem 6 (Message passing escapes from un-informative fixed point for δ > δu) Let
x ∈ R

d denote the unknown signal such that ‖x‖2 = √
d. Let A = (a1, . . . , an)T ∈

R
n×d with {ai }1≤i≤n ∼i .i .d. N(0d , Id/d), and y = (y1, . . . , yn) with yi ∼ p(· |

〈x, ai 〉). Let n/d → δ and define δu as in (42). Furthermore, assume that (131) holds
for any y ∈ R. Define Ln ∈ R

(n+d)×(n+d) as in (135), where J ∈ R
n×n is a diagonal

matrix with entries ji = G(0, yi ; 1) for i ∈ [n]. Then, the eigenvalues of Ln are real
and the largest of them, call it λ

Ln
1 , is such that, for any δ > δu,

lim
n→∞ λ

Ln
1 > 1. (136)

7 Numerical Experiments

Wefocus on the phase retrieval problemandpresent somenumerical results to illustrate
the performance achieved by the proposed spectral method. First, we consider the case
in which the unknown vector is chosen uniformly at random and the sensing vectors
are Gaussian. Then, we consider the more practical scenario in which the unknown
vector is an image and the sensing vectors come from a coded diffraction model.

7.1 Gaussian SensingVectors for Synthetic Data

Let us consider the complex case. In our experiments, the vector x is chosen uniformly
at random on the d-dimensional complex sphere with radius

√
d, the sensing vectors

{ai }1≤i≤n are i.i.d. circularly symmetric normal with variance 1/d, and for i ∈ [n], the
measurement yi is equal to |〈x, ai 〉|2.We take d = 4096 and the numerical simulations
are averaged over nsample = 40 independent trials. The results are plotted in Fig. 2a.

123



740 Foundations of Computational Mathematics (2019) 19:703–773

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

(b)

Fig. 2 Performance of the spectral method for the phase retrieval problem where the unknown vector is
uniformly random on the sphere and the sensing vectors are Gaussian. On the x-axis, we have the ratio δ

between the number of samples and the dimension of the signal; on the y-axis, we have the square of the
normalized scalar product between the unknown signal x and the estimate x̂. Note that the proposed choice
of the pre-processing function (red curve) provides a significant performance improvement with respect to
the subset algorithm considered in [49,78] (black curve) and the truncated spectral initialization considered
in [20,49] (blue curve). a Complex case, b real case (Color figure online)
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The red curve corresponds to the proposed pre-processing function given by

T (y) = y − 1

y +
√

δ̃ − 1
. (137)

We pick δ̃ = 1.001 and, as shown by the figure, weak recovery is possible for values
of δ very close to 1.

The green curve corresponds to the pre-processing function given by

T (y) = max

(
y − 1

y +
√

δ̃ − 1
, 0

)
. (138)

We add this plot in order to show that, by enforcing nonnegativity of the pre-processing
function, we incur in a degradation of the performance of the spectral method.

The black curve corresponds to the pre-processing function given by

T (y) =
{
1, for y > t,
0, otherwise.

(139)

This choice was proposed in [78] and it is also considered in [49], where the authors
refer to it as the “subset algorithm.” For each value of t , we can compute the smallest
value of δ, call it δ∗(t), that yields a strictly positive scalar product according to the
result of Lemma 2. Hence, we pick t = 2 that corresponds to the smallest value of
δ∗(t) over t ∈ {0.25, 0.5, 0.75, . . . , 10}.

The blue curve corresponds to the pre-processing function given by

T (y) =
{

y, for y ≤ t,
0, otherwise.

(140)

This choice corresponds to the truncated spectral initialization proposed in [20] and it
is also considered in [49], where the authors refer to it as the “trimming algorithm.” For
each value of t , we can compute the smallest value of δ, call it δ∗(t), that yields a strictly
positive scalar product according to the result of Lemma 2. Hence, we pick t = 5.25
that corresponds to the smallest value of δ∗(t) over t ∈ {0.25, 0.5, 0.75, . . . , 10}.

Note that the numerical simulations follow closely the theoretical prediction given
by (84). Furthermore, the choice of the pre-processing function (137) yields a remark-
able performance gain with respect to both the subset algorithm and the trimming
algorithm.

Similar considerations apply to the real case. Here, the vector x is chosen uniformly
at random on the d-dimensional real sphere with radius

√
d and the sensing vectors

{ai }1≤i≤n are i.i.d. normal with zero mean and variance 1/d. We pick d = 4096 and
nsample = 40. The results are plotted in Fig. 2b. Again, the numerical simulations fol-
low closely the theoretical prediction. The red curve corresponds to the pre-processing
function given by (137), where we pick δ̃ = 1.001. Note that weak recovery is possible
for values of δ very close to 1/2. The green curve corresponds to the pre-processing
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function given by (138). The blue curve corresponds to the pre-processing function
given by (139), where we pick t = 2 which yields the smallest value of δ∗(t) over
t ∈ {0.25, 0.5, 0.75, . . . , 10}. The black curve corresponds to the pre-processing func-
tion given by (140), where we pick t = 7 which yields the smallest value of δ∗(t) over
t ∈ {0.25, 0.5, 0.75, . . . , 10}.

7.2 Coded DiffractionModel for Natural Images

We consider a model of coded diffraction patterns in which the sensing vectors
{ar }1≤r≤n are obtained as follows. For t1 ∈ [d1] and t2 ∈ [d2], denote by ar (t1, t2) the
(t1, t2)th component of the vector ar ∈ C

d , with d = d1 · d2. Then,

ar (t1, t2) = d�(t1, t2) · ei2πk1t1/d1 · ei2πk2t2/d2 , (141)

where i denotes the imaginary unit. The index r ∈ [n] is associated with a pair (�, k),
with � ∈ [L]; the index k ∈ [d] is associated with a pair (k1, k2) with k1 ∈ [d1]
and k2 ∈ [d2]. As usual, the measurement yr of an unknown d-dimensional vector
x is equal to |〈x, ar 〉|2. As an immediate consequence, the number of measurements
n is equal to L · d; therefore, δ = L ∈ N. In words, for a fixed �, we collect the
magnitude of the diffraction pattern of x modulated by d�. By varying � and changing
the modulation pattern d�, we generate L distinct views. The vectors {d�}1≤�≤L are
i.i.d. and their entries are also i.i.d. drawn uniformly from the set {1,−1, i,−i}.

We test the spectral method on the digital photograph represented in Fig. 1a. Each
color image can be viewed as a d1 × d2 × 3 array. We run the spectral algorithm
separately on the vectors x j ∈ R

d , where j ∈ {1, 2, 3}. In our example, d1 = 820 and
d2 = 1280. Let x̂ j be the estimate of x j provided by the spectral method. Then, we
employ as a performance metric the average squared normalized scalar product

1

3

3∑
j=1

|〈x̂ j , x j 〉|2∥∥x̂ j
∥∥2 ∥∥x j

∥∥2 . (142)

Note that the scalar product between the input and the measurement vectors can be
interpreted as a two-dimensional Fourier transform; hence, it can be computed with
an FFT algorithm. In order to evaluate the principal eigenvector of the data matrix,
we use the power method with a random initialization, as described in Appendix B
of [16]. As a stopping criterion, we require that one of the following two conditions
is fulfilled: Either the number of iterations reaches the maximum value of 10000, or
the modulus of the scalar product between the estimate at the current iteration T and
at the iteration T − 10 is larger than 1 − 10−7.

The results are summarized in Fig. 3. The red curve corresponds to the proposed
pre-processing function. In this case, the eigenvalues of the data matrix can be nega-
tive. Recall that the power method outputs the eigenvector associated with the largest
eigenvalue in modulus, while we are interested in the eigenvector associated with the
largest eigenvalue. To address this issue, we add to the data matrix a multiple α of the
identity matrix. However, as α grows, the convergence of the power method becomes
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Fig. 3 Performance of the spectral method for the phase retrieval problem where the unknown vector is a
digital photograph and the sensing vectors are obtained from a coded diffraction model. On the x-axis, we
have the ratio δ between the number of samples and the dimension of the signal; on the y-axis, we have the
square of the normalized scalar product between the unknown signal x and the estimate x̂ (averaged on the
three RGB components of the image). Note that the proposed choice of the pre-processing function (red
curve) provides a significant performance improvement with respect to the truncated spectral initialization
considered in [20] (blue curve) (Color figure online)

slower and slower. In order to reduce the negative tail of the distribution of eigenvalues
and, consequently, the value of α, we pick the pre-processing function given by

T1(y) = max(T (y),−M), (143)

where T (y) is defined in (137), δ̃ = 1.001, and M = 40. In this way, by taking
α = 100, the largest eigenvalue in modulus has positive sign.

The blue curve corresponds to the truncated spectral initialization in [20], i.e., the
pre-processing function is given by (140) with t = 9.

The numerical simulations for the optimal pre-processing function follow closely
the theoretical predictions (84) obtained for a Gaussian measurement matrix, with
the exception of the point δ = 2. On the contrary, the numerical simulations for the
truncated spectral initialization show a different behavior with respect to the Gaussian
model. Our algorithm provides weak recovery of the original image for δ ≥ 3, while
the truncated spectral initialization requires δ ≥ 6. Furthermore, for any value of δ,
the proposed choice of the pre-processing function yields a better performance than
the choice in [20]. For a visual representation of these results, see Fig. 1.
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A Proof of Corollary 1

We start by providing in Lemma 6 a less compact, but more explicit form of expression
(10). This more explicit expression is employed to prove Lemma 7, which yields the
value of δ� for the case of phase retrieval. Finally, we provide the proof of Corollary 1.

Lemma 6 (Explicit formula for f (m)—complex case) Consider the function f :
[0, 1] → R defined in (10). Then, f (m) is given by the following expression:

f (m)

=

∫
R

1
1−m

∫ +∞
0

∫ +∞

0
4r1r2 · p(y | r1)p(y | r2) · exp

(
− r21 + r22

1 − m

)
· I0

(
2r1r2

√
m

1 − m

)
dr1dr2

∫ +∞

0
2r · p(y | r) · exp (−r2

)
dr

dy,

(144)

where I0 denotes the modified Bessel function of the first kind, given by

I0(x) = 1

π

∫ π

0
exp (x cos θ) dθ. (145)

Proof Let us rewrite G as

G = G(R) + jG(I), with (G(R), G(I)) ∼ N
(
0d ,

1

2
I2

)
,

i.e., G(R) and G(I) are i.i.d. Gaussian random variables with mean 0 and variance 1/2.
Set

R =
√(

G(R)
)2 + (G(I)

)2
.

Then, R follows a Rayleigh distribution with scale parameter 1/
√
2, and hence

EG {p(y | |G|)} = ER {p(y | R)} =
∫ +∞

0
2r · p(y | r) · exp

(
−r2

)
dr . (146)

Let us rewrite (G1, G2) as

(G1, G2) = (G(R)
1 + jG(I)

1 , G(R)
2 + jG(I)

2 ),

with

(G(R)
1 , G(R)

2 , G(I)
1 , G(I)

2 ) ∼ N

⎛
⎜⎜⎝0d ,

1

2

⎡
⎢⎢⎣
1 �(c) 0 −�(c)
�(c) 1 �(c) 0
0 �(c) 1 �(c)
−�(c) 0 �(c) 1

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ,

and consider the following change in variables:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G(R)
1 = R1 cos θ1

G(R)
2 = R2 cos θ2

G(I)
1 = R1 sin θ1

G(I)
2 = R2 sin θ2

.

Then, after some algebra, we have that

EG1,G2 {p(y | |G1|) · p(y | |G2|)}

= 1

π2(1 − |c|2)
∫ +∞

0

∫ +∞

0

∫ 2π

0

∫ 2π

0
r1r2 · p(y | r1)p(y | r2)·

exp

(
−r21 + r22 − 2r1r2 (�(c) cos(θ2 − θ1) − �(c) sin(θ2 − θ1))

1 − |c|2
)

dr1 dr2 dθ1 dθ2.

(147)

By writing (�(c),�(c)) = (|c| cos θc, |c| sin θc) and by using definition (145), we can
further simplify the RHS of (147) as

1

1 − |c|2
∫ +∞

0

∫ +∞

0
4r1r2 · p(y | r1)p(y | r2) · exp

(
− r21 + r22
1 − |c|2

)

·I0
(
2r1r2|c|
1 − |c|2

)
dr1dr2. (148)

From (146) and (148), the claim easily follows. ��
Lemma 7 (Computation of δ� for phase retrieval) Computation of δ� for Phase
Retrieval Let δ�(σ

2) be defined as in (13) and assume that the distribution p(· | |G|)
appearing in (10) is given by (9). Then,

lim
σ→0

δ�(σ
2) = 1. (149)

Proof For the special case of phase retrieval, it is possible to compute explicitly the
function f (m) defined in (10) and simplified in Lemma 6. Indeed,

∫ +∞

0
2r · pPR(y | r) · exp

(
−r2

)
dr

(a)=
∫ +∞

0
pPR(y | √

z) · exp (−z) dz

(b)=
∫ +∞

−∞
1

σ
√
2π

exp

(
− (y − z)2

2σ 2

)
· exp (−z) · H(z) dz

(c)= EZ {exp(−Z)H(Z)} ,

(150)

where in (a) we do the change in variables z = r2; in (b) we use definition (9) and we
define H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise; and in (c)we define Z ∼ N(y, σ 2).
In the limit σ 2 → 0, we have that
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EZ {exp(−Z)H(Z)} → exp(−y) · H(y), (151)

by Lebesgue’s dominated convergence theorem. Similarly,

∫ +∞

0

∫ +∞

0
4r1r2 · pPR(y | r1)pPR(y | r2) · exp

(
−r21 + r22

1 − m

)
· I0

(
2r1r2

√
m

1 − m

)
dr1dr2

(a)=
∫ +∞

0

∫ +∞

0
pPR(y | √

z1)pPR(y | √
z2) · exp

(
− z1 + z2

1 − m

)
· I0

(
2
√

z1z2
√

m

1 − m

)
dz1dz2

(b)=
∫ +∞

−∞

∫ +∞

−∞

(
1

σ
√
2π

)2

exp

(
− (y − z1)2 + (y − z2)2

2σ 2

)

· exp
(

− z1 + z2
1 − m

)
· I0

(
2
√

z1z2
√

m

1 − m

)
· H(z1)H(z2)dz1dz2

(c)= EZ1,Z2

{
exp

(
− Z1 + Z2

1 − m

)
· I0

(
2
√

Z1Z2
√

m

1 − m

)
· H(Z1)H(Z2)

}
,

where in (a) we do the change in variables z1 = r21 and z2 = r22 ; in (b) we use definition
(9) and we define H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise; and in (c) we define
(Z1, Z2) ∼i .i .d. N(y, σ 2). In the limit σ 2 → 0, we have that

EZ1,Z2

{
exp

(
− Z1 + Z2

1 − m

)
· I0

(
2
√

Z1Z2
√

m

1 − m

)
· H(Z1)H(Z2)

}

→ exp

(
− 2y

1 − m

)
· I0

(
2y

√
m

1 − m

)
· H(y),

by Lebesgue’s dominated convergence theorem. As a result, by using (145), we obtain
that

f (m)
σ 2→0−→ 1

1 − m

∫ +∞

0
exp

(
− 2y

1 − m

)
· I0

(
2y

√
m

1 − m

)
· exp(y) dy

= 1

π(1 − m)

∫ π

0

∫ +∞

0
exp

(
−y

(
1 + m − 2

√
m cos θ

1 − m

))
dy dθ

= 1

π

∫ π

0

1

1 + m − 2
√

m cos θ
dθ = 1

1 − m
.

Consequently,

Fδ(m)
σ 2→0−→ (1 − δ) log(1 − m),

which implies the desired result. ��
Proof (Proof of Corollary 1) We follow the proof of Theorem 1 presented in Sect. 4.
The first step is exactly the same, i.e., by applying Lemma 1, we show that (68) holds.
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On the contrary, the second step requires some modifications, since the definition of
the error metric is different. In particular, we will prove that

1

d2EY1:n ,A1:n
{∥∥E {XX∗}− E

{
XX∗ | Y1:n, A1:n

}∥∥2
F

}
= on(1). (152)

Furthermore, we have that

∥∥E {XX∗}− E
{
XX∗ | Y1:n, A1:n

}∥∥2
F + E

{∥∥XX∗ − E
{
XX∗ | Y1:n, A1:n

}∥∥2
F

}
(a)≥ E

{∥∥E {XX∗}− XX∗∥∥2
F

}
(b)= E

{∥∥Id − XX∗∥∥2
F

}
(c)= E

{
trace

(
Id − 2XX∗ + XX∗XX∗)}

(d)= d − 2d + d2 = d2 − d,

(153)

where in (a) we use the triangle inequality; in (b) we use that E
{
XX∗} = Id by

Lemma 12; in (c) we use that, for any matrix A, ‖A‖F = √
trace(AA∗); and in (d)

we use that E
{
trace

(
XX∗XX∗)} = E

{‖X‖4} = d2. By applying (152) and (153),
the proof of Corollary 1 is complete.

Let us now give the proof of (152). Similarly to (71), we have that

I (Yn+1;Y1:n, A1:n|An+1)

≥ 1

2K 2 · EY1:n ,A1:n+1

{∣∣∣∣
∫
Cd

p(x | Y1:n, A1:n)

∫
R

pPR(yn+1 | x,

Y1:n, A1:n+1)ϕPR(yn+1)dyn+1dx

−
∫
Cd

p(x)

∫
R

pPR(yn+1 | x, An+1)ϕPR(yn+1) dyn+1 dx

∣∣∣∣
2}

,

(154)

where we define ϕPR(x) = x for |x | ≤ M , and ϕPR(x) = M · sign(x) otherwise.
Then,

∫
Cd

p(x | Y1:n, A1:n)

∫
R

pPR(yn+1 | x,Y1:n, A1:n+1) · ϕPR(yn+1) dyn+1 dx

(a)=
∫
Cd

p(x | Y1:n, A1:n)

∫
R

pPR(yn+1 | x,Y1:n, A1:n+1) · yn+1 dyn+1 dx + E1

(b)=
∫
Cd

p(x | Y1:n, A1:n) · |〈An+1, x〉|2 dx + E1

(c)= 〈An+1,

(∫
Cd

p(x | Y1:n, A1:n) · xx∗ dx
)
An+1〉 + E1

= 〈An+1,E
{
XX∗ | Y1:n, A1:n

}
An+1〉 + E1,

(155)
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where in (a) we set

E1 =
∫
Cd

p(x | Y1:n, A1:n)

∫
R

pPR(yn+1 | x,Y1:n, A1:n+1)

·(ϕPR(yn+1) − yn+1) dyn+1 dx,

in (b) we use definition (9), and in (c) we use that |〈An+1, x〉|2 = 〈An+1, xx∗An+1〉.
Similarly, we have that

∫
Cd

p(x)

∫
R

pPR(yn+1 | x, An+1)ϕPR(yn+1) dyn+1 dx

= 〈An+1,E
{
XX∗} An+1〉 + E2, (156)

with

E2 =
∫
Cd

p(x)

∫
R

pPR(yn+1 | x, An+1) · (ϕPR(yn+1) − yn+1) dyn+1 dx.

By applying (155) and (156), we can rewrite the RHS of (154) as

1

2K 2 · EY1:n ,A1:nEAn+1

{∣∣〈An+1,
(
E
{
XX∗ | Y1:n, A1:n

}− E
{
XX∗}) An+1〉 + E1 − E2

∣∣2}

≥ 1

2K 2 · EY1:n ,A1:n
(
EAn+1

{|〈An+1, MAn+1〉|2
}− EAn+1

{|E1|2
}− EAn+1

{|E2|2
})

,

(157)

where we define M = E
{
XX∗ | Y1:n, A1:n

} − E
{
XX∗}. As K goes large,

EAn+1

{|Ei |2
}
tends to 0, for i ∈ {1, 2}. Furthermore, we have that

EAn+1

{
|〈An+1, MAn+1〉|2

}
(a)=

d∑
i, j,k,l=1

Mi j M∗
kl · 1

d2 (δi j · δkl + δil · δ jk)

= 1

d2

(
|trace(M)|2 + ‖M‖2F

)
(b)= 1

d2
‖M‖2F ,

(158)

where in (a) we use the following definition of the Kronecker delta:

δab =
{
1, if a = b,

0, otherwise,
(159)
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and in (b) we use that

trace(M) =
d∑

i=1

(
E

{
|Xi |2 | Y1:n, A1:n

}
− E

{
|Xi |2

})

= E

{
d∑

i=1

|Xi |2 | Y1:n, A1:n

}
− E

{
d∑

i=1

|Xi |2
}

= 0.

(160)

As a result, we conclude that (152) holds. ��

B Proof of Corollary 2

First, we evaluate the RHS of (20), as well as the scaling between δu and σ 2 when
σ 2 → 0. Then, we give the proof of Corollary 2.

Lemma 8 (Computation of δu for phase retrieval) Let δu(σ
2) be defined as in (20) and

assume that the distribution p(· | |g|) is given by (9). Then,

δu(σ
2) = 1 + σ 2 + o(σ 2). (161)

Proof The proof boils down to computing expected values and integrals. By using
(146) and (150), we immediately obtain that

EG {pPR(y | |G|)} =
∫ +∞

0
2r · pPR(y | r) · exp

(
−r2

)
dr

= exp(−y)EX {exp(−σ X)H(y + σ X)} ,

where X ∼ N(0, 1). By computing explicitly the expectation, we deduce that

EG {pPR(y | |G|)} = 1

2
exp

(
−y + σ 2

2

)
erfc

(
1√
2

(
− y

σ
+ σ

))
, (162)

where erfc(·) is the complimentary error function. Similarly, we have that

EG
{

pPR(y | |G|)(|G|2 − 1)
} =

∫ +∞

0
2(r3 − r)pPR(y | r) · exp (−r2

)
dr

= exp(−y)EX {exp(−σ X)H(y + σ X)(y − 1 + σ X)}

= σ√
2π

exp

(
− y2

2σ 2

)
+ 1

2
(y − 1

− σ 2) exp

(
−y + σ 2

2

)
erfc

(
1√
2

(
− y

σ
+ σ

))
.

(163)
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Thus, by using (162) and (163), after some manipulations, we obtain that

1

δu
=
∫
R

(
EG
{

pPR(y | |G|)(|G|2 − 1)
})2

EG {p(yPR | |G|)} dy

=
∫
R

σ 2

2π
exp

(
y − σ 2

2
− y2

σ 2

)
2

erfc
(

1√
2

(− y
σ

+ σ
))dy

+
∫
R

2σ√
2π

exp

(
− y2

2σ 2

)
(y − 1 − σ 2)dy

+
∫
R

1

2
exp

(
−y + σ 2

2

)
(y − 1 − σ 2)2erfc

(
1√
2

(
− y

σ
+ σ

))
dy.

(164)

By performing the change in variables t = −y/σ + σ , we simplify the first integral
in the RHS of (164) as

∫
R

σ 2

2π
exp

(
y − σ 2

2
− y2

σ 2

)
2

erfc
(

1√
2

(− y
σ

+ σ
))dy

= 2σ 3

2π

∫
R

exp
(−t2

)
erfc

(
t√
2

) exp

(
σ t − σ 2

2

)
dt = o(σ 2), (165)

where in the last equality we use that the integral

∫
R

exp
(−t2

)
erfc

(
t√
2

) dt

is finite. The other two integrals in the RHS of (164) can be expressed in closed form
as

∫
R

2σ√
2π

exp

(
− y2

2σ 2

)
(y − 1 − σ 2)dy = −2σ 2(1 + σ 2), (166)

∫
R

1

2
exp

(
−y + σ 2

2

)
(y − 1 − σ 2)2erfc

(
1√
2

(
− y

σ
+ σ

))
dy

= σ

2
exp

(
−σ 2

2

)∫
R

exp (σ t) (σ t + 1)2erfc

(
t√
2

)
dt = 1 + σ 2 + σ 4.

(167)

By combining (164), (165), (166), and (167), the result follows. ��
Proof (Proof of Corollary 2) Pick σ sufficiently small. Let G ∼ CN(0, 1), Y ∼ pPR(· |
|G|) and Z = T (Y ), where pPR is defined in (9) and T is a pre-processing function
(possibly dependent on σ ) that we will choose later on. Assume that

(1) T (y) is upper and lower bounded by constants independent of σ ;
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(2) P(Z = 0) ≤ c1 < 1 and c1 is independent of σ ;
(3) condition (82) holds.

Then, by Lemma 2, we have that, as n → ∞,

|〈x̂, x〉|2∥∥x̂∥∥22 ‖x‖2
a.s.−→ ρ =

⎧⎨
⎩
0, if ψ ′

δ(λ
∗
δ ) ≤ 0,

ψ ′
δ(λ

∗
δ )

ψ ′
δ(λ

∗
δ ) − φ′(λ∗

δ )
, if ψ ′

δ(λ
∗
δ ) > 0,

(168)

where λ∗
δ is the unique solution of the equation ζδ(λ) = φ(λ), and φ, ψδ , and ζδ are

defined in (78), (79), and (81), respectively.
Let τ be the supremum of the support of Z . Assume also that, for λ̄δ < λ∗

δ ,

(4) τ ≥ c2 > 0 and c2 is independent of σ ;
(5) φ′(λ∗

δ ) is lower bounded by a constant independent of σ ;
(6) min

λ∈(min(λ̄δ,λ
∗
δ ))

ψ ′′
δ (λ) is lower bounded by a strictly positive constant independent

of σ .

Let λ̄δ be the point at which ψδ attains its minimum. Then,

φ(λ̄δ) − ψδ(λ̄δ)
(a)= φ(λ̄δ) − φ(λ∗

δ ) + ζδ(λ
∗
δ ) − ψδ(λ̄δ)

(b)= φ(λ̄δ) − φ(λ∗
δ ) + ζδ(λ

∗
δ ) − ζδ(λ̄δ)

(c)= (ζ ′
δ(x1) − φ′(x1)

) · (λ∗
δ − λ̄δ)

(d)=
(
ζ ′
δ(x1) − φ′(x1)

)
ψ ′′

δ (x2)
· (ψ ′

δ(λ
∗
δ ) − ψ ′

δ(λ̄δ)
)

(e)=
(
ζ ′
δ(x1) − φ′(x1)

)
ψ ′′

δ (x2)
· ψ ′

δ(λ
∗
δ )

(f)≤ c3 · ψ ′
δ(λ

∗
δ ),

(169)

where in (a) we use that ζδ(λ
∗
δ ) = φ(λ∗

δ ); in (b) we use that ζδ(λ̄δ) = ψδ(λ̄δ); (c) holds
for some x1 ∈ (λ̄δ, λ

∗
δ ) by the mean value theorem; (d) holds for some x2 ∈ (λ̄δ, λ

∗
δ )

by the mean value theorem; and in (e) we use that ψ ′
δ(λ̄δ) = 0. Note that (f) holds for

some constant c3 independent of σ , as ζ ′
δ(x1) ≥ 0,ψ ′′

δ (x2) is bounded, and φ′(x2) < 0
since P(Z = 0) < 1.

As φ′(λ∗
δ ) is bounded, from (168) and (169) we deduce that

ρ ≥ c4 · (φ(λ̄δ) − ψδ(λ̄δ)
)
, (170)

for some constant c4 independent of σ . Notice that, if λ∗
δ ≤ λ̄δ , then the right-hand

side is non-positive and hence the lower bound still holds.
As τ > 0, we also have that λ̄δ > 0. Consider now thematrix D′

n = Dn/α for some
α > 0. Then, the principal eigenvector of D′

n is equal to the principal eigenvector of
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Dn . Hence, we can assume without loss of generality that λ̄δ = 1. This condition can
be rewritten as

E

{
Z2

(1 − Z)2

}
= 1

δ
, (171)

and (170) can be rewritten as

ρ ≥ c4 ·
(
E

{
Z(|G|2 − 1)

1 − Z

}
− 1

δ

)
. (172)

We set

T (y) = T ∗
δ (y, σ ) � y+ − 1

y+ + √
δ c(σ ) − 1

, (173)

where y+ = max(y, 0) and c(σ ) is a function of σ to be set as to satisfy Eq. (171).
By substituting (173) into (171), we get

E

{
Z2

(1 − Z)2

}
= 1

δc(σ )
E
{
(Y+ − 1)2

}
. (174)

Hence, Eq. (171) is satisfied by

c(σ ) = E
{
(Y+ − 1)2

} = E

{(
(|G|2 + σ W )+ − 1

)2}
, (175)

where W ∼ N(0, 1) is independent of G. Therefore, c(σ ) is always well defined and,
by dominated convergence, c(σ ) → c(0) = 1, as σ → 0. Furthermore,

E

{
Z(|G|2 − 1)

1 − Z

}
= 1√

δc(σ )
E
{
(Y+ − 1)(|G|2 − 1)

}
. (176)

By applying again dominated convergence, we get

lim
σ→0

E

{
Z(|G|2 − 1)

1 − Z

}
= 1√

δ
E
{
(|G|2 − 1)2

} = 1√
δ
. (177)

Hence, by using (170), we get that, for δ > 1 and σ ≤ σ1(δ),

lim inf
n→∞

|〈x̂σ , x〉|2∥∥x̂σ

∥∥2
2 ‖x‖22

≥ c5
( 1√

δ
− 1

δ

)
> 0, (178)

where x̂σ denotes the spectral estimator corresponding to the pre-processing function
(173). Let us now verify that, by setting T = T ∗

δ , the requirements stated above are
fulfilled. As δ > 1, the function T is bounded by constants independent of σ . It is also
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clear that conditions (2) and (4) hold. Furthermore, conditions (5) and (6) follow by
showing that φ(λ),ψδ(λ) have well-defined uniform limits as σ → 0 that satisfy those
conditions: This can be proved by one more application of dominated convergence.

In order to show that condition (3) holds, we follow the argument presented at the
end of the proof of Lemma 2. First, we add a point mass with associated probability
at most ε1, which immediately implies that (82) is satisfied. Then, by applying the
Davis–Kahan theorem [23], we show that we can take ε1 = 0.

This proves the claim of the corollary for the pre-processing function T ∗
δ (y, σ ),

defined in (173). Let us now prove that the same conclusion holds for T ∗
δ (y) defined

in (25). Let

fa(x) = x + 1

x + a
. (179)

Then, for any x, a ∈ R≥0,

| f ′
a(x)| = |a − 1|

(x + a)2
≤ max

(
1,

1

x2

)
. (180)

Therefore, since T ∗
δ (y, σ ) = 1 − fy+(

√
δc(σ ) − 1), we have that

sup
y∈R

∣∣T ∗
δ (y, σ ) − T ∗

δ (y)
∣∣ ≤ 1(

min(
√

δc(σ ) − 1,
√

δ − 1, 1)
)2

√
δ · ∣∣√c(σ ) − 1

∣∣.
(181)

Denote by Dn(σ ) and Dn the matrices constructed with the pre-processing functions
T ∗

δ (y, σ ) and T ∗
δ (y), respectively. It follows that, for any δ > 1, there exists a function

Δ(σ) with Δ(σ) → 0 as σ → 0 such that

‖Dn(σ ) − Dn‖op ≤ Δ(σ). (182)

Hence, by applying again the Davis–Kahan theorem, we conclude that, for all δ > 1
and σ ≤ σ2(δ),

lim inf
n→∞

|〈x̂, x〉|2∥∥x̂∥∥22 ‖x‖22
≥ c5

( 1√
δ

− 1

δ

)
> 0, (183)

where x̂ is the estimator corresponding to the pre-processing function T ∗
δ (y). ��

C Auxiliary Lemmas

Lemma 9 (Distributionof scalar product of twounit complexvectors)Let x1, x2 ∼i .i .d.

Unif(Sd−1
C

) and define M = |〈x1, x2〉|2. Then,

M ∼ Beta(1, d − 1). (184)
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Proof Without loss of generality, we can pick x2 to be the first element of the canonical
base of Cd . Thus, M is equal to the squared modulus of the first component of x1.
Furthermore, we can think to x1 as being chosen uniformly at random on the 2d-
dimensional real sphere with radius 1. Note that, by taking a vector of i.i.d. standard
Gaussian random variables and dividing it by its norm, we obtain a vector uniformly
random on the sphere of radius 1. Hence,

M = U 2
1 + U 2

2∑2d
i=1 U 2

i

, with {Ui }1≤i≤2d ∼i .i .d. N(0, 1).

Set A = U 2
1 + U 2

2 and B = ∑2d
i=3 U 2

i . Then, A and B are independent, A follows
a gamma distribution with shape 1 and scale 2, i.e., A ∼ Γ (1, 2), and B follows a
Gamma distribution with shape d − 1 and scale 2, i.e., B ∼ Γ (d − 1, 2). Thus, we
conclude that

M = A

A + B
∼ Beta(1, d − 1),

which proves the claim. ��
Lemma 10 (Distribution of scalar product of two unit real vectors) Let x1, x2 ∼i .i .d.

Unif(Sd−1
R

) and define M = 〈x1, x2〉. Then, the distribution of M is given by

p(m) = Γ ( d
2 )√

πΓ ( d−1
2 )

(1 − m2)
d−3
2 , m ∈ [−1, 1]. (185)

Proof Without loss of generality, we can pick x2 to be the first element of the canonical
base ofRd . Thus, M is equal to the first component of x1. Note that, by taking a vector
of i.i.d. standard Gaussian random variables and dividing it by its norm, we obtain a
vector uniformly random on the sphere of radius 1. Hence,

M2 = U 2
1∑d

i=1 U 2
i

, with {Ui }1≤i≤d ∼i .i .d. N(0, 1).

Set A = U 2
1 and B =∑d

i=2 U 2
i . Then, A and B are independent, A follows a gamma

distribution with shape 1/2 and scale 2, i.e., A ∼ Γ (1/2, 2), and B follows a Gamma
distribution with shape (d − 1)/2 and scale 2, i.e., B ∼ Γ ((d − 1)/2, 2). Thus, we
obtain that

M2 = A

A + B
∼ Beta(1/2, (d − 1)/2).

Achange in variable and the observation that the distribution of M is symmetric around
0 immediately let us conclude that, for m ∈ [−1, 1],

p(m) = c · (1 − m2)
d−3
2 , (186)
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where the normalization constant c is given by

c =
(∫ 1

−1
(1 − m2)

d−3
2 dm

)−1

= Γ ( d
2 )√

πΓ ( d−1
2 )

.

��
Lemma 11 (Laplace’s method) Let F : [0, 1] → R be such that

– F is continuous;
– F(x) < 0 for x ∈ (0, 1];
– F(0) = 0.

Then,

lim
n→+∞

∫ 1

0
exp (n · F(x)) dx = 0. (187)

Proof Pick ε > 0 and separate the integral into two parts:

∫ 1

0
exp (n · F(x)) dx =

∫ ε

0
exp (n · F(x)) dx +

∫ 1

ε

exp (n · F(x)) dx .

Now, the first integral is at most ε since F(x) ≤ 0 for any x ∈ [0, 1], and the second
integral tends to 0 as n → +∞ since F(x) < 0 for x ∈ (0, 1]. Thus, the claim
immediately follows. ��
Lemma 12 (Second moment of uniform vector on complex sphere) Let x ∼
Unif(

√
dSd−1

C
). Then,

E
{
XX∗} = Id . (188)

Proof Let z ∼ CN(0d , Id) and note that, by taking a vector of i.i.d. standard complex
normal random variables and dividing it by its norm, we obtain a vector uniformly
random on the complex sphere of radius 1. Then, x = √

d z/ ‖z‖.
For i ∈ [d], denote by xi and by zi the i th component of x and z, respectively.

Then, for i �= j ,

E

{
Xi X∗

j

}
= d · E

{
Zi Z∗

j

‖Z‖2
}

= 0,

where the last equality holds by symmetry. Furthermore,

E

{
|Xi |2

}
= d · E

{ |Zi |2
‖Z‖2

}
= 1,

as |Zi |2/ ‖Z‖2 ∼ Beta(1, d − 1) by the argument of Lemma 9. As a result, the thesis
is readily proved. ��
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D Proof of Lemma 3

Before presenting the proof of the lemma, let us introduce some basic definitions and
well-known results. Let H be a probability measure on [0,+∞). Denote by ΓH the
support of H and by τ the supremum of ΓH . Let sH (g) denote the Stieltjes transform
of H , which is defined as

sH (g) =
∫

1

t − g
dH(t), (189)

and let gH (s) denote its inverse.
Consider a matrix

Sn = 1

d
UMnU∗, (190)

and assume that

(1) Mn is PSD for all n ∈ N;
(2) U ∈ C

d×n is a randommatrix whose entries {ui, j }1≤i≤d,1≤ j≤n are i.i.d. such that
E
{
Ui, j

} = 0, E
{|Ui, j |2

} = 1, and E
{|Ui, j |4

}
< ∞ (this includes the cases in

which the entries are ∼i .i .d. CN(0, 1) or are ∼i .i .d. N(0, 1));
(3) The sequence of empirical spectral distributions of Mn ∈ C

n×n converges weakly
to a probability distribution H , as n → +∞;

(4) n/d → δ ∈ (0,+∞), as n → ∞;
(5) The sequence of spectral norms of Mn is bounded.

Note that the normalization of (190) differs from the normalization of (86) by a factor
of δ. However, since the form (190) is more common in the literature, we will stick to
it for the rest of this section. In order to obtain the desired result for the matrix (86),
it suffices to incorporate a factor 1/δ in the definition of the function ψδ .

Let Fδ,H be the probability measure on [0,+∞) such that the inverse gFδ,H of its
Stieltjes transform sFδ,H is given by

gFδ,H (s) = −1

s
+ δ

∫
t

1 + ts
dH(t), s ∈ {z ∈ C : �(z) > 0}. (191)

Then, the sequence of empirical spectral distributions of Sn converges weakly to
Fδ,H [50], [66, Chapter 4].

For α /∈ ΓH and α �= 0, let us also define

ψFδ,H (α) = gFδ,H

(
− 1

α

)
. (192)

The functionψFδ,H links the support of Fδ,H with the support of the generatingmeasure
H (see [67, Section 4] and [3, Lemma 3.1]). In particular, if λ /∈ ΓFδ,H , then sFδ,H (λ) �=
0 and α = −1/sFδ,H (λ) satisfies

(1) α /∈ ΓH and α �= 0 (so that ψFδ,H (α) is well defined);
(2) ψ ′

Fδ,H
(α) > 0.

123



Foundations of Computational Mathematics (2019) 19:703–773 757

Conversely, if α satisfies (1) and (2), then λ = ψFδ,H (α) /∈ ΓFδ,H .

Let λMn
1 denote the largest eigenvalue of Mn and assume that, as n → ∞,

λ
Mn
1

a.s.−→ α∗ /∈ ΓH . (193)

Denote by λ
Sn
1 the largest eigenvalue of Sn . Then, the results in [3] prove that

λ
Sn
1

a.s.−→ λ∗ = ψFδ,H (α∗), if ψ ′
Fδ,H

(α∗) > 0,

λ
Sn
1

a.s.−→ min
α>τ

ψFδ,H (α), if ψ ′
Fδ,H

(α∗) ≤ 0.
(194)

Informally, the eigenvalue λ
Mn
1 is mapped into the point ψFδ,H (α∗), where α∗ =

−1/sFδ,H (λ∗). This point emerges from the support of Fδ,H if and only ifψ ′
Fδ,H

(α∗) >

0.
In what follows, we relax the first hypothesis, i.e., we consider the case in which

the matrix Mn is not PSD.We will show that (194) still holds, which implies the claim
of Lemma 3.

Proof (Proof of Lemma 3) As U is drawn from a rotationally invariant distribution, we
can assume without loss of generality that Mn is diagonal. Then, we have that

Sn = (U+,U−)

(
M+

n 0k

0n−k −M−
n

)(
U∗+
U∗−

)

= 1

d
U+M+

n U
∗+ − 1

d
U−M−

n U
∗−,

(195)

where M+
n ∈ R

k×k is the diagonal matrix containing the positive eigenvalues of Mn ,
M−

n ∈ R
(n−k)×(n−k) is the diagonal matrix containing the negative eigenvalues of Mn

with the sign changed, U+ contains the first k columns of U , and U− contains the
remaining n − k columns of U .

Note that U+ and U− are independent. Furthermore, if H is a unitary matrix, then
U− and HU− have the same distribution. Hence, we can rewrite the matrix Sn as

Sn = 1

d
U1M+

n U
∗
1 − 1

d
HU2M−

n U
∗
2H

∗, (196)

where U1 and U2 are independent with entries ∼i .i .d. CN(0, 1), and H is a random
unitary matrix distributed according to the Haar measure.

Recall that, by hypothesis, the sequence of empirical spectral distributions of Mn

converges weakly to the probability distribution H , where H is the law of the random
variable Z . Then, the sequence of empirical spectral distributions of M+

n converges
weakly to the probability distribution H+, where H+ is the law of Z+ = max(Z , 0).
Let Fδ,H+ be the probability measure on [0,+∞) such that the inverse gFδ,H+ of its
Stieltjes transform sFδ,H+ is given by
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gFδ,H+ (s) = −1

s
+ δ

∫
t

1 + ts
dH+(t). (197)

Define S+
n = 1

d U1M+
n U

∗
1. Then, as M+

n is PSD, the sequence of empirical spectral
distributions of S+

n converges weakly to Fδ,H+ [50], [66, Chapter 4].
Similarly, the sequence of empirical spectral distributions of M−

n converges weakly
to the probability distribution H−, where H− is the law of Z− = −min(Z , 0). Let
Fδ,H− be the probability measure on [0,+∞) such that the inverse gFδ,H− of its
Stieltjes transform sFδ,H− is given by

gFδ,H− (s) = −1

s
+ δ

∫
t

1 + ts
dH−(t). (198)

Define S−
n = 1

d U2M−
n U

∗
2. Then, as M−

n is PSD, the sequence of empirical spectral
distributions of S−

n converges weakly to Fδ,H− [50], [66, Chapter 4]. Furthermore, the
sequence of empirical spectral distributions of −S−

n converges weakly to the proba-
bility measure Fδ,H−

inv
such that

gF
δ,H−

inv
(s) = −gFδ,H− (−s), (199)

where gF
δ,H−

inv
denotes the inverse of the Stieltjes transform sF

δ,H−
inv

of Fδ,H−
inv
.

Define

Fδ,H = Fδ,H+ � Fδ,H−
inv

, (200)

where� denotes the free additive convolution. Recall the decomposition (196). Then,
the sequence of empirical spectral distributions of Sn converges weakly to Fδ,H [69,
74]. Consequently, the inverse gFδ,H of the Stieltjes transform sFδ,H of Fδ,H can be
computed as

gFδ,H (s)
(a)= gFδ,H+�F

δ,H−
inv

(s)

(b)= gFδ,H+ (s) + gF
δ,H−

inv
(s) + 1

s
(c)= −1

s
+ δ

∫
t

1 + ts
dH+(t) − δ

∫
t

1 − ts
dH−(t)

(d)= −1

s
+ δ

∫
t

1 + ts
dH+(t) + δ

∫
t

1 + ts
dH−(−t)

(e)= −1

s
+ δ

∫
t

1 + ts
dH(t),

(201)

where in (a) we use (200); in (b) we use that the R-transform of the free convolution
is the sum of the R-transforms of the addends; in (c) we use (197), (198), and (199);
in (d) we perform the change in variable t → −t in the second integral; and in (e) we
use the fact that H+(t) is the law of max(Z , 0), H−(−t) is the law of min(Z , 0), and
that t/(1 + ts) = 0 for t = 0.
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By hypothesis, λ
Mn
1

a.s.−→ α∗ /∈ ΓH . First, we establish under what condition the

largest eigenvalue of S+
n , call it λ

S+
n

1 , converges to a point outside the support of

Fδ,H+ . To do so, define ψFδ,H+ (α) = gFδ,H+ (−1/α). Then, λ
S+

n
1

a.s.−→ ψFδ,H+ (α∗), if

ψ ′
Fδ,H+ (α∗) > 0; and λ

S+
n

1 converges almost surely to a point inside the support of

Fδ,H+ , otherwise [3].
For the moment, assume that ψ ′

Fδ,H+ (α∗) > 0. We now establish under what con-

dition the largest eigenvalue of Sn , call it λ
Sn
1 , converges to a point outside the support

of Fδ,H . To do so, let ω1 and ω2 denote the subordination functions corresponding to
the free convolution Fδ,H+ � Fδ,H−

inv
. These functions satisfy the following analytic

subordination property:

sFδ,H+�F
δ,H−

inv
(z) = sFδ,H+ (ω1(z)) = sF

δ,H−
inv

(ω2(z)). (202)

Then, by Theorem 2.1 of [11], we have that the spike ψFδ,H+ (α∗) is mapped into

ω−1
1 (ψFδ,H+ (α∗)). The Stieltjes transform at this point is given by

sFδ,H+�F
δ,H−

inv
(ω−1

1 (ψFδ,H+ (α∗)))
(a)= sFδ,H+ (ψFδ,H+ (α∗))

(b)= sFδ,H+ (gFδ,H+ (−1/α∗))
(c)= −1/α∗,

where in (a) we use (202); in (b) we use the definition ofψFδ,H+ ; and in (c) we use that
gFδ,H+ is the functional inverse of the Stieltjes transform sFδ,H+ . As a result, by [67,

Section 4], we conclude that ω−1
1 (ψFδ,H+ (α∗)) /∈ ΓFδ,H if and only if ψ ′

Fδ,H
(α∗) >

0. Furthermore, the condition ψ ′
Fδ,H

(α∗) > 0 is more restrictive than the condition

ψ ′
Fδ,H+ (α∗) > 0 since

ψ ′
Fδ,H+ (α∗) = 1 − δ

∫ (
t

α∗ − t

)2

dH+ ≥ 1 − δ

∫ (
t

α∗ − t

)2

dH = ψ ′
Fδ,H

(α∗).

Hence, λSn
1 converges to a point outside the support of Fδ,H if and only ifψ ′

Fδ,H
(α∗) >

0 and the proof is complete. ��
Remark 8 (Lemma 3 for the real case) Consider the random matrix 1

nUMnUT, where
U ∈ R

(d−1)×n is a random matrix whose entries are ∼i .i .d. N(0, 1) and Mn ∈ R
n×n .

Then, the claim of Lemma 3 still holds. Let us briefly explain why this is the case.
If Mn is PSD, then the results of [3] allow us to conclude. If Mn is not PSD, we

can write an expression analogous to (196):

1

d
UMnUT = 1

d
U1M+

n U
T
1 − 1

d
HU2M−

n U
T
2H

∗, (203)
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where M+
n is the diagonal matrix containing the positive eigenvalues of Mn , M−

n is
the diagonal matrix containing the negative eigenvalues of Mn with the sign changed,
U1 and U2 are independent with entries ∼i .i .d. N(0, 1), H is a random unitary matrix
distributed according to the Haar measure, and we have used the fact that the eigen-
values of U2M−

n U
T
2 are the same as the eigenvalues of HU2M−

n U
T
2H

∗ since H is
unitary. Hence, the proof follows from the same argument of Lemma 3.

E Proof of Lemma 4 and Theorem 5

We start by proving a result similar to Lemma 4 for a general AMP iteration, where
the function ft (ẑ; y) is generic.

Lemma 13 (State evolution for generalAMP iteration)Let x ∈ R
d denote the unknown

signal such that ‖x‖2 = √
d, A = (a1, . . . , an)T ∈ R

n×d with {ai }1≤i≤n ∼i .i .d.

N(0d , Id/d), and y = (y1, . . . , yn) with yi ∼ p(· | 〈x, ai 〉). Consider the AMP
iterates zt , ẑt defined in (126) for some function ft (ẑ; y), with bt given by

bt = δ · E{ f ′
t (μt G0 + τt G1; Y )} , (204)

where the expectation is with respect to G0, G1 ∼i .i .d. N(0, 1) and Y ∼ p( · | G0).
Assume that the initialization z0 is independent of A and that, almost surely,

lim
n→∞

1

d
〈x, z0〉 = μ0, lim

n→∞
1

d
‖z0‖2 = μ2

0 + τ 20 . (205)

Let the state evolution recursion τt , μt be defined as

μt+1 = δ

∫
R

E
{
∂g p(y | X0) ft (μt X0 + τt G; y)

}
dy,

τ 2t+1 = δ · E
{(

ft (μt X0 + τt G; Y )
)2}

,

(206)

with initialization μ0 and τ0, where the expectation is taken with respect to
X0, G ∼i .i .d. N(0, 1). Then, for any t, and for any function ψ : R

2 → R such
that |ψ(u) − ψ(v)| ≤ L(1 + ‖u‖2 + ‖v‖2)‖u − v‖2 for some L ∈ R, we have that,
almost surely,

lim
n→∞

1

n

n∑
i=1

ψ(xi , zt
i ) = E {ψ(X0, μt X0 + τt G)} . (207)

Proof For g ∈ R, let H( · ; g) : [0, 1] → R ∪ {+∞,−∞} be the generalized inverse
of

F(y | g) ≡
∫ y

−∞
p(y′ | g) dy′,

namely,
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H(w; g) ≡ inf
{

y ∈ R : F(y | g) ≥ w
}
. (208)

With this definition, themodel yi ∼ p( · | 〈ai , x〉) is equivalent to yi = H(wi ; 〈ai , x〉)
for {wi }1≤i≤n ∼i .i .d. Unif([0, 1]) independent of A and x. Let w = (w1, . . . , wn) ∈
R

n and denote by [v1 | · · · | vk] ∈ R
m×k the matrix obtained by stacking column

vectors v1, . . . , vk ∈ R
m .

For t ≥ 0, define r t = 0d , r̂
t = Ax, and introduce the extended state variables

st ∈ R
d×2 and ŝt ∈ R

n×2, defined as

st = [zt | r t ],
ŝt = [ ẑt | r̂ t ]. (209)

We further define the functions ht = [ht,1 | ht,2] : R2 × R → R
2 and ĥt = [ĥt,1 |

ĥt,2] : R2 × R → R
2 by setting

ht (s1, s2; x) ≡ [s1 | x ],
ĥt (ŝ1, ŝ2;w) ≡ [ ft (ŝ1;H(w; ŝ2)) | 0 ]. (210)

With these notations, the iteration (126) is equivalent to

st+1 = ATĥt (ŝ
t ;w) − ht (st ; x)B̂t ,

ŝt = Aht (st ; x) − ĥt−1(ŝ
t−1;w)Bt−1,

(211)

where the functions ht (st ; x) and ĥt (ŝ
t ;w) are understood to be applied component-

wise to their arguments and Bt , B̂t ∈ R
2×2 are defined by

(B̂t ) j,k = δ · E
{

∂ ĥt,k

∂ ŝ j
(μt X0 + τt G, X0; W )

}
,

(Bt ) j,k = δ · E
{

∂ht,k

∂s j
(μt X0 + τt G, 0; X0)

}
.

(212)

The iteration (211) satisfies the assumptions of [41][Proposition 5]. By applying that
result, the claim follows. ��

At this point, first we present the proof of Lemma 4 and then of Theorem 5.

Proof (Proof of Lemma 4) Consider the state evolution recursion defined in (124) with
initialization μ0. Let ft be defined as in (127) with F given by (123). Suppose that, for
any t , (206) holds with μt = τ 2t . Then, by Lemma 13, the claim immediately follows.

The remaining part of the proof is devoted to show that (206) holds with μt = τ 2t ,
for t ≥ 0. First, we prove by induction that μt = τ 2t , for t ≥ 0. The basis of the
induction, i.e.,μ0 = τ 20 , is true by the hypothesis of the Lemma. Now, we assume that
μt = τ 2t and we show that μt+1 = τ 2t+1. Set

Z = μt X0 + τt G, (213)
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and note that Z ∼ N(0, μ2
t + τ 2t ). Then, we can rewrite X0 as

X0 = aZ + bG̃,

for some a, b ∈ R, where G̃ ∼ N(0, 1) and independent from Z . In order to compute
the coefficients a and b, we evaluateE{X2

0} andE{X0 ·Z}, thus obtaining the equations

a2(μ2
t + τ 2t ) + b2 = 1,

a(μ2
t + τ 2t ) = μt ,

which can be simplified as

a = μt

μ2
t + τ 2t

,

b = τt√
μ2

t + τ 2t

.

Furthermore, by using the inductive hypothesis μt = τ 2t and that qt = μt/(1 + μt ),
we obtain that

X0 = (1 − qt ) Z +√1 − qt G̃. (214)

Hence, the following chain of equalities holds:

τ 2t+1
(a)= δ

∫
R

E

{
p(y | X0) · ( ft (μt X0 + τt G; y)

)2} dy

(b)= δ

∫
R

E

{
p
(
y | (1 − qt ) Z +√1 − qt G̃

) · ( ft (Z; y)
)2} dy

(c)= δ

∫
R

E

{(
ft (Z; y)

)2 · E{p
(
y | (1 − qt ) Z +√1 − qt G̃

) ∣∣ Z
}}

dy

(d)= δ

∫
R

E

{(
E{∂g p(y | (1 − qt ) Z + √

1 − qt G̃) | Z}
E{p(y | (1 − qt ) Z + √

1 − qt G̃) | Z}
)2

· E{p
(
y | (1 − qt ) Z

+√1 − qt G̃
) ∣∣ Z

}}
dy

= δ

∫
R

E

{
E{∂g p(y | (1 − qt ) Z + √

1 − qt G̃) | Z}
E{p(y | (1 − qt ) Z + √

1 − qt G̃) | Z} · E{∂g p
(
y | (1 − qt ) Z

+√1 − qt G̃
) ∣∣ Z

}}
dy

(e)= δ

∫
R

E

{
ft (Z; y) · E{∂g p

(
y | (1 − qt ) Z +√1 − qt G̃

) ∣∣ Z
}}

dy

(f)= δ

∫
R

E

{
ft (μt X0 + τt G; y) · ∂g p(y | X0)

}
dy = μt+1,

(215)
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where in (a) we use that Y ∼ p(· | X0); in (b) we use (213) and (214); in (c) we
condition with respect to Z ; in (d) we use definition (127) of ft ; in (e) we use again
definition (127) of ft ; and in (f) we use again (213) and (214).

Finally, we prove thatμt+1 satisfies (206). Indeed, the following chain of equalities
holds:

μt+1
(a)= δ

∫
R

E

{(
E{∂g p(y | (1 − qt ) Z + √

1 − qt G̃) | Z})2
E{p(y | (1 − qt ) Z + √

1 − qt G̃) | Z}
}
dy

(b)= δ

∫
R

E

{(
E{∂g p(y | (1 − qt )

√
μ2

t + τ 2t G0 + √
1 − qt G1) | G0}

)2
E{p(y | (1 − qt )

√
μ2

t + τ 2t G0 + √
1 − qt G1) | G0}

}
dy

(216)

(c)= δ

∫
R

E

{(
E{∂g p(y | √

qt G0 + √
1 − qt G1) | G0}

)2
E{p(y | √

qt G0 + √
1 − qt G1) | G0}

}
dy = δ · h(qt ),

where in (a) we use (215); in (b) we set G1 = G̃ and G0 = Z/

√
μ2

t + τ 2t ; and in (c)

we use that μt = τ 2t and that qt = μt/(1 + μt ). ��

Proof (Proof of Theorem 5) In view of Lemma 4, it is sufficient to show that (q, μ) =
(0, 0) is an attractive fixed point of the recursion (124).

First of all, let us check that (q, μ) = (0, 0) is a fixed point. This happens if and
only if

h(0) =
∫
R

(
EG1{∂g p(y | G1)}

)2
EG1{p(y | G1)} dy = 0, (217)

which holds because of condition (131).
Let us now prove that this fixed point is stable. We start by rewriting the function

h(q) defined in (125) as

h(q) =
∫
R

EG0

{(
hnum(

√
q, y)

)2
hden(

√
q, y)

}
dy, (218)

where

hnum(x, y) = EG1

{
∂g p(y | x · G0 +

√
1 − x2 G1)

}
,

hden(x, y) = EG1

{
p(y | x · G0 +

√
1 − x2 G1)

}
.

(219)
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Note that hnum(0, y) = 0 by assumption (131). Then,

hnum(
√

q, y) = √
q

∂hnum(x, y)

∂x

∣∣∣∣
x=0

+ q

2

∂2hnum(x, y)

∂2x

∣∣∣∣
x=x1

,

hden(x, y) = hden(0, y) + √
q

∂hden(x, y)

∂x

∣∣∣∣
x=x2

,

(220)

for some x1, x2 ∈ [0,√q]. Furthermore, by applying Stein’s lemma, we have that

hnum(x, y) = 1√
1 − x2

EG1

{
G1 · p(y | x · G0 +

√
1 − x2 G1)

}
. (221)

By using (221), we can rewrite (220) as

hnum(
√

q, y) = √
q G0 · EG1{G1 · ∂g p(y | G1)}

+ q

2

1

(1 − x21 )
5/2

EG1 { fnum(G0, G1, x1)} ,

hden(x, y) = EG1{p(y | G1)} + √
q EG1 { fden(G0, G1, x2)} ,

where

fnum(G0, G1, x1) = G1

(
(1 + 2x21 ) p(y | x1 · G0 +

√
1 − x21 G1)

− (2G0 · x1(x21 − 1) + G1

√
1 − x21 (1 + 2x21 )

)
∂g p(y | x1 · G0 +

√
1 − x21 G1)

+ (x21 − 1)(G2
0 (x21 − 1) − G2

1 x21 + 2G0G1x1

√
1 − x21 )∂

2
g p(y | x1 · G0

+
√
1 − x21 G1)

)
,

fden(G0, G1, x2) =
⎛
⎝G0 − x2√

1 − x22

G1

⎞
⎠ · ∂g p(y | x2 · G0 +

√
1 − x22 G1).

(222)

By applying again Stein’s lemma and by using that the conditional density p(y |
g) is bounded, we note that EG1 { fnum(G0, G1, x1)} and EG1 { fden(G0, G1, x2)} are
bounded. Hence, by dominated convergence, we obtain that

h(q) = q ·
∫
R

(
EG1{∂2g p(y | G1)}

)2
EG1{p(y | G1)} dy + o(q).
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Therefore, in a neighborhood of the fixed point we have

qt = μt + o(μt ),

μt+1 = δ · qt ·
∫
R

(
EG1{∂2g p(y | G1)}

)2
EG1{p(y | G1)} dy + o(qt ).

(223)

Furthermore, by applying twice Stein’s lemma, we also have that

EG1{∂2g p(y | G1)} = EG1{p(y | G1)(G
2
1 − 1)}. (224)

By using (223), (224) and by recalling definition (42) of δu, we conclude that

qt = μt + o(μt ),

μt+1 = δ

δu
qt + o(qt ).

(225)

As δ < δu, the fixed point is stable. ��

F Proof of Lemma 5 and Theorem 6

For the proofs in this section, it is convenient to introduce the function

G(x, y; q̄) = EG{∂2g p(y | q̄ x + √
q̄G)}

EG{p(y | q̄ x + √
q̄G)} −

(
EG{∂g p(y | q̄ x + √

q̄G)}
EG{p(y | q̄ x + √

q̄G)}
)2

.

(226)

First, we present the proof of Lemma 5 and then of Theorem 6.

Proof (Proof of Lemma 5) Condition (131) implies that

F(0, y; 1) = 0. (227)

Furthermore, we have that

EY {G(0, Y ; 1)} (a)= EY

{
EG{∂2g p(Y | G)}
EG{p(Y | G)}

}

(b)=
∫
R

EG{∂2g p(y | G)} dy

= EG

{
∂2g

∫
R

p(y | G) dy

}
= 0,

(228)

where in (a) we use (227) and definition (226) of G(0, y; 1) and in (b) we use the fact
that y has density EG{p(y | G)}.
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Denote by F′(x, y; q̄) the derivative of F with respect to its first argument. Then,
we have

F′(x, y; q̄) = q̄G(x, y; q̄). (229)

Hence,

bt = δ · (1 − qt ) · E{G(μt G0 + √
μt G1, Y ; 1 − qt )} = δ · E{G(0; Y ; 1)} + oqt (1)

= oqt (1). (230)

By using (229) and (230), we linearize the recursion (126) around the fixed point
zt = 0d and ẑt−1 = 0n as

zt+1 = AT J ẑt + oqt (1)(‖zt‖2 + ‖ ẑt‖2) + o(‖ ẑt‖2) , (231)

ẑt = Azt − J ẑt−1 + oqt (1) ‖ ẑt−1‖2 + o(‖ ẑt−1‖2), (232)

where J ∈ R
n×n is a diagonal matrix with entries ji = F′(0, yi ; 1) for i ∈ [n]. By

substituting expression (232) for ẑt into the RHS of (231), the result follows. ��
Proof (Proof of Theorem 6) By definition, α is an eigenvalue of Ln if and only if

det(Ln − α In+d) = 0. (233)

Recall that, when D is invertible,

det

(
A B
C D

)
= det(D) · det(A − BD−1C). (234)

Then, after some calculations, we obtain that (233) is equivalent to

αd · det(−J − α In) · det(Id − AT(In + α J−1)−1A) = 0. (235)

From (235), we immediately deduce that the eigenvalues of Ln are real if and only
if all the solutions to

det(Id − AT(In + α J−1)−1A) = 0 (236)

are real.Wewill prove that in fact this equation does not have any solution forα ∈ C\R.
Let UΣV T be the SVD of A. Then, (236) is equivalent to

det(UΣ−2 − (In + α J−1)−1U) = 0.

Using the fact that det(Σ) �= 0, and det(In + α J−1) �= 0 for α ∈ C\R, Eq. (236) is
equivalent to

det((In + α J−1)U − UΣ2) = 0,
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or equivalently

det(In + α J−1 − AAT) = det(In + α J−1 − UΣ2UT) = 0.

Given that the solutions of this equations are generalized eigenvalues for the pairs
of symmetric matrices AAT − In and J−1, they must be real. We conclude that the
eigenvalues of Ln are real.

Note that

G(0, y; 1) (a)= EG{∂2g p(y | G)}
EG{p(y | G)}

(b)= EG{p(y | G)(G2 − 1)}
EG{p(y | G)}

(c)= T ∗(y)

1 − T ∗(y)
,

(237)

where in (a) we use that F(0, 1; y) = 0 as (131) holds; in (b) we apply twice Stein’s
lemma; and in (c) we use definition (45) of T ∗. Then, (236) can be rewritten as

det

(
Id −

n∑
i=1

T ∗(yi )

T ∗(yi ) + α(1 − T ∗(yi ))
ai aTi

)
= 0. (238)

Let λ
D∗

n
1 (α) be the largest eigenvalue of the matrix D∗

n(α) defined as

D∗
n(α) =

n∑
i=1

T ∗(yi )

T ∗(yi ) + α(1 − T ∗(yi ))
ai aTi . (239)

Note that, as α → +∞, the entries of D∗
n(α) tend to 0 with high probability. Since

the eigenvalues of a matrix are continuous functions of the elements of the matrix, we
also obtain that

lim
α→+∞ λ

D∗
n

1 (α) = 0.

Hence, if there exists ᾱ > 1 such that λ
D∗

n
1 (ᾱ) > 1, then there exists also ᾱ0 > ᾱ > 1

such that λ
D∗

n
1 (ᾱ0) = 1. Consequently, there exists α > 1 that satisfies (238), which

implies the result of the theorem.
The rest of the proof consists in showing that ᾱ = √

δ/δu satisfies the desired
requirements. First of all, note that

√
δ/δu > 1, as δ > δu. Furthermore, we have that

D∗
n(ᾱ) =

n∑
i=1

T ∗
δ (yi )ai aTi , (240)
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where T ∗
δ is defined in (44). Recall that, by hypothesis, x is such that ‖x‖2 = √

d
and {ai }1≤i≤n ∼i .i .d. N(0d , Id/d). Let x̃ = x/

√
d and ãi = √

d · ai . Then, 〈x, ai 〉 =
〈x̃, ãi 〉. Let λ D̃n

1 be the largest eigenvalue of the matrix D̃n defined as

D̃n = 1

n

n∑
i=1

T ∗
δ (yi )ãi ã

T
i . (241)

Since D̃n = D∗
n(ᾱ)/δ, it remains to prove that

λ
D̃n
1

a.s.−→ λ̃ >
1

δ
. (242)

To do so, we apply a result analogous to that of Lemma 2 for the real case with
T = T ∗

δ . For the moment, assume that T ∗
δ fulfills the hypotheses of Lemma 2 (we

will prove later that this is the case). Then, λ D̃n
1 converges almost surely to ζδ(λ

∗
δ ).

Recall that

ζδ(λ) = ψδ(max(λ, λ̄δ)),

where λ̄δ is the point of minimum of the convex function ψδ(λ) defined as

ψδ(λ) = λ

(
1

δ
+ E

{ T ∗
δ (Y )

λ − T ∗
δ (Y )

})
.

Notice also that this minimum is the unique local minimizer since ψδ is convex and
analytic.

Furthermore, λ∗
δ is the unique solution to the equation ζδ(λ

∗
δ ) = φ(λ∗

δ ), where φ(λ)

is defined as

φ(λ) = λ · E
{
T ∗

δ (Y ) · G2

λ − T ∗
δ (Y )

}
.

By setting the derivative of ψδ(λ) to 0, we have that

E

{
(T ∗

δ (Y ))2

(λ̄δ − T ∗
δ (Y ))2

}
= 1

δ
.

By using definition (44) of T ∗
δ and definition (45) of T ∗, we verify that

T ∗
δ (Y )

1 − T ∗
δ (Y )

=
√

δu

δ

EG{p(y | G)(G2 − 1)}
EG{p(y | G)} . (243)
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Hence, by using definition (42) of δu, we obtain that

E

{
(T ∗

δ (Y ))2

(1 − T ∗
δ (Y ))2

}
= δu

δ

∫
R

(
EG{p(y | G)(G2 − 1)})2

EG{p(y | G)} dy = 1

δ
,

which immediately implies that

λ̄δ = 1. (244)

By using (243), one also obtains that

E

{ T ∗
δ (Y )

1 − T ∗
δ (Y )

}
=
√

δu

δ

∫
R

EG{p(y | G)(G2 − 1)} dy =
√

δu

δ
EG{G2 − 1} = 0,

which implies that

ψδ(1) = 1

δ
. (245)

Furthermore, we have that

E

{
T ∗

δ (Y )(G2 − 1)

1 − T ∗
δ (Y )

}
=
√

δu

δ

∫
R

(
EG{p(y | G)(G2 − 1)})2

EG{p(y | G)} dy = 1√
δ · δu

>
1

δ
,

which implies that

φ(1) = 1√
δ · δu

>
1

δ
, (246)

as δ > δu. By putting (244), (245), and (246) together, we obtain that

φ(λ̄δ) > ζδ(λ̄δ). (247)

Recall that ζδ(λ) is monotone non-decreasing and φ(λ) is monotone non-increasing.
Consequently, (247) implies that λ∗

δ > λ̄δ . Thus, we conclude that

lim
n→∞ λ

D̃n
1 = ζδ(λ

∗
δ ) = ψδ(λ

∗
δ )

> ψδ(λ̄δ) = ψδ(1) = 1

δ
.

(248)

Now, we show that T ∗
δ fulfills the hypotheses of Lemma 2 by using arguments

similar to those at the end of the proof of Theorem 2. First of all, since T ∗(y) ≤ 1, we
have that T ∗

δ (y) is bounded. Furthermore, if T ∗
δ (y) is equal to the constant value 0,

then δu = ∞ and the claim of Theorem 6 trivially holds. Hence, we can assume that
P(T ∗

δ (Y ) = 0) < 1. Let τ be the supremum of the support of T ∗
δ (Y ). If P(T ∗

δ (Y ) =
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τ) > 0, then the condition (82) is satisfied and the proof is complete. Otherwise, for
any ε1 > 0, there exists Δ1(ε1) such that Eq. (115) holds. Define T ∗

δ (y, ε1) as in
(116). Clearly, the random variable T ∗

δ (Y , ε1) has a point mass at δ; hence, condition
(82) is satisfied. As a final step, we show that we can take ε1 ↓ 0. Define

D̃n(ε1) = 1

n

n∑
i=1

T ∗
δ (yi , ε1)ãi ã

∗
i .

Then,

∥∥ D̃n(ε1) − D̃n
∥∥
op ≤ C1 · Δ1(ε1), (249)

where the constant C1 depends only on n/d. Consequently, by using (249) andWeyl’s
inequality, we conclude that

|λ D̃n(ε1)
1 − λ

D̃n
1 | ≤ C1 · Δ1(ε1). (250)

Hence, for any n, as ε1 tends to 0, the largest eigenvalue of D̃n(ε1) tends to the largest
eigenvalue of D̃n , which concludes the proof. ��
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