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Abstract
In phase retrieval, we want to recover an unknown signal x € C? from n quadratic
measurements of the form y; = |(a;, x)|*> + w;, where a; € C¢ are known sensing

vectors and w; is measurement noise. We ask the following weak recovery question:
What is the minimum number of measurements n needed to produce an estimator
X (y) that is positively correlated with the signal x? We consider the case of Gaussian
vectors a;. We prove that—in the high-dimensional limit—a sharp phase transition
takes place, and we locate the threshold in the regime of vanishingly small noise. For
n < d—o(d),no estimator can do significantly better than random and achieve a strictly
positive correlation. For n > d + o(d), a simple spectral estimator achieves a posi-
tive correlation. Surprisingly, numerical simulations with the same spectral estimator
demonstrate promising performance with realistic sensing matrices. Spectral methods
are used to initialize non-convex optimization algorithms in phase retrieval, and our
approach can boost the performance in this setting as well. Our impossibility result is
based on classical information-theoretic arguments. The spectral algorithm computes
the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp
characterization of the spectral properties of this random matrix using tools from free
probability and generalizing a recent result by Lu and Li. Both the upper bound and
lower bound generalize beyond phase retrieval to measurements y; produced accord-
ing to a generalized linear model. As a by-product of our analysis, we compare the
threshold of the proposed spectral method with that of a message passing algorithm.
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1 Introduction

In this work, we consider the problem of recovering a signal x of dimension d, given
n generalized linear measurements. More specifically, the measurements are taken
independently according to the conditional distribution

yi~pyl(x,ai), iefl, ... n} ey

where (-, -) denotes the inner product, {a; }1<;<, is a set of known sensing vector, and
p(- | (x,a;)) is a known probability density function. This model appears in many
problems in signal processing and statistical estimation, e.g., photon-limited imaging
[72,81], signal recovery from quantized measurements [62], and phase retrieval [34,
65]. For the problem of phase retrieval, the model (1) is specialized to

vi=|x, @) +wi, iefl,...,n} 2)

where w; is noise. Applications of phase retrieval arise in several areas of science
and engineering, including X-ray crystallography [38,52], microscopy [51], astron-
omy [35], optics [76], acoustics [4], interferometry [25], and quantum mechanics [22].

Popular methods to solve the phase retrieval problem are based on semi-definite
programming relaxations [14,15,17,75]. However, these algorithms rapidly become
prohibitive from a computational point of view when the dimension d of the sig-
nal increases, which makes them impractical in most of the real-world applications.
For this reason, several algorithms have been developed in order to solve directly
the non-convex least-squares problem, including the error reduction schemes dating
back to Gerchberg—Saxton and Fienup [34,36], alternating minimization [57], approx-
imate message passing (AMP) [64], Wirtinger Flow [16], iterative projections [47], the
Kaczmarz method [80], and a number of other approaches [13,20,33,68,77-79,83].
Furthermore, recently a convex relaxation that operates in the natural domain of the
signal was independently proposed by two groups of authors [2,37]. All these tech-
niques require an initialization step, whose goal is to provide a solution X that is
positively correlated with the unknown signal x. To do so, spectral methods are widely
employed: The estimate x is given by the principal eigenvector of a suitable matrix
constructed from the data. A similar strategy (initialization step followed by an itera-
tive algorithm) has proved successful for many other estimation problems, e.g., matrix
completion [40,44], blind deconvolution [46,48], sparse coding [1], and joint align-
ment from pairwise noisy observations [19].

We focus on aregime in which both the number of measurement # and the dimension
of the signal d tend to infinity, but their ratio n /d tends to a positive constant 8. The weak
recovery problem requires to provide an estimate X (y) that has a positive correlation
with the unknown vector x:

liminfE{| [(* (), x)| } > €, 3)

n=oo L E) ], el

for some € > 0.
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In this paper, we consider either x € R? orx € C¢ and assume that the measurement
vectors a; are standard Gaussian (either real or complex). In the general setting of
model (1), we present two types of results:

1. We develop an information-theoretic lower bound 8¢: For § < §;, no estimator can
output non-trivial estimates. In other words, the weak recovery problem cannot be
solved.

2. We establish an upper bound §, based on a spectral algorithm: For § > &,, we
can achieve weak recovery [see (3)] by letting x be the principal eigenvector of
a matrix suitably constructed from the data. We also show that 4, is the optimal
threshold for spectral methods.

The values of the thresholds §; and &, depend on the conditional distribution p(- |
(x, a;)). For the special case of phase retrieval [see (2)], we evaluate these bounds and
we show that they coincide in the limit of vanishing noise.

Theorem Let x be uniformly distributed on the d-dimensional complex sphere with
radius ~/d and assume that {aiti<i<n ~iia. CN(Og, I4/d). Let y € R" be given by
(2), with {w; }1<i<n ~ N(O, 02), andn,d — oo withn/d — § € (0, +00). Then,

— For § < 1, no algorithm can provide non-trivial estimates on x;
— For$ > 1, there exists 00(8) > 0 and a spectral algorithm that returns an estimate
X satisfying (3), for any o € [0, op(8)].

The assumption that x is uniform on the sphere can be dropped for the upper bound
part. We also show that o((8) scales as +/6 — 1 when § is close to 1. In the ‘real
case’ x € R? with ||x||§ =d and {a;}1<i<n ~iia. N4, I4/d), we prove that an
analogous result holds and that the threshold moves from 1 to 1/2. This is reminiscent
of how the injectivity thresholds are § = 4 and § = 2 in the complex and the real case,
respectively [4,5,21]. A possible intuition for this halving phenomenon comes from
the fact that the complex problem has twice as many variables but the same amount of
equations of the real problem. Hence, it is reasonable that the complex case requires
twice the amount of data with respect to the real case.

Let us emphasize that we are considering the problem of weak recovery. Therefore,
we may need less than n samples in order to obtain positive correlation on # unknowns.
For instance, in the linear case y; = (a;, x) + w;, weak recovery is possible for any
8 > 0. Consequently, it is not surprising that for phase retrieval in the real case weak
recovery can be achieved for 6 below one.

Our information-theoretic lower bound is proved by estimating the conditional
entropy via the second-moment method. In general, this might not match the spectral
upper bound. We provide an example in which there is a strictly positive gap between
8¢ and &, in Remark 3 at the end of Sect. 3.

As in earlier work (see Sect. 1.1), we consider spectral algorithms that compute the
eigenvector corresponding to the largest eigenvalue of a matrix of the form:

1 n

D, =~ 2; T (y)aia; )
=

EOE';W
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where 7 : R — R is a pre-processing function. For § large enough (and a suitable
choice of 7'), we expect the resulting eigenvector X (y) to be positively correlated with
the true signal x. The recent paper [49] computed exactly the threshold value ,, under
the assumption that the measurement vectors are real Gaussian, and 7 is nonnegative.

Here, we generalize the result of [49] by removing the assumption that 7 (y) > 0
and by considering the complex case. The main technical lemma of this generalization
consists in the computation of the largest eigenvalue of a matrix of the form UM, U*,
where the entries of U are ~; ;4. CN(O, 1) and M, is independent of U and has
known empirical spectral distribution. The case in which M, is PSD is handled in [3].
In this paper, by using tools from free probability, we solve the case in which M, is
not necessarily PSD. To do so, it is not sufficient to compute the weak limit of the
empirical spectral distribution of UM, U*, but we also need to compute the almost
sure limit of its principal eigenvalue. Armed with this result, we compute the optimal
pre-processing function Zg*(y) for the general model (1). This pre-processing function
is optimal in the sense that it provides the smallest possible weak recovery threshold
for the spectral method. Our upper bound §, is the phase transition location for this
optimal spectral method. In the case of phase retrieval (as ¢ — 0), the optimal pre-
processing function is given by

y—1
Y+

and achieves weak recovery for any § > §, = 1. In the limit § | 1, this converges to
the limiting function 7*(y) = 1 — (1/y).

While expression (5) is remarkably simple, it is somewhat counterintuitive. Earlier
methods [16,18,49] use 7 (y) > 0 and try to extract information from the large values
of y;. Function (5) has a large negative part for small y, in particular when § is close
to 1. Furthermore, it extracts useful information from data points with y; small. One
possible interpretation is that the points in which the measurement vector is basically
orthogonal to the unknown signal are not informative; hence, we penalize them.

Our analysis applies to Gaussian measurement matrices. However, the proposed
spectral method works well also on real images and realistic measurement matrices. To
illustrate this fact, in Fig. 1 we test our algorithm on a digital photograph of the painting
“The birth of Venus” by Sandro Botticelli. We consider a type of measurements that
falls under the category of coded diffraction patterns (CDP) [15,20]: The measurement
matrix is given by the product of é copies of a Fourier matrix and a diagonal matrix
with entries i.i.d. and uniform in {1, —1, i, —i}, where i denotes the imaginary unit.
We compare our method with the truncated spectral initialization proposed in [20],
which consists in discarding the measurements larger than an assigned threshold and
leaving the others untouched. The proposed choice of the pre-processing function
allows to recover a good estimate of the original image already when § = 4, while the
truncated spectral initialization of [20] requires 6 = 12 to obtain similar results.

In general, our proposed spectral method can be thought of as a first step of the fol-
lowing two-round algorithm: First, use spectral initialization to perform weak recovery
and then improve the solution with an iterative algorithm, e.g., AMP or Wirtinger Flow.
By using optimal truncation methods, the weak recovery threshold is smaller, which

Elol:;ﬂ
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(b) (c)

(d) (e)

(®

Fig. 1 Performance comparison between the proposed spectral method and the truncated spectral initial-
ization of [20] for the recovery of a digital photograph from coded diffraction patterns. a Original image,
b proposed—34 = 4, ¢ truncated—38 = 4, d proposed—3 = 6, e truncated—4§ = 6, f proposed—35 = 12, g
truncated—¢§ = 12
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means that less measurements are required in order to successfully complete the first
step of the algorithm. If a different truncation is used, the resulting performances are
limited by the corresponding weak recovery threshold.

Note that the pre-processing function (5) is optimal in the sense that it minimizes
the weak recovery threshold associated with the spectral method. Hence, for a given
correlation € € (0, 1), the exact expression of the optimal pre-processing function that
allows to obtain a correlation € between X (y) and x might be different and it might
depend on €. However, we observe that (5) provides excellent empirical performance
and outperforms state-of-the-art methods for a wide range of target correlations (see
the simulation results of Sect. 7).

The rest of the paper is organized as follows. In Sect. 2, after introducing the
necessary notation, we define formally the problem. We then state our general
information-theoretic lower bound and our spectral upper bound for the case of com-
plex signal x and complex measurement vectors @;. The main results for the real case
are stated in Sect. 3. In Sects. 4 and 5, we present the proof of the information-theoretic
lower bound and of the spectral upper bound, respectively. In Sect. 6, we compare the
spectral approach to a message passing algorithm. In particular, we show that the lat-
ter cannot have a better threshold than &, and that §, is the threshold for a linearized
version of message passing. In Sect. 7, we present some numerical simulations that
illustrate the behavior of the proposed spectral method for the phase retrieval problem.
The proofs of several results are deferred to the various appendices.

1.1 Related Work

Precise asymptotic information on high-dimensional regression problems has been
obtained by several groups in recent years [8,10,31,32,43,58-60,70,71,82]. In par-
ticular, information-theoretically optimal estimation was considered for compressed
sensing [29] and random linear estimation [7,63]. Minimax optimal estimation is con-
sidered, among others, in [31,70,73].

The performance of the spectral methods for phase retrieval was first considered
in [57]. In the present notation, [57] uses 7 (y) = y and proves that there exists a
constant ¢; such that weak recovery can be achieved for n > ¢y - d - log>d. The
same paper also gives an iterative procedure to improve over the spectral method, but
the bottleneck is in the spectral step. The sample complexity of weak recovery using
spectral methods was improvedton > c¢y-d-logd in[16] andthenton > c3-d in [20],
for some constants ¢> and c3. Both of these papers also prove guarantees for exact
recovery by suitable descent algorithms. The guarantees on the spectral initialization
are proved by matrix concentration inequalities, a technique that typically does not
return exact threshold values.

In [37], the authors introduce the PhaseMax relaxation and prove an exact recovery
result for phase retrieval, which depends on the correlation between the true signal and
the initial estimate given to the algorithm. The same idea was independently proposed
in [2]. Furthermore, the analysis in [2] allows to use the same set of measurements
for both initialization and convex programming, whereas the analysis in [37] requires
fresh extra measurements for convex programming. By using our spectral method to

FoC'T
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obtain the initial estimate, it should be possible to improve the existing upper bounds
on the number of samples needed for exact recovery.

As previously mentioned, our analysis of spectral methods builds on the recent work
of Lu and Li [49] that compute the exact spectral threshold for a matrix of the form (4)
with 7 (y) > 0. Here, we generalize this result to signed pre-processing functions 7 (y)
and construct a function of this type that achieves the information-theoretic threshold
for phase retrieval. Our proof indeed implies that nonnegative pre-processing functions
lead to an unavoidable gap with respect to the ideal threshold.

Finally, while this paper was under completion, two works appeared that address
related problems. In [6], the authors characterize the information-theoretically opti-
mal estimation error for a broad class of models of the form (1). However, note that
this analysis does not prove—in general—the existence of an efficient estimation algo-
rithm (for instance in the case of phase retrieval). The paper [27] studies the PhaseMax
approach [2,37] to phase retrieval and uses the non-rigorous replica method from sta-
tistical physics to derive exact thresholds for this algorithm. The rigorous performance
analysis of PhaseMax under Gaussian measurements in the large system limit is pro-
vided in [28].

2 Main Results: Complex Case
2.1 Notation and System Model

We use [r] as a shortcut for {1, ..., n}. We use uppercase letters (e.g., X, Y, Z,...)to
denote random variables when we are taking operators such as expectation, variance,
or mutual information. We denote by 0,, the vector consisting of n Os. Given a vector x,
we denote by ||x ||, its £, norm. Given a matrix A, we denote by || A|| f its Frobenius
norm, by ||Ally, its operator norm, by AT its transpose, and by A* its conjugate
transpose. Given two vectors x, y € C¢, we denote by (x, y) = Zle x;y; their
scalar product. We take logarithms in the natural basis and we measure entropies in
nats. Given c € C, we denote by 9i(c) and J(c) its real and imaginary part, respectively.
We use P, and = to denote the convergence in probability and the almost sure
convergence, respectively.

Let x € C? be chosen uniformly at random on the d-dimensional complex sphere
with radius V/d, i.e.,

x ~ Unif (v/dSE™). ©)

Let the sensing vectors {a;}1<j<n, with a; € C4, be independent and identically
distributed according to a circularly symmetric complex normal distribution with vari-
ance 1/d, i.e.,

{aiti<i<n ~iia. CN(Og, 14/d). @)

Given g; = (x, a;), the vector of measurements y € R” is obtained by drawing
each component independently according to the following distribution:

EOE';W
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yi~pOllgh, ie€lnl (8)

For the special case of phase retrieval, the measurements are given by the squared
scalar product corrupted by additive Gaussian noise with variance o2, i.e.,

o —lsiP)?

1
per(y | 1gil) = Gmexp< T)‘ 9

Let 8, = n/d and assume that, as n — 00, §,, — § for some § € (0, 00).

2.2 Information-Theoretic Lower Bound

The main result of this section establishes the following: There is a critical value §;
such that, for any § < §¢, the optimal estimator has the same performance as a trivial
estimator that does not have access to any measurement. The value of §, depends on
the distribution (8) of the measurements, and we provide an expression to compute it.

In order to state formally the result, we need to introduce a few definitions. Consider
the function f : [0, 1] — R, given by

Fm) :/ EGi.6, {p(y 11G1Dp(y | 1G2D} dy, (10)
R

Eg {p(y 1 1GD}

with
G ~CN(, 1), (G;,G2) ~CN (oz[i*ﬂ) (11)

and m = |c|?. Note that the RHS of (10) depends only on m = |c|?. Indeed, by
applying the transformation (G, G2) — (e“" G, e G»), f(m) does not change,
but the correlation coefficient ¢ is mapped into ce!®—%2) . A more explicit formula for
f(m) is provided by Lemma 6 in Appendix A. The function f(m) is related to the
conditional entropy H (Y1, ..., Y, | A1, ..., A,),asclarified in the proof of Lemma 1
in Sect. 4.1. Furthermore, set

Fs(m) = 8log f(m) +log(1 — m). (12)

Note that when m = 0, G| and G, are independent. Hence, f(0) = 1, which implies
that F5(0) = O for any 6 > 0. We define the information-theoretic threshold §; as the
largest value of § such that the maximum of Fjs(m) is attained at m = 0, i.e.,

8¢ = sup{d | Fs(m) < 0form € (0, 1]}. (13)

Let us now define the error metric. The setting is the following: We observe the
vector of n measurements y and, given a new sensing vector @, 41, we want to estimate
some function ¢ (|(x, a,+1)|) given by

Elol:;ﬂ
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¢ (I{x, an1)]) = /Rtp(y)p(y | [¢x, anq1)])dy. (14)

Then, the minimum mean square error is defined as
2
MMSE(S,) = E{ (AU, Apin)) = E{$((X. Aus)) | ¥, {Aihiziza}) } (15)

where E {¢ (X, Aps 1)) | Y, {Aih<i<n } represents the optimal estimator of the
quantity ¢ (|(x, a@,+1)]) and the expectation of the square error is to be intended over all
the randomness of the system, i.e., over X, A, 11, Y, and {A; }1<;<,. Note that this error
metric depends on the choice of the function ¢. Furthermore, observe that if we do not
have access to the vector of measurements Y, the trivial estimator E {¢ (|(X, A, +1)])}
has a mean square error given by

2
]E{(¢(|(X,A,,+1)|)—IE{¢(|<X, An+1>|)}> }=Var{¢(|(X,An+1)|)}- (16)

At this point, we are ready to state our main result, which is proved in Sect. 4.1.

Theorem 1 (Information-theoretic lower bound for general complex sensing model)
Let x, {a;}1<i<n+1, and y be distributed according to (6), (7), and (8), respectively.
Let n/d — § and define §; as in (13). Furthermore, assume that the function ¢ that
appears in (14) is bounded. Then, for any § < 8¢, we have that

lim MMSE(8,) = Var{¢(|(X, An11)D}. (17)

Let us point out that the requirement that the function ¢ is bounded can be relaxed
when the tails of the distribution of Y are sufficiently light (e.g., sub-Gaussian). Indeed,
this is what happens for the special case of phase retrieval, which is considered imme-
diately below.

For the special case of phase retrieval, a more explicit error metric is given by the
matrix minimum mean square error, defined as

1
MMSEp (5,) = 5 { |xx* —E{XX* | V. (Aihiin)

2
‘F}. (18)

Indeed, the vector x can be recovered only up to a sign change, since we observe a
function of the scalar products |(x, a;)|. Clearly, MMSE(§,,) € [0, 1] and MMSE($,) =
1 implies that the optimal estimator coincides with the trivial estimator that outputs
the all-0 vector.

The corollary below provides the exact value of &, for the case of phase retrieval,
and it is proved in Appendix A.

Corollary 1 (Information-theoretic lower bound for phase retrieval) Let x, {@;}1<i<n,

and y be distributed according to (6), (7), and (9), respectively. Let n/d — §. Then,
forany § < 1, we have that

FoC Tl
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lim lim MMSEpg(S,) = 1. (19)

o—0n—>00

2.3 Upper Bound via Spectral Method

The main result of this section establishes the following: There is a critical value §,
such that, for any § > §,, the principal eigenvector of a suitably constructed matrix,
call it D,,, provides an estimate x that satisfies (3). The threshold &, is defined as

1
bu = . (20)

/ (Ec {p(y 11GDAGE — D))’ |
2 Eglp(y 1G]

with G ~ CN(O0, 1). Given the measurements {y;}1<;<,, we construct the matrix D,
as

1 n
D, ==Y T(aia}, 2D
n
i=1

where 7 : R — R is a pre-processing function.
At this point, we are ready to state our main result, which is proved in Sect. 5.

Theorem 2 (Spectral upper bound for complex general sensing model) Letr x,
{a;}1<i<n, and y be distributed according to (6), (7), and (8), respectively. Letn/d — §
and define 8, as in (20). Let X be the principal eigenvector of the matrix D,, defined
in (21). For any § > 8y, set the pre-processing function T to the function T given by

Vo - T*(y)
T (y) = , 22
s = =T ) .
where
Ec{p(y | IG])}
T*(v) =1— . 23
o) Eg {p(y | 1G] - |G} @9
Then, we have that, almost surely,
[(x, x)] . 24)

m 5 >
oo &, il

for some € > 0. Furthermore, for any § < 8, there is no pre-processing function T
such that, almost surely, (24) holds.

Let us highlight that the pre-processing function (22) provides the optimal threshold
among spectral methods that use matrices of the form (4) in the sense that it achieves
weak recovery for § > §, and no function achieves weak recovery for § < §,. Note

Elol:;ﬂ
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also that the assumption that x is uniform on the sphere can be dropped (see the
beginning of the proof of Lemma 2 in Sect. 5).

As a by-product of our analysis, we also give guarantees on the value of § sufficient
to achieve an assigned correlation with the ground truth, using the spectral method,
see (84) in the statement of Lemma 2 in Sect. 5. Hence, we can combine our upper
bound with existing non-convex optimization algorithms, in order to obtain provable
performance guarantees.

The corollary below provides the exact value of §, and an explicit expression for
75 (y) for the case of phase retrieval. Its proof is contained in Appendix B. Note
that, for phase retrieval, §, = 8¢ = 1, i.e., the spectral upper bound matches the
information-theoretic lower bound.

Corollary 2 (Spectral upper bound for phase retrieval) Let x, {a;}1<i<n, and y be
distributed according to (6), (7), and (9), respectively. Let n/d — 8. Let X be the
principal eigenvector of the matrix D,, defined in (21). For any § > 1, set the pre-
processing function T to the function T given by (with y, = max(0, y)):

y+—1
Ty = ———F+. (25)
’ y++8-1
Then, we have that, almost surely,
lim lim X, )| €, (26)

=00 [£], flxlla

for some € > 0.

Notice that this statement is stronger than the claim that §, (63 > laso? = 0,
where 8,(c%) is the spectral threshold at noise level o2, Indeed, it requires proving
that the scalar product | (X, x)| stays bounded away from 0, as o2 — 0. Furthermore,
this is achieved with the pre-processing function (25) that does not require to estimate
o, which can be challenging with real data.

We also characterize the scaling between 8, and o> when o2 is close to 0: 8, (0%) =
1+ 024 0(c?) (see Lemma 8 in Appendix B).

3 Main Results: Real Case

Let us now briefly discuss what happens in the real case. Let x € R? be chosen
uniformly at random on the d-dimensional real sphere with radius \/c_i ,i.e.,

x ~ Unif (VdSE™). (27)

Let the sensing vectors {a;}1<;j<x, With a; € R4 being independent and identically
distributed according to a normal distribution with zero mean and variance 1/d, i.e.,

{aihi<i<n ~iia. NOg, 14/d). (28)
EOE';W
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Given g; = (x, a;), the vector of measurements y € R" is obtained by drawing each
component independently according to the following distribution:

yi~pWylg), i€lnl (29)

We can define the “real” phase retrieval model, whereby the measurements are given
by the squared scalar product corrupted by additive Gaussian noise with variance o2,

ie.,

1 v—g)°
per(Y | 81) = oo P <—T) : (30)

We first present the information-theoretic lower bound. Consider the function f :
[—1, 1] — R, given by

o= [ Fsloien,
with
G ~N©,1), (G1,Gy)~N (02, [lln ’I"D . 32)
Furthermore, set
Fs(m) = 8log f(m) + % log(1 — m?). (33)

Again, F5(0) = 0 for any § > 0. We define the information-theoretic threshold §; as
the largest value of § such that the maximum of Fg(m) is attained at m = 0, i.e.,

8¢ = sup{s | Fs(m) < 0 form € [—1, 1]\{0}}. (34)

As for the error metric, we observe the vector of n measurements y and, given a
new sensing vector a,41, we want to estimate some function ¢ ({(x, @,1)) given by

¢((x.ani1)) = /Rw(y)p(y | {x, ani1))dy. (35)

Then, the minimum mean square error is defined as

2
MMSE<sn>=E{(¢><<X, Ap1) = E{9 (X, Api) | ¥, (A zin}) } (36)
Elol:;ﬂ
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Recall that, if we do not have access to the vector of measurements y, the trivial
estimator E {¢ ((X, A,+1))} has a mean square error given by

2
E{ <¢(<X, Ant1)) —E{o (X, An+1>)}> } = Var{¢((X, Apr1)}.  (37)

At this point, we are ready to state the information-theoretic lower bound, which is
proved in Sect. 4.2.

Theorem 3 (Information-theoretic lower bound for real general sensing model) Let
x, {a;i}1<i<n+1, and y be distributed according to (27), (28), and (29), respectively.
Let n/d — § and define &, as in (34). Furthermore, assume that the function ¢ that
appears in (35) is bounded. Then, for any § < §;, we have that

Jim MMSE(S,) = Var{¢ (X, Ayi1))]. (38)

Remark 1 (Information-theoretic lower bound for real phase retrieval) For the special
case of phase retrieval, a more explicit error metric is given by the matrix minimum
mean square error, defined as

1
MM$m®J=ﬁEMXf—EHXWYJmm%ﬁ

2
‘F}. (39)

By calculations similar to those in Lemma 7 contained in Appendix A, one can prove
that, if the distribution p(- | G) appearing in (31) is given by (30), then

lim Se(c?) =1/2. (40)

Consequently, by following a proof analogous to that of Corollary 1 in Appendix A,
we conclude that, for any 6 < 1/2,

lim lim MMSEpg(8,) = 1. 1)

o—>(0n—0o0
Let us now move to the spectral upper bound. The threshold 4, is defined as

1
bu = ; (42)

/@dmwmw4m2
R Ec{p(y | G)}

dy
with G ~ N(0, 1). Given the measurements {y; }1<;<,, we construct the matrix D,, as
1 T
uF;Zﬂme (43)
i=1
where 7 : R — R is a pre-processing function.
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The proof of the following spectral upper bound is discussed in Remark 7 at the
end of Sect. 5.

Theorem 4 (Spectral upper bound for real general sensing model) Let x, {a;}1<i<n,
and y be distributed according to (27), (28), and (29), respectively. Let n/d — § and
define 8y as in (42). Let X be the principal eigenvector of the matrix D, defined in
(43). For any § > 8y, set the pre-processing function T to the function Ij* given by

Vou - T*(y)
T (y) = , (44)
P - (e — T ()
where
Ec{p(y | G)}
T' () =1- . 45
O T B0 16)- 67 )
Then, we have that, almost surely,
[(x, x)] . (46)

oo & lxlla

for some € > 0. Furthermore, for any § < 8, there is no pre-processing function T
such that, almost surely, (46) holds.

Remark 2 (Spectral upper bound for real phase retrieval) By calculations similar to
those in Lemma 8 contained in Appendix B, one can prove that, if the distribution
p(- | G) appearing in (31) is given by (30), then

1im0 Su(c?) =1/2. (47)

Furthermore, by following a proof analogous to that of Corollary 2 in Appendix B,
one can prove the following result. For any 6 > 1/2, set the pre-processing function
T to the function 7;* given by (with y; = max(y, 0))

1
Ty = —2 (48)

yi+28—1
Then, we have that, almost surely,

lim im0

Bk aibati i 49
o T el @

for some € > 0. Note that, for real phase retrieval, the spectral upper bound matches
the information-theoretic lower bound.

In the following remark, we provide an example in which there is a strictly positive
gap between &; and §y.
Elol:;ﬂ
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Remark 3 (Gap between 8y and §,) Let us define
H(a) = Eg [tanhz(a G) (G2 - 1)} , (50)

where G ~ N(0, 1). Note that H(0) = 0 and lim,_, ~, H (a) = 0. Hence, there exists
ap > aj such that H(ay) = H(a»).

Consider the following distribution for the components of the vector of measure-
ments y:

_ tanhz(az g) — tanhZ(a] g), fory € [1, 2],
POy 18) = { 1 — (tanh?(a2 g) — tanh(a; g)), for y € [—2, —1]. S
Then, we have that, for any y € R,
Ec {p(v16)(G*— D} =0, (52)

which, by definition (42), immediately implies that §, = oco. Note that this argument
works when we substitute tanh? (x) with any function which is even, increasing for
x > 0 and bounded between 0 and 1.

Let us now show that d; is finite. Consider the function f (m) defined in (31). As
previously mentioned, f(0) = 1. Furthermore,

Eg {(p(y | G))*}
1) = d
F ,/R Ec{p(y | G)}

_ [ Ecip©y | G)H? + Var {p(y | G)}
R Ec{p(y | G)}
Var {p(y | G)}
+/RIEG{p<y o7

dy (53)

Consequently, there exists m, € (0, 1) such that f(m,) > 1. Set

log(1 — m?2
o logl-md s
2log f(my)
Then, we have that, for any § > §*,
Fs(my) > Fs (my) = 1> 0. (55)

Hence, by definition (34), we conclude that §; < §*, which implies that §; is finite.
Note that this upper bound on &, applies to any p(y | G) which is not constant in G
on a set of positive measure. As a result, there is a strictly positive gap between §, and
8!

! This gap is not due to the looseness of our lower bound. Indeed, by using the result of [6], one can show
that the actual information-theoretic threshold is finite.
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4 Proof of Theorems 1 and 3: Information-Theoretic Lower Bound
4.1 Complex Case

The crucial point of the proof consists in the computation of the conditional entropy
H(Y | A), which is contained in Lemma 1. Then, we use this result to compute
the mutual information for the considered model. Finally, we provide the proof of
Theorem 1.

Lemma 1 (Conditional entropy) Let x ~ Unif(«/gsgfl), A = (ay,...,a,) with

{laihi<i<n ~iia. CN(Oq, 1g/d), and y = (y1,....yn) with y;i ~ p(- | |gil) and
gi = (x,a;). Let n/d — § and define §; as in (13). Then, for any § < 8¢, we have
that

lim lH(Y | A) = H(Y)). (56)
n—-oon

Proof We divide the proof into two steps. The first step consists in showing that

2
L BA@OTAT ) Ly a - mo <0, )
n\ Jpa Ealp(y A} n

which holds for all n € N and for all § > 0. The proof of (57) does not require any
assumption on the distribution of x and on the distribution of {a;}1<i<, (as long as
the vectors {a;}1<;<, are independent).

The second step consists in showing that

1 Ea{(p(y | A)?}
1 — dy — 1 =0. 58
A / Eslpy A o

It is clear that (57) and (58) imply the thesis.

First step. By definition of conditional entropy, we have that

1 1
CH(Y | 4) = ;/EA (—p(y | A)log p(y | A)} dy. (59)

By using the definition of y; and the fact that they are independent, we can rewrite
Ea{p(y | A)} as follows

Ea{p(y 1A} =Eqx{ply| A, X)}

n
=Eax [Hp(yi | (X, A,~>|>} (60)
i=1
Elol:;ﬂ
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=[[Ea (pGi 11GiD}.

i=1
where we set G; = (X, A;).
Let us now give an upper bound on the RHS of (59):

1
—/ Esa{—p(y | A)logp(y | A)} dy
n Rd

@ 1
< —/ —Ea{p(y | A)}logE4 {p(y [ A)} dy
n Jrd

b 1 n n
® ;/Rd —EEG,- (pOi 11GiD} S logEq, {p(yy 1 G} dy

j=1
1 n
==y fR ~Eg, {pGi | 1GiD}logEq, {p(i | 1G]} dy;
i=1

= H(1),

where in (a) we apply Jensen’s inequality as the function g(x) = —x log x is concave,
and in (b) we use (60). This immediately implies that

lH(Y|A)_H(Y1)§O- (61)
n

Note that the upper bound (61) is based on the inequality

Ea{=p(y | A)logp(y | A} — (=Ea{p(y | A)}logE4 {p(y | A)}) = 0.

Let us now find a lower bound to this quantity:

Ea{-=p(y | A)logp(y | A} — (=Ea{p(y | A)}logE4 {p(y | A)})

A
= {_p (1 4)log EAP{% | 34)}}

YR, (p(y | A} Ez{~ZlogZ)

b
Oy ip(y | AVEL{~ZlogZ +Z — 1)

© 62
= —Ea{py | A)Ez {2 -1
©-Ealp(y| A (B2 |22] - 1)
Ea{(p(y 14}
= — —E A 5
( i h o Ealo >})
EOE';W
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where in (a) weset Z = p(y | A)/E4 {p(y | A)},in (b) we use that Ez {Z} = 1, in
(c) we use that —zlogz +z — 1 > —(z — 1)? for any z > 0, and in (d) we use again
that Ez {Z} = 1. Therefore,

1 1

;H(Y |A)—HY) = - (Es{=p(y | A)logp(y | A}

— (=Ea{p(y | A)}logEs {p(y | A)})dy

@ 1 E A))?
z——f ( a{py | 4) }—EA{p<y|A>}> dy,
Rd

n Ea(p(y]A)]
2

o L[ [ Ealoeoiar) o)
n\ . Ealp TA)

where in (a) we use (62) and in (b) we use that the integral of p(y | A) is 1. This
concludes the proof of (57).

Second step. As X ~ Unif(\/ESé_l) and A; ~ CN(0y, 14/d), we have that
{Giti<i<n ~iia. CN(O, 1).
Let us rewrite the quantity E4 {(p(y | A))?} as follows:
" 2
Ea{p(y140?] =Ea (Ex {]‘[p(yi X, Ai)I)D
i=1
@ .
a
=FEa1Ex, x, {l_[ pOi | (X1, ADD - p(yi | (X2, Ai)|)”

i=1

(63)

n
b
QB B, .60 (PO 11GitD - pGi | |Gi,2|>}},

i=1

where in (a) X and X, are independent and in (b) we set G; 1 = (X1, 4;), Gi2 =
(X2, A;), and

_ (X1, Xy)
X102 1 X2l

Then, given C = ¢, as X1, X2 ~;;q. Unif(VdS& ') and A; ~ CN(04, I4/d), we
have that

1 ¢
{(Gi1, Gi2)}i<i<n ~iia. CN (02, [C* 1]) .
EoC T
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Hence,

2 n . .
l Ea {(p(y | A)) } dy(i) ]/ Ec l_[ EG,’,],G,’_z {p()’ [1GiiDp(y | |Gl,2|)} dy
" Jgd Eaf{p(y | A)} n Jpd 4 Eg, {p(y 1 1GiD}

i=1

l—[ EG, 1,62 [P 11Gi1Dp(y 1Gi 2D} v
Eg; {p(y [1GiD} '

®1 ~Eu {(f(M)>”}

_ 1
QL [ gy —m2an,
nJo

where in (a) we use (60) and (63); in (b) we use the fact that f depends only on
m = |c|?, which is clear from the explicit expression provided by Lemma 6 contained
in Appendix A; and in (c) we use that M ~ Beta(l, d — 1) by Lemma 9 contained in
Appendix C.

Setd" =d —2and§, =n/d'. Thus,

1

1
(f m))"(1 —m)d_zdmzf exp (n - Fy; (m)) dm, (64)
0 0

where Fy; (m) is given by (12). Define
Fs(m) = 8 max(log f (m), 0) + log(1 — m). (65)

As 8 < g and n/d" — §, there exists 8, € (8, 8¢) such that 8], < 8 for n sufficiently
large. As Fy (m) < Fg;l (m) and ﬁg (m) is non-decreasing in §, we have that

1 1
/ exp (n - Fy (m)) dm < / exp (n - Fy, (m)) dm. (66)
0 0

Note that F(s* (m) < 0if and only if Fs, (m) < 0. Thus, by definition of ¢, we have
that F5 (m) < 0 form € (0, 1] when n is sufficiently large. Furthermore, F5 0 =0
and Fa* is a continuous function. As a result, by Lemma 11, the integral in (66) tends
to 0 as n — oo and the claim immediately follows. O

Remark 4 (Mutual information) An immediate consequence of Lemma 1 is that one
can compute the mutual information /(X; Y, A) for any § < &;:

1
lim —I(X;Y,A)=H Ec{p([IGD) —Ec{H(p([IG)},  (67)

n—+oon
where G ~ CN(O, 1).

Proof (Proof of Theorem 1) Define y,., = (y1,...,¥,) and a1, = (a1, ...,a,). We
divide the proof into two steps. The first step consists in showing that the mutual
FoE"ﬂ

@Sprmger U_.jOﬂ



722 Foundations of Computational Mathematics (2019) 19:703-773

information between the next observation y,4 and the previous observations y;.,
tends to 0. More formally, we will prove that

I(Yyi1; Y 1n, A | Apg1) = 0,(1). (68)
The second step consists in showing that the estimate obtained on ¢ (|(x, @;,+1)])
given the observations y., is similar to the estimate on ¢ (|(x, @,+1)|) when no obser-

vation is available. This means that the observations y;., do not provide any help.
More formally, we will prove that

2
]EY1;n,A1:n+1 {(E{¢(|(X, An+1>|)} - E{¢(|(X, An+l>|) | Yin, Al:n}) } = o,(1),

(69)
where ¢ is defined in (14).
Furthermore, we have that
2
E{(¢(|<X,An+1>|)—E{¢<|<X, Aws)D | Y1, Ara}) }
2
~ (B[00, Ansn)D} =BG UK, As)) [ Vi Ara})”

2
= E{(¢><|<X, Avin)D ~ E{# (X, Ar1)D}) }
= Var{¢ (1(X. Ani1)D)}.

By applying (69) and (70), the proof of Theorem 1 follows.
First step. By using the chain rule of entropy and that y; is independent from @; 4 1., +1,
we obtain that

n+1

1
- _H(Y.. Aq- = — HY; | Y1i-1, A
Ve | Avas) n+1; Yi | Yiiot, Alnt1)

n+1
= a1 ;H(Yi | Yiio1, Ari).

The sequence s, = H(Y, | Y1.n—1, A1) is decreasing, as conditioning reduces
entropy. Hence, s, has a limit, and this limit must be equal to H(Y;) by Lemma 1.
Since the Y; are i.i.d., we obtain that

HYp41 | Yin, Atn+1) = H(Yn41) + 0a(1).
By using again that conditioning reduces entropy, we also obtain that

HYyy1 | Apt1) = H(Yy11) + 0 (1).
Elol:;ﬂ
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By putting these last two equations together, we deduce that (68) holds.

Second step. Given two probability distributions p and ¢, let Dkp(pllg) and
lp — qllpy denote their Kullback—Leibler divergence and their total variation dis-
tance, respectively. Then,

T(Yut15 Y i, Avn | Aut1)
= ]EY];HA,AI;”H {DKL(p(yn+l [ Yin, Al:n+l)||p(yn+l | An+l))}

@1 2
z5 "By A {(Hﬂ(yn+1 Y 1, A1) — POnrt | Anr) lITy) }
® 1
= 2K2 .IEYIZVHA]:JH»I POn+1 | Y i Arn+ D)9 (Vnt+1) dyn+1
R
2

_AP(Yn+I IAn+1)<p(yn+1)dyn+1) } (71)
(© 1
=52 IEYI::uAl:nJrl px | Yy, Ary) POnt1 1 X, Y1, Atnt1)@(Ynt1) dypg1 dx

2K cd R

2
- /C @) /R PO \x,AnH)w(ynH)dyanx) }

1
Q s Eriain | EOUX, 4D} = B, Aui)) | Vi, Ara)?)

where in (a) we use Pinsker’s inequality; in (b) we use that ¢ is bounded and we
set [|¢lloo = K; in (c) we use that X and A, are independent; and in (d) we use
definition (14). By combining (68) and (71), (69) immediately follows. O

4.2 Real Case

The proof is very similar to the one provided in Sect. 4.1 for the complex case. In
particular, the crucial point consists in showing that

lim lH(Y | A) = H(Y}), (72)
n—oon

where x ~ Unif(vdS%™"),a = (ay, ..., a,) with {a;}1<i<n ~i.ia. N0z, I4/d),and
y=O1,...,yn) withy; ~ p(- | gi) and g; = (x, a;). Then, the proof of Theorem 3
follows similar passages as the proof of Theorem 1.

In order to prove (72), we show that (57) and (58) hold. The proof of (57) follows
the same passages as the first step of the proof of Lemma 1; hence, it is omitted. The
proof of (58) is slightly different, and we detail what changes in the remaining part of
this section.

Similarly to (60), we have that

n
Es{p(y | A} =[]Ec (pGi | G},
i=1
EOE';W
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where G; = (X, A;) ~ N(0, 1). Furthermore, similarly to (63), we also have that

Ea{(p(y 1 4)?} = By i]‘[EG,.I,G,-,z {pOi | Gi) - p(i | Gl-,z)}},
i=l1

where G; 1 = (X1, A;), Gi2 = (X2, A;), and we define

_(X1LXy)
X115 1X21

Then, given M = m, as X1, X2 ~ii.aq. Unif(«/?iSﬁ?U and A; ~ N0y, I4/d), we
have that

m1

1
{((Gi1,Gi2h<i<n ~iid. N (02, [ m:|> .

Hence,
1| E A2} @l
;/ %{(&yyH ;))}}dy(:)ZEM{(f(M))n}
R4 A d 1 "
@ 1 F(j) n — 2 o
NGNS %l)/_l(f(m)) (1—m?) = dm,

where in (a) we use definition (33) of f and in (b) we plug in the distribution of M
obtained from Lemma 10 contained in Appendix C. Note that

im BEAC N
d— o0 ‘71 . F(%)

Therefore, by showing that the integral in the RHS of (73) tends to 0, the claim
immediately follows.
Setd’ =d — 3 and ), = n/d’'. Thus,

1 i 1
/ (fm)"(1 — m?>) T dm = / exp (n - Fy (m)) dm, (74)
-1 -1
where Fy (m) is defined in (33). Define
Fs(m) = 8 max(log f (m), 0) + %log(l —m?). (75)

FoC'T
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As§ < 8¢ and n/d’ — §, there exists 8, € (8, §¢) such that 8, < 8, for n sufficiently
large. As Fy (m) < 1:“3;1 (m) and ﬁ(; (m) is non-decreasing in §, we have that

1 1
/ exp (n - Fy (m)) dm < / exp (n . I:"g* (m)) dm. (76)
0 0

Note that Fg* (m) < 0 if and only if Fs,(m) < 0. Thus, by definition of §,, we have
that Fg (m) < 0 for m # 0 when n is sufficiently large. Furthermore, Fg (0) =0and
F3 is a continuous function. As a result, by Lemma 11, the integral in (76) tends to 0
as n — oo and the claim immediately follows.

5 Proof of Theorems 2 and 4: Spectral Upper Bound

We will consider the complex case. The proof for the real case is essentially the same,
and it is briefly discussed in Remark 7 at the end of this section.

A crucial ingredient of the proof consists in Lemma 2, which is a generalization
of Theorem 1 of [49]. Before stating this result, we need some definitions. Let G ~
CN(, 1), Y ~ p(- | |G]), and Z = 7 (Y). Assume that Z has bounded support and
let T be the supremum of this support, i.e.,

r=inf{z: P(Z < z) = 1}. (77)

For A € (7, 00) and § € (0, 00), define

B Z-|G?
¢>()\)—A~E{—/\_Z } (78)
and
M=n(s+E]Z 7
Ys(A) = <g+ {m}) (79)

Note that ¢ (1) is a monotone non-increasing function and that 5(1) is a convex
function. Let A5 be the point at which s attains its minimum, i.e.,

Ls = arg Iglin Vs (). (80)
For A € (1, 00), define also
¢s(h) = Ys(max(k, As)). (81)

Lemma 2 (Generalization of Theorem 1 of [49]) Letx ~ Unif(S%_l), {aiti<i<n ~iia.
CN(0g, 1,), and y be distributed according to (8). Let n/d — 8, G ~ CN(0, 1) and
define Z =T (Y) for Y ~ p(-||G|). Assume that Z satisfies P(Z = 0) < 1 and that
FoE"ﬂ
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it has bounded support. Let T be defined in (77). Assume further that, as ) approaches
T from the right, we have

12
Z 16| }:oo. (82)

VA
Iim E{——{= lim E{———
A—tt A — Z)2 A—tt rA—Z

Let x be the principal eigenvector of the matrix D, defined as in (21). Then, the
following results hold:

(1) The equation

g2 =9 () (83)

admits a unique solution, call it A, for A > t.
(2) Asn — o0,

N 0, iUl <0,
|(x’ x)|2 ﬂ) w/()\*) fwé( 8) = (84)

HHEME s I3 () > 0,

2 2 Ys(As) — @' (A3)
where Y5 and ¢’ denote the derivatives of these two functions.
(3) Let AID" > AZD” denote the two largest eigenvalues of D,,. Then, as n — 00,
D, a.s. %
A" G5 (A5),

! % (85)

D, as. =
A2 rsG).

Before proceeding with the proof, we discuss these results in more detail and we
describe in what sense Lemma 2 provides a generalization of Theorem 1 of [49].

Remark 5 (Two different regimes) The results of Lemma 2 imply that, according to
the value of §, we can distinguish between two possible regimes.

On the one hand, suppose that ¢ (hs) > Ws (%s). Recall that ¢ (1) is non-increasing
and that g is the point in which 5(1) attain§ its minimum. Thus, A5 < Aj;, which
implies that 1//3 (A3) > 0 and that {s(15) > £s(Xs). This means that the scalar product
[{(x, x)| is bounded away from zero and that there is a strictly positive gap between
the two largest eigenvalues of D,,. In this regime, the spectral method that outputs X
solves the weak recovery problem and (24) holds for some € > 0.

On the other hand, suppose that ¢ (ks) < ¥s(Xs). Thus, As > A%, which implies
that ¥5(A3) < 0 and that £s(A}) = ¢s (As). In words, this means that the scalar product
|{(x, x)| converges to zero and that there is no strictly positive gap between the two
largest eigenvalues of D,,. In this regime, the spectral method that outputs X does not
solve the weak recovery problem.

Remark 6 (Lemma 2 and Theorem 1 of [49]) Lemma 2 generalizes Theorem 1 of [49]
in the following two regards:
FolCT
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— x and {a;}1<;<, are complex vectors, while Theorem 1 of [49] considers the real
case;
— Z can also be negative, while Theorem 1 of [49] assumes that Z > 0.

The first generalization does not require additional work as the whole argument
of [49] generalizes in the natural way to the complex case: Gaussian random variables
become circularly symmetric complex Gaussian random variables, transposes of vec-
tors and matrices become conjugate transposes, squares become modulus squares, and
SO on.

On the contrary, the second generalization is more challenging, as it requires the
result of Lemma 3, which is stated below and proved in Appendix D.

As a final observation, let us point out that Theorem 1 of [49] assumes also that
E {Z . |G|2} > [E {Z}. A careful check shows that this hypothesis is never used in the
proof of that theorem, but it is required only in the proof of some additional results
of [49].

Lemma 3 (Generalization of [3] to non-PSD matrices) Consider the random matrix

S, = %UMHU*, (86)
where the entries of U € C4=D>" gre ~; ; 4 CN(O, 1), and M,, € C"*" is indepen-
dent of U. Let Ai‘l" denote the largest eigenvalue of M. Assume that the empirical
spectral measure of the eigenvalues of M,, almost surely converges weakly to the
probability distribution H, where H is the law of the random variable Z. Let I'yy be
the support of H and let T be the supremum of I'y. Assume also that, as n — 00,

M

M2, ¢ Ty (87)

Letn/d — §, denote by Af" the largest eigenvalue of the matrix (86), and define
as in (79). Then, as n — oo,

WSS s, i Y > 0,

A5 L5 min s, if Wiew) < 0 (88)
1 A>T g S =

Proof (Proof of Lemma 2) In this proof, we follow closely the approach detailed in
Section III of [49]. First of all, let us write the matrix D,, defined in (21) as

1
D, = —-AZA*, (89)

n
where A = [ay, ..., a,], Z is a diagonal matrix with entries z; = 7 (y;) fori € [n],
the random variables y; are independent and distributed according to p(- | |gil),

and {gi}1<i<n ~i.id4. CN(O, 1). As the sensing vectors {a;}1<;<, are drawn from the

circularly symmetric complex normal distribution, we can assume without loss of
generality that x = e, where e is the first element of the canonical basis of C¢.

EOE';W
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Consider a matrix U € C@—Dxn independent of {g; }1<i <, and Z. Let the elements
of U be ~; ;4. CN(0, 1). Define

1
P,=-UZU", (90)
n
and
1
q, =-Uv, o1
n
where v = [z1¢1, ..., 2ngn]*. Then, (89) can be rewritten as
an q*
D,=|""7"1, 92
=[] o

where a, = Y1, zilgi |2 /n is a scalar that converges almost surely to E(Z - |G|?) as
n — oo, with G ~ CN(0, 1).

Next, consider a parametric family of matrices { P, + 1q,q;} and let L, (1) denote
their largest eigenvalues, i.e.,

Ln(/'L) = )‘I(Pn + quq:;)~

The idea is to compute the largest eigenvalue of D, call it kf)" , and the scalar product

between X and ) viaa fixed-point equation involving L, (1).
To do so, we first need an intermediate result holding for any matrix D that can be

written in the form
_|agq”
b= [q p } ’

where a € R, P € CY~D*@=D j5 3 Hermitian matrix and ¢ € C?~! is such that
llgll # 0. Note that the matrix D, defined in (21) fulfills such requirements, since the
matrix P, defined in (90) is Hermitian and g,, defined in (91) is such that | g, || # 0
with high probability, as P(Z = 0) < 1.

Let kf’ > ){ > . > )‘5—1 be the set of eigenvalues of P, and let
wi, w2, ..., Ws—1 be a corresponding set of eigenvectors. For A € (max{kf :
(g, w;) # 0}, 00), define

d—1
RM) =q*"(P-2D7'qg="

i=1

A2
g

Note that R(}) increases monotonically from —oo to 0. Hence, it admits an inverse,
call it R~ (x), for x < 0. Then, the maximum eigenvalue L(u) = A (P + ngq*) is
given by

Elol:;ﬂ
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L(u) = max(R™"(=1/p), A{). (94)

The proof of (94) is standard, cf., e.g., Lemma 1 in [49]. Note that L(u) is a non-
decreasing function such that

lim L(uw) = oo.
HU—>00
Indeed, by construction, R~ (—1/u) is strictly increasing and
lim R™'(=1/p) = oo.
J—>00
Furthermore, L(u) is convex since it is the maximum of a set of linear functions, as

L(u) =1 (P 4+ pqq*) = max x*(P + ngqq*)x.

x:|x||=1
Let u* > 0 be the solution to the fixed-point equation
p=(Lw—a). (95)

This solution is unique, since L () is a non-decreasing function withlim,_, oo L(u) =
00. Then,

and
. 0_L(u) L) ] 7
(X, e1)] e|:3_L(M*)+(1/M*)2’3+L(,u*)+(l/,u*)2 ’ o0

where 9_ L(u*) and 0 L (u*) denote the left and right derivative of L (), respectively.
In particular, if L(u) is differentiable at u*, then

L' (™)

~ 2
= T + e

(98)

The proof of (96), (97), and (98) uses the characterization (94), and it is analogous to
the proof of Proposition 2 in [49].

At this point, we need to compute L, () for the matrix D, defined in (92). The
eigenvalues of a low-rank perturbation of arandom matrix are studied in [ 12]. However,
we cannot apply those results, as P, and g,, are dependent. Hence, we write

* 1 *

Py +uq,q9, = ;UMnU ,
EOEE
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where M, is independent of U with
M,=7+ Evv”‘.
n

We start by studying the spectrum of M,,. Let )LIIW" > )Lé" > > A,ﬁ” " be the set of
eigenvalues of M, and let

1

n
n—1 ZS}‘zM"
i=2

be the empirical spectral measure of the last n — 1 eigenvalues.

Then, standard interlacing theorems (see [39, Section 4.3]) yield that f™» almost
surely converges weakly to the probability law of Z. Furthermore, by using the char-
acterization (94), we can show that

=

25 o =07/, (99)
where Q! is the inverse of the function

z?-|G|?
o) =E { — }
The proof of these results is the same as the proof of Proposition 3 in [49].

Note that Q(X) is defined for A € (t, 00), it is continuous and strictly decreasing
with Q(oc0) = 0. Furthermore, by hypothesis (82), we have that lim,_, ;+ Q(A) = oo.
Thus, Q() admits an inverse and Q' (1/u) is well defined for all 2 > 0.

Let us now consider the matrix }lU M,U*. First, if Z > 0, then M, is positive
semi-definite (PSD) and we can apply results from [3] to compute the limit of L, (1).
If M, is not necessarily PSD, we use Lemma 3 with oy, = A, to conclude that

L) =5 wsOp),  if 90 > 0,

as. . e (100)
Ly(n) — min Ys(A), ifg(r,) <0.

The remaining part of the proof follows the argument of Section III-D in [49]. For
the sake of readability, we reproduce it below.

We start by proving the first claim of the lemma. For n > 1, let u,, be the unique
solution to the fixed-point equation (95). Then,

Ln(n) — 1/ in = ay.

Now, fix any u > 0. Then, by using definition (81) and the fact that A, = o~ '(1/w),
(100) immediately implies that, as n — oo,

La() — 1/ 25 c507 /) — 1/p0 (101)
Elol:;ﬂ
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Note that, as n — 00, ay 2% E(Z - |G|2). Furthermore, as L, () and ¢s(u) are
non-decreasing, the two functions on both sides of (101) are strictly increasing. Con-
sequently, by Lemma 3 in Appendix E of [49], we conclude that

o = 1", (102)
where p* is the unique fixed point such that
&(Q7 (/") =EZ - |G + 1/1". (103)

Define
2= 07'(1/ub). (104)
Then, (103) can be rewritten as
&) =E(Z - |G1H) + Q) = p (W), (105)

where ¢ is defined in (78). By construction, {s(A) is a non-decreasing continuous
function on (7, 00) and ¢ (1) is a strictly decreasing continuous function. Furthermore,
by hypothesis (82), we have that lim;_, ;+ ¢ (A) = oo. Hence, the existence and the
uniqueness of 1* satisfying (105) are guaranteed. This suffices to prove the first claim
of the lemma.

Let us now move on to the proof of the second claim of the lemma. Suppose that
{,3(Q_1 (1/w)) is differentiable at u = p*. Then, as L, (u) is convex for any n > 1,
by Lemma 4 in Appendix E of [49], we have that

as. ds(Q71(1/w) o =gTta/u)
0_Ly(up) — —————— — -1 * *)2 "

Similarly,

—gQ~ /"))
/(01 (1/u*) - (u)?*

0y Ly(1n) 2%

By using (97), we obtain that

> as g~ (/) I (00)
Q7 (A/u) = Q@7 A/u)) GO = ¢'G)

(X, e1)]

where the equality follows from definition (104) of A* and from the fact that Q’(A) =

@’ (). In order to prove the second claim of the lemma, it suffices to note that, by its
definition in (81), ¢5(1) = ¥g(1) if ¥5(1) > 0, and ¢5(1) = 0 if Y5(A) < 0.

FoC
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Finally, let us prove the third claim of the lemma. By using (96), we immediately
obtain that )LID” = L, (un). By applying (102) and Lemma 3 in Appendix E of [49],
we conclude that

a.s.

WP 25 ).

As P, is obtained by deleting the first row and column of D,,, by applying Cauchy
interlacing theorem (see, e.g., [39, Theorem 4.3.17]), we also have that

P
)”2

n S A‘gﬂ S )\.f)n.
Furthermore, the upper edge of the support of the limiting spectral distribution of P,
is given by [67, Section 4] and [3, Lemma 3.1]

%gwxm==gdw,

where A5 is defined in (80). Therefore,

D

a.s. -
Ay —> Ls(hs),

which concludes the proof. O
At this point, we are ready to prove our spectral upper bound.

Proof (Proof of Theorem 2) Note that the normalization of x and {a;}<;<, required
in Lemma 2 is different from the normalization required in Theorem 2. However, the
scalar product (x, a;) is the same and the data matrix D, changes by a factor d. Hence,
the principal eigenvector X is not affected by this change in the normalization.

Let G ~ CN(0, 1), Y ~ p(- | |G]) and Z = T (Y), where p is defined in (8)
and 7 is some pre-processing function that we will choose later on. We will assume
that the supremum t of the support of Z is strictly positive and that conditions (82)
are satisfied, and will verify later that our choice of the function 7 satisfies these
requirements. Recall that the function ¥s(1) defined in (79) is convex and that it
attains its minimum at the point As. Since by condition (82) ¥s(x) 1 coas A | 0,
we have A5 € (1, 00). Hence, 1//3 (k) = 0. By calculating the derivative of ¥5(A) and
setting it to 0, we have

E { z? } _ | (106)
(as—22) 8
Furthermore, as pointed out in Remark 5, (24) holds for some € > 0 if and only if

¢ (hs) > Ys(hs). (107)

As T > 0, we also have that A5 > 0. Consider now the matrix D/, = D, /a for
some « > 0. Then, the principal eigenvector of D), is equal to the principal eigenvector
FolCT
‘_I o
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of D,. Hence, we can assume without loss of generality that A; = 1. Consequently,
conditions (106) and (107) can be, respectively, rewritten as

z? 1
ozl -5 1
Z(G]2 =1 1
Furthermore, as Z = 7 (Y), we also obtain that
E{Z—z}—/<&)2ﬂ§ (p(y 11GD)} d
=27~ L\T=T(») "7 " 110)

Z4GP-D) [ T 2
E{?}—/R—I_T(y)ﬂzc{pm|G|>-<|G| -} ay.

Let 7*(y) be defined in (23). Note that, if we substitute 7 (y) = 7 *(y) into the RHS

of (110), then
2 2 _
ELQL_}ZE{QEL_B}ZL,
(1—-2)? 1-Z Sy

where §, is defined in (20). Let 7:3* (y) be defined in (22). Then,

L) _ \/{ T*(y)
=Ty Ve1-T)

which immediately implies that

(T, (Y))? 1
E{(l—?;*(Y))Z} o i
TF((GIF = 1)
E{ L }Zwsl-*aﬁ%- (112)

As aresult, we need to show that the function 7;* (y) fulfills the following requirements:

(1) 74 (y) is bounded;

@) P(Z(Y) =0) < 1;

(3) the supremum Tt of the support of 7" (Y) is strictly positive;
(4) condition (82) holds.

Note that 7;*(y) is bounded, as 7*(y) < 1. Furthermore, if

Eg {p(y 116D} =Eq {p(y [1GDIG} (113)
EOE';W
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identically, then §, = oo and the claim of Theorem 2 trivially holds. Hence, we can
assume that (113) does not hold, which implies that the function 7™* is not equal to
the constant value 0. Consequently, P(7;"(Y) = 0) < 1.

By definition (23) of 7*, we have that

1 _ 2 _ 2]
Ey{w}-/ﬂ%ﬁc [po116D 167} dy =g {16} =1. (114)

Hence, P(7*(Y) > 0) > 0, which implies that P(7{*(Y) > 0) > 0. Consequently,
the supremum 7 of the support of 7" (Y) is strictly positive.

If P(Zy*(Y) = ) > 0, then condition (82) is satisfied. Suppose now that
P(7;*(Y) = 7) = 0. Then, for any €; > 0, there exists A;(e;) such that

0<IP’(’]:;*(Y) € (r—Al(el),r)) <e€. (115)
Define
75 (y), if 755 (y) <t — Ar(ey),

T (y, €1) = (116)
T — A1(€1), otherwise.

Clearly, the random variable %*(Y, €1) has a point mass; hence, condition (82) is
satisfied.
As a final step, we show that we can take €; = 0. Define

1
D, (e1) = ; Z']:S*(yi, el)aia;".

i=1

Define also

D, =

S| =

n
Y T oaia;.
i=1

Let x (¢) and X be the principal eigenvectors of D,,(¢;) and of D,,, respectively. Then,
[Dn(er) — Dpllop < C1 - Ar(er), (117)

where the constant C; depends only on n/d. By Lemma 2, there is a strictly positive
gap, call it 6, between the first and the second eigenvalue of D, (¢1). Consequently,
by the Davis—Kahan theorem [23], we conclude that

%) — 2|, < C2- Aren), (118)

where the constant C depends only on n/d and on 6. In words, for any n, as €] tends
to 0, the principal eigenvector of D, (¢€1) tends to the principal eigenvector of D,,. This
means that we can set 7 = 7;* and have that, almost surely, (24) holds.

Elol:;ﬂ
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In order to conclude the proof, it remains to show that §, is the optimal threshold
for the spectral method, namely for any § < §,, there is no pre-processing function 7°
such that (24) holds almost surely. To do so, note that (24) holds almost surely if and
only if (108) and (109) are satisfied. By setting u(y) = 7 (y)/(1 — 7 (y)) and using
(110), we have that these conditions can be rewritten as

1
/R(u(y))zﬂ*:c (PG 11GD) dy = 5. (119)
Z(GP - >} / o {p 116D 1GP = D] |
E{——M= E G| .
{ -z B N - VIR >
(120)

By Cauchy—-Schwarz inequality, we also have that

/”(” Ee{p(y 116D} G{p(wal;l{pL)y |(||G||>} L,

E G G2_1
\// w()?Eg {p(y | IGD} dy\// G p(y 1G] - (1G] )})

Ec{p(y | IGD}
(121)

By combining (119), (120) and (121) with definition (20) of §,,, we conclude that

1 1 1

—_—— > -, (122)
VouE T8
which implies that § > §,. Consequently, for § < §,, no pre-processing function
achieves weak recovery and the proof is complete. O

Remark 7 (Proof of spectral upper bound for the real case) First, we need to prove
a result analogous to that of Lemma 2, where x ~ Unif(Sf{l), {aiti<i<n ~iid.
N(0g4, I;), y is distributed according to (29), and G ~ N(0, 1). To do so, one can
follow the proof of Theorem 1 of [49]. The technical difficulty consists in the fact
that the matrix M, is not necessarily PSD. In order to solve this issue, we apply the
version of Lemma 3 for the real case discussed in Remark 8 at the end of Appendix
D. At this point, the proof of Theorem 4 follows from the same argument as the proof

of Theorem 2.

6 Comparison with Message Passing Algorithms
6.1 Motivation and Background

Message passing algorithms have proved successful in a broad range of statistical esti-
mation problems, including high-dimensional regression [10], robust regression [32],
low-rank matrix estimation [26,42,45,53], and network structure estimation [24,55,
FoE"ﬂ
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56]. A bold conjecture from statistical physics suggests that—for these and other
problems—message passing approaches achieve optimal statistical performances
among polynomial-time algorithms. In view of this conjecture, it is interesting to
compare our spectral approach to message passing algorithms. We will present two
types of results (with 8, the spectral threshold defined in (42)):

1. We prove that, for § < g, (i.e., in the regime in which the spectral approach fails),
message passing converges to an un-informative fixed point, even if initialized in
a state that is correlated with the true signal x.

2. Vice versa, for § > §, (when the spectral algorithm achieves weak recovery), we
consider a linearized message passing algorithm and prove that the un-informative
fixed point is unstable. The proof of this fact builds on the analysis contained in
the previous pages.

Let us point out that the techniques described in Sect. 5 to compute the spectral
threshold §, are different from those described in this section to analyze message
passing algorithms. Hence, we find very interesting fact that the spectral threshold
is closely related to the performance of message passing. In particular, our findings
suggest the conjecture that §,, represents the fundamental limit for all polynomial-time
algorithms.

Note also that message passing often allows to further refine the spectral estimate,
in order to provide an exact recovery of the signal. Hence, combining the analyses of
message passing and of the spectral method to provide a threshold for exact recovery
constitutes an interesting direction for future research (see [54] for an example in
which this program is carried out).

For the sake of simplicity, we will assume that the signal x and the measurement
matrix A are real. Of particular interest for the present setting is approximate mes-
sage passing (AMP) [9,30]: This is a broad class of iterative methods that operates
with dense random matrices (as the sensing matrix A in the present case). In partic-
ular, in [61] it was proposed a “generalized approximate message passing” (GAMP)
scheme, which is an AMP algorithm for Bayesian estimation in nonlinear regression
models. This approach was further developed in the context of phase retrieval in [64].
We will follow the same Bayesian formulation here, by considering an AMP algorithm
that is equivalent to GAMP although somewhat simpler.

In order to minimize technical overhead, we assume throughout this section that the
conditional density p(y | g) is bounded and two times differentiable with respect to g.
Denote by d, p(y | g) and 8§p(y | g) the first and the second derivative of p(y | g),
respectively. Let G ~ N(0, 1) and define the function

_ Eglagp(y | §x + GG}

Fx,y;q) = - - . (123)
Ec{p(y|qx+qG))
We further define the following “state evolution” recursion:
Hit1 =8 - hiqy),
s (124)

qr =

3

L+
FoC'T
LI o
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where

2
h(q)szEGo{(Eal{agp(y|ﬂGo+¢_1—q61>}) b (125)

EG {p(y | /aGo + /1 —qG1)}

with Go, G ~;.i.q. N(O, 1).

Given the sensing matrix A = (ay, ..., an)T € R"™4_and the vector of measure-
ments y = (y1, ..., yu) € R", the message passing algorithm updates iteratively the
estimate z' € R? of the signal x € R4, with lxll, = Vd, according to the iteration

zt+1 — Asz(%[; y) _ btzt,

. L (126)

§=Az - fia Gy
Here, the function f;(Z; y) = (f:(Z1; y1), - - -» ft(Zn; yu)) is understood to be applied
component-wise to its arguments and b, is defined as

fi@y) =FGE y; 1 —q), (127)

and the “Onsager coefficient” b, is defined as

by = 8- E{f/(t/Go + Vi G1; Y)}, (128)

where f/(Z; y) denotes the derivative of f;(Z; y) with respect to 2, and the expectation
is with respect to Go, G| ~;;q4. N(O,1) and Y ~ p(-|Gp). The recursion (126) is
initialized with z° € R< and it is understood that f-1(G3) =0,.

State evolution precisely tracks the asymptotics of AMP. The next statement is a
consequence of [9,41]. We refer to Appendix E for its proof.

Lemma 4 (State evolution for AMP iteration (126)) Let x € R denote the unknown
signal such that | x|, = Vd, A = (a1, ...,a,)" € R™ with {a;}1<i<n ~i.id.
Ny, I;/d), and y = (y1,...,yn) with y; ~ p(- | (x,a;)). Consider the AMP
iterates 7', 3" defined in (126), where f;(Z; y) and b; are given by (127) and (128),
respectively. Assume that the initialization z° is independent of A and that, almost
surely,

. l 0y _ . l 02 _ 2
lim d(x,z ) =po, lim —|[z"°[|” = uj + wo- (129)
n—o0 d

n—oo

Let the state evolution recursion q;, 4 be defined as in (124) with initialization (L.
Then, for any t, and for any function ¥ : R*> — R such that |y (u) — ¥ (v)| <
L+ lullz + llvll2)|lu — v||2 for some L € R, we have that, alimost surely,

R RS
JHEO;XEWWD = E{y (X0, i Xo + Vi G} , (130)
i=
where the expectation is taken with respect to Xo, G ~;.i.qa. N(O, 1).

FolCT
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Informally, this lemma states that z’ is a noisy version of the signal x, namely
z' &~ u,x + /i g, with g ~ N(0g4, I4), and that this approximation holds for
empirical averages.

6.2 Results

In order to obtain a nonvanishing weak recovery threshold, we assume that the obser-
vation model satisfies the condition

Eg{ogp(y | G)} =0, (131)

where the expectation is with respectto G ~ N(0O, 1). Notice that this implies #(0) = 0;
therefore, ;; = g; = 0 1is a fixed point of state evolution. Furthermore, F(0, y; 1) = 0;
therefore, g, = 0, z' = 0y is a fixed point of the message passing algorithm. We
will refer to this as to the “un-informative fixed point.” Note that condition (131)
holds—among others—for the phase retrieval problem.

Vice versa, if Eg{dgp(y | G)} # 0, then u; > 0 even if uo = 0, for any § > 0.
Thanks to Lemma 4, this implies that weak recovery is possible for all § > 0. Hence,
we will assume that condition (131) holds.

The first result of this section establishes the following: For § < §,, the message
passing algorithm fails even if the initial condition has a positive correlation with the
unknown signal. We refer to Appendix E for its proof.

Theorem 5 (Message passing fails for 8 < 8,) Let x € R? denote the unknown
signal such that ||x ||, = /d. Let A = (a, ..., a,)" € R™ with {a;}1<j<n ~i.iad.
Ny, I;/d), andy = (y1, ..., yn) withy; ~ p(- | (x, a;)). Let n/d — § and define
8y as in (42). Let G ~ N(0, 1) and assume that the condition (131) holds for any
yeR

Consider the AMP algorithm defined in (126) and assume that the initial condition
2% is such that

(Z%, x)
m ——— = €. (132)
=50 T2 Ixll,

Then, for any § < 8y, there exists €y(5) such that for any € € (0, €y(8)), almost surely,

lim fim © |2/, = 0. (133)

t—oon—00 (

Next, we consider the case § > §, and we linearize the iteration (126) around the
non-informative fixed point.

Lemma5 (Linearized AMP Equations) Consider the one-step map defined in (126)
and assume that condition (131) holds. Define R; = ||z' |2+ ||2t7] ll2. Then, as Ry — 0
and q; — 0, we obtain
FolCT
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zt

£+
< 5t ) =L, <21—1> + 0(R;) + R; 04, (1), (134)

where L, € ROTD>X0+d) g defined as

T T 52
L, = (AA’A _*_‘JJ ) (135)

and J € R™" is a diagonal matrix with entries j; = F'(0, y;; 1) fori € [n], with F/
denoting the derivative of F with respect to the first argument.

The second result of this section establishes the following: For § > &, the un-
informative fixed point is unstable for iteration (126), i.e., the matrix L, has an
eigenvalue that is larger than 1 in modulus. To do so, we will relate the matrix J
appearing in (135) to the optimal pre-processing function defined in (45) [see Eq. (237)
in Appendix F]. We refer to Appendix F for the complete proof.

Theorem 6 (Message passing escapes from un-informative fixed point for § > §,) Let
x € R? denote the unknown signal such that || x|, = Vd. Let A = (ay, ..., an)T €
R4 with {a;}1<i<n ~iia. NOa, I4/d), and y = (y1,...,y,) with y; ~ p(- |
(x,a;i)). Letn/d — § and define &, as in (42). Furthermore, assume that (131) holds
forany y € R. Define L,, € R*TDx0+d) g5y (135), where J € R"™" is a diagonal
matrix with entries j; = G(0, y;; 1) for i € [n]. Then, the eigenvalues of L,, are real
and the largest of them, call it AL is such that, forany § > &,

lim Al > 1. (136)

n— 00

7 Numerical Experiments

We focus on the phase retrieval problem and present some numerical results to illustrate
the performance achieved by the proposed spectral method. First, we consider the case
in which the unknown vector is chosen uniformly at random and the sensing vectors
are Gaussian. Then, we consider the more practical scenario in which the unknown
vector is an image and the sensing vectors come from a coded diffraction model.

7.1 Gaussian Sensing Vectors for Synthetic Data

Let us consider the complex case. In our experiments, the vector x is chosen uniformly

at random on the d-dimensional complex sphere with radius +/d, the sensing vectors

{a;}1<i<n arei.i.d. circularly symmetric normal with variance 1/d, and fori € [n], the

measurement y; is equal to | (x, a;)|*. We take d = 4096 and the numerical simulations
are averaged over ngmple = 40 independent trials. The results are plotted in Fig. 2a.

EOE';W

@ Springer Lﬁjog



740 Foundations of Computational Mathematics (2019) 19:703-773

(a) 1
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Fig. 2 Performance of the spectral method for the phase retrieval problem where the unknown vector is
uniformly random on the sphere and the sensing vectors are Gaussian. On the x-axis, we have the ratio &
between the number of samples and the dimension of the signal; on the y-axis, we have the square of the
normalized scalar product between the unknown signal x and the estimate x. Note that the proposed choice
of the pre-processing function (red curve) provides a significant performance improvement with respect to
the subset algorithm considered in [49,78] (black curve) and the truncated spectral initialization considered
in [20,49] (blue curve). a Complex case, b real case (Color figure online)
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The red curve corresponds to the proposed pre-processing function given by

T(y) = (137)

y—1
y+VE—1
We pick § = 1.001 and, as shown by the figure, weak recovery is possible for values

of § very close to 1.
The green curve corresponds to the pre-processing function given by

—1
T(y) = max (y—N,o). (138)
y+VE—1

We add this plot in order to show that, by enforcing nonnegativity of the pre-processing
function, we incur in a degradation of the performance of the spectral method.
The black curve corresponds to the pre-processing function given by

1, fory>¢,
k) = {O, otherwise. (139)
This choice was proposed in [78] and it is also considered in [49], where the authors
refer to it as the “subset algorithm.” For each value of 7, we can compute the smallest
value of §, call it §*(¢), that yields a strictly positive scalar product according to the
result of Lemma 2. Hence, we pick ¢+ = 2 that corresponds to the smallest value of
8*(t) overt € {0.25,0.5,0.75, ..., 10}.

The blue curve corresponds to the pre-processing function given by

fory <t,

otherwise. (140)

T(y) = {g’

This choice corresponds to the truncated spectral initialization proposed in [20] and it
is also considered in [49], where the authors refer to it as the “trimming algorithm.” For
each value of 7, we can compute the smallest value of §, call it §* (¢), that yields a strictly
positive scalar product according to the result of Lemma 2. Hence, we pick t = 5.25
that corresponds to the smallest value of §*(¢) over ¢ € {0.25,0.5,0.75, ..., 10}.

Note that the numerical simulations follow closely the theoretical prediction given
by (84). Furthermore, the choice of the pre-processing function (137) yields a remark-
able performance gain with respect to both the subset algorithm and the trimming
algorithm.

Similar considerations apply to the real case. Here, the vector x is chosen uniformly
at random on the d-dimensional real sphere with radius +/d and the sensing vectors
{a;}1<i<n are i.i.d. normal with zero mean and variance 1/d. We pick d = 4096 and
nsample = 40. The results are plotted in Fig. 2b. Again, the numerical simulations fol-
low closely the theoretical prediction. The red curve corresponds to the pre-processing
function given by (137), where we pick § = 1.001. Note that weak recovery is possible
for values of § very close to 1/2. The green curve corresponds to the pre-processing

EOE';W
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function given by (138). The blue curve corresponds to the pre-processing function
given by (139), where we pick ¢+ = 2 which yields the smallest value of §*(¢) over
t € {0.25,0.5,0.75, ..., 10}. The black curve corresponds to the pre-processing func-
tion given by (140), where we pick r = 7 which yields the smallest value of §*(¢) over
t €{0.25,0.5,0.75, ..., 10}.

7.2 Coded Diffraction Model for Natural Images

We consider a model of coded diffraction patterns in which the sensing vectors
{a,}1<r<n are obtained as follows. For #; € [d1] and #; € [d>], denote by a, (1, t2) the
(11, r2)th component of the vector a, € C4, withd = d; - dy. Then,

ar(t1, ) = di(11, 1) - 2RI/ d1 . pi2mhata]da (141)

where i denotes the imaginary unit. The index r € [n] is associated with a pair (¢, k),
with £ € [L]; the index k € [d] is associated with a pair (k1, ko) with k1 € [d]
and ky € [d>2]. As usual, the measurement y, of an unknown d-dimensional vector
x is equal to |(x, @,)|?. As an immediate consequence, the number of measurements
n is equal to L - d; therefore, § = L € N. In words, for a fixed ¢, we collect the
magnitude of the diffraction pattern of x modulated by d,. By varying £ and changing
the modulation pattern d,, we generate L distinct views. The vectors {d¢}1<¢<1, are
i.i.d. and their entries are also i.i.d. drawn uniformly from the set {1, —1, i, —i}.

We test the spectral method on the digital photograph represented in Fig. 1a. Each
color image can be viewed as a di x dp x 3 array. We run the spectral algorithm
separately on the vectors x ; € RY, where j € {1,2,3}. In our example, d; = 820 and
d> = 1280. Let X ; be the estimate of x ; provided by the spectral method. Then, we
employ as a performance metric the average squared normalized scalar product

3 )
% —|A(xf;xf)| . (142)
el PR e

Note that the scalar product between the input and the measurement vectors can be
interpreted as a two-dimensional Fourier transform; hence, it can be computed with
an FFT algorithm. In order to evaluate the principal eigenvector of the data matrix,
we use the power method with a random initialization, as described in Appendix B
of [16]. As a stopping criterion, we require that one of the following two conditions
is fulfilled: Either the number of iterations reaches the maximum value of 10000, or
the modulus of the scalar product between the estimate at the current iteration 7 and
at the iteration T — 10 is larger than 1 — 107,

The results are summarized in Fig. 3. The red curve corresponds to the proposed
pre-processing function. In this case, the eigenvalues of the data matrix can be nega-
tive. Recall that the power method outputs the eigenvector associated with the largest
eigenvalue in modulus, while we are interested in the eigenvector associated with the
largest eigenvalue. To address this issue, we add to the data matrix a multiple « of the
identity matrix. However, as o grows, the convergence of the power method becomes

Elol:;ﬂ
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Fig. 3 Performance of the spectral method for the phase retrieval problem where the unknown vector is a
digital photograph and the sensing vectors are obtained from a coded diffraction model. On the x-axis, we
have the ratio § between the number of samples and the dimension of the signal; on the y-axis, we have the
square of the normalized scalar product between the unknown signal x and the estimate x (averaged on the
three RGB components of the image). Note that the proposed choice of the pre-processing function (red
curve) provides a significant performance improvement with respect to the truncated spectral initialization
considered in [20] (blue curve) (Color figure online)

slower and slower. In order to reduce the negative tail of the distribution of eigenvalues
and, consequently, the value of «, we pick the pre-processing function given by

Ti(y) = max(T (y), —M), (143)

where 7 (y) is defined in (137), § = 1.001, and M = 40. In this way, by taking
a = 100, the largest eigenvalue in modulus has positive sign.

The blue curve corresponds to the truncated spectral initialization in [20], i.e., the
pre-processing function is given by (140) with t = 9.

The numerical simulations for the optimal pre-processing function follow closely
the theoretical predictions (84) obtained for a Gaussian measurement matrix, with
the exception of the point § = 2. On the contrary, the numerical simulations for the
truncated spectral initialization show a different behavior with respect to the Gaussian
model. Our algorithm provides weak recovery of the original image for § > 3, while
the truncated spectral initialization requires 6 > 6. Furthermore, for any value of §,
the proposed choice of the pre-processing function yields a better performance than
the choice in [20]. For a visual representation of these results, see Fig. 1.
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A Proof of Corollary 1

We start by providing in Lemma 6 a less compact, but more explicit form of expression
(10). This more explicit expression is employed to prove Lemma 7, which yields the
value of §, for the case of phase retrieval. Finally, we provide the proof of Corollary 1.

Lemma 6 (Explicit formula for f(m)—complex case) Consider the function f :
[0, 1] — R defined in (10). Then, f(m) is given by the following expression:

f(m)
+00 2 2
= 0+Oof driry - p(y | r)p(y | r2) - exp < ’11 + r2> 1o (2rlr2ﬂ> dridra
0 —m 1—m
= +00 dy’
/ 2r - p(y | r)-exp (—rz) dr
R 0
(144)
where I denotes the modified Bessel function of the first kind, given by
1 T
Iy(x) = —/ exp (x cos ) do. (145)
T Jo

Proof Let us rewrite G as
1
G=G6®4+ ;G0 with (G®,GV)~N (0d, §I2> ,

ie., G® and GV arei.i.d. Gaussian random variables with mean 0 and variance 1/2.
Set

R= \/(G<R>)2 + (GO

Then, R follows a Rayleigh distribution with scale parameter 1/+/2, and hence

+00
Eg {p(y |1GD) = Ex {p(y|R)}=/0 2 p(y | 1) -exp (—r7) dr. (146)

Let us rewrite (G, G») as
(G1,G2) =GP + 6V, G + jc!,

with

1 N(e) 0 —3J(c)
Ne) 1 J() 0

0 () 1 N(c) ’
—3J(c) 0 N(e) 1

1
(GgR)v GéR)9 G?)’ Gg)) ~N Od, E

and consider the following change in variables:
FoC'T
‘_I o
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G(IR) = RjcosH
GER) = Rrcos 6,
G = Rysing;
G = Rysin6,

Then, after some algebra, we have that

EGi.c, (p(y I1G1]) - p(y [ 1G2D)}

1 +o0 +o00 2 2T
=7ﬂ2(1_|6|2)/0 /0 /0 /0 rirs - p(Gr | PGy | ) )

exp (_ %+ 13 —2r1r, (R(c) cos(Br — 01) — I(c) sin(6 — 1))

dry drp d6y d6s.
= (e )rl r2 doy dos

By writing (M(c), I(c)) = (|c| cos b, |c| sin H,.) and by using definition (145), we can
further simplify the RHS of (147) as

1 +oo  p400 r2 4 r?
—2/ / drirs - p(y | rp(y | 72) - exp [ — 2
L—lcl* Jo 0 1 —|c|

2
1o (227211 4y s (148)
1 —|c]?
From (146) and (148), the claim easily follows. O

Lemma 7 (Computation of §; for phase retrieval) Computation of &y for Phase
Retrieval Let 8¢(c%) be defined as in (13) and assume that the distribution p(- | |G|)
appearing in (10) is given by (9). Then,

lim 8;(c?) = 1. (149)
o—0

Proof For the special case of phase retrieval, it is possible to compute explicitly the
function f(m) defined in (10) and simplified in Lemma 6. Indeed,

+00
/ 2r - ppr(y | 7) - exp (—rz) dr
0

@ [T
= pprR(Y | /2) - exp (—z) dz

+oo —z)?
@/ o2 P <_ (y202Z) ) -exp (—2) - H(z) dz

9E, (exp(-2)H(Z)},

(150)

where in (a) we do the change in variables z = r2; in (b) we use definition (9) and we

define H(x) = lifx > Oand H (x) = 0 otherwise; and in (c) we define Z ~ N(y, o?).
In the limit 0% — 0, we have that

FoC
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Ez {exp(=2)H(Z)} — exp(—y) - H(y), (151)

by Lebesgue’s dominated convergence theorem. Similarly,

+oo ptoo r2 42 2r1ra/m
f / 4ryry - ppr(Y | 1) ppR(Y | 12) - €Xp (— L—21).1 ( )dmdrz
0 0 1—m 1—m

oo oo 71+7z 2./7122/m
(i)/o /o pPR(yl\/E)pPR(yl«/E)'eXP<— f_m2>'10( 11_2mf)d1|dzz

@/*‘”/W( 1 )zex (_(y—Z1)2+(y—zz)2
- —0 —00 o2 P 202

21+ 22 2/z1224/m
-exp (— — ) : 10( 1 _f) CH()H(2)dzidz

Z V4 NVAVA
9g, ., {exp (—%) I (#) -H(Z1)H(Zz)} :

where in (a) we do the change in variables 71 = rl2 andzp = r22; in (b) we use definition
(9) and we define H(x) = 1 if x > 0 and H (x) = 0 otherwise; and in (c) we define
(Z1, Z2) ~iiaq Ny, 02). In the limit 02 — 0, we have that

Z1+ 72, WNVAVANI)
B o (-0 ) o (BT
2 2y/m
— exp<—1Ty)'10< y_m)‘H(}’X

m 1

)'H(ZI)H(Z2)}

by Lebesgue’s dominated convergence theorem. As a result, by using (145), we obtain
that

o2>0 1 +oo 2 2ym
fim) — Tom exp (—1—y> 1o < Y ) -exp(y)dy
— —-m 1—m

m Jo
1 T oo 14+m—2mcosb
= — exp| —y dydo
n(l—m) 0 0 1—m
1 T 1

1
= _ do = .
71/0 14+m—2/mcos6 1—m

Consequently,

Fym) =20 (1 = 8) log(1 — m),

which implies the desired result. O

Proof (Proof of Corollary 1) We follow the proof of Theorem 1 presented in Sect. 4.

The first step is exactly the same, i.e., by applying Lemma 1, we show that (68) holds.
Elol:;ﬂ
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On the contrary, the second step requires some modifications, since the definition of
the error metric is different. In particular, we will prove that

1
d_zElenaAltn {”E {XX*} - E {XX* | Yllns Al:n} ”i‘} = 0}1(1)' (152)
Furthermore, we have that

[E XX}~ E{XX" | Vi, Ava} |5+ B XX~ E{XX* | Vi, Ara} [ ]

YE = (xx7) - xx°[}]

@E[Hld—XX*HZF] (153)

9E {trace (I, — 2XX* + XX*XX*))

Qi—2d+d*=d®-ad,

where in (a) we use the triangle inequality; in (b) we use that E {X X *} = I, by

Lemma 12; in (c) we use that, for any matrix A, ||A||y = /trace(AA*); and in (d)
we use that £ {trace (XX*XX*)} =FE { ||X||4} = d”. By applying (152) and (153),
the proof of Corollary 1 is complete.

Let us now give the proof of (152). Similarly to (71), we have that

T(Yyy1; Y1, AvalAnyr)

1
> K2 'EYM,AI:,HIH/«;} p(x | Yy, Al:n)/RPPR(ynH | x,

Yin, Avnr)@pR (Ynt1)dyn1dx
]

where we define ppr(x) = x for |x| < M, and gpr(x) = M - sign(x) otherwise.
Then,

(154)

- /@1 P(X)A‘QPPR(MH [ x, AprD)@PR (Ynr1) dypyr dx

/Cd p(x | len,Alzn)[RPPR(ynJrl | %, Y 10, Atns1) - PR (Yn+1) dypa1 dx

. /d p(x [ Yip, A]:n)/ PPROnt1 | %, Yin, Aing1) - Y1 dyng1dx + Ej
C R

b
(——)/@p(x | Y 1 A - [(Ang1, ) dx + E (155)

)
© (An+1, (/d px | Y1y, Ary) - xx* dx) A1) + E1
C
= (An—i-l,E{XX* | Y]I}’h Al:n} An—i—l) + Ey,
EOE';W
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where in (a) we set

E| = /dp(x | Yl:naAlzn)/ PPRVn+1 | X, Y1, Arng1)
C R
(PR (Yn+1) = Yn+1) dyn1 dx,

in (b) we use definition (9), and in (c) we use that [(A,+1, x) |2 = (Apt1, XX Apg).
Similarly, we have that

[C(Ip(x)/ PPR(Vn+1 | X, Apyr1)@pR (Ynt1) dypq1 dx
R

= (Aps1, E{XX*} Ayp1) + Ea, (156)
with
Ey) = /Cg[p(x)/ PPR(Vn+1 1 X, Aug1) - (@R (Vnt1) — Ynt1) dynt1 dx.
R

By applying (155) and (156), we can rewrite the RHS of (154) as

1
757 BV A Ean {}<An+1’ (E{XX" | Y1, Ava} = E{XX"}) Apyr) + Er — E2|2}
(157)

> 5 Br, A (Bap {{Ans1. MA )P} = B,y {IE1} = Ba,,, {IE2)).

where we define M = E{XX*|Yy, A} — E{XX*}. As K goes large,
Api {|E | }tends to 0, fori € {1, 2}. Furthermore, we have that

By {1, MA,) P} 2 Z My M- z(aij-sm&-z-ajk)
i,j.k, =1

1
= (|trace(M)|2 + ||M||2F)

® 1
el IM|%,

(158)

where in (a) we use the following definition of the Kronecker delta:

1, ifa=0b,
dab = {O, otherwise, (159)

Fo C 'ﬂ
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and in (b) we use that

trace(M) = i (IE [|Xi|2 | Y10, Al:n} —-E [|Xi|2})

i=1

d d
:E:Z|Xi|2 | Yl:mAl:n} _E{Z|X,’|2} =0.
i=1

i=1

(160)

As a result, we conclude that (152) holds. ]

B Proof of Corollary 2

First, we evaluate the RHS of (20), as well as the scaling between §, and o2 when
o2 — 0. Then, we give the proof of Corollary 2.

Lemma 8 (Computation of §, for phase retrieval) Let §, (62 be defined as in (20) and
assume that the distribution p(- | |g|) is given by (9). Then,

su(@®) =140+ 0(c?). (161)

Proof The proof boils down to computing expected values and integrals. By using
(146) and (150), we immediately obtain that

400
E (per(y | 1G]} = / 21 pen(y 1) exp (=) ar
0
= exp(—y) Ex {exp(-=o X)H (y + 0 X)},
where X ~ N(0, 1). By computing explicitly the expectation, we deduce that

2

Eg {ppr(y | 1G]} = lexp —y+ & erfe L2 +o)), (162)
2 2 2\ o

where erfc(-) is the complimentary error function. Similarly, we have that

+00
EGhWMyHGDUQZ—U}=Z; 2(r3 — r)per(y | ) - exp (—r?) dr

=exp(—y) Ex {exp(=0 X)H(y + o X)(y — | + 0 X)}

__° (Lﬁj+l(_l (163)
Vaz P\ T202) T2V
2
—oexp(—y+ L L2
o)exp( y+ 2>erfc(ﬁ( U—f—a)).
EOE';W
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Thus, by using (162) and (163), after some manipulations, we obtain that

I _/ (Ec {prr(y 1 1GDUGI = D))*

S Ec (p(yer | 1G]}

R
/ o? ( o? y2) 2
s—exply— 5 — =3 dy
R 27 2 0%/ erfe <L (—% + 0))

72 (164)

2

(-
——exp| —=— —1l-0
N Pl752 |V Yy

1 2 1
+ A Eexp (—y + %) y—1- o%)%erfc (ﬁ (—g + O’)) dy.

By performing the change in variables t = —y/o + o, we simplify the first integral
in the RHS of (164) as

/U—2€Xp<y—a—2—y—2> : dy
R 27 2 o? erfc( (—§+0)>

203 [ exp(—1?) exp (m B

== dr = 0(c?), (165)
27 JR erfe (ﬁ) >

where in the last equality we use that the integral

/ exp (—1?) q

——at

R erfc (ﬁ)

is finite. The other two integrals in the RHS of (164) can be expressed in closed form

as

2

20 y
/R N exp <_W> (y—1—0%dy = —20%(1 + 02, (166)

1 2 1
/R 3 exp (—y + %) (y—1- o2)erfc (E (—% + O’)) dy

Oe ( Oz)/e (t)(t—l—l)zerfc(t)dt l+o02+0*
= —exp|—— xp (ot) (o — = o-+o".
2P U2 R V2

By combining (164), (165), (166), and (167), the result follows. O

Proof (Proof of Corollary 2) Pick o sufficiently small. Let G ~ CN(0, 1), Y ~ ppr(: |
|G|) and Z = 7 (Y), where ppR is defined in (9) and 7 is a pre-processing function
(possibly dependent on o) that we will choose later on. Assume that

(1) 7 (y) is upper and lower bounded by constants independent of o’;
FoC'T
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(2) P(Z =0) <c1 < 1and ¢ is independent of o;
(3) condition (82) holds.

Then, by Lemma 2, we have that, as n — o0,

A if Ys(Af) <

|(x,x)|2 a.s. 0, Ok ! I//‘s( 6) =0,

T2, P= Vs (A5) if Y/ (AF) > 0 (168)
”)C”2 ||x|| l[f/()\.*) _ ¢/()\*)’ 1 wﬁ s) =Y

s\rs 8
where A§ is the unique solution of the equation {s(1) = ¢ (1), and ¢, V5, and {5 are
defined in (78), (79), and (81), respectively. .
Let 7 be the supremum of the support of Z. Assume also that, for As < A5,

(4) T = ¢ > 0and ¢ is independent of o;
5) ¢’ (Ag‘) is lower bounded by a constant independent of o

6) min Y5 (1) is lower bounded by a strictly positive constant independent
Ae(min(s,A3))

of o.

Let A5 be the point at which v attains its minimum. Then,

dGs) — s Cis) L dGs) — dOD) + 505 — s (o)

© 5 @s) — dOI) + 505 — 5 Gg)

D (1) — ¢ @) - (4 — R)

@ (G —¢' &), -, I (169)
= —_— A. - )\.

1pa,,(xz) (1//5( ,3) 1/f5( 8))
© (G —o'x))

Vs (x2) V)

()
<c3-Ys(Ay),

where in (a) we use that £s(A5) = ¢ (A3); in (b) we use that s (As) = ¥s(As): (c) holds
for some x| € (As, Aj) by the mean value theorem; (d) holds for some x> € (A5, 1)
by the mean value theorem; and in (e) we use that y5(1s) = 0. Note that (f) holds for
some constant ¢3 independent of o, as £5(x1) > 0, ¥’ (x2) is bounded, and ¢’ (x2) < 0
since P(Z =0) < 1.

As ¢’ (k;") is bounded, from (168) and (169) we deduce that

p = ca- (P(hs) — Ys(hs)), (170)

for some constant ¢4 independent of o. Notice that, if Ag‘ < Xs, then the right-hand
side is non-positive and hence the lower bound still holds.

Ast > 0, wealso have that s > 0. Consider now the matrix D/, = D, /« for some

o > 0. Then, the principal eigenvector of D), is equal to the principal eigenvector of

EOE';W
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D,,. Hence, we can assume without loss of generality that s = 1. This condition can
be rewritten as

E z _ ! (171)
(1=22] &
and (170) can be rewritten as
> E Z(GP ~ 1) ! (172)
c4 —_— == ].
p=c -z 5
We set
y+— 1

Ty =T (y,0) =

i +8clo) -1’ (173)

where y4 = max(y, 0) and c(o) is a function of o to be set as to satisfy Eq. (171).
By substituting (173) into (171), we get

IE{ z: }— 1E{(Y — 1?} (174)
(1—2)2] " 8co) T '

Hence, Eq. (171) is satisfied by
c@) =E{(y - D} =E{(1GP +oW); — 1)}, (175)

where W ~ N(O0, 1) is independent of G. Therefore, c(o) is always well defined and,
by dominated convergence, c(0) — ¢(0) = 1, as ¢ — 0. Furthermore,

Z4GP -1 _ 1 ,
]E{ 1-Zz }—ME{U@—I)(IGI - D} (176)

By applying again dominated convergence, we get

Z(GI> -1 1 1
lim E Z46rF -1 = —E{(GP* - D*} = —. (177)
0—0 1-Z £ NE
Hence, by using (170), we get that, for § > 1 and o0 < 01(3),
e Ee X)) 11
lim inf —— X 65<— - -) >0, (178)
~ 12
g Ixly T NV

where X, denotes the spectral estimator corresponding to the pre-processing function

(173). Let us now verify that, by setting 7 = 7", the requirements stated above are

fulfilled. As § > 1, the function 7 is bounded by constants independent of o. It is also
Elol:;ﬂ
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clear that conditions (2) and (4) hold. Furthermore, conditions (5) and (6) follow by
showing that ¢ (1), ¥5 (1) have well-defined uniform limits as ¢ — 0 that satisfy those
conditions: This can be proved by one more application of dominated convergence.

In order to show that condition (3) holds, we follow the argument presented at the
end of the proof of Lemma 2. First, we add a point mass with associated probability
at most €1, which immediately implies that (82) is satisfied. Then, by applying the
Davis—Kahan theorem [23], we show that we can take €] = 0.

This proves the claim of the corollary for the pre-processing function 7" (y, o),
defined in (173). Let us now prove that the same conclusion holds for 7;*(y) defined
in (25). Let

x+1

fax) = (179)
Then, for any x, a € Rxo,
| fo ()] = da =11 < max (1,i). (180)
(x + a)? x2
Therefore, since 73" (y, o) = 1 — fy, (//8c(o) — 1), we have that
1
750 ) = H)) < (min(v/3e(o) — 1, v/5 — 1, 1))’ Vo Ve =1}
(181)

Denote by D, (o) and D,, the matrices constructed with the pre-processing functions
T (y, o) and 7§*(y), respectively. It follows that, for any § > 1, there exists a function
A(o) with A(o) — 0 as 0 — 0 such that

[Dn(0) = Dyllgp = Al0). (182)

Hence, by applying again the Davis—Kahan theorem, we conclude that, for all § > 1
and 0 < 07(§),

2 2
, 1 1
1iminf'fxz—x>|zch(——-) -0, (183)
el EE R
where X is the estimator corresponding to the pre-processing function 7g*(y). O

C Auxiliary Lemmas

Lemma 9 (Distribution of scalar product of two unit complex vectors) Letx 1, X2 ~; ; 4.
Unif(S&™") and define M = |(x1, x2)|%. Then,

M ~ Beta(l,d — 1). (184)
EOE';W
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Proof Without loss of generality, we can pick x to be the first element of the canonical
base of C?. Thus, M is equal to the squared modulus of the first component of x.
Furthermore, we can think to x; as being chosen uniformly at random on the 2d-
dimensional real sphere with radius 1. Note that, by taking a vector of i.i.d. standard
Gaussian random variables and dividing it by its norm, we obtain a vector uniformly
random on the sphere of radius 1. Hence,

Ui+ U3

- 2d ’

it Ui2

Set A =U ]2 + U22 and B = Zizi3 Uiz. Then, A and B are independent, A follows
a gamma distribution with shape 1 and scale 2, i.e., A ~ I'(1,2), and B follows a

Gamma distribution with shape d — 1 and scale 2, i.e., B ~ I'(d — 1, 2). Thus, we
conclude that

with {U; }1<i<2a4 ~i.i.da. N(O, 1).

A
M= ~ Beta(l,d — 1),
A+B

which proves the claim. O

Lemma 10 (Distribution of scalar product of two unit real vectors) Let X1, X2 ~; ;. 4.
Unif (Sﬂd{l) and define M = (x1, x2). Then, the distribution of M is given by

1-m?>7, me[—1,1]. (185)

Proof Without loss of generality, we can pick x, to be the first element of the canonical
base of R?. Thus, M is equal to the first component of x 1. Note that, by taking a vector
of i.i.d. standard Gaussian random variables and dividing it by its norm, we obtain a
vector uniformly random on the sphere of radius 1. Hence,

M? = _Ur ith {U;}1<i<q ~i1.a. N(O, 1
- Zd Uz’ w1 ifl<i<d ~i.i.d. O, 1).
i=1"i

SetA=U 12 and B = Z?:z Uiz. Then, A and B are independent, A follows a gamma
distribution with shape 1/2 and scale 2,i.e., A ~ I'(1/2, 2), and B follows a Gamma
distribution with shape (d — 1)/2 and scale 2, i.e., B ~ I'((d — 1)/2, 2). Thus, we
obtain that

mie A Beta(1/2, (d — 1)/2)
" A+B ’ '

A change in variable and the observation that the distribution of M is symmetric around
0 immediately let us conclude that, for m € [—1, 1],

pim) =c-(1—m*)7, (186)
Elol:g
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where the normalization constant ¢ is given by

-1 d
c=</1(1—m2)dz‘3dm> __I®
. NZINCES!

m}
Lemma 11 (Laplace’s method) Let F : [0, 1] — R be such that
— F is continuous;
- F(x) <0forx € (0,1];
- F@) =0.
Then,
1
lim exp(n- F(x)) dx =0. (187)

n—-+00 0

Proof Pick € > 0 and separate the integral into two parts:

1

1 €
/ exp(n- F(x)) dx = f exp(n- F(x)) dx + / exp (n - F(x)) dx.
0 0

€

Now, the first integral is at most € since F(x) < O for any x € [0, 1], and the second
integral tends to 0 as n — 400 since F(x) < 0 for x € (0, 1]. Thus, the claim
immediately follows. O

Lemma 12 (Second moment of uniform vector on complex sphere) Let x ~
Unif (VdSEY). Then,

E{XX*} =1,. (188)

Proof Let z ~ CN(04, 1) and note that, by taking a vector of i.i.d. standard complex
normal random variables and dividing it by its norm, we obtain a vector uniformly
random on the complex sphere of radius 1. Then, x = Jdz /zll.

For i € [d], denote by x; and by z; the ith component of x and z, respectively.
Then, fori # j,

Z;Z*
E{X; X\ =d - E I —o,
! Iz)?

where the last equality holds by symmetry. Furthermore,

2l g |Zi|2 _
B{ir) = E{nznz}_l’

as | Z;|%/ 1Z|I*> ~ Beta(l,d — 1) by the argument of Lemma 9. As a result, the thesis
is readily proved. O
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D Proof of Lemma 3

Before presenting the proof of the lemma, let us introduce some basic definitions and
well-known results. Let H be a probability measure on [0, +00). Denote by 'y the
support of H and by t the supremum of I'y. Let sy (g) denote the Stieltjes transform
of H, which is defined as

1
sH(g) = / L an0, (189)
t—g

and let gy (s) denote its inverse.
Consider a matrix

1
S, :EUM,,U*, (190)

and assume that
(1) M, isPSD foralln € N;

E{U; ;} =0,E{|U; ;jI*} = 1,and E{|U; j|*} < oo (this includes the cases in
which the entries are ~; ; 4. CN(0, 1) or are ~; ; 4. N(O, 1));

(3) The sequence of empirical spectral distributions of M,, € C"*" converges weakly
to a probability distribution H, as n — +00;

4) n/d — § € (0, 400),as n — o0;

(5) The sequence of spectral norms of M, is bounded.

Note that the normalization of (190) differs from the normalization of (86) by a factor
of 8. However, since the form (190) is more common in the literature, we will stick to
it for the rest of this section. In order to obtain the desired result for the matrix (86),
it suffices to incorporate a factor 1/§ in the definition of the function 5.

Let Fs py be the probability measure on [0, +-00) such that the inverse gf; ,, of its
Stieltjes transform sg; ,, is given by

t
1+ts

8Fs u(s) = —% +8/ dH(1), s€{zeC:3(z) > 0} (191)

Then, the sequence of empirical spectral distributions of S, converges weakly to
Fs g [50], [66, Chapter 4].
For o ¢ I'y and o # 0, let us also define

1
V(o) = gy (—5) . (192)

The function ¥ ,, links the support of Fs g with the support of the generating measure
H (see [67, Section 4] and [3, Lemma 3.1]). In particular, if A ¢ I'p; ,,, thensp; , () #
Oand a = —1/sF, , (A) satisfies
(1) a ¢ I'y and a # 0 (so that ¥ ,, (@) is well defined);
) ¥, , (@) > 0.
FoC'T
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Conversely, if « satisfies (1) and (2), then A = ¥, , («) & T'F; ;-
Let A?’I" denote the largest eigenvalue of M,, and assume that, as n — oo,

A 25 o, ¢ Ty, (193)
Denote by A]S" the largest eigenvalue of S,,. Then, the results in [3] prove that

WS =R (), Y () > 0,

S, as. . . ’ (194)
)\41 — l(;tn>nl} ngwH (a)7 lf WF&H(a*) = 0.

Informally, the eigenvalue )»ZIW” is mapped into the point ¥f, , (ax), where o, =
—1/sF; ;; (A4). This point emerges from the support of Fs, g if and only if 1,0;76 " (oty) >
0. '

In what follows, we relax the first hypothesis, i.e., we consider the case in which
the matrix M, is not PSD. We will show that (194) still holds, which implies the claim
of Lemma 3.

Proof (Proof of Lemma 3) As U is drawn from a rotationally invariant distribution, we
can assume without loss of generality that M, is diagonal. Then, we have that

M 0 Ux
Sn=U4+U-) (0,, " _A;_> (U:)
So-m; )\ vt

1 1 _
= EU+MIU*+ - -U-M, U,

(195)

where M| € R¥*K s the diagonal matrix containing the positive eigenvalues of M,
M, e RO=k)x(=k) i5 the diagonal matrix containing the negative eigenvalues of M,
with the sign changed, U contains the first k£ columns of U, and U _ contains the
remaining n — k columns of U.

Note that U+ and U _ are independent. Furthermore, if H is a unitary matrix, then
U _ and HU _ have the same distribution. Hence, we can rewrite the matrix S,, as

1

S,,=d

1
U\M,[UT — S HU2 M USH", (196)

where U and U, are independent with entries ~; ; 4. CN(0, 1), and H is a random
unitary matrix distributed according to the Haar measure.

Recall that, by hypothesis, the sequence of empirical spectral distributions of M,
converges weakly to the probability distribution H, where H is the law of the random
variable Z. Then, the sequence of empirical spectral distributions of M converges
weakly to the probability distribution H™, where H™ is the law of ZT = max(Z, 0).
Let Fs p+ be the probability measure on [0, +00) such that the inverse g Fy o+ of its
Stieltjes transform s Fy y+ is given by

EOE';W
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1 ' N
8F, i (8) = —;+8/1+—de (). (197)

Define S, = lum Ut Then, as M is PSD, the sequence of empirical spectral
distributions of S, converges weakly to Fs g+ [50], [66, Chapter 4].

Similarly, the sequence of empirical spectral distributions of M, converges weakly
to the probability distribution H ™, where H~ is the law of Z= = —min(Z, 0). Let
Fs - be the probability measure on [0, +-00) such that the inverse gr, ,_ of its
Stieltjes transform s Fy - is given by

1 '
gF&H‘(S)z_EM/ 1+

dH™(1). (198)
ts

Define S, = éU oM Uj. Then, as M, is PSD, the sequence of empirical spectral
distributions of S, converges weakly to Fs - [50], [66, Chapter 4]. Furthermore, the
sequence of empirical spectral distributions of —S,, converges weakly to the proba-
bility measure Fy H such that

gr, ()= =gk, (=9, (199)
where g denotes the inverse of the Stieltjes transform s Fy - of Fy .
Deﬁne mv mv
Fsu = Fsy+ B F5 -, (200)

inv

where H denotes the free additive convolution. Recall the decomposition (196). Then,
the sequence of empirical spectral distributions of S, converges weakly to Fs g [69,
74]. Consequently, the inverse g, ,, of the Stieltjes transform sg; , of Fs gy can be
computed as

(@)
gFa,H(S) = gF(;,H.FEEIF&HA_ (s)

(b) 1
= 8F; 4+ () + 8F, (s) + 3

(C—)—l+5 Ldﬂm)—af;dlr(t) 201
T 1+1ts 1—ts (201)
@ 1

t t
=——48| ——dHT () +8 | —— dH (~t¢
s+ /1+ts @+ /l-l-ts =0

e 1 / t
=——+494 dH (1),
s 1+1s ®)

where in (a) we use (200); in (b) we use that the R-transform of the free convolution
is the sum of the R-transforms of the addends; in (c) we use (197), (198), and (199);
in (d) we perform the change in variable t — —t in the second integral; and in (e) we
use the fact that H T (¢) is the law of max(Z, 0), H ~(—t) is the law of min(Z, 0), and
thatz/(1 +ts) =0fort = 0.
FolCT
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By hypothesis, )LIIW” 25w, ¢ I'y. First, we establish under what condition the
+
largest eigenvalue of S, call it Af”, converges to a point outside the support of
St oas. .
Fs p+. To do so, define 1//F51H+ (a) = 8F; i+ (=1/a). Then, A}" —> 1//F51H+ (ay), if
+

wl/i; ut (o) > 0; and Af“ converges almost surely to a point inside the support of
F3g;11+, otherwise [3].

For the moment, assume that WF@ ot (ay) > 0. We now establish under what con-

dition the largest eigenvalue of §,,, call it Af”, converges to a point outside the support
of Fs y.To do so, let w; and w; denote the subordination functions corresponding to
the free convolution Fs y+ H Fy ;- . These functions satisfy the following analytic

subordination property:

Sy e, () = 55, (@) =57, (@), (202)
Then, by Theorem 2.1 of [11], we have that the spike lpFB - (oey) is mapped into
a)l_l (VE; s (05)). The Stieltjes transform at this point is given by

Sy e E, (@7 Ur e @) Dsn W (@)

(b)
= SF51H+ (8F6,H+ (_1/01*))
9 _1/a,,

where in (a) we use (202); in (b) we use the definition of Y5, , . ; and in (¢) we use that
8F; ,+ 18 the functional inverse of the Stieltjes transform s f& o+ As aresult, by [67,

Section 4], we conclude that w; ' (¥, ., (@) ¢ I'f; ,, if and only if ¥f. (o) >
0. Furthermore, the condition ‘ﬁ}ﬁ o (a4) > 0 is more restrictive than the condition

, .
1//1;5,HJr (ay) > 0 since

U ! ? + ! g /

Hence, Af” converges to a point outside the support of F; g if and only if w}a " (oy) >
0 and the proof is complete. ' O

Remark 8 (Lemma 3 for the real case) Consider the random matrix %U M,U", where
U € RU=Dx" i 3 random matrix whose entries are ~; ; 4. N(0, 1) and M,, € R"*",
Then, the claim of Lemma 3 still holds. Let us briefly explain why this is the case.

If M,, is PSD, then the results of [3] allow us to conclude. If M,, is not PSD, we
can write an expression analogous to (196):

1 1 1
EUM,,UT = EuleUI - EHUQM;U;H*, (203)
EOE';W
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where M, is the diagonal matrix containing the positive eigenvalues of M,,, M, is
the diagonal matrix containing the negative eigenvalues of M,, with the sign changed,
U and U, are independent with entries ~; ; 4. N(0, 1), H is a random unitary matrix
distributed according to the Haar measure, and we have used the fact that the eigen-
values of Uy M, U} are the same as the eigenvalues of HU, M, U H* since H is
unitary. Hence, the proof follows from the same argument of Lemma 3.

E Proof of Lemma 4 and Theorem 5

We start by proving a result similar to Lemma 4 for a general AMP iteration, where
the function f;(Z; y) is generic.

Lemma 13 (State evolution for general AMPiteration) Letx € R? denote the unknown
signal such that |x|l, = vVd, A = (ay,...,a,)" € R with {a;}1<i<n ~iia.
Ny, I4/d), and 'y = (y1,...,yn) with yi ~ p(- | (x,a;)). Consider the AMP
iterates 7', 2 defined in (126) for some function f,(Z; y), with b; given by

by =8 E{f(1:Go + ©G1; V)}, (204)

where the expectation is with respect to Gy, G1 ~iiq. N0, 1) and Y ~ p(- | Gy).
Assume that the initialization z° is independent of A and that, almost surely,

: 1 0y __ : 1 02 _ ,,2 2
lim E<x,z ) = wo,  lim gllz I© =y +15- (205)

n—o0

Let the state evolution recursion t;, |u; be defined as

Wil = 8/ E{d, p(y | Xo0) fi (11 X0 + ©:G; y) } dy,
R (206)

Tt2+1 =4 ‘E{(ft(MtX() + G, Y))2],

with initialization po and to, where the expectation is taken with respect to
X0, G ~jia. N(O,1). Then, for any t, and for any function ¥ : R*> — R such
that [ (u) — v (v)| < L+ |lull2 + |lvl2)lu — vz for some L € R, we have that,
almost surely,

1 n
Jim — v, 2) = E (¥ (Xo, i Xo + 7 G} (207)
i=1

Proof For g € R, let H(-; g) : [0, 1] - R U {400, —00} be the generalized inverse
of

y
F(ylg) E/ p(O' 1 &) dy,
—0Q
namely,

FoC'T
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H(w; g)zinf{yeR: F(y |g)2w}. (208)
With this definition, the model y; ~ p(- | (a;, x))isequivalentto y; = H(w;; (a;, x))
for {w;}1<i<n ~i.iq. Unif([0, 1]) independent of A and x. Let w = (wy, ..., w,) €
R" and denote by [v] | -~ | vi] € R™*K the matrix obtained by stacking column
vectors vy, ..., vy € R™,

For r > 0, define r' = 04, #' = Ax, and introduce the extended state variables
s’ € R?*2 and §' € R"*2, defined as

st =1[z"| '],

o =2 | F] (209)

We further define the functions i, = [h; 1 | h; 2] : R?2 x R — R? and ﬁt = [fz,,l |
hi2]: R2 x R — R? by setting

hi(s1,82; %) = [s1 | x1,

A A ) (210)
he(s1, $2; w) = [fi (515 H(ws 52)) | O].
With these notations, the iteration (126) is equivalent to
st = ATh, (8" w) — h,(s"; x)B,,
r( ) —hi(s’; x)B; 211

§ = Ahy(s'; %) — h—1 " w)B,_,

where the functions A, (s’; x) and h ;(8"; w) are understood to be applied component-
wise to their arguments and B,, B, € R?>*? are defined by

A alflt’k
B)ju =8B =5 (uXo+1G. Xo: W) 1
J

ahz,k
8Sj

212)

(Bt)j,k=5'E{ (X0 + G, 0; XO)}

The iteration (211) satisfies the assumptions of [41][Proposition 5]. By applying that
result, the claim follows. O

At this point, first we present the proof of Lemma 4 and then of Theorem 5.

Proof (Proof of Lemma 4) Consider the state evolution recursion defined in (124) with
initialization pq. Let f; be defined as in (127) with F given by (123). Suppose that, for
any ¢, (206) holds with u, = ttz. Then, by Lemma 13, the claim immediately follows.
The remaining part of the proof is devoted to show that (206) holds with u, = r,z,
for ¢+ > 0. First, we prove by induction that yu; = r,z, for + > 0. The basis of the
induction, i.e., no = roz, is true by the hypothesis of the Lemma. Now, we assume that
we = ttz and we show that ;41 = ttz_H. Set
Z = X0+ uG, (213)
EOE';W
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and note that Z ~ N(O, M; +1; 2). Then, we can rewrite X as
Xo=aZ+ bé,

for some a, b € R, where G ~ N(0, 1) and independent from Z. In order to compute
the coefficients a and b, we evaluate [E{ X (2)} and E{X- Z}, thus obtaining the equations

a4+ =1,
a(u? + ) = e,

which can be simplified as

a = 1253
M12+Tt2

T

b= !

vV Mtz + th

Furthermore, by using the inductive hypothesis u;, = r,z and that g; = u; /(1 + @),
we obtain that

Xo=(1-g)Z+/1-¢G. (214)
Hence, the following chain of equalities holds:
2 @ 2
T = ) RE p(y | Xo) - (ft(,U«tXO + 1 G; y)) dy

- 6/ E{p(v1(1 = a0 Z+T=4, G) - (fi(Z: )’} ay

~
=

—~

C

~

R
=8A;{ {(z(Zy)) {(yl(l—q,)z+ﬂg)’z}}dy
=5 | E ( & RN
A{( Efp(y | (1 —g) Z+T=q:G) | Z} {p(v1—=an
+VT=0.8) |z} o s

E{d 1—q)Z 1—4,6)|Z
:5/1@{ (epO 1 0= a0 24 T=G 812 g0y
R

E{p(y | (1 —g)Z+T—¢C) | Z}
+ /=G )|z}}
<s A; [ z:» E{agp(y|<1—qt)z+\/1—qta)yz}]
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where in (a) we use that Y ~ p(- | Xo); in (b) we use (213) and (214); in (c) we
condition with respect to Z; in (d) we use definition (127) of f;; in (e) we use again
definition (127) of f;; and in (f) we use again (213) and (214).

Finally, we prove that p,1 satisfies (206). Indeed, the following chain of equalities
holds:

Eip(y | (1—ag)Z+T—¢.G) | Z)

) (B3, p(y | (1 = )/} + 72 Go+ vT—a: G1) | Go})?

=5 | E }dy
R E{p(y | (1 —q)\/1n? + 12 Go + /T—q; G1) | Go}

~ 2
. @5/E (E0ep(y | (1 =) Z +T=4G) | 2)) }d
R

(216)

© /]E (B, p(y | V@i Go+vT—a:G1) | Go}
R

)2}
dy =6-h s
Elp(y | V@i Go+ NT—a: Gy | Gol | @)

where in (a) we use (215); in (b) we set G| = G and Go=Z7Z/ /L,z + r,z; and in (c)
we use that yu, = 1:[2 and that ¢; = /(1 + wy). O

Proof (Proof of Theorem 5) In view of Lemma 4, it is sufficient to show that (¢, u) =
(0, 0) is an attractive fixed point of the recursion (124).

First of all, let us check that (¢, u) = (0, 0) is a fixed point. This happens if and
only if

2
7 (0) = / (Eg {9gp(y | G1))) dy =0, 217)
R Ec {p(y |Gy}

which holds because of condition (131).
Let us now prove that this fixed point is stable. We start by rewriting the function
h(q) defined in (125) as

(hnum(«/q, )7))2
hig)= | E ——— ¢ dy, 218
(Q) /l; Go { hden(ﬂv )’) Y ( )

where

haun ¥, ) = Eq, {3,p(v 1 x - Go+V1 =2 G},

(219)
haen(x. ) =g, {p(y 1 x- Go+V1 =2 G}

FolCT
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Note that /ipym (0, y) = 0 by assumption (131). Then,

g 82hnum(xa y)
o 2 02x
0hgen(x,y)
0x

0hpum (x, y)
haan (V2. ) = g mm )

= (220)
hdel’l(-xa )’) = hdeﬂ(()’ y) + \/a

X=x2

for some x1, x» € [0, \/q]. Furthermore, by applying Stein’s lemma, we have that

|
_ . . 2
hnam (5, ) = ———Fg, {G1 Py | x-Go+v1—x Gl)}. (221)

By using (221), we can rewrite (220) as

haum (V4 ¥) = /4 Go - EG {G1-3,p(y | G1)}
q 1

+ EWEGI { foum(Go, G1, x1)},

haen(x, y) =Eg {p(y | G} + /4 Eg, { faen(Go, G1, x2)},

where

Joum(Go, G1, x1) = Gl((l +2x7) p(y | x1- Go ++/1 —x G1)

—(2Go - x1(xf = D+ G1y/1 = xF (1 +2x]))3,p(y | x1 - Go + /1 —x7 Gy)

+(f = D(GG (6} = 1) = Gix] +2GoG1x1y/ 1 — xD)dg p(y | x1 - Go
+\/ 1 _x]2 G])>7

X
fden(Go, G1,x2) = | Go — —= G |- dep(y | x2-Go++/1—x3Gy).

,/l—xzz

By applying again Stein’s lemma and by using that the conditional density p(y |
g) is bounded, we note that Eg, { foum(Go, G1, x1)} and Eg, { fgen (Go, G1, x2)} are
bounded. Hence, by dominated convergence, we obtain that

(222)

Eg, {92 G’
h(Q):q‘fR(Gl{gp(yl DY) dy + o(q).

Eg, {p(y | G}
Elol:;ﬂ
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Therefore, in a neighborhood of the fixed point we have

qr = i +o(uy),

(Ec, (92p(y | G1)})* (223)
frr =0 [R Eo p(y Gy 2 T oW

Furthermore, by applying twice Stein’s lemma, we also have that
Ec,{92p(y | G1)} = Eg, (p(y | G)(G} — D). (224)
By using (223), (224) and by recalling definition (42) of §,,, we conclude that

qr = e +o(iuy),
(225)

)
M1 = — qr +0(q).
Sy

As § < &y, the fixed point is stable. O

F Proof of Lemma 5 and Theorem 6

For the proofs in this section, it is convenient to introduce the function

Ec{dep(y | §x+VqG)} (E(;{ng(y |G x+ ﬁG)})z

SN = G Tax +vaon  \ Balp( 145 +va0))
(226)
First, we present the proof of Lemma 5 and then of Theorem 6.
Proof (Proof of Lemma 5) Condition (131) implies that
FO,y; 1) =0. (227)
Furthermore, we have that
Ey(G(0. Y: 1)} £ Ey {w}
Ec{p(Y | G)}
© [ Eotaipri o1y (228)

=56 {32 [ p01610v] =0

where in (a) we use (227) and definition (226) of G(0, y; 1) and in (b) we use the fact
that y has density Eg{p(y | G)}.

FoC
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Denote by F'(x, y; g) the derivative of F with respect to its first argument. Then,
we have

F(x,v:q) =qG(x,y; q). (229)
Hence,

by =8+ (1 g0 - E{G(uGo + i G1. Vi 1 — )} = 8- B(G(0; ¥; 1)} + 0, (1)
= 0,,(1). (230)

By using (229) and (230), we linearize the recursion (126) around the fixed point
Z =0 and 2" =0, as

2T = ATJE + 0, (D112 12 + 12" 112) + (12" 12) . (231)
2= Az — J2' +og, (DI 2 + o127 ), (232)

where J € R"™" is a diagonal matrix with entries j; = F'(0, y;; 1) for i € [n]. By
substituting expression (232) for z' into the RHS of (231), the result follows. O

Proof (Proof of Theorem 6) By definition, « is an eigenvalue of L, if and only if
det(L, —al,+q) =0. (233)

Recall that, when D is invertible,

det(48) = det(D) - det(A — BD™'C). (234)
CD
Then, after some calculations, we obtain that (233) is equivalent to

af -det(—J —al,) -detIy— AT, +aJ H7'A) =0. (235)

From (235), we immediately deduce that the eigenvalues of L, are real if and only
if all the solutions to

det(ly— AT(I, +aJ H7'4) =0 (236)

are real. We will prove that in fact this equation does not have any solution forax € C\R.
Let UX VT be the SVD of A. Then, (236) is equivalent to

detUX > -, +aJ H 'U)=0.

Using the fact that det(X) # 0, and det(I,, + aJ ') # 0 for @ € C\R, Eq. (236) is
equivalent to

det((I, +aJ HU —-UZX? =0,
FoCTM
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or equivalently
det(I, +aJ ' — AAY) =det, +«J ' —UX?U") = 0.

Given that the solutions of this equations are generalized eigenvalues for the pairs
of symmetric matrices AA" — I,, and J~', they must be real. We conclude that the
eigenvalues of L, are real.

Note that

60, y: 1y @ Bol%p( 1 O}
EG{p(y | G))
® Eglp(y | G)(G* — 1)} (237)
Ecip(y | G)}
© 7T70)
S 1=TH)

where in (a) we use that F(0, 1; y) = 0 as (131) holds; in (b) we apply twice Stein’s
lemma; and in (c) we use definition (45) of 7*. Then, (236) can be rewritten as

R T*(yi) T\
o (Id ;T*(yl-)w(l—f*(yf))”’”f)‘0' 9

Let Af): (@) be the largest eigenvalue of the matrix D} () defined as

R T* () T
= ; T +al =T

(239)

Note that, as @ — 400, the entries of D} («) tend to 0 with high probability. Since
the eigenvalues of a matrix are continuous functions of the elements of the matrix, we
also obtain that

D
Jm e =0

. . D: . _ _
Hence, if there exists @ > 1 such that A, " (&) > 1, then there exists also ¢p > a > 1

such that Af)z (ag) = 1. Consequently, there exists « > 1 that satisfies (238), which
implies the result of the theorem.

The rest of the proof consists in showing that @ = +/8/8, satisfies the desired
requirements. First of all, note that ,/8/8, > 1, as § > §,. Furthermore, we have that

n
D@ =) T (aia], (240)
i=1
EOE';W
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where 7" is defined in (44). Recall that, by hypothesis, x is such that || x|, = Jd
and {a;}1<i<n ~iid. N(0g, 14/d). Letx = x/+/d and d; = v/d -a;. Then, (x, a;) =

(x,a;). Let Af)” be the largest eigenvalue of the matrix D,, defined as
1 n
b, =- > T naia). (241)
i=1
Since bn = D; («)/$, it remains to prove that

D, as. =
A 255

(242)

[T

To do so, we apply a result analogous to that of Lemma 2 for the real case with
T = 7*. For the moment, assume that 7;* fulfills the hypotheses of Lemma 2 (we

will prove later that this is the case). Then, Af)” converges almost surely to £s(A3).
Recall that

¢s(h) = Yrs(max(h, Ag)),

where A is the point of minimum of the convex function v/5(1) defined as

(1L T
Vs = A (E +E{Fm}>.

Notice also that this minimum is the unique local minimizer since s is convex and
analytic.

Furthermore, A§ is the unique solution to the equation ¢5(A3) = ¢ (A3), where ¢ (1)
is defined as

* .02
¢(}\)=A.E{7§(Y) G }

=Ty (Y)
By setting the derivative of ¥5(A) to 0, we have that

gl @Tw? | _1
(s =Ty 8

By using definition (44) of 7;* and definition (45) of 7™, we verify that

7y (Y) _/@Ec{p(ym)(cz—l)}
; .

7 243
-7 Ec(p(y | G)) (249
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Hence, by using definition (42) of §,, we obtain that

I (00 S N /(Ea{p<y|6)<62—1)})2 1
-0~ 5Je  Eclp16) 5

which immediately implies that
rs = 1. (244)

By using (243), one also obtains that

E AN \/>/E{(|G)(G2—l)}d —\/71[43{(;2—1}—0
- clp(y y G

which implies that

1
Ys(l) = 5 (245)

Furthermore, we have that

plTMG =D _ 5 / (Ec{p(y | ©)(G* = D))’* oL .1
=T Ec{p(y | G)} 58, &
which implies that
(1) 1 : (246)
= > -,
§-8, 6
as 6 > dy. By putting (244), (245), and (246) together, we obtain that
P (hs) > &5 (hs). (247)

Recall that £5(2) is monotone non-decreasing and ¢ () is monotone non-increasing.
Consequently, (247) implies that A5 > X5. Thus, we conclude that

Tim AP = 5,00 = w0
) X (248)
> Ys(s) = ¥s(l) = <.

Now, we show that 7;* fulfills the hypotheses of Lemma 2 by using arguments
similar to those at the end of the proof of Theorem 2. First of all, since 7*(y) < 1, we
have that 7g*(y) is bounded. Furthermore, if 7" (y) is equal to the constant value 0,
then §, = oo and the claim of Theorem 6 trivially holds. Hence, we can assume that
P(7;*(Y) = 0) < 1. Let  be the supremum of the support of 7;*(Y). If P(7;*(Y) =

FoE'ﬂ
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7) > 0, then the condition (82) is satisfied and the proof is complete. Otherwise, for
any €; > 0, there exists Aj(e1) such that Eq. (115) holds. Define ’2:3*():, €1) as in
(116). Clearly, the random variable ’Z:S*(Y , €1) has a point mass at §; hence, condition
(82) is satisfied. As a final step, we show that we can take €1 | 0. Define

~ 1 <& o
D,(e1) = ; Z'Zé*(yi, el)aia;k.

i=1
Then,

|Duer) — Dy, < C1- Av(er), (249)

op —

where the constant C1 depends only on n/d. Consequently, by using (249) and Weyl’s
inequality, we conclude that

D, D,
@ = < €1 Are. (250)
Hence, for any n,as €] tends to 0, the largest eigenvalue of bn (e1) tends to the largest
eigenvalue of D,,, which concludes the proof. O
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