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ABSTRACT
Given a collection of data points, nonnegative matrix factorization (NMF) suggests expressing them as
convex combinations of a small set of “archetypes” with nonnegative entries. This decomposition is unique
only if the true archetypes are nonnegative and sufficiently sparse (or the weights are sufficiently sparse), a
regime that is captured by the separability condition and its generalizations.
In this article, we study an approach to NMF that can be traced back to the work of Cutler and Breiman
[(1994), “Archetypal Analysis,” Technometrics, 36, 338–347] and does not require the data to be separable,
while providing a generally unique decomposition. We optimize a trade-off between two objectives: we
minimize the distance of the data points from the convex envelope of the archetypes (which can be
interpreted as an empirical risk), while also minimizing the distance of the archetypes from the convex
envelope of the data (which can be interpreted as a data-dependent regularization). The archetypal analysis
method of Cutler and Breiman is recovered as the limiting case in which the last term is given infinite weight.
We introduce a “uniqueness condition” on the data which is necessary for identifiability. We prove that,
under uniqueness (plus additional regularity conditions on the geometry of the archetypes), our estimator
is robust. While our approach requires solving a nonconvex optimization problem, we find that standard
optimization methods succeed in finding good solutions for both real and synthetic data. Supplementary
materials for this article are available online
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1. Introduction

Unmixing convex combinations of a small number of signals—
without knowing a priori the pure components—is a central
statistical problem in a broad range of applications, from
chemometrics (Paatero and Tapper 1994) to image processing
(Lee and Seung 1999), topic modeling (Xu, Liu, and Gong
2003), clustering, and co-clustering (Long, Zhang, and Yu
2005; Wang et al. 2011; and Del Buono and Pio 2015). As
an example, Figure 1 displays the infrared reflection spectra1

of four molecules (caffeine, sucrose, lactose and trioctanoin)
for wavenumbers between 1186 and 1530 cm−1 (data were
retrieved from the NIST ChemistryWebBook dataset (Linstrom
and Mallard 2017). Each spectrum is a vector h0,� ∈ R

d, in
d = 87 dimensions, whose components ((h0,�)1, . . . (h0,�)d)
contain the reflection intensity of the �th molecule at different
wavelengths. The index � refers to the four molecules, whence
� ∈ {1, . . . , 4}. We will refer to the vectors h0,1, . . . , h0,4 as to
the “archetypes.” If a mixture of these substances is analyzed,
the resulting spectrum will be a convex combination of the four
spectra h0,1, . . . , h0,4. The same situation arises in hyperspectral
imaging (Ma et al. 2014), where the objective is to estimate the
proportions of a certain number of analytes which depend on
the spatial position in the image.

In order to mimic this setting, we generated n = 250,
synthetic random convex combinations of the four spectra h0,1,
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…, h0,4, which we denote by x1, . . . , xn ∈ R
d. Each synthetic

combination contains two or more of these four analytes. We
then tried to reconstruct the archetype spectra from the xi’s.

Figure 1 displays the outcome of such reconstruction,
whereby each column corresponds to a different reconstruction
algorithm. We refer to Appendix A for further details and to
Appendix F for comparison with seven other algorithms in the
literature.

As illustrated by this example, this blind unmixing problem is
often challenging, and existing approaches can be inaccurate. A
key difficulty lies in the fact that—without further constraints—
the problem is dramatically underdetermined. Given a set of
valid archetypes {h0,�}�≤r , any set {h�}�≤r whose convex hull
contains the {h0,�}�≤r is also a solution of the problem. For
instance, we can set h� = h0,� for � ≤ r − 1, and hr =
(1 + s)h0,r − sh0,1 for any s ≥ 0, and obtain an equally good
representation of the data.

Mathematically, we are given a set of data points
x1, x2, . . . , xn ∈ R

d, and want to represent them as convex com-
binations of a small set of vectors (the “archetypes” h1, . . . , h�):

xi ≈
r∑

�=1
wi,�h� , wi,� ≥ 0,

r∑
�=1

wi,� = 1 . (1)

Figure 2 illustrates the geometry of this problem for a small
synthetic example, with d = 2, r = 3, n = 500. Once again, any
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Figure 1. Left column: Infrared reflection spectra of four molecules. Subsequent columns: Spectra estimated from n = 250 spectra of mixtures of the four original
substances (synthetic data generated by taking random convex combinations of the pure spectra, see Appendix A for details). Each column reports the results obtained
with a different estimator: continuous blue lines correspond to the reconstructed spectra; dashed red lines correspond to the ground truth.

set of three vectors whose convex hull contains the data points is
a valid solution of the problem. The central question is therefore:
How should we constrain the decomposition (1) in such a way that
it is generally unique (up to permutations of the r archetypes)?

Since the seminal work of Paatero and Tapper (1994), Paatero
(1997), and of Lee and Seung (1999, 2001), a large amount of
work has addressed this question by making the assumption that
the archetypes are componentwise nonnegative h� ≥ 0. Among
other applications, the nonnegativity constraint is justified in
chemometrics (reflection or absorption spectra are nonnega-
tive), and topic modeling (in this case archetypes correspond to
topics, which are represented as probability distributions over
words). This formulation has become popular as nonnegative
matrix factorization (NMF).

Under the nonnegativity constraint h� ≥ 0 the roles of
weights and archetypes become interchangeable. This is easily
seen in matrix notation. We represent the data as a matrix X ∈
R

n×d whose ith row is the vector xi, the weights by a matrix
W = (wi,�)i≤n,�≤r ∈ R

n×r and the archetypes by a matrix
H = (h�,j)�≤r,j≤d ∈ R

r×d. When h� ≥ 0 , it is well known that—
without loss of generality—we can assume

∑r
�=1 h�,i = 1. The

factorization (1) takes therefore the form X = WH, and we can
equivalently consider W as weights and H as archetypes or vice
versa (by transposing X).

The decomposition (1) is unique provided that the arche-
types or the weights are sufficiently sparse. This point was
clarified by Donoho and Stodden (2003), who introduced a
separability condition that implies uniqueness. The nonnegative
archetypes h1, · · · , hr are separable if, for each � ∈ [r] there

exists an index i(�) ∈ [d] such that (h�)i(�) = 1, and (h�′)i(�) =
0 for all �′ �= �. Due to the interchangeability of weights
and archetypes discussed above, we can consider an equivalent
“weight separability” condition. This requires that for � ∈ [r]
there exists an index i(�) ∈ [n] such that wi(�),� = 1, and
wi(�),�′ = 0 for all �′ �= �. Since “archetype separability”
and “weight separability” are mathematically equivalent we shall
focus hereafter on the latter (with the caveat that the two are
connected by a transposition of X).

Weight separability has a simple geometric interpretation:
the data are separable if for each archetype h� there is at least
one data point xi such that xi = h�. A copious literature
has developed algorithms for nonnegative matrix factorization
under separability condition or its generalizations (Donoho and
Stodden 2003; Arora et al. 2012; Recht et al. 2012; Arora et al.
2013; Ge and Zou 2015).

Of course, this line of work has a drawback: in practice we do
not know whether the data are separable. (We refer to Section 5
for a comparison with Ge and Zou (2015), which relaxes the
separability assumption.) Furthermore, there are many cases
in which the archetypes h1, . . . , hr are not necessarily non-
negative. For instance, in spike sorting, the data x1, . . . , xn are
electrophysiological measurements of neural activity at n posi-
tions, and the archetypes h1, . . . , hr correspond to waveforms
associated to different neurons (Roux, Cheveigné, and Parra
2009). In very high-dimensional applications, the archetypes h�

are nonnegative, but—in order to reduce complexity—the data
{xi}i≤n are replaced by a random low-dimensional projection
(Kim, Sra, and Dhillon 2008; Wang and Li 2010). The projected
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Figure 2. Toy example of archetype reconstruction. Top left: data points (blue) are generated as random linear combinations of r = 3 archetypes in d = 2 dimensions
(black, see Appendix A for details). Top right (red): Initialization using the algorithm of Arora et al. (2013). Bottom left (red): Output of the alternate minimization algorithm of
Cutler and Breiman (1994) with initialization form the previous frame. Bottom right (red): Alternate minimization algorithm to compute the estimator (6), with λ = 0.0166.

archetypes lose the nonnegativity property. Finally, the decom-
position (1) is generally nonunique, even under the constraint
h� ≥ 0. This is illustrated, again, in Figure 1: all the spectra are
strictly positive, and hence we can find archetypes h1, . . . , h4
that are still nonnegative and whose convex envelope contains
h0,1, . . . , h0,4.

Since NMF is generally underdetermined, standard methods
fail in such applications, as illustrated in Figure 1. The third
column of Figure 1 uses a projected gradient algorithm from Lin
(2007) to solve the problem

minimize ‖X − WH‖2
F , (2)

subject to W ≥ 0, H ≥ 0 .

Empirically, projected gradient converges to a point with very
small fitting error ‖X − WH‖2

F , but the reconstructed spectra
(rows of H) are inaccurate. The second column in the same
figure shows the spectra reconstructed using an algorithm from
Arora et al. (2013), which assumes separability: as expected, the
reconstruction is not accurate.

Several earlier works addressed the nonuniqueness problem
in classical nonnegative matrix factorization. Among others,
Miao and Qi (2007) penalize a matrix of archetypes H by the
corresponding volume and try to find the set of archetypes
h1, . . . , h� whose convex hull contains data points and has the
least volume. To the best of our knowledge, none of these works
establishes robustness of the proposed methods.

In a less widely known paper, Cutler and Breiman (1994)
addressed the same problem using what they call “archetypal
analysis.” Archetypal analysis presents two important dif-
ferences with respect to standard NMF: (1) The archetypes

h� are not necessarily required to be nonnegative (although
this constraint can be easily incorporated); (2) The under-
determination of the decomposition (1) is addressed by
requiring that the archetypes belong to the convex hull of the
data points: h� ∈ conv({xi}i≤n). These ideas were further
developed in the work of Mørup and Hansen (2012), which
however does not provide theoretical analysis in the presence of
noise.

In applications, the condition h� ∈ conv({xi}i≤n) enforced
by Cutler and Breiman (1994) is too strict. This article builds on
the ideas of Cutler and Breiman (1994) to propose a formulation
of NMF that is uniquely defined (barring degenerate cases) and
provides a useful notion of optimality. In particular, we present
the following contributions.
Archetypal reconstruction. We propose to reconstruct the
archetypes h1, . . . , hr by optimizing a combination of two
objectives. On the one hand, we minimize the error in the
decomposition (1). This amounts to minimizing the distance
between the data points and the convex hull of the archetypes.
On the other hand, we minimize the distance of the archetypes
from the convex hull of data points. This relaxes the original
condition imposed in Cutler and Breiman (1994) which
required the archetypes to lie in conv({xi}), and allows to treat
nonseparable data.
Robustness guarantee. We next assume that the decomposi-
tion (1) approximately holds for some “true” archetypes h0

� and
weights w0

i,�, namely xi = x0
i + zi, where x0

i = ∑r
�=1 w0

i,�h0
�

and zi captures unexplained effects. We introduce a “uniqueness
condition” on the data {x0

i }i≤n which is necessary for exactly
recovering the archetypes from the noiseless data. We prove that,
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under uniqueness (plus additional regularity conditions on the
geometry of the archetypes), our estimator is robust. Namely it
outputs archetypes {ĥ�}�≤r whose distance from the true ones
{h0

�}�≤r (in a suitable metric) is controlled by supi≤n ‖zi‖2.
Algorithms. Our approach reconstructs the archetypes
h1, . . . , hr by minimizing a nonconvex risk function Rλ(H). We
propose three descent algorithms that appear to perform well
on realistic instances of the problem. In particular, Section 4
introduces a proximal alternating linearized minimization
algorithm (PALM) that is guaranteed to converge to critical
points of the risk function. Appendix E discusses two alternative
approaches. One possible explanation for the success of such
descent algorithms is that reasonably good initializations can
be constructed using spectral methods, or approximating the
data as separable, cf. Section 4.1. We defer a study of global
convergence of this two-stage approach to future work.

2. An Archetypal Reconstruction Approach

Let Q ⊆ R
d be a convex set and D : Q × Q → R, (x, y) �→

D(x; y) a loss function on Q. For a point u ∈ Q and a matrix
V ∈ R

m×d, with rows v1, . . . , vm ∈ Q, we let

D(u; V) ≡ min
{

D
(
u; VTπ

)
: π ∈ �m

}
, (3)

�m ≡ {
x ∈ R

m≥0 : 〈x, 1〉 = 1
}

. (4)

In other words, denoting by conv(V) = conv({v1, . . . , vm}) the
convex hull of the rows of matrix V , D(u; V) is the minimum
loss between x and any point in conv(V). If U ∈ R

k×d is a
matrix with rows u1, . . . , uk ∈ Q, we generalize this definition
by letting

D(U ; V) ≡
k∑

�=1
D(u�; V) . (5)

While this definition makes sense more generally, we have in
mind two specific examples in which D(x; y) is actually sepa-
rately convex in its arguments x and y. (Most of our results will
concern the first example.)

Example 2.1 (Square loss). In this case Q = R
d, and D(x; y) =

‖x − y‖2
2. This is the case originally studied by Cutler and

Breiman Cutler and Breiman (1994).

Example 2.2 (KL divergence). We take Q = �d, the d-
dimensional simplex, and D(x; y) to be the Kullback–Leibler
divergence between probability distributions x and y, namely
D(x; y) ≡ ∑d

i=1 xi log(xi/yi).

Given data x1, . . . , xn organized in the matrix X ∈ R
n×d, we

estimate the archetypes by solving the problem

Ĥλ ∈ arg min
{
D(X; H) + λ D(H; X) : H ∈ Qr

}
, (6)

where we denote by Qr the set of matrices H ∈ R
r×d with

rows h1, . . . , hr ∈ Q (This problem can have multiple global
minima if λ = 0 or in degenerate settings. One minimizer is
selected arbitrarily when this happens). A few values of λ are of
special significance. If we set λ = 0 and Q = �d, we recover

the standard NMF objective (2), with a more general distance
function D( · , · ). As pointed out above, in general this opti-
mization problem has no unique minimizer. If we let λ → 0+
after the minimum is evaluated, Ĥλ converges to the minimizer
of D(X; H) which is the “closest” to the convex envelope of the
data conv(X) (in the sense of minimizing D(H; X)). Finally for
λ → ∞, the archetypes h� are forced to lie in conv(X) and hence
we recover the method of Cutler and Breiman (1994).

Figure 2 illustrates the advantages of the estimator (6) on a
small synthetic example, with d = 2, r = 3, and n = 500. In this
case, the data are not separable as it can be seen from the fact that
no data points coincide with the extremal points of conv(H0).
We first use the successive projections algorithm of Arora et al.
(2013) (that is designed to deal with separable data) in order
to estimate the archetypes. As expected, the reconstruction is
not accurate because this algorithm assumes separability and
hence estimates the archetypes by a subset of the data points.
We then use these estimates as initialization in the alternate
minimization algorithm of Cutler and Breiman (1994), which
optimizes the objective (6) with λ = ∞. The estimates improve
but not substantially: they are still constrained to belong to
conv(X). A significant improvement is obtained by setting λ to
a small value. We (approximately) minimize the cost function
(6) by generalizing the alternate minimization algorithm, cf.
Section 4. The optimal archetypes are no longer constrained to
conv(X), and provide a better estimate of the true archetypes.
In the last column of Figure 1, we use the same estimator, and
approximately solve problem (6) by gradient descent.

In our analysis, we will consider a slightly different formu-
lation in which the Lagrangian of equation (6) is replaced by a
hard constraint:

minimize D(H; X) , (7)
subject to D(xi; H) ≤ δ2 for all i ∈ {1, . . . , n} .

We will use this version in the analysis presented in the next
section, and denote the corresponding estimator by Ĥ.

3. Robustness

In order to analyze the robustness properties of estimator Ĥ, we
assume that there exists an approximate factorization

X = W0H0 + Z , (8)
where W0 ∈ R

n×r is a matrix of weights (with rows w0,i ∈ �r),
H0 ∈ R

r×d is a matrix of archetypes (with rows h0,�), and we
define X0 = W0H0. The error term Z is arbitrary, with rows zi
satisfying maxi≤n ‖zi‖2 ≤ δ. We will assume throughout r to be
known.

We will quantify estimation error by the sum of dis-
tances between the true archetypes and the closest estimated
archetypes

L (H0, Ĥ) ≡
r∑

�=1
min
�′≤r

D(h0,�, ĥ�′) . (9)

In words, if L (H0, Ĥ) is small, then for each true archetype h0,�
there exists an estimated archetype ĥ�′ that is close to it in D-loss.
Unless two or more of the true archetypes are close to each other,
this means that there is a one-to-one correspondence between
estimated archetypes and true archetypes, with small errors.
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Assumption (Uniqueness). We say that the factorization X0 =
W0H0 satisfies uniqueness with parameter α > 0 (equivalently,
is α-unique) if for all H ∈ Qr with conv(X0) ⊆ conv(H), we
have

D(H, X0)
1/2 ≥D(H0, X0)

1/2

+ α
{
D(H, H0)

1/2 + D(H0, H)1/2} . (10)

The rationale for this assumption is quite clear. Assume that
the data lie in the convex hull of the true archetypes H0, and
hence Equation (8) holds with Z = 0, that is, X = X0. We recon-
struct the archetypes by demanding conv(X0) ⊆ conv(H): any
such H is a plausible explanation of the data. In order to make
the problem well specified, we define H0 to be the matrix of
archetypes that are the closest to X0, and hence D(H, X0) ≥
D(H0, X0) for all H. In order for the reconstruction to be
unique (and hence for the problem to be identifiable) we need
to assume D(H, X0) > D(H0, X0) strictly for H �= H0. The
uniqueness assumption provides a quantitative version of this
condition.

Given X0, H0, the best constant α such that Equation (10)
holds for all H such that conv(X0) ⊆ conv(H) is the unique-
ness constant of (H0, X0), denoted by α(H0, X0), Notice that
this is a geometric property that depends on X0 only through
conv(X0).

Remark 3.1. If X0 = W0H0 is a separable factorization, then
it satisfies uniqueness with parameter α = 1. Indeed, since
each data point x0,i belongs to conv(H0), we have conv(X0) ⊆
conv(H0). In addition, by separability, the rows of H0 are a
subset of the rows of X0. Therefore, in this case conv(H0) =
conv(X0), whence for H such that conv(X0) ⊆ conv(H),
D(H, X0) = D(H, H0) and D(H0, X0) = D(H0, H) = 0.

It is further possible to show that α ∈ [0, 1] for the square loss
D(x, y) = ‖x−y‖2

2 (withQ = R
d) and all H0, X0. Indeed, α ≥ 0

follows simply by defining H0 to be the matrix of archetypes that
are closest to X0, whence D(H, X0) ≥ D(H0, X0) and therefore
α ≥ 0.

In order to see that α ≤ 1, we consider the following
construction of H1 ∈ Qr (see Figure 3). Let C1 be the cone
generated by h0,2 − h0,1, h0,3 − h0,1, . . . , h0,r − h0,1, that is,
C1 = {v ∈ R

d ; v = ∑r
i=2 ui(h0,i − h0,1) , ui ≥ 0}. Let C∗

1
be the dual cone (Recall that given a cone C ⊆ R

d, its dual is

Figure 3. An example of H0 , H1 , X0 in Remark 3.1. The inner and outer dashed
polygons have vertices –respectively– {h0,i}i≤r and {h1,i}i≤r . The filled region
represents conv(X0).

defined as C∗ = {x ∈ R
d : 〈x, y〉 ≥ 0 ∀y ∈ C}) and h̃ be an

arbitrary point in conv(H0) ∩ (
C∗

1 + h0,1
)

(It is easy to see that
conv(H0)∩

(
C∗

1 + h0,1
)

is nonempty. Indeed, ifH is a half-space
that contains C1, and n ∈ H the normal to the corresponding
hyperplane, it follows from its definition that h0,1 + tn is such a
point for some t ≥ 0). Take

h1,1 = 2h0,1 − h̃ , h1,i = h0,i , for i = 2, 3, . . . , r.
(11)

Note that h0,1 = (̃h + h0,1)/2 ∈ conv(H1) and therefore
conv(H1) ⊇ conv(H0) ⊇ conv(X0), whence

D(H0, H1)
1/2 = 0 . (12)

Further, h1,1−h0,1 ∈ C0
1 , the polar cone of C1 (since by definition

C0
1 = −C∗

1 ). Thus, the �2 projection of h1,1 onto conv(H0) is h0,1,
whence

D(H1, H0)
1/2 = ∥∥h1,1 − h0,1

∥∥
2 . (13)

Further, by triangle inequality
D(h1,1, X0)

1/2 ≤ D(h0,1, X0)
1/2 + ∥∥h1,1 − h0,1

∥∥
2 . (14)

Thus,
D(h1,1, X0) ≤ D(h0,1, X0) + ∥∥h1,1 − h0,1

∥∥2
2

+ 2D(h0,1, X0)
1/2 ∥∥h1,1 − h0,1

∥∥
2 , (15)

D(H1, X0) ≤ D(H0, X0) + ∥∥h1,1 − h0,1
∥∥2

2

+ 2D(h0,1, X0)
1/2 ∥∥h1,1 − h0,1

∥∥
2 (16)

≤ D(H0, X0) + ∥∥h1,1 − h0,1
∥∥2

2

+ 2D(H0, X0)
1/2 ∥∥h1,1 − h0,1

∥∥
2 . (17)

Therefore, by Equation (12)
D(H1, X0)

1/2 ≤ [D(H0, X0) + D(H1, H0)

+2D(H0, X0)
1/2D(H1, H0)

1/2]1/2 (18)
= D(H0, X0)

1/2 + D(H1, H0)
1/2 (19)

= D(H0, X0)
1/2 + D(H1, H0)

1/2

+ D(H0, H1)
1/2. (20)

Hence, α ≤ 1.

We say that the convex hull conv(X0) has internal radius (at
least) μ if it contains an r − 1-dimensional ball of radius μ, that
is, if there exists z0 ∈ R

d, U ∈ R
d×(r−1), with UTU = Id , such

that z0 + UBr−1(μ) ⊆ conv(X0). We further denote by κ(M)

the condition number of matrix M.

Theorem 1. Assume X = W0H0 + Z where the factoriza-
tion X0 = W0H0 satisfies the uniqueness assumption with
parameter α > 0, and that conv(X0) has internal radius μ >

0. Consider the estimator Ĥ defined by Equation (7), with
D(x, y) = ‖x − y‖2

2 (square loss) and δ = maxi≤n ‖Zi,·‖2. If

max
i≤n

‖Zi,·‖2 ≤ αμ

30r3/2 , (21)

then, we have

L (H0, Ĥ) ≤ C2∗ r5

α2 max
i≤n

‖Zi,·‖2
2 , (22)

where C∗ is a coefficient that depends uniquely on the geometry
of H0, X0, namely C∗ = 120(σmax(H0)κmax(H0)/μ).
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Remark 3.2. Let us emphasize that C∗ is part of the bound on the
robustness and its knowledge is not required by the algorithm.
(It is analogous to the restricted eigenvalue constant in sparse
regression.)

Remark 3.3. Robustness to outliers. Note that although the result
of Theorem 1 establishes robustness of the estimator Ĥ, the error
bound depends on the maximum of norms of the rows of the
noise matrix. While such a bound provides a guarantee against
adversarial (nonrandom) noise, it can be overly pessimistic
when the noise is mostly small, with a few outlier data points. In
this scenario, better performances would probably be achieved
by replacing the square loss D(x, y) = ‖x−y‖2

2 by a more robust
distance, for instance the �2 loss, D(x, y) = ‖x − y‖2. The study
of such robust distances is a promising avenue for future work.

4. Algorithms

While our main focus is on structural properties of nonnegative
matrix factorization, we provide evidence that the optimization
problem, we defined can be solved in practical scenarios (Our
code is available online at http://web.stanford.edu/~hrhakim/
NMF/). A more detailed study is left to future work.

From a computational point of view, the Lagrangian formu-
lation (6) is more appealing. For the sake of simplicity, we denote
the regularized risk by

Rλ(H) ≡ D(X; H) + λ D(H; X) . (23)

The notation Rλ(H) leaves implicit the dependence on the
data X. Notice that this function is nonconvex and indeed has
multiple global minima. In particular, permuting the rows of
a minimizer H yields other minimizers. We will describe two
greedy optimization algorithms: one based on gradient descent,
and one based on alternating minimization. In both cases, it is
helpful to use a good initialization: two initialization methods
are introduced in the next section.

4.1. Initialization

We experimented with two initialization methods, described
below.
1. Spectral initialization. Under the assumption that the
archetypes {h0,�}�≤r are linearly independent (and for a matrix
of weights W with full rank), the “noiseless” matrix X0 has
rank exactly r. This motivates the following approach. We
compute the singular value decomposition X = ∑n∧d

i=1 σiuivT
i ,

σ1 ≥ σ2 ≥ · · · ≥ σn∧d, and initialize Ĥ as the matrix Ĥ(0) with
rows ĥ

(0)

1 = v1, . . . , ĥ
(0)

r = vr .
2. Successive projections initialization. In this method, we ini-
tialize Ĥ(0) by choosing a set of archetypes {ĥ

(0)

� }1≤�≤r that
are a subset of the data {xi}1≤i≤n, selected as follows. The first
archetype ĥ

(0)

1 is the data point which is farthest from the origin.
For each subsequent archetype, we choose the point that is
farthest from the affine subspace spanned by the previous ones,
as detailed in the pseudocode below.

Archetype initialization algorithm
Input : Data {xi}i≤n, xi ∈ R

d; integer r;
Output : Initial archetypes {ĥ

(0)

� }1≤�≤r ;
1: Set i(1) = arg max{D(xi; 0) : i ≤ n};
2: Set ĥ

(0)

1 = xi(1);
3: For � ∈ {1, . . . , r}
4: Define V� ≡ aff(ĥ

(0)

1 , ĥ
(0)

2 , . . . , ĥ
(0)

� );
5: Set i(� + 1) = arg max{D(xi; V�) : i ≤ n};
6: Set ĥ

(0)

�+1 = xi(�+1);
7: End For;
8: Return {ĥ

(0)

� }1≤�≤r ;

This coincides with the successive projections algorithm of
Araújo et al. (2001), with the minor difference that V� is the
affine subspace spanned by the first � vectors, instead of the
linear subspace (The same modification is also used in Arora
et al. (2013), but we do not apply the full algorithm of Arora
et al. (2013).) This method can be proved to return the exact
archetypes if data are separable and the archetypes are affinely
independent Arora et al. (2013); Gillis and Vavasis (2014). When
data are not separable, it provides nevertheless a good initial
assignment.

4.2. Proximal Alternating Linearized Minimization

Bolte, Sabach, and Teboulle (2014) developed a proximal alter-
nating linearized minimization algorithm (PALM) to solve the
problems of the form

minimize 	(x, y) = f (x) + g(y) + h(x, y), (24)

where f : Rm → (−∞, +∞] and g : Rn → (−∞, ∞] are lower
semicontinuous and h ∈ C1(Rm ×R

n). PALM is guaranteed to
converge to critical points of the function 	 Bolte, Sabach, and
Teboulle (2014).

We apply this algorithm to minimize the cost function (23),
with D(x, y) = ‖x − y‖2

2, which we write as

Rλ(H) = min
W

	(H, W) = min
W

{
f (H) + g(W) + h(H, W)

}
.

(25)

where

f (H) = λ D(H, X), (26)

g(W) =
n∑

i=1
I
(
wi ∈ �r) , (27)

h(H, W) = ‖X − WH‖2
F . (28)

In above equations wi are the rows of W, and the indicator
function I(x ∈ �r) is equal to zero if x ∈ �r and is equal to
infinity otherwise.

http://web.stanford.edu/~hrhakim/NMF/
http://web.stanford.edu/~hrhakim/NMF/
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By using this decomposition, the iterations of the PALM
algorithm read

H̃k = Hk − 1
γ k

1
(Wk)T

(
WkHk − X

)
, (29)

Hk+1 = H̃k − λ

λ + γ k
1

(
H̃k − �conv(X)

(
H̃k

))
, (30)

Wk+1 = ��r

(
Wk − 1

γ k
2

(
WkHk+1 − X

)
(Hk+1)T

)
, (31)

where γ k
1 , γ k

2 are step sizes and, for M ∈ R
m1×m2 , and S ⊆ R

m2

a closed convex set, �S(M) is the matrix obtained by projecting
the rows of M onto the set S .

Proposition 4.1. Consider the risk (23), with loss D(x, y) =
‖x − y‖2

2, and the corresponding cost function 	(H, W).
If the step sizes are chosen such that γ k

1 >

∥∥∥WkT Wk
∥∥∥

F
,

γ k
2 > max

{∥∥∥Hk+1Hk+1T
∥∥∥

F
, ε

}
for some constant ε > 0,

then (Hk, Wk) converges to a stationary point of the function
	(H, W).

The proof of this statement is deferred to Appendix D.
It is also useful to notice that the gradient of Rλ(H) can

be computed explicitly (this can be useful to devise a stopping
criterion).

Proposition 4.2. Consider the risk (23), with loss D(x, y) = ‖x−
y‖2

2, and assume that the rows of H are affinely independent.
Then, Rλ is differentiable at H with gradient

∇Rλ(H) =2
n∑

i=1
α∗

i
(
�conv(H)(xi) − xi

)
+ 2λ

(
H − �conv(X)(H)

)
, (32)

α∗
i = arg min

α∈�r

∥∥HTα − xT
i
∥∥

2 . (33)

Here we recall that �conv(X)(H) denotes the matrix whose rows
are equal to �conv(X)(H1,·), . . . , �conv(X)(Hr,·).

The proof of this proposition is given in Appendix C.
Appendix E also discusses two alternative algorithms.

Remark 4.1. Computational complexity and running time. Each
iteration of the PALM algorithm consists of three steps in Equa-
tions (29) − (31). For r a fixed and small number, the first
step takes O

(
n2d

)
operations. In practice, the costliest step is

the second one, which requires to compute the projection of
r rows of H̃k onto conv(X). This projection can be computed
using the Frank-Wolfe algorithm (Frank and Wolfe 1956), which
takes O

(
n2/ε

)
operations to output an ε-approximate solution

(Jaggi 2013; Frandi, Ñanculef, and Suykens 2014). However,
these projections lie on low-dimensional faces of the polytope
conv(X). Using active-set methods can reduce the complexity to
O (Kn/ε), where K � n is the dimension of these faces (Frandi,
Ñanculef, and Suykens 2014). Finally, the last step takes O

(
nd2)

operations. Hence, for each iteration, the overall dependence of
the complexity on the dimensions is O(nd(n + d)).

4.3. Selecting the Regularization Parameter λ

We can view the parameter λ in Equation (23) as a regular-
ization parameter that controls the degree to which the esti-
mated archetypes Ĥ are close to the convex hull of the data
points. Selecting the value of the regularization parameter is
a notoriously difficult problem in high-dimensional statistics.
In some applications, sweeping the full regularization path can
be informative, and prior knowledge about the archetypes can
be used to find an appropriate value of λ. Here, we describe a
possible data-driven method to select a value of λ. While this
method appears to perform surprisingly well in simulations (see
Table 1 and Appendix F), we keep our discussion at heuristic
level, deferring a more complete study to future work.

The basic intuition is that for small λ, the objective Rλ(H)

is minimized by archetypes that are fairly unconstrained, but
whose convex hull contains the data as well as possible: this is an
overfitting regime. For large λ, the archetypes are constrained to
be in the convex hull of the data, but might not reproduce them
accurately. Our proposal tries to select a λ that balances these
objectives.

While Theorem 1 holds for nonrandom noise, for the
present heuristic discussion it is more convenient to consider
random noise. Namely, we assume that the rows zi of matrix
Z in Equation (8) are roughly isotropic vectors in R

d, that
is, for a unit vector u ∈ R

d, the average of the expression
n−1 ∑n

i=1 E{〈zi, u〉2} ≈ σ 2 is roughly independent of the u.
The basic idea is to use the singular value decomposition of

the data X as a measure of the noise level. Let X = U�VT be
the singular value decomposition, and denote by Pr = VrVT

r
the projector onto the space spanned by the top-r right singular
vectors. We then define the baseline error

D (r)
LB ≡

n∑
i=1

D(xi, Prxi) =
n∑

i=1
‖xi − Prxi‖2

2 . (34)

Note that, for any reconstruction Ĥ, D(X, Ĥ) is the sum of
square distances of the data points from a polytope with dimen-
sion at most r. Hence D(X, Ĥ) ≥ D (r)

LB . Further, D(X, Ĥλ)

increases with λ. Figure 7 shows the behavior of the function
λ �→ D(X, Ĥλ) − D (r)

LB in a small simulation.
For small λ, D(X, H) is the dominant term in the objective

function, and we expect D(X, Ĥλ) to be close to its lower
bound. Data points xi will lie outside of conv(Ĥλ) only by a
distance of the order of the noise level (in each direction). In
this regime, noise dominates the reconstruction error. However,
as λ increases, the term D(H, X) eventually becomes dominant
in the cost function, and the estimated archetypes ĥi move
inside conv(X) even in the absence of noise. In this regime, bias
dominates the reconstruction error.

It is natural to choose λ to be near the transition between
the noise- and bias-dominated regimes. In practice we start with
a small value λ = λ0 (the method is pretty insensitive to the
choice of this value and we find it very easy to set it by scanning
a few values), and fix a constant c0 > 1 (in practice we take
c0 = 1.2 but again, the precise value is not important). We then
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Figure 4. Reconstructing infrared spectra of four molecules, from noisy random convex combinations. Noise level σ = 10−3. Left column: original spectra. The other
columns correspond to different reconstruction methods.

select λ = λ∗ where

λ∗ = min
{
λ ≥ λ0 such that D

(
X, Ĥλ

)
− D (r)

LB ≥ c0
(
D

(
X, Ĥλ0

) − D (r)
LB

) }
. (35)

In practice we sweep over a grid of values of λ for checking the
above condition.

The experiments in the next section illustrate the perfor-
mances achieved by this data-driven selection method.

4.4. Numerical Experiments

We implemented both the PALM algorithm described in the
previous section, and the two algorithms described in Appendix
E. The outcomes are generally similar.

Figures 4 and 5 repeat the experiment already described in
the introduction, in the presence of noise. We generate n = 250
convex combinations of r = 4 spectra h0,1, . . . , h0,4 ∈ R

d,
d = 87. Unlike in the introduction, we add Gaussian noise
with variance σ 2, independent across coordinates). We use the
successive projection initialization discussed in Section 4.1 and
minimize the Lagrangian Rλ(H), with λ = 4 (for Figure 4)
and λ = 0.8 (for Figure 5). (These values were chosen as
to approximately minimize the estimation error). The recon-
structed spectra appear to be accurate and robust to noise.

In Figure 6, we repeated the same experiment systematically
for 10 noise realizations for each noise level σ , and report the
resulting average reconstruction error L (H0, Ĥ). In Table 1, we
report the average reconstruction error for a grid of values of the

noise level σ . We compare our method with estimates obtained
with nine state-of-the-art algorithms from the literature. A few
remarks are in order:

• In our approach, we did not observe significant difference
in the performances achieved with different initializations.
We report here the results obtained using the successive
projection initialization of Section 4.1.

• In most cases, our approach achieves the smallest recon-
struction error. In all cases, the error achieved is close to
the smallest. In particular, the present approach appears to
overperform alternative algorithms by a large factor in the
small-noise regime.

• We do not notice significant degradation in performances
by using the data-driven regularization parameter of Sec-
tion 4.3.

• In Appendix F, we report the result of simulations with
other noise models, and other choices for the archetypes.
The qualitative conclusions presented here are confirmed by
those results as well.

4.5. Hyperspectral Unmixing: An Experiment With Real
Data

In this section, we evaluate the performance of the proposed
method on a hyperspectral unmixing dataset. In these applica-
tions, the spectrum of each pixel of an input image is the result of
a mixture of reflection spectra from a number of materials. The
goal is to blindly unmix the input image to recover a set of spectra
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Figure 5. As in Figure 4, with σ = 2 · 10−3 (in blue).

σ

L (H0, ̂H)1/2

Figure 6. Risk L (H0, Ĥ)1/2 vs. σ for different reconstruction methods. Triangles
(blue): anchor words algorithm from Arora et al. (2013). Squares (blue): minimizing
the objective function (2) using the projected gradient algorithm of Lin (2007).
Circles (red): archetypal reconstruction approach in this paper. Interpolating lines
are just guides for the eye. The thick horizontal line corresponds to the trivial
estimator Ĥ = 0.

for the constituent materials called endmembers, as well as a set
of weight vectors, one per pixel, representing the percentage of
each endmember in that pixel, called abundances (Bioucas-Dias
et al. 2012).

We use the Samson dataset from Zhu et al. (2014b), which
contains the hyperspectral image of a terrain. This image has
95 × 95 pixels (n = 9025) each one recorded at 156 channels
with wavelengths from 401 to 889 nm (d = 156). A photo-
graphic aerial image of the terrain is shown in Figure 8(a) (this is
used for checking the results, and not as input to the algorithm).

The goal is to recover the spectra of three endmembers, soil,
trees, and water (r = 3), as well as the abundances at each
pixel. The output of the algorithm for λ = 1000 can be seen
in Figures 8(b) (abundances), 9 (spectra of the endmembers).

We make a few remarks:

• As it can be seen in Figure 8, the recovered abundances
are consistent with the photographic image, including many
details.

• In Figure 9, we compare the set of reflectance spectra recov-
ered by our algorithm, with the corresponding spectra sug-
gested in the literature (Zhu et al. 2014d,b,c). Despite the fact
that the latter are not uniquely determined (soil, trees, and
water are themselves composite), the reconstruction is quite
accurate.

5. Discussion

We introduced a new optimization formulation of the nonneg-
ative matrix factorization problem. In its Lagrangian formula-
tion, our approach amounts to minimizing the cost function
Rλ(H) defined in Equation (23). This encompasses applications
in which only one of the factors is required to be non negative.
A special case of this formulation (λ → ∞) corresponds to
the “archetypal analysis” of Cutler and Breiman (1994). In this
case, the archetype estimates fall inside the convex hull of the
data points which is appropriate only under the separability
assumption of Donoho and Stodden (2003).

Our main technical result (Theorem 1) is a robustness
guarantee for the reconstructed archetypes, under a certain
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Table 1. Risk L (H0, Ĥ)1/2 for reconstruction of the 4 spectra in 1 using some construction methods in different noise magnitudes. The trivial estimator Ĥ = 0 achieves
L (H0, Ĥ)1/2 = 0.231. For the data driven row, parameter λ is chosen as in Section 4.3 with c0 = 1.2.

σ 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Projected gradient (Lin 2007) 0.066 0.061 0.060 0.061 0.071 0.080 0.091 0.103 0.115 0.126 0.134
Multiplicative update (Lee and Seung 2001) 0.071 0.071 0.069 0.073 0.078 0.088 0.093 0.104 0.117 0.125 0.137
Fast Anchor Words (Arora et al. 2013) 0.053 0.036 0.051 0.069 0.088 0.113 0.131 0.153 0.174 0.194 0.215
Block coordinate descent (Gillis and Kumar 2015) 0.069 0.067 0.063 0.066 0.070 0.069 0.071 0.08 0.079 0.085 0.088
HALS (Cichocki et al. 2009) 0.076 0.075 0.078 0.081 0.079 0.084 0.093 0.104 0.119 0.124 0.135
GNMF (Cai et al. 2011) (Frobenius) 0.062 0.085 0.114 0.135 0.141 0.147 0.151 0.151 0.151 0.155 0.165
GNMF Cai et al. (2011) (KL) 0.07 0.074 0.074 0.091 0.098 0.118 0.130 0.132 0.15 0.0151 0.165
Recursive method (Gillis and Vavasis 2014) 0.038 0.043 0.054 0.073 0.091 0.110 0.134 0.150 0.175 0.192 0.21
Conical hull (Kumar, Sindhwani, and Kambadur 2013) 0.038 0.042 0.054 0.073 0.091 0.110 0.134 0.150 0.175 0.192 0.21
Our method (oracle λ) 0.005 0.014 0.023 0.038 0.052 0.057 0.070 0.078 0.092 0.094 0.102
Our method (data driven λ) 0.008 0.019 0.027 0.041 0.056 0.060 0.075 0.086 0.105 0.119 0.125

Figure 7. Procedure described in subsection 4.3 for selecting λ∗ . Blue (solid) dots show the value of D(X, Ĥλ) − D
(r)
LB versus λ for λ in a grid of values. Red (dashed) line

is c0

(
D(X, Ĥλ) − D

(r)
LB

)
for c0 = 1.2. λ0 is equal to 0.001 and λ∗ is chosen as the smallest value of λ in the grid for which the blue (solid) curve is above the red (dashed)

line.

Figure 8. The Samson image Zhu et al. (2014b) used for hyperspectral unmixing experiment.

uniqueness assumption. Uniqueness appears to hold for generic
datasets. In particular, while separability implies uniqueness
(with optimal constant α = 1), uniqueness holds for
nonseparable data as well. To the best of our knowledge, similar
robustness results have been obtained in the past only under
the more restrictive separability assumption (Recht et al. 2012;

Arora et al. 2013; Gillis and Vavasis 2014, 2015) (albeit these
works obtain a better dependence on r). The only exception is
the recent work of Ge and Zou (2015) who proved robustness
under a “subset separability” condition, which provides a
significant relaxation of separability. Under this condition, Ge
and Zou (2015) developed a polynomial-time algorithm to
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Figure 9. Reflectance spectra of the endmembers. Blue: recovered spectra of the proposed method. Orange: spectra suggested in Zhu et al. (2014d,b,c). Left: soil, middle:
tree, right: water.

Figure 10. Numerical computation of the uniqueness parameter α. Left: data geometry. In this scenario, we take r = 3 and the data points are randomly generated inside
a hexagon. The distance from the hexagon vertices to their closest vertex of the triangle is equal to L. In particular, the red hexagon corresponds to conv(X), and the black
(equilateral) triangle to the archetypes H0, for L < 1/3. For L = 1/3 the archetypes are not unique, and for L ∈ (1/3, 1/2], they are given by an equilateral triangle rotated
by π/3 (pointing down). Right: numerical evaluation of the uniqueness constant (red circles). The continuous line corresponds to an analytical upper bound (triangle
rotated by π/3 with respect to H0).

estimate the archetypes by identifying and intersecting the faces
of conv(H0). However, the algorithm of Ge and Zou (2015)
exploits collinearities to identify the faces, and this requires
additional “genericity” assumptions.

Admittedly, the uniqueness constant α is difficult to evaluate
analytically, even for simple geometries of the data. However,
by definition it does not vanish except in the case of multiple
minimizers, and we expect it typically to be of order one. Fig-
ure 10 illustrates this point by computing numerically α for a
simple one-parameter family of geometries with r = 3, d = 2.
The parameter α vanishes at a single point, corresponding to a
degenerate problem with multiple solutions.

We conclude by mentioning three important problems that
are not addressed by this paper: (1) Are there natural condition
under which the risk function Rλ(H) of Equation (23) can
be optimized in polynomial time? We only presented an algo-
rithm that is guaranteed to converge to a critical point. (2) We
assumed the rank r to be known. In practice it will need to be
estimated from the data. (3) We proposed a data-driven method
to select the regularization parameter λ. While this method

performs well in numerical experiments, it would be interesting
to develop rigorous guarantees.

Supplementary Materials

Supplementary material contains more details on the numerical experi-
ments presented in the paper and further simulation results. Moreover,
the proof of the theorems and theoretical results presented in the paper,
in addition to a discussion on alternative optimization algorithms other
than the PALM algorithm proposed in section 4.2 can be found in the
supplementary material.
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