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Abstract

In the tensor completion problem, one seeks to estimate a low-rank tensor based
on a random sample of revealed entries. In terms of the required sample size,
earlier work revealed a large gap between estimation with unbounded compu-
tational resources (using, for instance, tensor nuclear norm minimization) and
polynomial-time algorithms. Among the latter, the best statistical guarantees
have been proved, for third-order tensors, using the sixth level of the sum-of-
squares (SOS) semidefinite programming hierarchy. However, the SOS approach
does not scale well to large problem instances. By contrast, spectral methods—
based on unfolding or matricizing the tensor—are attractive for their low com-
plexity, but have been believed to require a much larger sample size.

This paper presents two main contributions. First, we propose a new method,
based on unfolding, which outperforms naive ones for symmetric kth-order ten-
sors of rank r . For this result we make a study of singular space estimation for
partially revealed matrices of large aspect ratio, which may be of independent
interest. For third-order tensors, our algorithm matches the SOS method in terms
of sample size (requiring about rd3=2 revealed entries), subject to a worse rank
condition (r � d3=4 rather than r � d3=2). We complement this result with a
different spectral algorithm for third-order tensors in the overcomplete (r � d )
regime. Under a random model, this second approach succeeds in estimating
tensors of rank d � r � d3=2 from about rd3=2 revealed entries. © 2018 Wi-
ley Periodicals, Inc.

1 Introduction
Tensors are increasingly ubiquitous in a variety of statistics and machine learn-

ing contexts. Many datasets are arranged according to the values of three or more
attributes, giving rise to multi-way tables, which can be interpreted as tensors [17].
For instance, consider the collaborative filtering problem in which a group of users
provide feedback on the episodes of a certain number of television shows, over
an extended time interval. The data is indexed by three attributes—user ID, show
ID, and episode broadcast time—so it is presented as a three-way table (which is
a tensor). A second example comes from high-dimensional applications of the
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moment method [13]: the kth moments of a multivariate distribution are naturally
encoded by a k-fold tensor. Some other applications include image inpainting [16],
hyperspectral imaging [15, 21], and geophysical imaging [14].

In many applications, the underlying tensor T is only partially observed, and it
is of interest to use the observed entries to impute the missing ones. This is the
tensor completion problem. Clearly, completion is plausible only if the underlying
tensor T is sufficiently structured: it is standard to posit that it has low rank and is
incoherent with respect to standard basis vectors. These assumptions are formal-
ized in a few nonequivalent ways in the existing literature; we review some of these
below. We assume an underlying order-k tensor, T 2 .Rd /˝k , i.e., a k-way array,
with entries T u indexed by u 2 Œd �k where Œd � � f1; : : : ; dg. Our basic structural
assumption is that T has low rank in the sense that it is expressible as a sum of r
pure tensors:

(1.1) T D
X
s�r

a.1/s ˝ � � � ˝ a
.k/
s :

This paper proposes methods for completing T from n observed entries, and inves-
tigates the minimum number n (as a function of k; d; r) required for a nontrivial
estimator.

1.1 Related Work
There is already a substantial literature on tensor completion, and we survey

here some of the main ideas that have emerged.

Nonpolynomial Estimators
Motivated by the success of methods for matrix completion based on nuclear

norm relaxations [4,11], several papers have studied estimators based on a suitable
definition of tensor nuclear norm [29, 30]. This tensor norm is NP-hard to evalu-
ate [9], and therefore this approach does not lead to practical algorithms. Neverthe-
less, these studies provide useful information on the minimum number n of entries
required to reconstruct T with unbounded computational resources. In particular,
it was proved [29] that it suffices to have

n � Cd.log d/2 maxf.r�;max/
k�1; .r�;max/

.k�1/=2d1=2g;

with r�;max the multilinear (or Tucker) rank of T . Here we use C to denote a con-
stant that can depend on various incoherence parameters; in later sections we will
make such factors explicit. The definition of r�;max is reviewed below; we com-
ment also that r1=.k�1/ � r�;max � minfd; rg (see (2.2)). Information-theoretic
considerations also indicate that

(1.2) n � Crd

entries are necessary—indeed, the number of parameters required to specify a ten-
sor T 2 .Rd /˝k of rank r is of order rd (we treat k as a constant throughout).
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Tensor Unfolding
At the opposite extreme, tensor unfolding gives access to very efficient matrix

completion algorithms. For integers a; b � 1with aCb D k, a tensor T 2 .Rd /˝k

can be unfolded into a da�db matrix. Formally, the unfolding operation is a linear
map

unfolda�b W .Rd /˝k ! Rd
a�db

; T 7! X;

where Xi ;` D T u for i 2 Œd �a, ` 2 Œd �b , and u D .i ; `/ 2 Œd �k . One can then ap-
ply matrix completion algorithms—e.g., spectral methods or convex relaxations—
to X , which is sometimes called the da � db matricization of T . Supposing with-
out loss that a � b results in the matrix completion literature, [11, 20] imply exact
reconstruction with

(1.3) n � Crdb.log d/2:

This remark has been applied several times (e.g., [10, 16, 22, 23]). It seems to sug-
gest two practically important consequences: (i) the unfolding should be made “as
square as possible” by taking a D bk=2c and b D dk=2e [18]; and (ii) unfolding-
based algorithms are fundamentally limited to a sample size n � Crd dk=2e due
to the limitations of matrix completion—this has been suggested by several au-
thors [2, 29, 30] and is further discussed below. One of the main purposes of this
paper is to revisit this last insight.

Semidefinite Programming Hierarchies
In terms of the number n of observed entries required, the above results indicate

a large gap between information-theoretic limits (1.2) on the one hand and the
requirements of spectral algorithms (1.3) on the other. Motivated by this gap, Barak
and Moitra [2] considered the sum-of-squares (SOS) hierarchy to design a more
powerful polynomial-time algorithm for this problem.

Without going into the details, the tensor completion problem can be naturally
phrased as a polynomial optimization problem, to which the SOS framework is
particularly suited. It defines a hierarchy of semidefinite programming (SDP) relax-
ations, indexed by a degree ` that is a positive even integer. The degree-` relaxation
requires solving an SDP where the decision variable is a d `=2 � d `=2 matrix; this
can be done in time O.d5`=2/ by interior-point methods [1]. The SOS hierarchy is
the most powerful SDP hierarchy. It has attracted considerable interest because it
matches complexity-theoretic lower bounds in many problems [3].

Barak and Moitra consider the completion problem for a tensor T of order
k D 3, along with a slightly different notion of rank r?.T /. (It is a relaxation
of the tensor nuclear norm of T , which in turn can be viewed as a relaxation of
the rank r.T / [9].) The main result of [2] is that the degree-6 level of the SOS
hierarchy succeeds in completing a tensor of order k D 3 from

(1.4) n � C.r?/2d3=2.log d/4
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entries. Under additional randomness assumptions, it is proved that

(1.5) n � Crd3=2 polylog.d/

entries suffice. Considering the case of bounded rank, the [2] result improves
(for k D 3) over earlier results (1.3) obtained by unfolding, which required n �
Crd2.log d/2. At the same time it is far from the information-theoretic bound (1.2),
and this remaining gap may be of a fundamental nature: the authors present ev-
idence to suggest that condition (1.4) is nearly optimal among polynomial-time
algorithms. The SOS algorithm of [2] is partly inspired by a strong refutation algo-
rithm for random 3-XOR-SAT [6]. Indeed, our Algorithm 2 (for the overcomplete
regime) is also motivated by similar ideas.

1.2 Main Contributions
Let us emphasize that the degree-6 SOS relaxation requires solving an SDP for a

matrix of dimensions d3 � d3. This can be done in polynomial time, but practical
implementations would hardly scale beyond d D 20. For this reason we interpret
the results of [2] as opening (rather than closing) a search for fast tensor completion
algorithms. With this motivation, we present the following results in this paper.

Improved Unfolding-Based Estimator
We consider the completion problem for symmetric tensors of general order k �

3, and propose a new estimator that is based on spectral analysis of the unfolded
tensor. We show that our estimator succeeds in completing the tensor given

(1.6) n � Crdk=2 polylog.d/

revealed entries, subject to r � rmax.d I k/ (see (3.3)). The main input to this result
is the following observation. For d1 � d2 matrices with d1 � d2, it is well-known
that completion is impossible, by any means, unless n� rd2. (This was noted, for
example, by [5]—consider the d1�d2 matrixX whose i th row is given by vdir=d1e

,
for random vectors v1; : : : ; vr 2 Rd2 .) However, we show that the column space
can be estimated with fewer entries, namely n � r.d1d2/1=2 polylog.d2/.

Previous unfolding-based methods have essentially performed matrix comple-
tion on the unfolded tensor, a da � db matrix. As we noted above, if a � b this
necessitates n � rdb , which is essentially matched by (1.3). By contrast, our al-
gorithm only seeks to estimate the column space of the unfolding, which requires
fewer revealed entries, n � rd .aCb/=2 D rdk=2. Given our estimate of the sin-
gular space, we then take advantage of the original tensor structure to estimate the
missing entries.

Overcomplete 3-Tensors
For symmetric tensors of order k D 3 we can compare our unfolding algorithm

with the SOS algorithm of [2]. Even with crude methods for matrix operations, the
unfolding algorithm takes at most O.d5/ time, as opposed to O.d15/ for degree-6
SOS (using generic SDP solvers). Neglecting logarithmic factors, our result matches
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theirs in the required sample size ((1.5) versus (1.6)), but with a significantly worse
rank condition: we require r � d3=4, whereas SOS succeeds up to r � d3=2.
Indeed, for third-order tensors that are overcomplete (rank r � d ), we do not
expect that any unfolding-based method can succeed—the d � d2 unfolding can
have rank at most d and will fail to capture the rank-r tensor structure. Instead, we
complement our unfolding algorithm with a more specialized spectral algorithm,
which is specifically intended for overcomplete 3-tensors; the runtime isO.d6/. In
a certain random tensor model, we show that this second method can succesfully
estimate 3-tensors from n � rd3=2 revealed entries for d � r � d3=2. In the
design and analysis of this method we were inspired by some recent work [12] on
the tensor decomposition problem.

1.3 Organization of the Paper
In Section 2 we review some definitions and notations. We then state our main

results on tensor completion: Section 3 presents the unfolding-based algorithm,
and Section 4 presents the more specialized algorithm for overcomplete 3-tensors.
In Section 5 we illustrate our results with some numerical simulations. As noted
above, for our unfolding algorithm we study the column spaces of partially revealed
matrices with large aspect ratio; our results on this are presented in Section 6. After
the present paper was accepted for publication, and independently from our work,
two groups posted related results on the tensor completion problem [19,27,28].

2 Preliminaries
2.1 Notation and Terminology

Given two vector spaces U and V , we let U ˝ V denote their tensor product.
Following standard practice, we frequently identify Rd1˝Rd2 with Rd1d2 or with
Rd1�d2 (the vector space of d1 � d2 real matrices). We use lowercase letters for
scalars (a; b; c; : : : and Greek letters) and vectors (u; v;w; : : : ). We use uppercase
letters (A;B;C; : : : ) for matrices, and uppercase boldface letters (A;B;C ; : : : )
for tensors of order k � 3. The d � d identity matrix is denoted by Id .

Between two tensors (of any order k � 1) we use ˝ to denote the tensor prod-
uct. Between two tensors in the same space we use ˇ to denote the Hadamard
(entrywise) product. For instance,

.Aˇ B/˝ .C ˇD/ D .A˝ C/ˇ .B ˝D/:

We use angle brackets h� ; �i to denote the standard euclidean scalar product—
regardless of whether the objects involved are vectors, matrices, or tensors. For
example, if X; Y are two d1 � d2 matrices, then we use hX; Y i to denote the
scalar product between X and Y as .d1d2/-dimensional vectors. The euclidean
norm of a vector v will be denoted kvk D hv; vi1=2. The Frobenius norm of a
d1 � d2 matrix X is kXkF D hX;Xi

1=2; it is the euclidean norm of X regarded
as an .d1d2/-dimensional vector. Likewise the Frobenius norm of a tensor T is
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kT kF D hT ;T i
1=2. For a d1 � d2 matrix X we write kXkop for its spectral norm

(operator norm). Finally, we let kXk1 denote the maximum entry size of X .
For any subset E � Œd1� � � � � � Œdk� we let …E denote the projection onto

Rd1 ˝ � � � ˝Rdk that maps T to the tensor …ET with entries

.…ET /u D T u1fu 2 Eg:

In the special case k D 2 and d1 D d2 D d , we let

… � …D; …? � Id �…;

where D D f.i; i/ W 1 � i � dg is the set of diagonal entries.
We say that an event A occurs “with high probability” if P .Ac/ tends to 0 as

the dimension parameter d D minfd1; : : : ; dkg tends to infinity. We say that A
occurs “with very high probability” if P .Ac/ tends to 0 faster than any inverse
polynomial of d . We will frequently take union bounds over m such events where
m is bounded by some polynomial of d . For any two functions f; g depending
on .d1; : : : ; dk/, we write f . g to indicate that f � C.log d/ˇg whenever
d D minfd1; : : : ; dkg � ˇ, where (as before) C is a constant that can depend on
incoherence parameters, and ˇ is a constant that can depend on k.

Our main results for tensor completion assume a symmetric underlying tensor
T 2 .Rd /˝k . It has entries T u indexed by u 2 Œd �k and satisfies T u D T u0

whenever u0 is a permutation of u. Section 3 treats general k � 3 under rank and
incoherence assumptions. Section 4 treats a model of random tensors for k D 3.

2.2 Notions of Tensor Rank
As mentioned in the introduction, there are a few common nonequivalent ways

to formalize the notion of rank for a (nonzero) tensor T 2 Rd1 ˝ � � � ˝ Rdk . In
this paper, we define the rank of T as the minimum integer r such that T can be
expressed as a sum of r pure tensors:

r.T / � min
�
m � 1 W T D

mX
sD1

v.1/s ˝ � � � ˝ v
.k/
s for v.`/i 2 Rdi

�
:

We omit the argument T whenever it is clear from the context.
A different notion of rank, which is also common in the literature, is given by

considering, for each 1 � i � k, the matrix X .i/ � unfold.i/.T / of dimensions
di � ..d1 � � � dk/=di /, with entries

.X .i//ui ;u�i
D T u

where u�i is u without its i th index. Write span.i/.T / for the column space of
X .i/, and define

(2.1) r�;i .T / � dim span.i/.T / D rankX .i/:

The multilinear rank or Tucker rank of T is defined as r�;max.T / D maxfr�;i .T / W

1 � i � kg. Again, we omit the argument T whenever it is clear from the context.
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It is clear from the definition that r�;i � maxfr; dig. On the other hand we have

(2.2) r � .r�;1 � � � r�;k/=.r�;max/ � .r�;max/
k�1
I

we prove this fact in the appendix (Lemma C.2).

3 Tensor Completion via Unfolding

In this section we assume a symmetric underlying tensor T 2 .Rd /˝k with
k � 3. We observe a subset of entries E � Œd �k of size n D jEj and denote the
partially observed tensor Y D …E.T /. We now describe our algorithm, discuss
our assumptions, and state our performance guarantees. Proofs are in Appendix C.

3.1 Completion Algorithm
Our algorithm takes as input the set of indices E and the partially observed

tensor Y D …E.T /. It also takes a threshold value �?, which can be interpreted as
a regularization parameter. In Theorem 3.2 we provide an explicit prescription for
�? (see (3.4)).

ALGORITHM 1. Tensor completion via unfolding. Input: E, Y , �?.
1. Sample splitting. Partition the observed entries E in two disjoint subsets

E1;E2 uniformly at random, subject to jE1j D jE2j D n=2. Let ı1 �
n=.2dk/. Denote by Y 1 D …E1

.Y /, Y 2 D …E2
.Y / the corresponding

partially observed tensors.
2. Tensor unfolding. Set a D bk=2c, b D dk=2e, and letZ D unfolda�b.Y 1/.

Use Z to define

(3.1) B D
1

ı1
….ZZT/C

1

.ı1/2
…?.ZZ

T/:

3. Spectral analysis. Compute the eigenvectors of B with eigenvalues � �?,
and let Q W Rd

a

! Rd
a

be the orthogonal projection onto their span.
4. Denoising. Let Q W .Rd /˝k ! .Rd /˝k be the orthogonal projection

defined by

(3.2) Q D

8̂<̂
:
Q˝Q˝Q if k D 3;
Q˝Q if k � 4 even,
Q˝Q˝ Id if k � 5 odd.

Let ı2 D ı1=.1 � ı1/, and let �T � Y 1 C .ı2/
�1Y 2. Return the tensor�T ?

D Q.�T /.
As we already commented, our algorithm differs from standard unfolding-based

methods in that it does not seek to directly complete the tensor matricization, but
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only to estimate its left singular space. Completion is done by a “denoising” proce-
dure that uses this singular space estimate, but also takes advantage of the original
tensor structure.

3.2 Rank and Incoherence Assumptions
We will analyze the performance of Algorithm 1 subject to rank and incoherence

conditions, which we now describe. In particular, we allow for a slightly less
restrictive notion of rank.

ASSUMPTION 1. We say that a tensor T 2 .Rd /˝k has unfolding parameters
.R; ˛; �/ if, for a D bk=2c and b D dk=2e, the matrixX D unfolda�b.T / satisfies

(T1) rankX � R,
(T2) dkkXk21 � ˛kXk2F,
(T3) �kXk2F D RkXk2op.

Note that (T1) and (T2) are inequalities but (T3) is an equality.

Remark 3.1. A few comments are in order. First of all, note that r�;max.T / �

R.T / � r.T /, which means that (T1) is less restrictive than the assumption r.T / �
R. Next, since kXk21 � kXk

2
F � dkkXk21, we can assume 1 � ˛ � dk;

it is standard in the literature to assume that ˛ is not too large. Lastly, since
kXk2op � kXk

2
F � RkXk2op, we can assume 1 � � � R.

With these definitions, we can now state our result on the guarantees of Algo-
rithm 1. Define

(3.3) rmax.d I k/ D

8̂<̂
:
d3=4; k D 3;

dk=2; k � 4 even;
dk=2�1; k � 5 odd:

THEOREM 3.2. Let T 2 .Rd /˝k be a deterministic symmetric tensor satisfying
Assumption 1 with unfolding parameters .R; ˛; �/ such that R � rmax. Suppose that
we observe n entries of T uniformly at random. Let �T ?

be the spectral estimator
of Algorithm 1 with

(3.4) �? D 4.k log d/8
�
˛R�1=2

n=dk=2

�2=3
kBkop:

Then, in the regime 32.k log d/12˛R�1=2dk=2 � n � .k log d/16˛R�2db , we
have

(3.5) k�T ?
� T kF � 20.k log d/3

�
˛R�2

n=dk=2

�1=3
kT kF:

with very high probability.

Theorem 3.2 shows that a symmetric rank-r tensor T 2 .Rd /˝k can be recon-
structed by spectral methods based on n & rdk=2 revealed entries. Apart from
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logarithmic factors, we suspect that this condition on n may be optimal among
polynomial-time methods. One supporting evidence is that, for k D 3, this matches
the bounds (1.4) and (1.5) of the degree-6 SOS algorithm [2]. The authors further
prove [2, thm. 3]) that their condition (1.4) is tight, under Feige’s hypothesis [8]
on the refutation of random satisfiability formulas. On the other hand, the error
bound (3.5) is most likely suboptimal, arising as an artifact of the algorithm or of
the analysis. We believe that our rank condition R � rmax is also suboptimal; for al-
gorithms of this type the tight condition seems likely to be of the form R � d bk=2c

(maximum rank of the unfolding).

4 Overcomplete Random 3-Tensors
In this section we describe our algorithm for overcomplete 3-tensors and state

its guarantees for a certain random tensor model. Proofs are in Appendix D.

4.1 Completion Algorithm
Algorithm 1 of Section 3 is limited to tensors T with rank r � rmax, as defined

in (3.3). As we already noted above, this particular condition is most likely subop-
timal. However, among all algorithms of this type (i.e., based on spectral analysis
of the unfolded tensor), we expect that a fundamental barrier is r � d bk=2c. Be-
yond this point, the unfolded tensor has nearly full rank, and we do not expect the
projector Q to have helpful denoising properties.

On the other hand, the number of parameters required to specify a rank-r tensor
in .Rd /˝k is of order rd , so we might plausibly hope to complete it given n �
rd entries. This only imposes the rank bound r � dk�1. In this section we
consider the case k D 3: from the above argument the information-theoretic bound
is r � d2. Our unfolding method (Algorithm 1) can complete the tensor up to rank
r � d3=4, by Theorem 3.2. From the preceding discussion, this bound is likely to
be suboptimal, but the best we expect from such an algorithm is r � d b3=2c D d .

Motivated by these gaps, in this section we develop a different completion al-
gorithm for the case k D 3, which avoids unfolding and relies instead on a certain
“contraction” of the tensor with itself. This was motivated by ideas developed
in [12] for the tensor decomposition problem. Under a natural model of random
symmetric low-rank tensors, we prove that in the regime d � r � d3=2, our
algorithm succeeds in completing the tensor based on n� rd3=2 observed entries.

The algorithm takes as input the set of observed indices E, the partially observed
tensor Y D …ET , and a threshold value �?. In Theorem 4.1 we provide an explicit
prescription for �?.

ALGORITHM 2. Completion for 3-tensors via contraction. Input: E;Y ; �?.
1. Sample splitting. Let ı be defined by the relation 1 � .1 � ı/3 D jEj=d3.

Take subsets I; J;K � E that are uniformly random subject to the following
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conditions: each I, J, K has size d3ı; each pairwise intersection I \ J,
I \ K, J \ K has size d3ı2; the triple intersection I \ J \ K has size d3ı3.
(This implies, in particular, that I [ J [ K D E.) Denote the corresponding
partially observed tensors PY D …IT , RY D …JT , and «Y D …KT .

2. Tensor contraction. Let W be the d2 � d2 matrix with entries

(4.1) Wi ;j D
1

ı2

X
`�d

PY `i1j1
RY `i2j2

:

3. Spectral analysis. Compute the singular value decomposition of W . Take
the singular vectors of W with singular values � �?, and let Q W Rd

2

!

Rd
2

be the orthogonal projection onto their span.
4. Denoising. Let Q W .Rd /˝3 ! .Rd /˝3 be defined by Q D Q ˝ Id . Let�T D ı�1«Y , and return the tensor �T ?

D Q.�T /.
4.2 Random Tensor Model

We analyze Algorithm 2 in a random model:

ASSUMPTION 2. We say that T 2 .Rd /˝3 is a standard random tensor with r
components if

(4.2) T D
X
s�r

as ˝ as ˝ as

where a1; : : : ; ar are i.i.d. random vectors in Rd such that x D ai satisfies the
following:

(A1) (symmetric) x is equidistributed as �x;
(A2) (isometric) EŒxxT� D Id=d ;
(A3) (subgaussian) EŒexp.hx; vi/� � expf�2kvk2=.2d/g for all v 2 Rd .

Note that Assumption 2 has a slight abuse of notation in that we use r for the
number of components in (4.2), even though the tensor rank (in the sense of (1.1))
can be smaller than r . However, in the regime of interest, we expect the rank of T

to be close to r with high probability.

THEOREM 4.1. Let T 2 .Rd /˝3 be a standard random tensor (4.2) satisfying
Assumption 2. Suppose that we observe n entries of T uniformly at random, where
n � maxfr; dgd3=2 and r � d2. Let �T ?

be the spectral estimator of Algorithm 2
with

(4.3) �? D

�
d3=2 maxfd; rg

n

�4=5
:
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Then, with very high probability,

(4.4) k�T ?
� T kF .

�
d3=2 maxfd; rg

n

�1=5
kT kF:

If one uses crude matrix calculations (not taking advantage of the sparsity or low
rank of the matrices involved), we estimate the runtimes of our methods as follows.
In Algorithm 1, computing the matrix B of (3.1) takes time O.dkCb/; finding its
eigendecomposition takes timeO.d3a/; and the denoising step can be done in time
O.dkCa/. Thus the overall runtime isO.dkCb/, which for k D 3 becomesO.d5/.
In Algorithm 2, computing the matrix W of (4.1) takes time O.d5/; finding its
singular value decomposition takes timeO.d6/; and the denoising step can be done
in time O.d4/. Thus the overall runtime is O.d6/; so Algorithm 1 is preferable
when the rank is low.

5 Numerical Illustration
We illustrate our results with numerical simulations of random tensors

(5.1) T D
X
s�r

as ˝ as ˝ as:

We assume (cf. Assumption 2) that a1; : : : ; ar are independent Gaussian random
vectors in Rd , with Eas D 0 and E.as.as/T/ D Id=d . Our simulations estimate
the normalized mean squared error

(5.2) MSE �
E.k�T ?

� T k2F/

E.kT k2F/
;

where �T ?
is the output of the completion algorithm.

5.1 Performance of Unfolding Algorithm
Figure 5.1 reports the performance of our unfolding method (Algorithm 1) in the

undercomplete regime, taking r D 4. We plot the normalized mean square error
(5.2) estimated by averaging over 100 independent random realizations of T and
of the set E of revealed entries. We set the threshold parameter

(5.3) �? D 3.d
3=2=n/2=3kBkopI

this choice was guided by the prescription (3.4) of Theorem 3.2, as follows: in
the present setting, we have X D unfold1�2.T /. If we write f � g to indicate
limd!1 f .d/=g.d/ D 1, then

kXkop D max
i�r
kai .ai ˝ ai /

T
kop � 1;

kXkF D
X
s�r

X
t�r

has; at i
3
D

X
s�r

kask
6
2 CO.r

2=d3=2/ � r;
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(A) Estimated MSE vs. sample size n. (B) Estimated MSE vs. rescaled sample size

n=d3=2.

FIGURE 5.1. Numerical illustration of Algorithm 1 for completing ran-

dom tensors (5.1) of order k D 3 and rank r D 4. Performance is

measured in terms of normalized mean squared error MSE (see (5.2)),

estimated by averaging over 100 realizations.

kXk1 D max
i;j;l�d

ˇ̌̌̌ rX
sD1

as;ias;jas;l

ˇ̌̌̌
� max

s�r;i�d
jas;i j3 � .2 log d/3=2:

Therefore X satisfies Assumption 1 with R D r , � � 1, and ˛ � .2 log d/3=r .

Our choice of the parameter �? is obtained by substituting these into (3.4). After

some trial and error, we chose the factor 3 in (5.3) instead of logarithmic factors,

which appeared to be overly pessimistic for moderate values of d .

5.2 Performance of Spectral Algorithm for Overcomplete Tensors
Figure 5.2 reports the performance of our spectral method for the overcomplete

regime (Algorithm 2), taking r=d D 1:2. We set �? according to the prescrip-

tion (4.3) of Theorem 4.1. For each value of d , the MSE appears to decrease rapidly

with n. The plots (for various values of d ) of the MSE versus the rescaled sample

size n=.rd3=2/ appears to approach a limiting curve. This suggests that the thresh-

old for our method to succeed in reconstruction occurs around n D rd3=2, which

is consistent with the bound of our Theorem 4.1.

6 Column Spaces of Partially Revealed Wide Matrices
In this section we present our results on the column spaces of partially revealed

d1 �d2 matrices. As mentioned above, these results are the main input to the proof

of Theorem 3.2. The conclusions obtained in this section are most interesting for

the regime d1 � d2.

6.1 Incoherence Condition
ASSUMPTION 3. We say that a matrix X 2 Rd1�d2 is .�; �; �/-incoherent if
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(A) Estimated MSE vs. sample size n. (B) Estimated MSE vs. rescaled sample size

n=d3=2.

FIGURE 5.2. Performance of Algorithm 2 in completing overcomplete
random tensors of rank 4 and order k D 3. Left frame: mean square error

of reconstruction, estimated by averaging over 100 realizations, plotted

against the number of revealed entries. Right frame: same data plotted

against the rescaled number of revealed entries n=.rd3=2/

.

(M1) d1 �maxi kXTeik2 � �kXk2
op,

(M2) d2 �maxj kXej k2 � �kXk2
op,

(M3) d1d2 �maxi;j jXi;j j2 � ���kXk2
op,

where 1 � i � d1 and 1 � j � d2.

It is easily seen (cf. Lemma B.2) that one can assume without loss of generality

1=d1 � � � d1, 1=d2 � � � d2, 1 � ��� � d1d2. To motivate the above condi-

tion, we observe that it can be deduced as a consequence of a standard incoherence

assumption, which we recall below.

DEFINITION 6.1 ([4]). Let W be an r-dimensional subspace of Rd , and let PW

be the orthogonal projection onto W . The coherence of W (with respect to the

standard basis .ei /i�d of Rd ) is

coherW D d

r
max

1�i�d
kPW eik2:

Note the trivial bounds

d

r
� coherW � 1

r

dX
iD1

kPW eik2 D 1:

IfM is a d � r matrix whose columns form an orthonormal basis of W , then we
can express PW D MM T, so that

coherW D d

r
max

1�i�d
kMM Teik2 D d

r
max

1�i�d

rX
sD1

.Mis/
2:
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We denote coherM � coherW .

We refer to [4] for further discussion of this coherence condition, which has
become fairly standard in the literature. We now give two illustrations for As-
sumption 3:

1. Derivation of Assumption 3 from Definition 6.1.
Suppose X is d2 � d2 with singular value decomposition UDV T, where
U TU D IR D V TV and D is diagonal. One can then easily verify that
X is .�; 
; �/-incoherent with

(6.1) � D .coherU /R; � D .coherV /R; 
 D 1

(see Lemma B.1 for the proof). That is to say, imposing Assumption 3 with
� D � D cR and 
 D 1 is less restrictive than imposing that X is of rank R
with c-incoherent singular vectors.

2. Derivation of Assumption 3 from Assumption 1.
Alternatively, suppose X satisfies d1d2kXk21 � x$kXk2op, an entrywise
bound. It is then trivial to verify that X is .�; 
; �/-incoherent with

(6.2) � D � D 1=
 D x$:

In Assumption 1, conditions (T2) and (T3) together imply (with d1 D da

and d2 D db)

d1d2kXk
2
1 � ˛kXk

2
F � .˛R=�/kXk2op;

so we have (6.2) with x$ D ˛R=�. That is to say, imposing Assumption 3
with � D � D 1=
 D ˛R=� is less restrictive than imposing Assumption 1
with parameters .R; ˛; �/.

In the tensor completion problem we work with the second scenario (6.2).

6.2 Estimation Error
We now state our main result on column space estimation for partially revealed

matrices.

THEOREM 6.2. Suppose that X 2 Rd1�d2 is .�; 
; �/-incoherent. Let E � Œd1� �
Œd2� be the random set of observed entries, where each .i; j / 2 Œd1� � Œd2� is
included in E independently with probability ı D n=.d1d2/. Given the observed
matrix Y � …EX , let

(6.3) yB �
1

ı
….Y Y T/C

1

ı2
…?.Y Y

T/:

Then, for d1d2 � 3000, we have

(6.4)

k yB �XXTkop

2.log.d1d2//4
�
.��d1d2/

1=2kXk2op

n

�max
�
1;

�
n
d2�

�1=2
;
.�
2�d1d2/

1=2

n
;

�
��

d2

�1=2�
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with probability at least 1 � 4d1 expf�1
8

log.d1d2/2g.

COROLLARY 6.3. In the setting of Theorem 6.2, assume additionally that

.�
2�d1d2=t/
1=2
� n � t�d2 and 
� � td2:

Then the error bound (6.4) simplifies to

k yB �XXTkop

2.log.d1d2//4
�
.t��d1d2/

1=2

n
kXk2op:

PROOF. The proof is an immediate consequence of Theorem 6.2. �

From our perspective, the most interesting application of the above is as follows.
Recalling (6.1), suppose that the d1 � d2 matrix X is .�; 
; �/-incoherent with
� D � D cr and 
 D 1. Consider Corollary 6.3 with t D 1: then the conditions
reduce to cr � .d2/1=2 and cr.d1d2/1=2 � n � crd2, where the latter can only
be satisfied if d1 � d2. With these conditions, Corollary 6.3 says that the column
space of X can be well-approximated by the top eigenvectors of the matrix yB ,
provided we saw (roughly) n� r.d1d2/

1=2 entries. We emphasize that this result
implies, for d1 � d2, a wide regime of sample sizes

r.d1d2/
1=2
� n� rd2

from which we can obtain a good estimate of the sample space, even though it is
impossible to complete the matrix (in the sense of Frobenius norm approximation).
In this regime, the column space estimate can be useful for (partial) matrix com-
pletion: if Q approximates projection onto the left column space of X , and y is
a column of …EX containing dı0 � r observed entries, then Qy=ı0 is a good
estimate of the corresponding column of X .

Appendix A Standard Matrix Inequalities
In this appendix we collect a few standard tools that will be used several times

in our proofs. For any real-valued random variable X , the essential supremum
ess supX is the minimal value R such that P .X � R/ D 1. Recall the following
form of the Chernoff bound: if X is a binomial random variable with mean x�, then
for all t � 1 we have

(A.1) P .X � t x�/ � expf�t x� log.t=e/g:

PROPOSITION A.1 (matrix Bernstein, rectangular [24, thm. 1.6]). Let .Z`/ be a
finite sequence of independent random d1 � d2 matrices. Assume EZ` D 0 for
all `, and let

R D max
`
fess sup kZ`kopg;(A.2)

�2 D max
n


X

`

EŒZ`.Z`/
T�





op
;



X
`

EŒ.Z`/
TZ`�




op

o
:(A.3)
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Then, for all t � 0,

P
�


X

`

Z`





op
� t

�
� .d1 C d2/ exp

�
�
3

8
min

�
t2

�2
;
t

R

��
:

PROPOSITION A.2 ([26]). Suppose that A and B are positive semidefinite matri-
ces, with singular value decompositions

A D AC Aı D U†U T
C Uı†ı.Uı/

T;
�
U Uı

�T�
U Uı

�
D Ir ;

B D B C Bı D OƒOT
COıƒı.Oı/

T;
�
O Oı

�T�
O Oı

�
D Is:

Suppose kA � Bkop � �, and that the maximum diagonal entry of †ı is at most �
while the minimum diagonal entry of ƒ is at least � C ı > 0. Then

jsin �.O;U /j � k.I � UU T/OOT
kop � �=ı:

PROPOSITION A.3 ([12, prop. A.7]). Let .Z`/`�L be a sequence of independent
random d1 � d2 matrices. Assume EZ` D 0 for all `, and furthermore that

(A.4) P .kZ`kop � ˇ/ � p and kEŒZ`1fkZ`kop � ˇg�kop � q:

Denote �2 as in (A.3). Then, for all t � 0,

P
�


X
`�L

Z`





op
� t C Lq

�
� Lp C .d1 C d2/ exp

�
�
3

8
min

�
t2

�2
;
t

ˇ

��
:

PROPOSITION A.4 (matrix Rademacher, symmetric [24, thm. 1.2]). Let .Z`/ be a
finite sequence of d �d symmetric matrices. Let .s`/ be a sequence of independent
symmetric random signs. Then

P
�


X

`

s`Z`





op
� t

�
� 2d expf�t2=.2�2/g; �2 D




X
`

.Z`/
2





op
:

PROPOSITION A.5 (matrix decoupling [7, thm. 1] (see also [12, thm. 5.13])). Let
.Zij / be a family of matrices, and let .si / and .ti / be sequences of independent
symmetric random signs. There is an absolute constant C such that for all t � 0,

P
�


X

i¤j

sisjZij





op
� t

�
� CP

�


X
i¤j

si tjZij





op
� t

�
:

Appendix B Column Space Estimation with Large Aspect Ratios
In this appendix, we prove our matrix completion result, Theorem 6.2. Before

passing to the actual proof, we will establish some properties of the incoherence
condition, Assumption 3.
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B.1 Matrix Incoherence Conditions
We begin by proving some easy observations regarding our matrix incoherence

conditions (Assumption 3).

LEMMA B.1. Suppose X 2 Rd1�d2 has singular value decomposition UDV T,
with U TU D Ir D V TV . Then X is .�; 
; �/-incoherent with parameters � D
r � coherU , � D r � coherV , and 
 D 1.

PROOF. For indices 1 � i � d1 and 1 � ` � d2 we have

jXi`j D jhUU
Tei ; XV V

Te`ij � kXkop

�
r2 � coherU � coherV

d1d2

�1=2
;

kXTeik2 D kX
TUU Teik2 � kXkopkUU

Teik2 � kXkop

�
r � coherU

d1

�1=2
;

kXe`k2 D kXV V
Te`k2 � kXkopkV V

Te`k2 � kXkop

�
r � coherV

d2

�1=2
;

which proves the claim. �

LEMMA B.2. For any X 2 Rd1�d2 , the parameters �; 
; � of Assumption 3 can be
chosen so that

(B.1) 1=d1 � � � d1; 1=d2 � � � d2; 1 � �
� � d1d2:

PROOF. The quantities kXTeik, kXe`k, jXi`j are all trivially upper-bounded by
kXkop, so we can always satisfy (M1), (M2), and (M3) with � � d1, � � d2, and
�
� � d1d2. On the other hand,

kXkop D




X
`�d2

Xe`.e`/
T





op
�

X
`�d2

kXe`k2 � kXkop.d2�/
1=2;

which implies that (M2) can only be satisfied with d2� � 1, and likewise (M1) can
only be satisfied with d1� � 1. Lastly, we have

kXkop � kXkF � .d1d2/
1=2 max

i;`
jXi;`j � kXkop.�
�/

1=2;

so (M3) can only be satisfied with �
� � 1. This concludes the justification of
(B.1). �

B.2 Proof of Matrix Estimation Results
We now prove Theorem 6.2. Recall that we assume a (deterministic) matrix

X 2 Rd1�d2 , each entry of which is observed independently with chance ı �
n=.d1d2/. Let E � Œd1��Œd2� denote the subset of observed entries, and Y D …EX

the partially observed matrix. Let Ii` be the indicator that .i; `/ belongs to the
(random) set E; thus the Ii` are i.i.d. Ber.ı/ random variables and Yi` D Xi`Ii`.
As in (6.3), let

yB D
1

ı
….Y Y T/C

1

ı2
…?.Y Y

T/:



2398 A. MONTANARI AND N. SUN

PROOF OF THEOREM 6.2. We first make a preliminary remark that

(B.2) 1 �
1

ı2
�
.d1�/.d2�/

.�
�/2
� .d1d2/

2:

(The second inequality follows from the assumptions, while the third follows from
Lemma B.2.) We shall apply Proposition A.3 to bound the spectral norm of

(B.3) yB �XXT
D yB � E yB D

X
`�d2

.B` � EB`/ D
X
`�d2

Z`;

where B` is d1 � d1 with entries

.B`/ij D

(
ı�1.Xi`/

2Ii` for i D j;
ı�2Xi`Xj`Ii`Ij` for i ¤ j:

Lemmas B.3 and B.4 (below) show that the matrices Z` satisfy the hypotheses of
Proposition A.3 with �2 as in (B.4) and ˇ; p; q as in (B.5) for d1d2 sufficiently
large. We then have

3min
�
t2

�2
;
t

ˇ

�
� log.d1d2/2

provided t � tmax � .log.d1d2//4 maxft1; t2; t3; t4gkXk2op for

t1 D

�
��

d1d2ı2

�1=2
D

�
�

d1ı

�1=2� �

d2ı

�1=2
;

t2 D

�
�

d2ı

�1=2
D t1

�
d1ı

�

�1=2
;

t3 D
�
�

d1d2ı2
D

�
��

d1d2ı2

�1=2� �
2�

d1d2ı2

�1=2
D t1

�
�
2�

d1d2ı2

�1=2
;

t4 D
.�
/1=2�

.d1/1=2d2ı
D

�
��

d1d2ı2

�1=2�
�
d2

�1=2
D t1

�

�

d2

�1=2
:

From (B.5) we have tmax � ˇ? � d2q. It follows from Proposition A.3 that

P .k yB � E yBkop � 2tmax/ �
2d1d2

expf3
8

log.d1d2/2g
C

2d1

expf1
8

log.d1d2/2g

�
4d1

expf1
8

log.d1d2/2g
;

which concludes the proof. �

LEMMA B.3. Assume the setting and notation of Theorem 6.2, and let Z` be as
defined by (B.3). For �2 as defined by (A.3), we have

(B.4) �2 � 2max
�

��

d1d2ı2
;
�

d2ı

�
kXk4op:
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PROOF. From the definitions, we have

.Z`/ij D

(
ı�1.Xi`/

2.Ii` � ı/ for i D j;
ı�2Xi`Xj`.Ii`Ij` � ı

2/ for i ¤ j:

Recalling equations (A.2) and (A.3), let† denote the sum of the matrices EŒ.Z`/
2�

over ` � d2. Let W denote the d2 � d2 diagonal matrix with entries W`` D
kXe`k

2. It is straightforward to compute that

† D
1 � ı

ı2
D C

1 � ı

ı
XWXT

where D is the d1 � d1 diagonal matrix with entries

Di i D
X
`�d2

.Xi`/
2.kXe`k

2
� .Xi`/

2/:

We then note kXWXTkop � kXk
2
opkW kop � �kXk

4
op=d2, while

0 � Di i �
�kXk2opkX

Teik
2

d2
�
��kXk4op

d1d2
:

Combining the above estimates, we find

k†kop �
kDkop

ı2
C
kXWXTkop

ı
�
��kXk4op

d1d2ı2
C
�kXk4op

d2ı
;

yielding the claimed bound. �

LEMMA B.4. Assume the setting and notation of Theorem 6.2, and let Z` be as
defined by (B.3). Let

ˇ? � max
�
�
�

d1d2ı2
;
.�
/1=2�

.d1/1=2d2ı

�
kXk2op:

For d1d2 � 3000, the matrices Z` satisfy (A.4) with

(B.5)
ˇ D .log.d1d2//2ˇ?;
p D expf�.3=8/.log.d1d2//2g � 2d1;
q D expf�.1=8/.log.d1d2//2g � ˇ?:

PROOF. Write ei for the i th standard basis vector in Rd1 , and letEij � ei .ej /T.
Then Z` is the sum of independent zero-mean matrices Mij D Ei i .Z`/i i . It
follows from the matrix Bernstein inequality (Proposition A.1) that

P .kZ`kop � t / � 2d1 exp
�
�
3

8
min

�
t2

�2
;
t

R

��
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where (cf. (A.2), (A.3)) R; � are given by

� D
kXk1kXe`k

ı
�
.�
/1=2�

.d1/1=2d2

kXk2op

ı
� d1d2kXk

2
op;

R D
kXk21
ı2

�
�
�

d1d2

kXk2op

ı2
� .d1d2/

2
kXk2op;

where we have made use of Lemma B.2 and (B.2). If we set ˇ? D maxf�;Rg and
ˇ D .log.d1d1//2ˇ?, then

P .kZ`kop � ˇ/ � 2d1 expf�3
8
.log.d1d1//2g D p:

Next note that for t � maxf�;Rg we have minft2=�2; t=Rg � t=maxf�;Rg, so

EŒkZ`kopI kZ`kop � ˇ� � ˇp C

Z 1
ˇ

P .kZ`kop � t / dt

� ˇp C 2d1

Z 1
ˇ

exp
�
�

.3=8/t

maxf�;Rg

�
dt

D
Œ.log.d1d2//2 C 8

3
�2d1 maxfR; �g

expf3
8
.log.d1d2//2g

�
.d1d2/

2 maxfR; �g

expf3
8
.log.d1d2//2g

�
maxfR; �g

expf1
8
.log.d1d2//2g

D q:

This concludes the proof. �

Appendix C Tensor Completion via Unfolding
In this section we prove Theorem 3.2. In the original model, we observe exactly

ı D jEj=dk fraction of the entries, uniformly at random. For convenience we now
introduce the Bernoulli model where each entry is observed independently with
chance ı. Our results for the Bernoulli model transfer to the original model by a
standard argument, which we provide below.

As in Theorem 3.2, suppose T 2 .Rd /˝k is a deterministic symmetric tensor
satisfying Assumption 1 with unfolding parameters .R; ˛; �/. Fixing ı 2 .0; 1/, let
ı1 � ı=2 and ı2 � ı1=.1�ı1/. Let fIu; Jug be a collection of independent random
variables (indexed by u 2 Œd �k) with Iu � Ber.ı1/ and Ju � Ber.ı2/. Let E1 be
the set of u 2 Œd �k with Iu D 1, and let E2 be the set of u 2 Œd �k with .1�Iu/Ju D
1. Define the corresponding partially observed tensors Y i D …Ei

.T /. Fixing
integers 1 � a � b D k � a, let X D unfolda�b.T /, Z D unfolda�b.Y 1/, and
(cf. (3.1))

(C.1) B D
1

ı1
….ZZT/C

1

.ı1/2
…?.ZZ

T/:

Let Q be the orthogonal projection onto the space spanned by the eigenvectors
of B with eigenvalues � �?. If a D bk=2c, then we can use Q to define Q as in
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(3.2). Then let

(C.2) �T � Y 1 C
1

ı2
Y 2; T ?

D Q.�T /; �T ?
D Q.�T /;

and note that EŒ�T j E1� D T . Define

(C.3)
$ �

˛R

�
; # �

˛R

ıdk=2
;

�.t/ �
8.k log d/4t1=2$

dk=2ı
; �?.t/ � �

2=3
kBkop:

We will consider �T ?
with threshold �? D �?.t/ as given by (C.3).

THEOREM C.1. Suppose T 2 .Rd /˝k is a deterministic symmetric tensor sat-
isfying Assumption 1 with unfolding parameters .R; ˛; �/ such that R � rmax as
defined by (3.3). Fix t � 1 and suppose

(C.4)
32.k log d/4t1=2$

dk=2
� ı �

t$

da
:

Then, with �T ?
as above, we have

kT � �T ?
kF � 20.k log d/4=3.t�/1=6#1=3kT kF

with probability at least 1 � 3dk expf�1
8
.k log d/2g.

Let us discuss the choice of t in Theorem C.1. We wish to have a small error
kT � �T ?

kF, while ensuring that condition (C.4) is satisfied. First note that (C.4)
cannot be satisfied at all unless we have t1=2 � 32.k log d/4=dk=2�a. If we take
� � 1 and set

ı D
203.k log d/4t1=2�3=2$

�3dk=2
;

then Theorem C.1 gives kT � �T ?
kF � �kT kF. This choice of ı automatically

satisfies the lower bound of (C.4). To satisfy the upper bound we require

t1=2 �
203.k log d/4�3=2

�3dk=2�a
:

Since a � k=2 and we aim for � � 1=.k log d/ in the worse case, we shall set
t1=2 D .k log d/8�3=2. With this choice, (C.4) simplifies to

32.k log d/12˛R�1=2

dk=2
� ı �

.k log d/16˛R�2

da
;

and we obtain kT � �T ?
kF � �kT kF with

�? D 4.k log d/8
�
˛R�1=2

dk=2ı

�2=3
kBkop; � D 20.k log d/3

�
˛R�2

dk=2ı

�1=3
:

Then, as noted previously, the result of Theorem C.1 (for the Bernoulli model) im-
plies the result of Theorem 3.2 (for the original model) by a well-known argument:
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PROOF OF THEOREM 3.2. The bound of Theorem C.1 fails with probability
tending to 0 more rapidly than any inverse polynomial of d . On the other hand, by
construction, the probability of the event jE1j D jE2j D n=2 is lower-bounded by
an inverse polynomial in n, so the result follows. �

C.1 Preliminary Lemmas
We begin with a proof of our earlier remark (2.2); note, however, that this bound

is not used in the proof of Theorems 3.2 or C.1.

LEMMA C.2. Suppose that the tensor T 2 Rd1˝� � �˝Rdk has rank r D r.T / and
multilinear rank r�;max D r�;max.T /, where we recall (2.1), r�;max is the maximum
of the values r�;i D r�;i .T / over i � k. Then (cf. (2.2))

r � .r�;1 � � � r�;k/=.r�;max/ � .r�;max/
k�1:

PROOF. If k D 2 this is clear from the singular value decomposition of the d1�
d2 matrix T . For k � 3we argue by induction on k. By relabeling, we can suppose
without loss of generality that r�;max 2 fr�;2; : : : ; r�;kg. Take a singular value
decomposition X .1/ D UV T, where U is a d1 � r�;1 matrix whose columns form
an orthonormal basis of the space span.1/.T /. Column s of V defines a tensor V s ,
and likewise row j ofX .1/ defines a tensor T j ; both V s;T j lie in Rd2˝� � �˝Rdk .
Since V T D U TX .1/, each V s is a linear combination of the tensors T j . It is clear
that span.i�1/.T j / � span.i/.T / for every j , so span.i�1/.V s/ � span.i/.T /
for every s. This proves r�;i�1.V s/ � r�;i . By the inductive hypothesis, together
with the assumption r�;max 2 fr�;2; : : : ; r�;kg, we have

r.V s/ � .r�;2 � � � r�;k/=.r�;max/:

It follows from the decomposition X .1/ D UV T that

r.T / � r�;1 max
s
r.V s/ � .r�;1 � � � r�;k/=.r�;max/;

which verifies the inductive hypothesis and proves the claim. �

The remainder of this section is devoted to the proof of Theorem C.1.

LEMMA C.3. If A1; A2 2 Rd�d with kA1 � A2kop < 1, and A2 is an orthogonal
projection matrix, then rankA2 � rankA1.

PROOF. Suppose rankA2 D r ; take an orthogonal set of vectors x1; : : : ; xr 2
Rd with A2xj D xj for all j � r . We claim that the vectors A1xj are linearly
independent. To see this, suppose for contradiction that there exist constants cj ,
not all 0, such that the vector

v D
X
j�r

cjxj

lies in the kernel of A1. Then v D .A2 � A1/v, so kvk � kA1 � A2kopkvk.
Since kA1 � A2kop < 1, it follows that v D 0, a contradiction. It follows that the
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vectors A1xj are linearly independent, which proves rankA2 D r � rankA1 as
claimed. �

LEMMA C.4. Let T 2 .Rd /˝k be a deterministic tensor, not necessarily symmet-
ric. Fixing integers 1 � a � b D k � a, let X D unfolda�b.T / and take B as in
(C.1). Suppose dkkXk21 � x$kXk

2
op for some x$ � 1. For t � 1, in the regime

1=.tdk/1=2 � ı � t x$=da we have

kB �XXTkop

8.k log d/4
�
t1=2 x$kXk2op

dk=2ı

with probability at least 1 � dk expf�1
8
.k log d/2g.

PROOF. Recall (6.2). The matrix X is .�; 
; �/-incoherent with � D � D

1=
 D x$ . The claim then follows by applying Corollary 6.3 (an additional factor 4
in the bound arises since ı D 2ı1). �

LEMMA C.5. Suppose F is a d1 � d2 matrix whose entries Fi;` are independent
random variables that have mean 0, variance at most �2, and magnitude at most
R almost surely. Suppose we also have deterministic square matrices A1 and A2,
of dimensions d1 and d2 respectively, with kAikop � 1. Then, for t � 0, we have

kA1F.A2/
T
kop � maxf.t�2 maxfrankA1; rankA2g/1=2; tRg

with probability at least 1 � .d1 C d2/ expf�3
8
tg.

PROOF. We can decompose

A1F.A2/
T
D A1

�X
i;`

Fi;`ei .e`/
T
�
.A2/

T
D

X
i;`

Zi;`

where Zi;` D Fi;`.A1ei /.A2e`/
T is a d1 � d2 matrix. It holds almost surely that

kZi;`kop � jFi;`j � R. We also have the variance bounds


X
i;`

EŒZi;`.Zi;`/
T�





op
�




X
i

A1ei .A1ei /
T
X
`

EŒ.Fi;`/
2�..A2/

TA2/`;`





op

� �2 tr..A2/TA2/kA1.A1/Tkop D �
2
kA2k

2
FkA1k

2
op

� �2.rankA2/;

and in a symmetric manner


X
i;`

EŒ.Zi;`/
TZi;`�





op
� �2.rankA1/:

The claimed bound follows by the matrix Bernstein inequality (Proposition A.1).
�
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C.2 Projection of Original Tensor
Recalling (3.2) and (C.2), we now compare the original tensor T and its projec-

tion T ?
D Q.T /.

LEMMA C.6. Let T 2 .Rd /˝k be a tensor (not necessarily symmetric). Fix in-
tegers a; b � 1 with a C b D k, and let X D unfolda�b.T /. For any posi-
tive semidefinite matrix B of dimension da, let Q be the orthogonal projection
onto the eigenspace of B corresponding to eigenvalues � �?. Then, for any
�? > kB �XX

Tkop,
rankQ � rankX:

In particular, if a D bk=2c then rankQ � rı.k; rankX; d/ where (cf. (3.2))

(C.5) Q D

8̂<̂
:
Q˝Q˝Q; k D 3;

Q˝Q; k � 4 even;
Q˝Q˝ Id ; k � 5 odd;

rı.k; r; d/ �

8̂<̂
:
r3; k D 3;

r2; k � 4 even;
r2d; k � 5 odd:

PROOF. Let P be the orthogonal projection onto the eigenspace of XXT corre-
sponding to eigenvalues � 2�?, and note rank.PQ/ � rankP � rankX . From
Wedin’s theorem (Proposition A.2),

(C.6) kP.I �Q/kop D k.I �Q/P kop �
kB �XXTkop

�?
;

which is less than 1 by assumption. Applying Lemma C.3 then gives

rankQ � rank.PQ/ � rankX;

proving the first assertion. The claimed bound on rankQ follows immediately from
the fact that rank.M1 ˝M2/ D rank.M1/ rank.M2/. �

LEMMA C.7. Let T 2 .Rd /˝k be a symmetric tensor. Take a D bk=2c and let
X;B;Q;Q be as in the statement of Lemma C.6. Then T ?

D Q.T / satisfies

kT � T ?
kF � 3.rankX/1=2

�
.2�?/

1=2
C
kB �XXTkopkXkop

�?

�
:

PROOF. In what follows we write I for the d � d identity matrix. We denote
its `-fold tensor product by I .`/ � I˝`; this is equivalent to the d ` � d ` identity
matrix. With this notation we expand

T � T ?
D
�
.I .a/ �Q/˝ I .b/ CQ˝ .I .a/ �Q/˝ I .b�a/

C 1fk D 3gQ˝Q˝ .I .a/ �Q/
�
T :

Recall X D unfolda�b.T /. By the triangle inequality and the assumed symmetry
of T , we have

kT � T ?
kF � 3max

M
fk.I .a/ �Q/XMkFg
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where the maximum is taken over all db �db matricesM with kMkop � 1. Then,
with P as in the proof of Lemma C.6, we can expand

.I .a/ �Q/XM D .I .a/ �Q/.I .a/ � P /XM C .I .a/ �Q/PXM

and bound separately the two terms on the right-hand side. For the first term we
have

k.I .a/ �Q/.I .a/ � P /XMkop � k.I
.a/
� P /Xkop � .2�?/

1=2

from the definition of P . For the second term we have (cf. (D.19))

k.I .a/ �Q/PXMkop � k.I
.a/
�Q/P kopkXkop �

kB �XXTkopkXkop

�?
:

Combining the above inequalities gives

k.I .a/ �Q/XMkop � .2�?/
1=2
C
kB �XXTkopkXkop

�?
:

The claimed bound follows by noting that the matrix .I .a/ � Q/XM has rank
upper-bounded by rankX , so its Frobenius norm is at most .rankX/1=2 times its
spectral norm. �

In view of Lemma C.7, it is natural to optimize over the parameter �? by setting

�? D

�
kB �XXTk2opkXk

2
op

2

�1=3
:

Of course, in the application we have in mind, we cannot do this because X is
unknown. However, if the (known) matrix B is sufficiently close to XXT, we can
achieve a near-optimal bound by defining �? in terms ofB alone, without reference
to X . In summary, we have:

COROLLARY C.8. Suppose T 2 .Rd /˝k is a deterministic symmetric tensor satis-
fying Assumption 1. Take a D bk=2c and define B as in (C.1). Recalling (C.3), let
Q be the orthogonal projection onto the eigenspace of B corresponding to eigen-
values � �?.t/, and use this to define T ?

D Q.T / as in (C.2). For t � 1 and ı
satisfying (C.4), we have

kT � T ?
kF � 18.k log d/4=3.t�/1=6#1=3kT kF

with probability at least 1 � dk expf�1
8
.k log d/2g.

PROOF. Since t � 1 and $ D ˛R=� � 1 (Remark 3.1), it follows from (C.4)
that

1

.tdk/1=2
�
32.k log d/4t1=2$

dk=2
� ı �

t$

da
:

Together with (T2) and (T3), we see that the conditions of Lemma C.4 are satisfied
with x$ D $ . It follows that, with probability at least 1 � dk expf�1

8
.k log d/2g,

kB �XXT
kop � �kXk

2
op �

1
4
kXk2op;
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where the last inequality is from (C.4). Therefore 3
4
kXk2op � kBkop �

5
4
kXk2op,

so

(C.7) 3
4
�2=3kXk2op � �?.t/ �

5
4
�2=3kXk2op:

(So far, it was not necessary for T to be symmetric.) Next, substituting (C.7) into
the bound of Lemma C.7 (and making use of the symmetry of T ) we find

kT � T ?
kF � 9�.t/

1=3.rankX/1=2kXkop � 9�.t/
1=3R1=2kXkop;

where the last inequality is from (T1). Finally, applying (T3) and recalling kXkF D

kT kF, we conclude kT � T ?
kF � 9�1=2�.t/1=3kT kF. The claim follows by

recalling the definition of �.t/ from (C.3). �

C.3 Projection of the Observed Tensor
Again recalling (3.2) and (C.2), we next compare T ?

D Q.T / (the projection
of the original tensor) with �T ?

D Q.�T / (the projection of the observed tensor).

LEMMA C.9. Let T 2 .Rd /˝k be a deterministic tensor (not necessarily sym-
metric). Fix integers a; b � 1 with a C b D k. Suppose we have two E1-
measurable square matrices A1 and A2, of dimensions da and db respectively,
with kAikop � 1. Let Q � A1˝A2, and abbreviate R D maxfrankA1; rankA2g.

For this choice of Q, define T ? and �T ?
as in (C.2). Then

kunfolda�b.T ?
� �T ?

/kop � 2.k log d/2
�

maxfı�1;Rg
ı

�1=2
kT k1

with probability at least 1 � dk expf�3
8
.k log d/2g conditional on E1.

PROOF. Let F D T � �T ; it follows from the definitions that F has entries

Fu D .1 � Iu/

�
1 �

Ju

ı2

�
Tu:

Note that EŒFu j E1� D 0, or equivalently EŒ�T j E1� D T . Moreover, we have

ess sup jFuj �
kT k1

ı2
; EŒ.Fu/

2
jE1� �

kT k21
ı2

:

If F D unfolda�b.F/, then we have

unfolda�b.T ?
� �T ?

/ D unfolda�b.Q.T � �T // D A1F.A2/T:
The claimed bound then follows from Lemma C.5 (and using 2ı2 � ı). �

COROLLARY C.10. In the setting of Lemma C.9, suppose T satisfies (T2) and (T3),
as well as

(C.8) maxfı�1;Rg � dk=2:
Then, conditional on E1, and with # � ˛R=.dk=2ı/, we have

kunfolda�b.T ?
� �T ?

/kop � 2.k log d/2.#=�/1=2kXkop
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with probability at least 1 � dk expf�1
8
.k log d/2g.

PROOF. From (T2) and (T3)we have

dk=2

ı
kT k21 �

˛R

�dk=2ı
kT k2op D

#

�
kT k2op:

Combining this with (C.8) and substituting into Lemma C.9 gives the claim. �

COROLLARY C.11. Let T 2 .Rd /˝k be a deterministic tensor (not necessarily
symmetric) satisfying Assumption 1 with unfolding parameters .R; ˛; �/ with R �
rmax (as defined by (3.3)). Fixing t � 1, suppose ı satisfies (C.4), and set �? as in
(C.3). With T ? and �T ?

as in (C.2), we have

kT ?
� �T ?

kF � 2.k log d/2#1=2kT kF

with probability at least 1 � 2dk expf�1
8
.k log d/2g.

PROOF. Fix a D bk=2c and b D dk=2e. Recalling the proof of Corollary C.8,
with probability at least 1�dk expf�1

8
.k log d/2g the bounds (C.7) hold, in which

case Lemma C.6 gives rankQ � rankX . We also have rankX � R by 1. From
(3.2), Q D A1 ˝ A2 where A1 D Q and

A2 D

(
Q˝Q; k D 3;

Q˝ I .b�a/; k � 4:

As in the proof of Lemma C.9, denote F D T � �T and F D unfolda�b.F/. Then
T ?
� �T ?

D Q.F/, and the matrix unfolda�b.T ?
� �T ?

/ D A1F.A2/
T has rank

upper-bounded by the rank of A1 D Q. We have seen that with high probability
rankQ � R; on this event,

kT ?
� �T ?

kF � R1=2kunfolda�b.T ?
� �T ?

/kop:

Condition (C.8) is satisfied by our assumptions, so we can apply Corollary C.10:
conditional on E1 it holds with probability � 1 � dk expf�1

8
.k log d/2g that the

right-hand side above is

� 2.k log d/2#1=2
�

R1=2kXkop

�1=2

�
D 2.k log d/2#1=2kXkF;

where the last step uses (T3). The claim follows since kXkF D kT kF. �

PROOF OF THEOREM C.1. The result now follows straightforwardly by col-
lecting the estimates obtained above. By our assumptions on ı and R, the con-
ditions of Corollaries C.8 and C.11 are satisfied. By Corollary C.8, it holds with
probability at least 1 � dk expf�1

8
.k log d/2g that

kT ?
� �T ?

kF � 18.k log d/4=3.t�/1=6#1=3kT kF:
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By Corollary C.11, it holds with probability at least 1 � 2dk expf�1
8
.k log d/2g

that
kT ?
� �T ?

kF � 2.k log d/2#1=2kT kF:

Combining (C.3) with (C.4) gives

#

t�
D

˛R

dk=2ıt�
D

$

dk=2ıt
�

1

32.k log d/4t3=2
:

Combining the above bounds gives

kT � �T ?
kF � kT � T ?

kF C kT
?
� �T ?

kF � 20.k log d/4=3.t�/1=6#1=3kT kF;

which concludes the proof. �

Appendix D Overcomplete Random 3-Tensors
In this section we prove Theorem 4.1. We have an underlying tensor

(D.1) T D
X
s�r

as ˝ as ˝ as

where a1; : : : ; ar are i.i.d. random vectors in Rd satisfying (T1), (T2), and (T3).
We contract two copies of the tensor T together to form the d2 � d2 matrix G,
with entries

Gi ;j D
X
`�d

T `i1j1
T `i2j2

:

Equivalently, writing As � as.as/T, we have

G D
X
s;t�r

has; at i.as ˝ at /.as ˝ at /
T

D

X
s;t�r

has; at iAs ˝ At D G
diag
CGcross;

(D.2)

where Gdiag denotes the contribution from the diagonal terms s D t , while Gcross

denotes the remaining contribution from pairs s ¤ t .
As in the proof of Theorem 3.2, we work under a Bernoulli model for the par-

tially observed tensor: define three d � d � d arrays of i.i.d. Ber.ı/ random vari-
ables, denoted I; J;K. Define PY D T ˇ I , RY D T ˇ J , «Y D T ˇ K. The
observed version of G is (cf. (4.1))

(D.3) Wi ;j D
1

ı2

X
`�d

PY `i1j1
RY `i2j2

:

Take the singular vectors ofW with singular values at least �?, letQ W Rd
2

! Rd
2

be the orthogonal projection onto their span, and let Q D Q˝ Id . Let �T D ı�1«Y
and �T ?

D Q.�T /.



SPECTRAL ALGORITHMS FOR TENSOR COMPLETION 2409

Throughout this appendix, we use f .d; r/ . g.d; r/ if for some constant C
f .d; r/ � .log d/Cg.d; r/, and f .d; r/ � g.d; r/ if f .d; r/ . g.d; r/ and
g.d; r/ . f .d; r/.

THEOREM D.1. Let T 2 .Rd /˝3 be a standard random tensor (4.2) satisfying
Assumption 2. Suppose ı2 maxfr; dg � 1, and take �T ?

as above with threshold
parameter (cf. (4.3))

�? D

�
maxf1; r=dg
d1=2ı

�4=5
:

Then it holds with very high probability that (cf. (4.4))

kT � �T ?
kF .

�
maxf1; r=dg
d1=2ı

�1=5
kT kF:

PROOF OF THEOREM 4.1. Theorem 4.1 is deduced from Theorem D.1 in the
same way that Theorem 3.2 is deduced from Theorem C.1. �

D.1 Preliminaries on Random Vectors
We now collect some basic estimates on random vectors that satisfy condi-

tion (A3), which we repeat here for convenience:

E exp.hx; vi/ � exp
�
�2kvk2

2d

�
for all v 2 Rd :

Such vectors will be termed “.�2=d/-subgaussian.”

LEMMA D.2. Suppose x is a random vector in Rd satisfying (A3). Then

E exp
�
 kxk2

2�2

�
�

1

.1 �  =d/d=2
� exp

�
 .1C  =d/

2

�
;

where the first inequality holds for all 0 �  < d , and the second holds for all
0 �  � d=2.

PROOF. Let � be a standard gaussian random vector in Rd (with covariance
EŒ��T� given by the d � d identity matrix Id ). Applying (A3) then gives, for
0 � � < d=.2�2/,

E expf�kxk2g D E expf.2�/1=2h�; xig � E exp
n��2k�k2

d

o
D

�
1�

2��2

d

��d=2
;

which proves the first inequality by setting  D 2��2. Next note that for 0 �
t � 1

2
we have � log.1 � t / � t .1C t /. The second inequality then follows, with

t D  =d . �

LEMMA D.3. Suppose x is a random vector in Rd satisfying (A2) and (A3). Then

P .kxk2 � �/ �
1 � �

�2
�
O.log d/
d1=2
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for any 0 � � � 1 � 1=.log d/, and it holds for any fixed v 2 Rd that

P .d hx; vi2 � kvk2=100/ �
1

2�2.8C 3 log.�2//
:

PROOF. Recall that ifZ is a nonnegative random variable with finite mean, then

EŒZIZ � L� D LP .Z � L/C

Z 1
L

P .Z � ´/ d´:

Therefore, for any 0 � � � L we can bound

EZ � �P .Z � �/C LP .� < Z < L/C EŒZIZ � L�

D L � .L � �/P .Z � �/C

Z 1
L

P .Z � ´/ d´

� L � .L � �/P .Z � �/C
E exp.�Z/
� exp.�L/

:(D.4)

Taking � < minfEZ;Lg and rearranging gives

P .Z � �/ �
L � EZ

L � �
C

E exp.�Z/
.L � �/� exp.�L/

� 1 �
EZ � �

L
C

E exp.�Z/
.L � �/� exp.�L/

:

(D.5)

Turning to the proof of the claim, we now take Z D kxk2, so EZ D 1 by (A2).
First, taking � D L in (D.4) and applying Lemma D.2 gives (for any 0 �  � d=2)

1 � LC
2�2

 
E exp

�
 .kxk2 � L/

2�2

�
� LC

2�2

 
exp

�
 .�2.1C  =d/ � L/

2�2

�
:

Setting L D �2.1C  =d/ and rearranging gives

(D.6) �2 �
1

1C  =d C 2= 
� 1 �O.d�1=2/;

where the last inequality is by optimizing over 0 �  � d=2. Next consider
(D.5), where we again set L D �2.1 C  =d/ with 0 �  � d=2, but now take
� � 1 � 1=.log d/. It follows from (D.6) that .L � �/�1 � O..log d/=L/ �
O..log d/=�2/. Substituting into (D.5) gives

P .kxk2 � �/ � 1 �
1 � �

L
C
2�2= 

L � �
� 1 �

1 � �

�2.1C  =d/
C
O.log d/

 

� 1 �
1 � �

�2
C
O.log d/
d1=2

;

where the last step is by optimizing over 0 �  � d
2

as before. This proves the
first claim.

For the second claim, note that (A3) implies that hx; vi 2 R1 is x�2-subgaussian
with x�2 D �2kvk2=d . We assume without loss of generality that kvk2 D d , so
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that hx; vi is .�2=d/-subgaussian. We also have EŒhx; vi2� D 1 by (A2). Applying
(D.5) then gives

P .hx; vi2 � �/ � 1 �
1 � �

L
C
2�2= 

L � �
E exp

�
 .hx; vi2 � L/

2�2

�
:

Applying Lemma D.2 with d D 1 gives (assuming � < minf1;Lg and 0 �  < 1)

P .hx; vi2 � �/ � 1 �
1 � �

L
C
2�2 expf� L=.2�2/g
.L � �/ .1 �  /1=2

:

If we take  D 2
3

, L D ˇ�2 � 1, and � � minfL; 1g=100, then

P .hx; vi2 � �/ � 1�
1

ˇ�2

�
1���

.100=99/33=2�2

expfˇ=3g

�
� 1�

1

2�2.8C 3 log.�2//
;

where the last inequality is by taking ˇ D 8C 3 log.�2/ and recalling � � 1=100.
This proves the second claim. �

The following bound is very well known (see, for instance, [25, thm. 5.39]); we
include the short proof here in order to have an explicit dependence on � .

LEMMA D.4. Suppose a1; : : : ; ar are i.i.d. random vectors in Rd satisfying (A2)
and (A3) and denote As � as.as/

T. Suppose r grows polynomially in d . Then,
with very high probability,


X

s�r

As





op
� r=d C .log d/6=5 maxf�.r=d/1=2; �2g

� .log d/5=4 maxfr=d; �2g:

PROOF. Denote x D as and consider Z D xxT � I=d . Recalling (E.2), we
have kZkop � 2�

2 with very high probability. Write A 4 B to denote that B � A
is positive semidefinite. It holds for any constant M � 0 that

0 4 EŒZ2� D EŒkxk2xxT
� I=d2�

4 EŒkxk2xxT�

4 MEŒxxT�C EŒ1fkxk2 �M g.kxk2 �M/xxT�:

Taking norms (and applying the triangle inequality and Jensen’s inequality) gives

kEŒZ2�kop �M=d C EŒ.kxk2 �M/kxk2I kxk2 �M� � 2�2=d;

where the last inequality holds for sufficiently large d by another application of
(E.2). Combining this with the truncated Bernstein bound (Proposition A.3) gives,
with very high probability,


X

s�r

.As � I=d/





op
� .log d/6=5 maxf�.r=d/1=2; �2g:

The claimed bound follows by using the triangle inequality. �
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D.2 Observation of Contracted Tensor, Diagonal Component
The key technical step in our result is the following estimate on W .

PROPOSITION D.5. Suppose a1; : : : ; ar are i.i.d. random vectors in Rd satisfying
(A1), (A2), and (A3), and suppose r � d2. LetG andW be as in (D.2) and (D.3).
If ı2 maxfr; dg � 1, then

kW �Gdiag
kop .

maxf1; r=dg
d1=2ı

with high probability.

PROOF. Recall the notation As � as.as/
T. Write ast � as ˝ at , and denote

Ast � ast .ast /
T D As ˝ At . We also abbreviate Eij � ei .ej /T where ei denotes

the i th standard basis vector in Rd . For ` � d let I `; J ` denote the d �d matrices
with entries

.I `/ij D I`ij ; .J `/fg D J f̀g :

Recall from (D.2) that

G D
X
s;t

has; at iAst D G
diag
CGcross:

The observed version W of G can be decomposed analogously:

W D
X
s;t

Cst ˇ Ast D W
diag
CW cross

where, for each s; t � r , we define the d2 � d2 matrix

(D.7) Cst D
1

ı2

X
`�d

as`at`.I
`
˝ J `/:

Let E00 denote expectation over the indicators I and J , and note that E00W diag D

Gdiag. We show below (Propositions D.6 and D.7) that

kW diag
�Gdiag

kop . max
�

1

dı1=2
;

r

d3=2ı

�
;(D.8)

kW cross
kop .

maxf1; r=dg
d1=2ı

:(D.9)

Since W � Gdiag D .W diag � Gdiag/ C W cross, the triangle inequality gives the
claimed bound. �

We now prove (D.8) and (D.9). These proofs are slightly involved, and may
not offer much insight on a casual reading. We supplement these proofs with an
analysis of Gdiag and Gcross, given in Appendix E. In particular, our analysis of
W cross is modeled after the analysis of Gcross (which is easier and corresponds to
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the special case ı D 1). Appendix E is not needed for the proof of Theorem 4.1
but may supply some intuition. We now turn to the analysis of

(D.10) W diag
D

X
s�r

Css ˇ Ass:

PROPOSITION D.6. Suppose a1; : : : ; ar are i.i.d. random vectors in Rd satisfy-
ing (A1), (A2), and (A3). Let Gdiag and W diag be as in (E.1) and (D.10). If
ı2 maxfr; dg � 1, then

kW diag
�Gdiag

kop . max
�

1

dı1=2
;

r

d3=2ı

�
;

with very high probability.

PROOF. Let amax denote the maximum of all the values jas;i j (s � r , i � d )
and jhas; at ij (s ¤ t ); we have amax . d�1=2 with very high probability. Let
S` � I ` ˝ J ` � E00.I ` ˝ J `/ and

(D.11) Z` �
1

ı2

X
s�r

.as`/
2S` ˇ Ass D

1

ı2

X
s�r

.as`/
2.diag ass/S`.diag ass/:

Under the randomness of I and J , the matrices Z` are independent with zero
mean, and

W diag
�Gdiag

D W diag
� E00W diag

D

X
`�d

Z`:

Note that kE00I `kop D kı11Tkop D dı, while the Bernstein matrix inequality
(Proposition A.1) gives kI ` � E00I `kop . maxf.dı/1=2; 1g with very high proba-
bility. It follows from the triangle inequality that kI `kop . maxfdı; 1g, and so

kS`kop � k.I
`
�E00I `/˝J `kopCk.E

00I `/˝.J `�E00J `/kop . maxf.dı/3=2; 1g:

Recalling the definition (D.11), we conclude that with very high probability

(D.12) kZ`kop .
r.amax/

6

ı2
kS`kop . max

�
r

d3=2ı1=2
;
r

d3ı2

�
:

Next note that we can express Z` as ı�2S` ˇ T ` where

T ` �
X
s�r

.as;`/
2Ass:
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The d2 � d2 matrix T ` is symmetric and satisfies the entrywise bound kT `k1 �
r.amax/

6 . r=d3. Writing M ` � .T `/2, we compute

†` D E00ŒZ`.Z`/T� D
.1 � ı/2

ı2
….M `/„ ƒ‚ …

†`;0

C
1 � ı

ı
M `
ˇ .Id ˝ 11T/„ ƒ‚ …
†`;1

C
1 � ı

ı
M `
ˇ .11T

˝ Id /„ ƒ‚ …
†`;2

:

Each †`;0 is simply a diagonal matrix, so

k†`;0kop �
kM `k1

ı2
�
d2.kT `k1/

2

ı2
.

r2

d4ı2
:

Let M .i/` denote the d � d matrix with entries .M .i/`/fg D .M `/if;ig . We can
decompose M .i/` as the sum of two components,

M .i/`;diag
D

X
s�r

.as`/
4
kask

4.as;i /
2As;

M .i/`;cross
D

X
s¤t

.as`at`/
2
has; at i

2as;iat;ias.at /
T:

We have kM .i/`;crosskop � r
2d.amax/

10 . r2=d4, while

jM .i/`;diag
kop . d�3




X
s�r

As





op

. maxf1; r=dg=d3

using Lemma D.4. Combining these inequalities gives kM .i/`kop . maxf1; r2=dg=d3,
and so

k†`;1kop �
1

ı




X
i�d

Ei i ˝M
.i/`





op
.

maxf1; r2=dg
d3ı

:

It follows from the above estimates that


X
`�d

†`



1=2

op
. max

�
r

d3=2ı
;

1

dı1=2
;

r

d3=2ı1=2

�
D max

�
r

d3=2ı
;

1

dı1=2

�
:

Combining this with (D.12) and the truncated Bernstein bound (Proposition A.3)
gives

kW diag
�Gdiag

kop . max
�

1

dı1=2
;

r

d3=2ı
;
r

d3ı2

�
:

It follows from our assumptions that

(D.13) d3ı2 � ı2 maxfr; dg � 1;

and the claim follows. �
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D.3 Observation of Contracted Tensor, Cross Component
We now turn to analyzing

(D.14) W cross
D

X
s¤t

Cst ˇ Ast ;

where Cst is as in (D.7) and Ast � As ˝ At .

PROPOSITION D.7. Suppose a1; : : : ; ar are i.i.d. random vectors in Rd satisfying
(A1), (A2), and (A3), and suppose r � d2 and ı2 maxfr; dg � 1. Then the matrix
W cross of (D.14) satisfies

kW cross
kop .

maxf1; r=dg
d1=2ı

with very high probability.

PROOF. By the symmetry assumption (A1) and the matrix decoupling inequal-
ity (Proposition A.5), it suffices to prove the bound of Proposition D.7 for

W sign
D

X
s¤t

ssttCst ˇ Ast

in place of W cross. Recalling the notation Eij � ei .ej /T, we have

Cst D
X
i;j�d

Eij ˝ C.ij /st D
X
f;g�d

Cst.fg/ ˝Efg

where C.ij /st and Cst.fg/ are d � d matrices with entries

.C.ij /st /fg D .Cst.fg//ij D .Cst /if;jg :

After some straightforward manipulations we find

W sign
D

X
i;j�d

.Eij ˝ 11T/ˇ

W .ij /‚ …„ ƒ�X
s¤t

ssttAs ˝ .C.ij /st ˇ At /

�
(D.15)

D

X
f;g�d

.11T
˝Efg/ˇ

�X
s¤t

sstt .Cst.fg/ ˇ As/˝ At

�
„ ƒ‚ …

W fg

:(D.16)

We will show below (Lemma D.8) that

kW .ij /
kop .

maxf1; r=dg
d1=2ı

with very high probability. Let E0 denote expectation over I only; we then have
E0W .ij / D E0W sign. Under the assumptions r � d2 and ı2 maxfr; dg � 1, we
show below (Lemmas D.8 and D.9) that

maxfkE0W sign
kop; kW

sign
� E0W sign

kopg .
maxf1; r=dg
d1=2ı
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with very high probability. The claimed bound follows from the triangle inequality.
�

LEMMA D.8. In the setting of Proposition D.7, the matrixW .ij / of (D.15) satisfies

kW .ij /
kop .

maxf1; r=dg
d1=2ı

with very high probability.

PROOF. Fix i; j and abbreviate �st � C.ij /st , so �st is a d � d matrix with
entries

.�st /fg D
1

ı2

X
`�d

I`ijJ f̀gas`at`:

It follows from the standard Bernstein inequality that, with very high probability,

k�stk1 . max
�

1

d1=2ı
;
1

dı2

�
:

Now denote Wst � �st ˇ At , and note that

W .ij /
D

X
s�r

ssAs ˝
� X
t2Œr�ns

ttWst

�
:

We can express Wst D .diag at /�st .diag at /, so, with very high probability,

kWstkop � .katk1/
2
k�stkop . d�1k�stkop � k�stk1

. max
�

1

d1=2ı
;
1

dı2

�
:

(D.17)

Conditional on as; I; J , then the Wst (indexed by t 2 Œr� n s) are independent. For
f; g � d we have

.Wst .Wst /
T/fg D

1

ı4
atf atg

X
k�d

.atk/
2
�X
u�d

IuijJuf kasuatu

��X
v�d

IvijJvgkasvatv

�
:

Let Es denote expectation conditional on as; I; J ; we now estimate †st �
EsŒWst .Wst /T�, making use of the symmetry assumption (A1). On the diagonal
(f D g), only the u D v terms survive, so

.†st /ff D
1

ı4

X
k;u�d

.asu/
2IuijJuf kEŒ.atf atkatu/

2� . max
�

1

.dı/2
;

1

.dı/4

�
;
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where the last bound holds with very high probability over as; I; J . Off the diago-
nal (f ¤ g) we must have fu; vg D ff; gg, so

j.†st /fg j D

ˇ̌̌̌
1

ı4
asf asgIf ij Igij

X
k�d

.Jff kJggk C Jgf kJfgk/EŒ.atf atgatk/
2�

ˇ̌̌̌

. If ij Igij max
�

1

d3ı2
;

1

.dı/4

�
where the last bound holds with very high probability over as; J . Then, with very
high probability over I , the number of nonzero entries in †st is . maxf1; .dı/2g,
so

k…?.†st /kF . max
�
1

d2ı
;

1

.dı/4
;

1

.dı/3

�
:

Combining the diagonal and off-diagonal estimates gives altogether


 X
t2Œr�ns

†st





op

. max
�

r

.dı/2
;

r

.dı/4

�
:

Combining this with (D.17) and the truncated Bernstein bound (Proposition A.3)
gives 


 X

t2Œr�ns

tt�st ˇ At




2
op

. max
�
1

dı2
;

r

.dı/2
;
1

d2ı4
;

r

.dı/4

�
:

It then follows from the matrix Rademacher bound (Proposition A.4) that

kW .ij /
k
2
op .

�
max
s�r




 X
t2Œr�ns

tt�st ˇ At




2
op

�


X
s�r

As





op

with very high probability. Combining this with Lemma D.4 gives

kW .ij /
k
2
op .

1

dı2
max

��
max

�
1;
r

d

�
�max

�
1;
r

d
;
1

dı2

��
;
r2

d4ı2

�
:

By using the assumptions r � d2 and ı2 maxfr; dg � 1, the claimed bound then
follows. �

LEMMA D.9. In the setting of Proposition D.7, with W sign as in (D.15) and E0

denoting expectation over I only, the matrix Z D W sign � E0W sign satisfies

kZkop .
maxf1; r=dg
d1=2ı

with very high probability.

PROOF. Recalling (D.16), we can further decompose

Zfg D W fg
� E0W fg

D

X
`�d

Z f̀g
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where Z f̀g is defined as

Z f̀g
�

�
1

ı2
J f̀g.I

`
� ı11T/ˇ

T f̀g‚ …„ ƒ�X
s¤t

ssttas`at`atf atgAs

��
„ ƒ‚ …

M f̀g

˝Efg :

Recalling that E0 denotes expectation over I only, we have

E0ŒM f̀g.M f̀g/T� D
J f̀g.1 � ı/

ı3
….T f̀g.T f̀g/T/:

By a Chernoff bound, we have kT f̀gk1 . r=d3 with very high probability, so

kE0ŒM f̀g.M f̀g/T�kop � J f̀g
dkT f̀gk21

ı3
. J f̀g

r2

d5ı3
:

Next note that Z f̀g.Z f̀g/T D .M f̀g.M f̀g/T/˝Eff , so altogether


 X
f;g�d

E0ŒZfg.Zfg/T�





op
� max
f�d

n X
`;g�d

kE0ŒM f̀g.M f̀g/T�kop

o
.
r2 maxfd2ı; 1g

d5ı3
D

r2

d3ı2

where the bound holds with very high probability over J , and the last step uses
(D.13). By employing r � d2 and maxfr; dgı2 � 1, the same argument as in
Lemma D.8 gives

kZfgkop .
maxf1; r=dg
d1=2ı

with very high probability. Combining the above estimates with the truncated ma-
trix Bernstein inequality (Proposition A.3) gives the claimed bound. �

D.4 Tensor Completion Algorithm
Recall G D Gdiag C Gcross from (D.2), and W D W diag C W cross from (D.3).

We have from Proposition D.5 that, with very high probability,

(D.18) � D kGdiag
�W kop .

maxf1; r=dg
d1=2ı

:

Choose ı large enough such that � � � � 1, where � is a parameter to be deter-
mined. Let P be the orthogonal projection onto the subspace of .Rd /˝2 spanned
by singular vectors of Gdiag with singular values � 2�. Let Q be the orthogonal
projection onto the subspace of .Rd /˝2 spanned by singular vectors of W with
singular values � �. Denote the complementary projections as xP � Id2 � P and
SQ � Id2 �Q. It follows by Wedin’s theorem (Proposition A.2) that

(D.19) kP SQkop � �=�� 1:
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Recall from (D.3) the formation of W using indicators I; J . Let K be an indepen-
dent copy of I , and let �T denote the tensor with entries .�T /ijk D ı�1KijkT ijk .
Define the estimator

(D.20) �T ?
D �T .Id ˝Q/:

In what follows we will show that �T ?
is close to T in the Frobenius norm, where

kT k2F D
X
s�r

kask
6
C

X
s¤t

has; at i
3:

Recalling the proof of Proposition E.2, we haveX
s�r

kask
6
� r;

ˇ̌̌X
s¤t

has; at i
3
ˇ̌̌

.
r

d3=2
;

so altogether kT kF � r
1=2.

LEMMA D.10. Suppose a1; : : : ; ar are i.i.d. random vectors in Rd satisfying (A1),
(A2), and (A3), and suppose r grows polynomially in d . Let T be as in (D.1), and
let xP D I � P as above. Then it holds with very high probability that kT .Id ˝
xP /kF . �1=4r1=2.

PROOF. Let �st � h xP .as ˝ as/; xP .at ˝ at /i. By definition, k xPGdiag xP kop �

2�, so

�kas ˝ ask
2
� .as ˝ as/

T xPGdiag xP .as ˝ as/

D

X
t�r

katk
2.�st /

2
� kask

2.�ss/
2:(D.21)

Let .ss/s�r be a collection of symmetric random signs: by assumption (A1), the
original tensor T is equidistributed as

T sgn
D

X
s

ssas ˝ as ˝ as:

Note that T and T sgn map to the same Gdiag, so the projection matrix P is inde-
pendent of the signs ss . Therefore kT .Id ˝ xP /k2F is equidistributed as

kT sgn.I ˝ xP /k2F D
X
s�r

kask
2�ss C

X
s

ss

� X
t2Œr�ns

st has; at i�st

�
:

Recall from (D.21) that j�ssj � �1=2kask, so the first term is . �1=2r . Meanwhile,
by combining (D.21) with the decoupling inequality and the Rademacher bound,
the second term is . �1=2.r=d/1=2. The claimed bound follows. �

PROOF OF THEOREM D.1. We decompose

T � �T ?
D T .I ˝ xP SQ/C T .I ˝ P SQ/C .T � �T /.I ˝Q/:
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Since SQ is a projection matrix we have k SQkop � 1, so

kT .I ˝ xP SQ/kF � kT .I ˝ xP /kF . �1=4r1=2 � �1=4kT kF

by Lemma D.10. Recall from (D.19) that kP SQkop � �=�� 1; we then have

kT .I ˝ P SQ/kF � kT kFkP SQkop � .�=�/kT kF:

Lemma C.3 gives rankQ � r , and combining with Lemma C.5 gives

k.T � �T /.I ˝Q/kF � r
1=2
kunfold1�2..T � �T /.I ˝Q//kop

.
�

r

d3=2

maxf1; r=dg
d1=2ı

�1=2
kT kF:

The result follows by setting � equal to the parameter �? of the theorem statement,
and then recalling the bound on � from (D.18). �

Appendix E Remarks on Contracted Tensor
This section supplements Appendix D by analyzing G (of (D.2)). As noted

above, the estimates below are not required for the proof of Theorem 4.1. We in-
clude them because they may supply some intuition, and may be useful for related
problems such as tensor decomposition.

E.1 Contracted Tensor, Diagonal Component
We begin with the diagonal component

(E.1) Gdiag
D

X
s�r

kask
2.as ˝ as/.as ˝ as/

T:

For this component, we have a slightly better estimate if we make the additional
assumption that �2 � 21=20. This is due to the following:

COROLLARY E.1. Suppose x is a random vector in Rd satisfying (A2) and (A3)
with �2 � 21=20. Then it holds for any deterministic v 2 Rd that

P .kxk2 � 1=100 and d hx; vi2 � kvk2=100/ � 1=1000

for sufficiently large d .

PROOF. The corollary follows from Lemma D.3 and a union bound. �

Applying this corollary, we obtain the following estimates for the spectral norm
of Gdiag:

PROPOSITION E.2. Suppose a1; : : : ; ar are i.i.d. random vectors in Rd satisfy-
ing (A2) and (A3), and define Gdiag as in (E.1). Suppose that r grows at least
polynomially in d , i.e., that .log r/=.log d/ stays bounded away from 0.

(a) There exists an absolute constant c such that, with very high probability,

kGdiag
kop � 1 �

c

log d
:
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(b) Suppose that (A3) is satisfied with �2 � 21=20 and that .log r/=.log d/
stays bounded away from infinity as well as from 0. Then there exists an
absolute constant c such that, with very high probability,

kGdiag
kop � c

�
1C

r=d

.log d/3=5

�
:

PROOF. For any s such that as ¤ 0 we have

kGdiag
kop �

has ˝ as; G
diag.as ˝ as/i

kas ˝ ask2
D kask

6
C

X
t2Œr�ns

has; at i
4

kask4
� kask

6:

Lemma D.3 gives maxs kask � 1�O.1/= log d since r grows at least polynomially
in d . This implies the result of (a). Turning to the proof of (b), we will lower bound

kGdiag
kop �

kGdiaguk

kuk
; u D

X
s�r

as ˝ as:

From Lemma D.2, if x is .�2=d/-subgaussian, then

(E.2) P .kxk2 � t / � E exp
�
d.kxk2 � t /

4�2

�
� exp

�
3d

8
�
dt

4�2

�
;

so P .kxk2 � 2�2/ � expf�d=8g. For any deterministic v 2 Rd with kvk2 D d ,
we have (by the same calculation as above, for the case d D 1)

(E.3) P .hx; vi2 � t / � E exp
�
hx; vi2 � t

4�2

�
� exp

�
3

8
�

t

4�2

�
;

so that hx; vi2 � .log d/6=5 with very high probability. Taking a union bound
over r (and using that r is at most polynomial in d ), we conclude that the event\

s�r

�
kask

2
� 2�2 and max

t2Œr�ns
jhas; at ij

2
�
kask

2.log d/6=5

d

�
occurs with very high probability. Combining these gives for all s � r that

�s �
X
t�r

has; at i
2
� kask

2

�
kask

2
C
r.log d/6=5

d

�
� 2�2

�
2�2C

r.log d/6=5

d

�
;

and so we conclude

(E.4) kuk2 D
X
s�r

�s � r � 2�
2

�
2�2 C

r.log d/6=5

d

�
:

We next turn to lower bounding.

(E.5) kGdiaguk2 D



X
s�r

�skask
2.as ˝ as/




2 DX
s;t

�s�tkask
2
katk

2
has; at i

2:
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In what follows, we use ci to denote positive absolute constants. By Lemma D.3,
since r grows polynomially in d , the event\

s�r

�
jfs W kask

2
� 1=2gj �

r

3�2

and
ˇ̌̌̌�
t 2 Œr� n s W has; at i

2
�
kask

2

100d

�ˇ̌̌̌
�

r

5�2.8C 3 log.�2//

�
occurs with very high probability. Combining these gives for all s � r that

�s � kask
2

�
kask

2
C

r=d

100c.�2/

�
� kask

2

�
kask

2
C
c1r

d

�
:

By Corollary E.1, using the additional assumption �2 � 21=20, the event\
s�r

�ˇ̌̌̌�
t 2 Œr� n s W katk

2
�

1

100
and hat ; asi2 �

kask
2

100d

�ˇ̌̌̌
�

r

2000

�
also occurs with very high probability. It follows that for all s � r ,X

t2Œr�ns

�tkatk
2
has; at i

2
�
c2rkask

2.1C r=d/

d
;

and consequently

kGdiaguk2 �
X
s

�skask
2

�
�skask

6
C
c2rkask

2.1C r=d/

d

�
� c3r.1C r=d/

3:

(E.6)

Combining (E.4) and (E.6) proves

kGdiag
kop �

c4.1C r=d/

.log d/3=5
:

Combining with the lower bound from (a) gives the result of (b). �

E.2 Contracted Tensor, Cross Component
Recalling (D.2), we now turn to showing that

(E.7) Gcross
D

X
s¤t

has; at i.as ˝ at /.as ˝ at /
T

has smaller spectral norm than Gdiag. We follow a similar argument from [12,
prop. 5.5].

PROPOSITION E.3. Suppose a1; : : : ; ar are i.i.d. random vectors in Rd satisfying
(A1), (A2) and (A3), and suppose r grows polynomially in d . Then, with very high
probability,

kGcross
k �

.log d/4�3

d1=2
maxfr=d; �2g:
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PROOF. Recall the notation As � as.as/
T. Let .ss; ts/s�r be a collection of

i.i.d. symmetric random signs. By the symmetry assumption (A1), as is equidis-
tributed as ssas where the ss are independent symmetric random signs, so Gcross is
equidistributed as X

s�r

ssAs ˝
� X
t2Œr�ns

st has; at iAt

�
:

In view of the decoupling inequality (Proposition A.5), it is enough to prove the
claimed bound for the matrix Gsgn, which is defined as above but with tt in place
of st . To this end, let us first bound the spectral norm of

Gs �
X
t2Œr�ns

tt has; at iAt :

Conditional on as , the summands Gst � tt has; at iAt are independent with zero
mean. Recalling (E.2) and (E.3), conditional on as it holds with very high proba-
bility that

kGstkop D jhas; at ijkatk
2
�
.log d/3=5�2kask

d1=2
:

Next, arguing similarly as in the proof of Lemma D.4, we have

kEŒ.Gst /
2
jas�kop �

.log d/6=5�2kask2

d2
:

It follows using the truncated Bernstein bound (Proposition A.3) that, with very
high probability,

kGskop �
.log d/2�kask

d1=2
maxf.r=d/1=2; �g

for all s � r . It also holds with very high probability that maxs kask2 � 2�2. Now
consider

Gsgn
D

X
s�r

ssAs ˝Gs:

Recalling the matrix Rademacher bound (Proposition A.4), we shall bound

�.Gsgn/ D



X
s�r

.As ˝Gs/.As ˝Gs/
T



1=2

op
:

Each .As ˝Gs/.As ˝Gs/T is positive semidefinite, so

�.Gsgn/ � .max
s
kGsk/




X
s�r

As.As/
T



1=2

op

�
�

max
s�r
kgsk

��
max
s�r
kask

�


X
s�r

As




1=2
op
:
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By the preceding estimates together with Lemma D.4,

�.Gsgn/ �
.log d/3�1=4�3

d1=2
maxfr=d; �2g

with very high probability. The claimed result follows by conditioning on the event
that the above bound holds, and then applying Proposition A.4. �
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