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Abstract

In the tensor completion problem, one seeks to estimate a low-rank tensor based
on a random sample of revealed entries. In terms of the required sample size,
earlier work revealed a large gap between estimation with unbounded compu-
tational resources (using, for instance, tensor nuclear norm minimization) and
polynomial-time algorithms. Among the latter, the best statistical guarantees
have been proved, for third-order tensors, using the sixth level of the sum-of-
squares (SOS) semidefinite programming hierarchy. However, the SOS approach
does not scale well to large problem instances. By contrast, spectral methods—
based on unfolding or matricizing the tensor—are attractive for their low com-
plexity, but have been believed to require a much larger sample size.

This paper presents two main contributions. First, we propose a new method,
based on unfolding, which outperforms naive ones for symmetric k™-order ten-
sors of rank r. For this result we make a study of singular space estimation for
partially revealed matrices of large aspect ratio, which may be of independent
interest. For third-order tensors, our algorithm matches the SOS method in terms
of sample size (requiring about rd 3/2 revealed entries), subject to a worse rank
condition (r < d 3/4 rather than r < d3/ 2y, We complement this result with a
different spectral algorithm for third-order tensors in the overcomplete (r > d)
regime. Under a random model, this second approach succeeds in estimating
tensors of rank d < r < d 3/ from about rd /2 revealed entries. © 2018 Wi-
ley Periodicals, Inc.

1 Introduction

Tensors are increasingly ubiquitous in a variety of statistics and machine learn-
ing contexts. Many datasets are arranged according to the values of three or more
attributes, giving rise to multi-way tables, which can be interpreted as tensors [17].
For instance, consider the collaborative filtering problem in which a group of users
provide feedback on the episodes of a certain number of television shows, over
an extended time interval. The data is indexed by three attributes—user 1D, show
ID, and episode broadcast time—so it is presented as a three-way table (which is
a tensor). A second example comes from high-dimensional applications of the
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moment method [13]: the k™™ moments of a multivariate distribution are naturally
encoded by a k-fold tensor. Some other applications include image inpainting [16],
hyperspectral imaging [15,21], and geophysical imaging [14].

In many applications, the underlying tensor T is only partially observed, and it
is of interest to use the observed entries to impute the missing ones. This is the
tensor completion problem. Clearly, completion is plausible only if the underlying
tensor T is sufficiently structured: it is standard to posit that it has low rank and is
incoherent with respect to standard basis vectors. These assumptions are formal-
ized in a few nonequivalent ways in the existing literature; we review some of these
below. We assume an underlying order-k tensor, T € (R9)®¥ i.c., a k-way array,
with entries T, indexed by u € [d 1% where [d] = {1, ..., d}. Our basic structural
assumption is that 7' has low rank in the sense that it is expressible as a sum of r
pure tensors:

(1.1) T=YaV® -®al.

S<r

This paper proposes methods for completing 7 from n observed entries, and inves-
tigates the minimum number n (as a function of k, d, r) required for a nontrivial
estimator.

1.1 Related Work

There is already a substantial literature on tensor completion, and we survey
here some of the main ideas that have emerged.

Nonpolynomial Estimators

Motivated by the success of methods for matrix completion based on nuclear
norm relaxations [4,11], several papers have studied estimators based on a suitable
definition of tensor nuclear norm [29, 30]. This tensor norm is NP-hard to evalu-
ate [9], and therefore this approach does not lead to practical algorithms. Neverthe-
less, these studies provide useful information on the minimum number n of entries
required to reconstruct T with unbounded computational resources. In particular,
it was proved [29] that it suffices to have

n > Cd(log d)? max{(r@mw)* ", (rame) *V/2d V2,

with 7@ max the multilinear (or Tucker) rank of T'. Here we use C to denote a con-
stant that can depend on various incoherence parameters; in later sections we will
make such factors explicit. The definition of rm n.y is reviewed below; we com-
ment also that r1/&—1 < rm,max < min{d,r} (see (2.2)). Information-theoretic
considerations also indicate that

(1.2) n> Crd

entries are necessary—indeed, the number of parameters required to specify a ten-
sor T € (R?)®k of rank r is of order rd (we treat k as a constant throughout).
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Tensor Unfolding

At the opposite extreme, tensor unfolding gives access to very efficient matrix
completion algorithms. For integers a, b > 1 witha+b = k,atensor T € (R4)®k
can be unfolded into a % x d® matrix. Formally, the unfolding operation is a linear
map

unfold®® : (R9)®k _, Rd“xd” 1, x

where X; g = Ty fori € [d]*, L € [d]?, and u = (i, £) € [d]¥. One can then ap-
ply matrix completion algorithms—e.g., spectral methods or convex relaxations—
to X, which is sometimes called the d? x d? matricization of T . Supposing with-
out loss that @ < b results in the matrix completion literature, [11,20] imply exact
reconstruction with

(1.3) n> Crd®(logd)?.

This remark has been applied several times (e.g., [10, 16,22,23]). It seems to sug-
gest two practically important consequences: (i) the unfolding should be made “as
square as possible” by taking a = |k/2] and b = [k /2] [18]; and (ii) unfolding-
based algorithms are fundamentally limited to a sample size n > Crd [k/21 due
to the limitations of matrix completion—this has been suggested by several au-
thors [2,29,30] and is further discussed below. One of the main purposes of this
paper is to revisit this last insight.

Semidefinite Programming Hierarchies

In terms of the number n of observed entries required, the above results indicate
a large gap between information-theoretic limits (1.2) on the one hand and the
requirements of spectral algorithms (1.3) on the other. Motivated by this gap, Barak
and Moitra [2] considered the sum-of-squares (SOS) hierarchy to design a more
powerful polynomial-time algorithm for this problem.

Without going into the details, the tensor completion problem can be naturally
phrased as a polynomial optimization problem, to which the SOS framework is
particularly suited. It defines a hierarchy of semidefinite programming (SDP) relax-
ations, indexed by a degree £ that is a positive even integer. The degree-£ relaxation
requires solving an SDP where the decision variable is a d /2 % @2 matrix; this
can be done in time O(d5¢/2) by interior-point methods [1]. The SOS hierarchy is
the most powerful SDP hierarchy. It has attracted considerable interest because it
matches complexity-theoretic lower bounds in many problems [3].

Barak and Moitra consider the completion problem for a tensor T of order
k = 3, along with a slightly different notion of rank r. (7). (It is a relaxation
of the tensor nuclear norm of T, which in turn can be viewed as a relaxation of
the rank r(7T) [9].) The main result of [2] is that the degree-6 level of the SOS
hierarchy succeeds in completing a tensor of order k = 3 from

(1.4) n> C(ry)2d*?(log d)*
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entries. Under additional randomness assumptions, it is proved that
(1.5) n=> Crd>? polylog(d)

entries suffice. Considering the case of bounded rank, the [2] result improves
(for k = 3) over earlier results (1.3) obtained by unfolding, which required n >
Crd?(log d)?. Atthe same time it is far from the information-theoretic bound (1.2),
and this remaining gap may be of a fundamental nature: the authors present ev-
idence to suggest that condition (1.4) is nearly optimal among polynomial-time
algorithms. The SOS algorithm of [2] is partly inspired by a strong refutation algo-
rithm for random 3-XOR-SAT [6]. Indeed, our Algorithm 2 (for the overcomplete
regime) is also motivated by similar ideas.

1.2 Main Contributions

Let us emphasize that the degree-6 SOS relaxation requires solving an SDP for a
matrix of dimensions d3 x d3. This can be done in polynomial time, but practical
implementations would hardly scale beyond d = 20. For this reason we interpret
the results of [2] as opening (rather than closing) a search for fast tensor completion
algorithms. With this motivation, we present the following results in this paper.

Improved Unfolding-Based Estimator

We consider the completion problem for symmetric tensors of general order k >
3, and propose a new estimator that is based on spectral analysis of the unfolded
tensor. We show that our estimator succeeds in completing the tensor given

(1.6) n> Crd*/? polylog(d)

revealed entries, subject to r < rmax(d; k) (see (3.3)). The main input to this result
is the following observation. For d{ x d, matrices with d; < d», it is well-known
that completion is impossible, by any means, unless n >> rd,. (This was noted, for
example, by [S]—consider the d x d» matrix X whose i row is given by Ulir/di1»
for random vectors vy,...,v, € Rd2.) However, we show that the column space
can be estimated with fewer entries, namely n > r(d,d2)'/? polylog(da).

Previous unfolding-based methods have essentially performed matrix comple-
tion on the unfolded tensor, a d¢ x d b matrix. As we noted above, if a < b this
necessitates n > rd®, which is essentially matched by (1.3). By contrast, our al-
gorithm only seeks to estimate the column space of the unfolding, which requires
fewer revealed entries, n > rd @+9)/2 = rd*/2_ Given our estimate of the sin-
gular space, we then take advantage of the original tensor structure to estimate the
missing entries.

Overcomplete 3-Tensors

For symmetric tensors of order k = 3 we can compare our unfolding algorithm
with the SOS algorithm of [2]. Even with crude methods for matrix operations, the
unfolding algorithm takes at most O(d?) time, as opposed to O(d !°) for degree-6
SOS (using generic SDP solvers). Neglecting logarithmic factors, our result matches
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theirs in the required sample size ((1.5) versus (1.6)), but with a significantly worse
rank condition: we require r < d3/*, whereas sOs succeeds up to r < d3/2.
Indeed, for third-order tensors that are overcomplete (rank r > d), we do not
expect that any unfolding-based method can succeed—the d x d? unfolding can
have rank at most d and will fail to capture the rank-r tensor structure. Instead, we
complement our unfolding algorithm with a more specialized spectral algorithm,
which is specifically intended for overcomplete 3-tensors; the runtime is O(d®). In
a certain random tensor model, we show that this second method can succesfully
estimate 3-tensors from n >> rd3/2 revealed entries for d < r <« d>/2. In the
design and analysis of this method we were inspired by some recent work [12] on
the tensor decomposition problem.

1.3 Organization of the Paper

In Section 2 we review some definitions and notations. We then state our main
results on tensor completion: Section 3 presents the unfolding-based algorithm,
and Section 4 presents the more specialized algorithm for overcomplete 3-tensors.
In Section 5 we illustrate our results with some numerical simulations. As noted
above, for our unfolding algorithm we study the column spaces of partially revealed
matrices with large aspect ratio; our results on this are presented in Section 6. After
the present paper was accepted for publication, and independently from our work,
two groups posted related results on the tensor completion problem [19,27,28].

2 Preliminaries

2.1 Notation and Terminology

Given two vector spaces I/ and V, we let Y ® V denote their tensor product.
Following standard practice, we frequently identify R4 @ R92 with R9192 or with
RA1xd2 (the vector space of d; x dj real matrices). We use lowercase letters for
scalars (a, b, ¢, ... and Greek letters) and vectors (4, v, w,...). We use uppercase
letters (A, B, C,...) for matrices, and uppercase boldface letters (4, B,C,...)
for tensors of order k > 3. The d x d identity matrix is denoted by /.

Between two tensors (of any order £ > 1) we use ® to denote the tensor prod-
uct. Between two tensors in the same space we use © to denote the Hadamard
(entrywise) product. For instance,

(AOGB)®(COD)=(AR®C)O (B® D).

We use angle brackets (-,-) to denote the standard euclidean scalar product—
regardless of whether the objects involved are vectors, matrices, or tensors. For
example, if X,Y are two dy X d, matrices, then we use (X,Y) to denote the
scalar product between X and Y as (d;d»)-dimensional vectors. The euclidean
norm of a vector v will be denoted [|v|| = (v,v)!/2. The Frobenius norm of a
dy x dp matrix X is | X|[p = (X, X)!/2; it is the euclidean norm of X regarded
as an (djd;)-dimensional vector. Likewise the Frobenius norm of a tensor T is
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|T|g = (T, T)2. Forad; x d» matrix X we write | X ||op for its spectral norm
(operator norm). Finally, we let || X ||oo denote the maximum entry size of X.

For any subset E C [dq] X --- x [di] we let TIg denote the projection onto
R ® --- @ R% that maps T to the tensor I1gT with entries

(IMgT)y = Ty1{u € E}.
In the special case k = 2 and dy = dy = d, we let
IM=Ilp, Il =I1;-1I,

where D = {(i,i) : | <i < d} is the set of diagonal entries.

We say that an event A occurs “with high probability” if IP(A°) tends to O as
the dimension parameter d = min{dy, ..., d}} tends to infinity. We say that A
occurs “with very high probability” if P(A°) tends to O faster than any inverse
polynomial of d. We will frequently take union bounds over m such events where
m is bounded by some polynomial of d. For any two functions f, g depending
on (di,...,dy), we write f < g to indicate that f < C(logd)?g whenever
d = min{dy,...,dr} = B, where (as before) C is a constant that can depend on
incoherence parameters, and S is a constant that can depend on k.

Our main results for tensor completion assume a symmetric underlying tensor
T € (R%)®%_ 1t has entries T, indexed by u € [d]* and satisfies T, =Ty
whenever u’ is a permutation of u. Section 3 treats general k > 3 under rank and
incoherence assumptions. Section 4 treats a model of random tensors for k = 3.

2.2 Notions of Tensor Rank

As mentioned in the introduction, there are a few common nonequivalent ways
to formalize the notion of rank for a (nonzero) tensor T' € RY ®---® R%. In
this paper, we define the rank of T as the minimum integer r such that T' can be
expressed as a sum of r pure tensors:

m
r(T) = min{m >1:T = sz(l) ®--- v forvi(e) e R4\,
s=1
We omit the argument 7' whenever it is clear from the context.
A different notion of rank, which is also common in the literature, is given by

considering, for each 1 < i < k, the matrix X O = unfold(i)(T ) of dimensions
d; x ((dy ---dy)/d;), with entries

(X(i))ui,ﬂfi =Ty

where u_; is u without its i th index. Write span(i)(T ) for the column space of
X® and define
2.1 rmi (T) = dimspan®(T) = rank X .

The multilinear rank or Tucker rank of T is defined as r@ m.x (1) = max{rm;(T) :
1 <i < k}. Again, we omit the argument 7 whenever it is clear from the context.
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It is clear from the definition that rg; < max{r, d;}. On the other hand we have

(2.2) r< (a1 rex)/ Cam) < (Eme)<

we prove this fact in the appendix (Lemma C.2).

3 Tensor Completion via Unfolding

In this section we assume a symmetric underlying tensor 7' € (Rd)®k with
k > 3. We observe a subset of entries E C [d]¥ of size n = |E| and denote the
partially observed tensor Y = I1g(T). We now describe our algorithm, discuss
our assumptions, and state our performance guarantees. Proofs are in Appendix C.

3.1 Completion Algorithm

Our algorithm takes as input the set of indices E and the partially observed
tensor Y = I1g(T). It also takes a threshold value A, which can be interpreted as
a regularization parameter. In Theorem 3.2 we provide an explicit prescription for
Ay (see (3.4)).

ALGORITHM 1. Tensor completion via unfolding. Input: E, Y, A..

1. Sample splitting. Partition the observed entries E in two disjoint subsets
E1, Ex uniformly at random, subject to |E1| = |E2| = n/2. Let §; =
n/(2d*). Denote by Y| = g, (Y), Yo = Mg, (Y) the corresponding
partially observed tensors.

2. Tensor unfolding. Seta = |k/2], b = [k/2], and let Z = unfold®*? (Y 1).
Use Z to define

1 1

81 (61)?

3. Spectral analysis. Compute the eigenvectors of B with eigenvalues > A,
and let Q : R — R4 be the orthogonal projection onto their span.

4. Denoising. Let Q : (Rd)®k — (Rd)®k be the orthogonal projection
defined by

(3.1 B=—II(ZZ") + I,(zZ".

0®0®0 ifk=3,
(3.2) Q=100 ifk > 4 even,
0®0®I1; ifk>5o0dd

Let o = 61/(1 — 81), and let T = Y1 + (82)" 'Y 4. Return the tensor
T = Q).

As we already commented, our algorithm differs from standard unfolding-based
methods in that it does not seek to directly complete the tensor matricization, but
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only to estimate its left singular space. Completion is done by a “denoising” proce-
dure that uses this singular space estimate, but also takes advantage of the original
tensor structure.

3.2 Rank and Incoherence Assumptions

We will analyze the performance of Algorithm 1 subject to rank and incoherence
conditions, which we now describe. In particular, we allow for a slightly less
restrictive notion of rank.

ASSUMPTION 1. We say that a tensor T € (R%)®¥ has unfolding parameters
(R,a, w) if, fora = |k /2| and b = [k /2], the matrix X = unfoldaXb(T) satisfies
(T1) rank X <R,
(T2) d*| X |3, < al|X |2,
(T3) pl X[ = RIX 2,
Note that (T1) and (T2) are inequalities but (T3) is an equality.

Remark 3.1. A few comments are in order. First of all, note that rg . (7) <
R(T) < r(T), which means that (T1) is less restrictive than the assumption 7(7") <
R. Next, since | X[|Z, < [X|IZ < d¥||X|2%, we can assume 1 < a < dF;
it is standard in the literature to assume that o is not too large. Lastly, since

X112, < IXIIF < RIX|3,, we can assume 1 < j <R.
With these definitions, we can now state our result on the guarantees of Algo-
rithm 1. Define

d3* k=3,
(3.3) rmax(d: k) = dk/2, k > 4 even,
dk/2=1 |k > 5 o0dd.

THEOREM 3.2. Let T € (Rd )®k be a deterministic symmetric tensor satisfying
Assumption 1 with unfolding parameters (R, «, () such that R < ryax. Suppose that

-~ %
we observe n entries of T uniformly at random. Let T  be the spectral estimator
of Algorithm 1 with

O{RMI/Z 2/3
(3.4) Ax =4(k10gd)8(m) | Bllop-

Then, in the regime 32(k logd)2aru'/2d*/2 < n < (klogd)'®aru?d?, we
have

arp? /3
" ) IT .

~ % 3
(35) 1T = Tllr = 20(k logd) (n/ 7

with very high probability.

Theorem 3.2 shows that a symmetric rank-r tensor 7 € (Rd )®k can be recon-
structed by spectral methods based on n 2 rd k/2 revealed entries. Apart from
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logarithmic factors, we suspect that this condition on n may be optimal among
polynomial-time methods. One supporting evidence is that, for k = 3, this matches
the bounds (1.4) and (1.5) of the degree-6 SOS algorithm [2]. The authors further
prove [2, thm. 3]) that their condition (1.4) is tight, under Feige’s hypothesis [8]
on the refutation of random satisfiability formulas. On the other hand, the error
bound (3.5) is most likely suboptimal, arising as an artifact of the algorithm or of
the analysis. We believe that our rank condition R < ry,x is also suboptimal; for al-
gorithms of this type the tight condition seems likely to be of the form R < d%/2]
(maximum rank of the unfolding).

4 Overcomplete Random 3-Tensors

In this section we describe our algorithm for overcomplete 3-tensors and state
its guarantees for a certain random tensor model. Proofs are in Appendix D.

4.1 Completion Algorithm

Algorithm 1 of Section 3 is limited to tensors T with rank r << ryax, as defined
in (3.3). As we already noted above, this particular condition is most likely subop-
timal. However, among all algorithms of this type (i.e., based on spectral analysis
of the unfolded tensor), we expect that a fundamental barrier is r < d lk/2] Be-
yond this point, the unfolded tensor has nearly full rank, and we do not expect the
projector Q to have helpful denoising properties.

On the other hand, the number of parameters required to specify a rank-r tensor
in (Rd )®k is of order rd, so we might plausibly hope to complete it given n >
rd entries. This only imposes the rank bound r <K d k=1 1In this section we
consider the case k = 3: from the above argument the information-theoretic bound
is r < d?. Our unfolding method (Algorithm 1) can complete the tensor up to rank
r < d3*, by Theorem 3.2. From the preceding discussion, this bound is likely to
be suboptimal, but the best we expect from such an algorithm is r < d 13/2] = g,

Motivated by these gaps, in this section we develop a different completion al-
gorithm for the case k = 3, which avoids unfolding and relies instead on a certain
“contraction” of the tensor with itself. This was motivated by ideas developed
in [12] for the tensor decomposition problem. Under a natural model of random
symmetric low-rank tensors, we prove that in the regime d < r < d 3/2 our
algorithm succeeds in completing the tensor based on n > rd 3/2 observed entries.

The algorithm takes as input the set of observed indices E, the partially observed
tensor Y = I1gT, and a threshold value A,. In Theorem 4.1 we provide an explicit
prescription for A .

ALGORITHM 2. Completion for 3-tensors via contraction. Input: E, Y , A,.

1. Sample splitting. Let § be defined by the relation 1 — (1 — 8)® = |E|/d>.
Take subsets |, J, K C E that are uniformly random subject to the following
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conditions: each |, J, K has size d38; each pairwise intersection 1 N J,
INK, JNK has size d382; the triple intersection | N J N K has size d383.
(This implies, in particular, that | U J U K = E.) Denote the corresponding
partially observed tensors Y = II,T, Y = II,T, and Y = IIT.

2. Tensor contraction. Let W be the d? x d? matrix with entries

4.1 Wi, = (S»iz > Y Vg
{<d
3. Spectral analysis. Compute the singular value decomposition of W. Take
the singular vectors of W with singular values > A, and let Q : R4®
R9” pe the orthogonal projection onto their span.
4. Denoising. Let Q : (R?)®3 — (R¥)®3 pe defined by Q = Q ® I. Let
T = S_IY, and return the tensor f* = Q(T).

4.2 Random Tensor Model
We analyze Algorithm 2 in a random model:

ASSUMPTION 2. We say that T € (R?)®3 is a standard random tensor with r
components if

(4.2) T =) a;®as®a;

s<r
where ai,...,ar are i.i.d. random vectors in R such that x = a; satisfies the
following:

(A1) (symmetric) x is equidistributed as —x;
(A2) (isometric) E[xx"] = 14/d;
(A3) (subgaussian) E[exp({x, v))] < exp{t2||v||?/(2d)} for all v € R¥.

Note that Assumption 2 has a slight abuse of notation in that we use r for the
number of components in (4.2), even though the tensor rank (in the sense of (1.1))
can be smaller than r. However, in the regime of interest, we expect the rank of T
to be close to r with high probability.

THEOREM 4.1. Let T € (R%)®3 be a standard random tensor (4.2) satisfying

Assumption 2. Suppose that we observe n entries of T uniformly at random, where
A~ %

n > max{r,d}d3? andr < d? Let T  be the spectral estimator of Algorithm 2

with

(4.3) « =
n

5= (d3/2max{d,r})4/5
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Then, with very high probability,

~x d3/2 max{d, r 1/5
44 \7 —T||Fs(#) Il

If one uses crude matrix calculations (not taking advantage of the sparsity or low
rank of the matrices involved), we estimate the runtimes of our methods as follows.
In Algorithm 1, computing the matrix B of (3.1) takes time O(d k+by. finding its
eigendecomposition takes time O(d 3%); and the denoising step can be done in time
O(d**%). Thus the overall runtime is O(d**?), which for k = 3 becomes O(d?).
In Algorithm 2, computing the matrix W of (4.1) takes time O(d?); finding its
singular value decomposition takes time O(d ®); and the denoising step can be done
in time O(d*). Thus the overall runtime is O(d®); so Algorithm 1 is preferable
when the rank is low.

5 Numerical Illustration

‘We illustrate our results with numerical simulations of random tensors

(5.1) T =) a;®asQay.
s<r
We assume (cf. Assumption 2) that ay, ..., a, are independent Gaussian random

vectors in R¥, with Eag = 0 and E(az(ag)T) = I4 /d. Our simulations estimate
the normalized mean squared error

E(T - T|2)
5.2 MSE= ————— %
6 E(TIE)

’

where T is the output of the completion algorithm.

5.1 Performance of Unfolding Algorithm

Figure 5.1 reports the performance of our unfolding method (Algorithm 1) in the
undercomplete regime, taking r = 4. We plot the normalized mean square error
(5.2) estimated by averaging over 100 independent random realizations of T and
of the set E of revealed entries. We set the threshold parameter

(5.3) Aw = 3(d32 /)23 B ops:

this choice was guided by the prescription (3.4) of Theorem 3.2, as follows: in
the present setting, we have X = unfold!*?(T'). If we write f ~ g to indicate

limy o f(d)/g(d) = 1, then

I1X [lop = max fla; (@i ® a;) [lop ~ 1,
i<r

IXIe =" (as.a)* =Y las|§ + 0G2/d>) ~r,

S<r t<r S<r
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FIGURE 5.1. Numerical illustration of Algorithm 1 for completing ran-
dom tensors (5.1) of order k = 3 and rank r = 4. Performance is
measured in terms of normalized mean squared error MSE (see (5.2)),
estimated by averaging over 100 realizations.

~ max |ag;|? ~ (2logd)*/?.
s<r,i<d

r
E As,ids,jAg |

s=1

[Xloo = max
i,j,l<d

Therefore X satisfies Assumption 1 withR = r, 4 ~ 1, and o ~ (2logd)3/r.
Our choice of the parameter A, is obtained by substituting these into (3.4). After
some trial and error, we chose the factor 3 in (5.3) instead of logarithmic factors,
which appeared to be overly pessimistic for moderate values of d.

5.2 Performance of Spectral Algorithm for Overcomplete Tensors

Figure 5.2 reports the performance of our spectral method for the overcomplete
regime (Algorithm 2), taking r/d = 1.2. We set A, according to the prescrip-
tion (4.3) of Theorem 4.1. For each value of d, the MSE appears to decrease rapidly
with n. The plots (for various values of d) of the MSE versus the rescaled sample
size n/(rd>/?) appears to approach a limiting curve. This suggests that the thresh-
old for our method to succeed in reconstruction occurs around n = rd3/ 2, which
is consistent with the bound of our Theorem 4.1.

6 Column Spaces of Partially Revealed Wide Matrices

In this section we present our results on the column spaces of partially revealed
dy x dy matrices. As mentioned above, these results are the main input to the proof
of Theorem 3.2. The conclusions obtained in this section are most interesting for
the regime dy < d».

6.1 Incoherence Condition
ASSUMPTION 3. We say that a matrix X € R%1%42 j5 (), y, p)-incoherent if
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FIGURE 5.2. Performance of Algorithm 2 in completing overcomplete
random tensors of rank 4 and order k = 3. Left frame: mean square error
of reconstruction, estimated by averaging over 100 realizations, plotted
against the number of revealed entries. Right frame: same data plotted

against the rescaled number of revealed entries n/(rd>/?)

(M1) dy -max; | XTe;|> < A X[,

(M2) dy - max; || Xe;||> < pl| X2,
(M3) dyd; - max; j |X; ;|* < Aypl X |3,

wherel <i <djand1 < j < d>.

It is easily seen (cf. Lemma B.2) that one can assume without loss of generality
1/dy <A <di,1/dy < p <dy, 1 <Ayp < dyd>. To motivate the above condi-
tion, we observe that it can be deduced as a consequence of a standard incoherence

assumption, which we recall below.

DEFINITION 6.1 ([4]). Let W be an r-dimensional subspace of R4, and let Py
be the orthogonal projection onto W. The coherence of W (with respect to the

standard basis (e;); <4 of R9) is

d
cohery = - 1r<n_a<xd | Pwe;l|>.
==

Note the trivial bounds

hRSY

d
1
> cohery > — ) || Pweil” = 1.

i=1

If M is a d x r matrix whose columns form an orthonormal basis of W, then we

can express Py = MM, so that

d d 4
coheryy = — max |[MM Te;||> = — max Z(M,-S)Z.
r 1<i<d r 1<i<d =1
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We denote coherys = cohery .

We refer to [4] for further discussion of this coherence condition, which has
become fairly standard in the literature. We now give two illustrations for As-
sumption 3:

1. Derivation of Assumption 3 from Definition 6.1.
Suppose X is d» x d» with singular value decomposition UDVT, where
UTU = Iy = V'V and D is diagonal. One can then easily verify that
X is (A, y, p)-incoherent with

6.1) A = (cohery)R, p = (cohery)r, y =1

(see Lemma B.1 for the proof). That is to say, imposing Assumption 3 with
A = p =cRand y = 1 is less restrictive than imposing that X is of rank R
with c-incoherent singular vectors.

2. Derivation of Assumption 3 from Assumption 1.
Alternatively, suppose X satisfies didz|| X |2, < @[ X ||gp, an entrywise
bound. It is then trivial to verify that X is (4, y, p)-incoherent with

(6.2) A=p=1/y =w.
In Assumption 1, conditions (T2) and (T3) together imply (with d; = d¢
and dy = db)
did2|| X |2 < @l X[ < @R/ X3,

so we have (6.2) with @ = aR/u. That is to say, imposing Assumption 3
with A = p = 1/y = aR/u is less restrictive than imposing Assumption 1
with parameters (R, o, ().

In the tensor completion problem we work with the second scenario (6.2).

6.2 Estimation Error
We now state our main result on column space estimation for partially revealed
matrices.

THEOREM 6.2. Suppose that X € R41*% s (A, y, p)-incoherent. Let E C [dq] x
[d2] be the random set of observed entries, where each (i, j) € [di] x [d2] is
included in E independently with probability § = n/(dyd>). Given the observed
matrix Y = [gX, let

~ 1 1
(6.3) B = EH(YYT) + 8—2HJ_(YYT).
Then, for did> > 3000, we have
IB—XXT|op - (Apdid2)'?| X |12,
2(log(d1da2))* — n

i ()P GPedidn)' 2 (Ap\!2
’ dz/\ ’ n ’ dz

(6.4)
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with probability at least 1 — 4d exp{—% log(d1d2)?}.

COROLLARY 6.3. In the setting of Theorem 6.2, assume additionally that
(Ay2pdida/)V/? <n<ithdy and yp <td,.

Then the error bound (6.4) simplifies to

|B - XXTllop _ (thpdida)"/?
2(log(drda2))* ~

PROOF. The proof is an immediate consequence of Theorem 6.2. U

2
IX115p-

From our perspective, the most interesting application of the above is as follows.
Recalling (6.1), suppose that the d; x dp matrix X is (A4, y, p)-incoherent with
A = p = cr and y = 1. Consider Corollary 6.3 with # = 1: then the conditions
reduce to cr < (d2)Y/? and ¢r(did»)Y? < n < crd,, where the latter can only
be satisfied if d1 < d,. With these conditions, Corollary 6.3 says that the column
space of X can be well-approximated by the top eigenvectors of the matrix B,
provided we saw (roughly) n >> r(d1d>)'/? entries. We emphasize that this result
implies, for di < d3, a wide regime of sample sizes

r(did2)V? < n < rds

from which we can obtain a good estimate of the sample space, even though it is
impossible to complete the matrix (in the sense of Frobenius norm approximation).
In this regime, the column space estimate can be useful for (partial) matrix com-
pletion: if Q approximates projection onto the left column space of X, and y is
a column of TTgX containing d8’ > r observed entries, then Qy/§ is a good
estimate of the corresponding column of X.

Appendix A Standard Matrix Inequalities

In this appendix we collect a few standard tools that will be used several times
in our proofs. For any real-valued random variable X, the essential supremum
esssup X is the minimal value R such that P(X < R) = 1. Recall the following
form of the Chernoff bound: if X is a binomial random variable with mean jt, then
for all t > 1 we have

(A.D) P(X > t]i) < exp{—tfilog(t/e)}.

PROPOSITION A.l (matrix Bernstein, rectangular [24, thm. 1.6]). Let (Zy) be a

finite sequence of independent random dy X d matrices. Assume EZ; = 0 for
all £, and let

(A2) R = m?x{ess sup | Z¢llop}

w3y o2 =max{| Y EZez0"| | Y E(Z0 Za,,|-
£ L

9
op
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Then, forallt > 0,

(|57

PROPOSITION A.2 ([26]). Suppose that A and B are positive semidefinite matri-
ces, with singular value decompositions

3 1%t
>t)<(di+d ——min|—, —¢¢.
- )_( 1+ z)exp{ 8m1n{02 R}}

A=A+ A =USUT + U.So(Us), (U Uo)' (U Us) =1y,
B= B+ Bo=0A0" + 0sAo(05)T, (0 00)'(0 0o) = I.

Suppose || A — Bllop < €, and that the maximum diagonal entry of X is at most o
while the minimum diagonal entry of A is at least 0 + § > 0. Then

sinf0(0,U)| = |(I —UUT)OO |op < €/8.

PROPOSITION A.3 ([12, prop. A.7]). Let (Z;)¢<1 be a sequence of independent
random dy x dy matrices. Assume EZy = 0 for all £, and furthermore that

(A4 P Zellop = B) = p and |E[Z1{[| Zellop = Billlop < -

Denote 62 as in (A.3). Then, forallt > 0,
P(|X 2
<L

PROPOSITION A.4 (matrix Rademacher, symmetric [24, thm. 1.2]). Let (Zy) be a
finite sequence of d x d symmetric matrices. Let (Sy) be a sequence of independent
symmetric random signs. Then

P(H;ngg

PROPOSITION A.5 (matrix decoupling [7, thm. 1] (see also [12, thm. 5.13])). Let
(Zij) be a family of matrices, and let (s;) and (t;) be sequences of independent
symmetric random signs. There is an absolute constant C such that for all t > 0,

P(”Zﬁisjzlj Zt) fCP(“ZSi’LjZU EZ).
i#] P i#] P

>t—|—L><L + (d1 + d2) ex —éminﬁi
.= q) < Lp+(di + d)exp)—gmin) 5. g

- z) <2d exp{—1*/(20%)}, o? = “;(zmz“oﬁ

Appendix B Column Space Estimation with Large Aspect Ratios

In this appendix, we prove our matrix completion result, Theorem 6.2. Before
passing to the actual proof, we will establish some properties of the incoherence
condition, Assumption 3.
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B.1 Matrix Incoherence Conditions
We begin by proving some easy observations regarding our matrix incoherence
conditions (Assumption 3).

LEMMA B.1. Suppose X € R41%d2 g singular value decomposition UDV'T,
with UTU = I, = V'V. Then X is (X,y, p)-incoherent with parameters ) =
r - cohery, p = r - cohery, and y = 1.

PROOF. Forindices 1 <i <djand1 < £ < d, we have

72 - cohery - cohery \ /2
did> ’

Xiel = (UUTer, XVVTeq)]| < ||X||op(

r - cohery 1/2
IXTeillz = IXTUU eill2 < X oplUU e |12 < ”X”op(—) :

di
r - cohery 1/2
IXelz = IXVVTedl < X LoplV VTerl = X g (25 )
which proves the claim. O

LEMMA B.2. Forany X € RE1%42 the parameters A, y, p of Assumption 3 can be
chosen so that

(B.1) l/dy <A <d, 1/da<p=<dy 1=2Ayp=<dids.

PROOF. The quantities || X Te; ||, || Xeg|, | Xi¢| are all trivially upper-bounded by
| X [|op, SO we can always satisfy (M1), (M2), and (M3) with A < d1, p < d», and
Ayp < did>. On the other hand,

Xl = | 32 Xeateo™| = 37 IXerllz = 1X lop(dzp) 2,
t<d> Ptz

which implies that (M2) can only be satisfied with d,p > 1, and likewise (M1) can
only be satisfied with dyA > 1. Lastly, we have

1Xllop < IX|lE < (d1d2)!/? max | X; (| < 1X [lop(Ayp) /2,

so (M3) can only be satisfied with Ayp > 1. This concludes the justification of
(B.1). O

B.2 Proof of Matrix Estimation Results

We now prove Theorem 6.2. Recall that we assume a (deterministic) matrix
X € R41%d2 each entry of which is observed independently with chance § =
n/(didz). LetE C [d1]%x[d2] denote the subset of observed entries, and ¥ = ITg X
the partially observed matrix. Let I;; be the indicator that (i, £) belongs to the
(random) set E; thus the I, are i.i.d. Ber(§) random variables and Y;; = X;/1;y.
Asin (6.3), let

B=-TI(YY") + —=I1,(YY").
5 ( )+82 1YY"
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PROOF OF THEOREM 6.2. We first make a preliminary remark that
1 _ (diM)(d2p)
§2 (Ayp)?

(The second inequality follows from the assumptions, while the third follows from
Lemma B.2.) We shall apply Proposition A.3 to bound the spectral norm of

(B.3) B-XX"=B-EB=) (By—EB) =) Z.
t<dy L<d»>

(B.2) 1< < (d1d>)?.

[A

where By is di x d with entries
§V(Xi0)% 1y fori = j,

B)):: =
(Be)ij 572X XLyl fori # .

Lemmas B.3 and B.4 (below) show that the matrices Z; satisfy the hypotheses of
Proposition A.3 with 62 as in (B.4) and B, p.q as in (B.5) for d,d, sufficiently

large. We then have
(1%t )
3mln{;,g} Zlog(dldz)

provided t > tyax = (log(d1d2))* max{ty, t2, 13, t4}||X||§p for
1 1/2 1/2 1/2

P (A7)

d1d282 d18 d28
oo (L) (D8

A 1/2 /5.2, \1/2 2\ 1/2
e VP _ Ap Ay<p — 1 Ay=p ’

d1d»82 d1d»82 d1d»82 d1d»82

Y. (2 )“2(@)”2:“(@)1/2
@) 2dys ~ \d1drs? & 4)

From (B.5) we have tp,x > B+ > dagq. It follows from Proposition A.3 that

~ ~ 2dydy 2d;
IP)(”B_IEB”opzztmax)f 3 did)? 1 did)?
exp{g log(d1d>2)*}  exp{glog(did2)*}
- 4d,
~ exp{g log(did»)?}’
which concludes the proof. U

LEMMA B.3. Assume the setting and notation of Theorem 6.2, and let Z; be as
defined by (B.3). For 62 as defined by (A.3), we have

0
—}uxng‘p.

(B.4) 02 < 2max A—'O
' - d1d282" dy8
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PROOF. From the definitions, we have

7N (Xi0)* (L — 8) fori = j,

(Zo)ij = 3, o,
VST X X (Tl — 8%) fori # J.

Recalling equations (A.2) and (A.3), let £ denote the sum of the matrices E[(Z;)?]
over £ < d,. Let W denote the dy x d, diagonal matrix with entries Wyy =
| Xeg||. It is straightforward to compute that

16§ 1-36
S=——D+—XWX'
52 + §

where D is the di x d; diagonal matrix with entries

Dii = Y (X (I Xee|* — (Xio)?).
{<d>

We then note | XWX T(lop < [ X[I2,IIW llop < pll X |5,/ d2, while
PIX12,1XTe:|I> Al X3,
i = =<
d did,

Combining the above estimates, we find

IDllop , IXWXTllop _ Al X5, | PlIXIIG,
82 ) = d1d28? dr8
yielding the claimed bound. U

IZllop <

LEMMA B.4. Assume the setting and notation of Theorem 6.2, and let Zy be as
defined by (B.3). Let
Ayp  (An)'?p

x = , X|>.

For dydy > 3000, the matrices Zy satisfy (A.4) with
B = (log(d1d2))*B+.

(B.5) p = exp{—(3/8)(log(d1d>))?} - 2d,
q = exp{—(1/8)(log(d1d2))*} - Bx.

PROOF. Write e; for the /™ standard basis vector in R?!, and let E;; = ¢;(e;)".
Then Z, is the sum of independent zero-mean matrices M;; = E;;(Zy);i. It
follows from the matrix Bernstein inequality (Proposition A.1) that

d 3. (1% 1
P(||Z€||op >t) <2d;exp —gmm 'R
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where (cf. (A.2), (A.3)) R, o are given by

_ IXllsoll Xecll _ )*2p 1X 113,
) T (d)V2dy §
IX1Z, _ Ave 1XI5 22
R = < < (did2)*|| X |IZ,,
52 = did, 52 —( 1 2) “ ||op
where we have made use of Lemma B.2 and (B.2). If we set 8, = max{o, R} and
B = (log(d1d1))?Bx, then

P(| Z¢llop = B) < 2d1 exp{—3(log(d1d1))*} = p.
Next note that for # > max{o, R} we have min{t2/02,t/R} > t/ max{o, R}, so

0
E[||Ze||op: ”Zenop > ,8] = ,BP + /ﬂ IP)(”ZE”op = t) dt

(3/8)t } o

max{o, R}

< didy|| X 1|2,

o0
Sﬁp+2d1/ exp{—
B

_ [(log(d1d2))? + §]2d1 max{R. o}

- exp{3 (log(d1d2))2}

- (d1d2)? max{R, o} - max{R,o} _

~ exp{3(log(did2))?} ~ exp{g(log(did2))?}
This concludes the proof. U

q.

Appendix C Tensor Completion via Unfolding

In this section we prove Theorem 3.2. In the original model, we observe exactly
§ = |E|/d* fraction of the entries, uniformly at random. For convenience we now
introduce the Bernoulli model where each entry is observed independently with
chance 8. Our results for the Bernoulli model transfer to the original model by a
standard argument, which we provide below.

As in Theorem 3.2, suppose T € (R?)®* is a deterministic symmetric tensor
satisfying Assumption 1 with unfolding parameters (R, «, ). Fixing § € (0, 1), let
81 =68/2and 6 = 81/(1—61). Let {1, Ju} be a collection of independent random
variables (indexed by u € [d]¥) with Iy ~ Ber(81) and J, ~ Ber(62). Let Eq be
the set of u € [d]* with I, = 1,andlet E; be the setof u € [d]* with (1-1Iy)Jy =
1. Define the corresponding partially observed tensors Y; = IlIg,(T). Fixing
integers 1 <a < b =k —a,let X = unfold®*?(T), Z = unfold®*?(Y 1), and
(cf. 3.1))

1 1
81 (81)?
Let O be the orthogonal projection onto the space spanned by the eigenvectors
of B with eigenvalues > A,. If a = |k/2], then we can use Q to define Q as in

(C.1) B=_—T1(ZZ") + n,(ZZ".
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(3.2). Then let

-~ 1 A~ -~ % ~
(C.2) T=Y;+ 8—Y2, T = orT), T =9,
2
and note thatIEl[T | E1] = T. Define
aR aR
= ?7 U= Sd—k/z’
(€3) 4,.1/2
_ 8(klogd)*t'/*w

. Aa(®) = 23| Blop-

We will consider T with threshold Ax = Ax(2) as given by (C.3).

THEOREM C.1. Suppose T € (R?)®¥ is a deterministic symmetric tensor sat-
isfying Assumption 1 with unfolding parameters (R, o, ) such that R < rmax as
defined by (3.3). Fixt > 1 and suppose

4,1/2
32(klogd)*t''“w <5< ZE
k2 =%="a
Then, with ? as above, we have
IT =T |lp < 20(k logd)*/(1;0) /5912 | T |1y
with probability at least 1 — 3d* exp —%(k logd)?}.

(C4)

Let us discuss the choice of 7 in Theorem C.1. We wish to have a small error
IT — T |, while ensuring that condition (C.4) is satisfied. First note that (C.4)
cannot be satisfied at all unless we have 11/2 > 32(k log d)*/d*/2=4 . If we take
€ < 1 and set

203 (k log d)*t1 /232
= e34k/2 ’
then Theorem C.1 gives ||T — T *||F < €||T ||p. This choice of § automatically
satisfies the lower bound of (C.4). To satisfy the upper bound we require

RV 203 (k log d)*u3/2
- e3d k/2—a

)

Since @ < k/2 and we aim for ¢ < 1/(klogd) in the worse case, we shall set
112 = (klog d)®u3/2. With this choice, (C.4) simplifies to
32(k logd)2arp!/2 <5< (k log d)'®aru?
dk/2 - - de ’
and we obtain | T — /f*”]: < €||T||g with
1/2\ 2/3 2\ 1/3
_ g XRU _ 3 ORM
Av = 4(klogd) ( k28 ) | Bllop, € = 20(klogd) (dk/Zg) .

Then, as noted previously, the result of Theorem C.1 (for the Bernoulli model) im-
plies the result of Theorem 3.2 (for the original model) by a well-known argument:
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PROOF OF THEOREM 3.2. The bound of Theorem C.1 fails with probability
tending to 0 more rapidly than any inverse polynomial of . On the other hand, by
construction, the probability of the event |E{| = |E2| = n/2 is lower-bounded by
an inverse polynomial in n, so the result follows. O

C.1 Preliminary Lemmas

We begin with a proof of our earlier remark (2.2); note, however, that this bound
is not used in the proof of Theorems 3.2 or C.1.

LEMMA C.2. Suppose that the tensor T € R ®---@R% has rankr = r(T) and
multilinear rank r@ max = r'm,max(T ), where we recall (2.1), r@ max is the maximum
of the values r@; = rm,i(T) overi < k. Then (cf. (2.2))

r= (rEE!,l e rEﬂ,k)/(rEl,max) = (rEE!,max)k_l-

PROOF. If k = 2 this is clear from the singular value decomposition of the d x
dy matrix T . For k > 3 we argue by induction on k. By relabeling, we can suppose
without loss of generality that rg me € {rm,2, ..., ’”EE,k}- Take a singular value
decomposition X W=y VT, where U is a dj x r@m,1 matrix whose columns form
an orthonormal basis of the space span‘(T'). Column s of V' defines a tensor Vg,
and likewise row j of X () defines a tensor T ;; both V5, T ; lie in R©2 ®- - - @ R% .
Since VT = UTX W each V is a linear combination of the tensors T j- Itis clear
that span=D(T ;) < span®(T) for every j, so spanC =D (V) < span®(T)
for every s. This proves ra,;—1(Vs) < rm,;. By the inductive hypothesis, together
with the assumption 7@ m. € {7m,2. - - -, 'm,k §» We have

r(Vs) < (rm2 - rmi)/ (Fm,max)-
It follows from the decomposition X M = yyT that
r(T) <rmn max r(Vs) < (a1 rag)/ (rsm,ma),
which verifies the inductive hypothesis and proves the claim. g
The remainder of this section is devoted to the proof of Theorem C.1.

LEMMA C3. If A1, Ay € R4 yith A1 — Azllop < 1, and A3 is an orthogonal
projection matrix, then rank A, < rank A;.

PROOF. Suppose rank A, = r; take an orthogonal set of vectors x1,...,x, €
R with Azxxj = xj forall j < r. We claim that the vectors Ax; are linearly
independent. To see this, suppose for contradiction that there exist constants c;,
not all 0, such that the vector

v = Zc]- Xj

J=r
lies in the kernel of A;. Then v = (A2 — Ay)v, so |[v] =< |41 — A2|lopllv]-
Since ||A1 — A2|lop < 1, it follows that v = 0, a contradiction. It follows that the
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vectors A1x; are linearly independent, which proves rank A, = r < rank A as
claimed. O

LEMMA C4. Let T € (Rd)®k be a deterministic tensor, not necessarily symmet-
ric. Fixing integers 1 <a <b =k —a, let X = unfold“Xb(T) and take B as in
(C.1). Suppose a’k||X||gO < 5||X||§pf0r some @w > 1. Fort > 1, in the regime
1/(td*)'/2 < § < t@/d® we have

|B—XXTllop _ t'72@IXI3,
8(klogd)* —  dk/2s

with probability at least 1 — d* exp{—% (k log d)?}.

PROOF. Recall (6.2). The matrix X is (A, y, p)-incoherent with A = p =
1/y = @. The claim then follows by applying Corollary 6.3 (an additional factor 4
in the bound arises since § = 2§7). O

LEMMA C.5. Suppose F is a dy X dy matrix whose entries F; g are independent
random variables that have mean 0, variance at most v, and magnitude at most
R almost surely. Suppose we also have deterministic square matrices A1 and Ay,
of dimensions dy and dy respectively, with ||A;||op < 1. Then, fort > 0, we have

|41 F(A2)[lop < max{(rv? max{rank Ay, rank A2})/2 1R}
with probability at least 1 — (dy + d») exp{—%t}_

PROOF. We can decompose

M F(A2)T = A1 (D] Figeile)T)(A2)T = Y Zig
i, i,

where Z; = Fjy (A1e;)(Azeq)" is a dy x do matrix. It holds almost surely that
|Ziellop < |Fi¢|l < R. We also have the variance bounds

EZiZoT|| < |2 e e Y EIF (A2 A2
il i £

op
<2 tr((A2) " A2) | A1 (A1) lop = V2| A2lIE ] A1 113,

< v2(rank 4»),

and in a symmetric manner

HZ E[(Zi,0)" Zi ] “Op < v?(rank Ay).
il

The claimed bound follows by the matrix Bernstein inequality (Proposition A.1).
g
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C.2 Projection of Original Tensor

Recalling (3.2) and (C.2), we now compare the original tensor T and its projec-
tion T* = Q(T).

LEMMA C.6. Let T € (R%)®X pe a tensor (not necessarily symmetric). Fix in-
tegers a,b > 1 witha + b = k, and let X = unfoId“Xb(T). For any posi-
tive semidefinite matrix B of dimension d?, let Q be the orthogonal projection
onto the eigenspace of B corresponding to eigenvalues > MA.. Then, for any
v > |B = XX lop,

rank Q < rank X.

In particular, if a = |k /2] thenrank @ < ro(k, rank X, d) where (cf. (3.2))

0®0®0, k=3, r3, k=3,
(C5 9=:0®0, k > 4 even, ro(k,r,d) = {r? k> 4even,
0®0®I;, k>5o0dd, r2d, k> 5o0dd.

PROOF. Let P be the orthogonal projection onto the eigenspace of XX T corre-
sponding to eigenvalues > 21, and note rank(P Q) < rank P < rank X. From
Wedin’s theorem (Proposition A.2),

” B — XXT”op
A* ’
which is less than 1 by assumption. Applying Lemma C.3 then gives
rank @ < rank(PQ) < rank X,

(C.6) 1P = Q)llop = I = Q) Plop =

proving the first assertion. The claimed bound on rank Q follows immediately from
the fact that rank(M; ® M») = rank(M7) rank(M>). g

LEMMA C.7. Let T € (R%)®k pe a symmetric tensor. Take a = |k /2] and let
X, B, Q, Q be as in the statement of Lemma C.6. Then T* = Q(T) satisfies

1B — XX Tlop | X [lop
As '

IT —T*|r < 3(rank)()1/2((2)t*)1/2 +

PROOF. In what follows we write / for the d x d identity matrix. We denote
its £-fold tensor product by I©) = I®%; this is equivalent to the d¢ x d* identity
matrix. With this notation we expand

T-T*=((I92-0)®I1P+00(0@-0)e1¢
+1k=300 00 U@ - 0)T.

Recall X = unfold®*® (T). By the triangle inequality and the assumed symmetry
of T, we have

IT =T [lp < 3max{| (1 — Q)X M e}
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where the maximum is taken over all d? x d® matrices M with | M lop < 1. Then,
with P as in the proof of Lemma C.6, we can expand

ID—)xM =D —0)ID - P)XM + (19 — Q)PXM
and bound separately the two terms on the right-hand side. For the first term we
have
1@~ )1 @ = P)XM oy < |1 = P)Xlop =< (24.)"/?
from the definition of P. For the second term we have (cf. (D.19))
1B = XX lopll X flop
Ax '

[(I@ — Q)PXM |lop < [(I@D = Q)Plopl X [lop <

Combining the above inequalities gives
”B - XXT”op”X”op
A )
The claimed bound follows by noting that the matrix (/ @ _ 0)XM has rank

upper-bounded by rank X, so its Frobenius norm is at most (rank X )/2 times its
spectral norm. g

1@ — Q)X M||op < 24)Y? +

In view of Lemma C.7, it is natural to optimize over the parameter A, by setting

r = (nB - XXT||§p||X||§p)“3
. .

Of course, in the application we have in mind, we cannot do this because X is
unknown. However, if the (known) matrix B is sufficiently close to XX T, we can
achieve a near-optimal bound by defining A, in terms of B alone, without reference
to X. In summary, we have:

COROLLARY C.8. Suppose T € (Rd)®k is a deterministic symmetric tensor satis-
fving Assumption 1. Take a = |k /2| and define B as in (C.1). Recalling (C.3), let
Q be the orthogonal projection onto the eigenspace of B corresponding to eigen-
values > A« (t), and use this to define T* = Q(T) as in (C.2). Fort > 1 and §
satisfying (C.4), we have

IT — T*||p < 18(k log d)*/3(tp)/*0 /3| T ||
with probability at least 1 — d¥ exp{—%(k logd)?}.

PROOF. Sincet > 1 and w = aR/u > 1 (Remark 3.1), it follows from (C.4)
that

1 32(klogd)*t'/ 2w tw
< <5< —.

(tdk)l/z - dk/2 -~ da
Together with (T2) and (T3), we see that the conditions of Lemma C.4 are satisfied
with @ = w. It follows that, with probability at least 1 — d¥ exp{—%(k log d)?},

1B — XXT[lop < X2, < 111X |2,
P P
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where the last inequality is from (C.4). Therefore %HX ||§p < [[Bllop < %HX ||§p,
SO

(C.7) APPIXIG, < Aa) < PRI XIG,
(So far, it was not necessary for T to be symmetric.) Next, substituting (C.7) into
the bound of Lemma C.7 (and making use of the symmetry of T') we find

IT = T*|le < 9n()" > (rank X)'/?[[ X [lop < 99()" PRV (| X [|op,

where the last inequality is from (T1). Finally, applying (T3) and recalling || X ||r =
| T|lg, we conclude |T — T*|[g < 9u'/25(t)Y/3|T||g. The claim follows by

recalling the definition of 1(¢) from (C.3). O

C.3 Projection of the Observed Tensor
Again recalling (3.2) and (C.2), we next compare T* = Q(T') (the projection
~ o~
of the original tensor) with T = Q(T') (the projection of the observed tensor).
LEMMA C.9. Let T € (R?)®K be a deterministic tensor (not necessarily sym-
metric). Fix integers a,b > 1 with a + b = k. Suppose we have two E;-

measurable square matrices A1 and A,, of dimensions d* and d b respectively,
with || Aj|lop < 1. Let Q = A1 ® Az, and abbreviate R = max{rank Ay, rank A5 }.

For this choice of Q, define T™ and Tw as in (C.2). Then

max{§~!, R} 1/2
P T e

with probability at least 1 — d* exp{—%(k log d)?} conditional on E;.

|lunfold®>b (T * — T*)||0p < 2(k log d)2(

PROOF. LetF =T — T\; it follows from the definitions that F has entries
Ju

Note that E[F, | E1] = 0, or equivalently E[T | E1] = T. Moreover, we have

T T |
esssup | F| < | ”oo, E[(F,)2[E1] < 17|15
- 52 - 82

If F = unfold®*?(F), then we have
unfold®?(T* — T ™) = unfold®®(Q(T — T)) = A; F(4,)".
The claimed bound then follows from Lemma C.5 (and using 26, > 4§). Il

COROLLARY C.10. Inthe setting of Lemma C.9, suppose T satisfies (T2) and (T3),
as well as

(C.8) max{§~', R} < d¥/2.
Then, conditional on Ey, and with & = ar/(d*/28), we have

|lunfold®™®(T* — T ) ||op < 2(k log d)?(9/ )2 X ||op
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with probability at least 1 — d* exp{——(k logd)?}.
PROOF. From (T2) and (T3)we have
dk/ 2
] d udk2g / 2§
Combining this with (C.8) and substituting into Lemma C.9 gives the claim.  [J

IT 13 = IT 115, —||T||§p

COROLLARY C.11. Let T € (Rd)®k be a deterministic tensor (not necessarily
symmetric) satisfying Assumption 1 with unfolding parameters (R, o, ) with R <
Fmax (as defined by (3 3)) Fixing t > 1, suppose § satisfies (C.4), and set A as in

(C.3). With T™* and T asin (C.2), we have
IT* =T |Ir < 2(klogd)*0"/?|IT |Ip
with probability at least 1 — 2d* exp{—% (k log d)?}.

PROOF. Fixa = |k/2]| and b = [k/2]. Recalling the proof of Corollary C.8,
with probability at least 1 —d ¥ exp{—%(k log d)?} the bounds (C.7) hold, in which
case Lemma C.6 gives rank Q < rank X. We also have rank X < R by 1. From
(3.2), 9 = A1 ® A where A; = Q and

0o0®0, k=3,
0®I®-9 k>4

As in the proof of Lemma C.9, denote F = T — T and F = unfoIdaXb(F). Then
T* — T = Q(F), and the matrix unfold®®(T* — T") = A; F(A4)T has rank
upper-bounded by the rank of A7 = Q. We have seen that with high probability
rank Q < R; on this event,

IT* =T |Ip < RY2|lunfold®?(T* = T )] op.

Condition (C.8) is satisfied by our assumptions, so we can apply Corollary C.10:
conditional on E; it holds with probability > 1 — d¥ exp —%(k log d)?} that the
right-hand side above is

291/2( R 1X llop 291/2
< 2(klogd)*»"/ (T) = 2(klogd)*?'/?| X |,
i
where the last step uses (T3). The claim follows since || X || = || T ||p. g

PROOF OF THEOREM C.1. The result now follows straightforwardly by col-
lecting the estimates obtained above. By our assumptions on § and R, the con-
ditions of Corollaries C.8 and C.11 are satisfied. By Corollary C.8, it holds with
probability at least 1 — d* exp{—%(k log d)?} that

IT* =T ||¢ < 18(k log d)*/?(t) /59 V3| T |
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By Corollary C.11, it holds with probability at least 1 — 2d* exp{——(k logd)?}
that

IT* =77 lls < 2(klog d)*»"/?| T .
Combining (C.3) with (C.4) gives
i _ @R T 1
tw dk28t d*/28t T 32(klogd)4t3/2

Combining the above bounds gives

o~ % ~ %
IT —T g < |T —T*|le+ |T* T |lr < 20(k logd)*/3(tpu) /6013 | T ||,

which concludes the proof. U

Appendix D Overcomplete Random 3-Tensors

In this section we prove Theorem 4.1. We have an underlying tensor

(D.1) T =) as®as®a;

S<r

where a1, ...,a, are i.i.d. random vectors in R4 satisfying (T1), (T2), and (T3).
We contract two copies of the tensor T together to form the d? x d? matrix G,
with entries

LL ZTfllllTﬂlzlz
l<d

Equivalently, writing Ay = as(as)', we have
G =) las.a)as ®ar)(as ®ar)
S,t<r

= Z (as,az)As ® A; = Gdiag + GEToss,

s,t<r

D.2)

where G422 denotes the contribution from the diagonal terms s = ¢, while G ™%
denotes the remaining contribution from pairs s # ¢.

As in the proof of Theorem 3.2, we work under a Bernoulli model for the par-
tially observed tensor: define three d x d x d arrays of i.i.d. Ber(§) random vari-
ables, denoted I, J,K. DefineY = T 1, Y =T o J,Y =T O K. The
observed version of G is (cf. (4.1))

1 . ..
(D.3) Wij=% D Y Vg
{<d
Take the singular vectors of W with singular values at least A, let Q : R4* s R4®
be the orthogonal projection onto their span, andlet Q = Q ® I;. Let T = §~1Y
~ % ~
and T = O(T).
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Throughout this appendix, we use f(d,r) < g(d,r) if for some constant C
f(d,r) < (logd)€g(d,r), and f(d,r) < g(d,r)if f(d,r) < g(d,r) and
gd.r) < fd,r).

THEOREM D.1. Let T € (R%)®3 be a standard random tensor (4.2) satisfying

Assumption 2. Suppose §*> max{r,d} > 1, and take T as above with threshold
parameter (cf. (4.3))

dl/2§
Then it holds with very high probability that (cf. (4.4))

i = (max{l,r/d})“/s.

~x max{l,r/d} 15
I =75 () T
PROOF OF THEOREM 4.1. Theorem 4.1 is deduced from Theorem D.1 in the
same way that Theorem 3.2 is deduced from Theorem C.1. U

D.1 Preliminaries on Random Vectors

We now collect some basic estimates on random vectors that satisfy condi-
tion (A3), which we repeat here for convenience:

2|

2d

E exp({x,v)) <exp { } forall v € RY.

Such vectors will be termed “(72/d )-subgaussian.”

LEMMA D.2. Suppose x is a random vector in R? satisfying (A3). Then
2 1 1 d
e [V < o VAT VD]
272 (1 —y/d)d/2 2

where the first inequality holds for all 0 < < d, and the second holds for all
0<vy <dJ/2

PROOF. Let £ be a standard gaussian random vector in R? (with covariance
E[££T] given by the d x d identity matrix /). Applying (A3) then gives, for
0<A<d/Q1?),

2A72\ 42
)
which proves the first inequality by setting ¥ = 2At2. Next note that for 0 <
t < % we have —log(1 —¢) < ¢(1 + ¢t). The second inequality then follows, with
t=1vy/d. O
LEMMA D.3. Suppose x is a random vector in R satisfying (A2) and (A3). Then

1—6 O(ogd)

k 2 2
EexplAllv|?} = Eexpl(2)!/2(&, x)} < Eexp {“T 0| - (1—
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forany 0 <0 < 1—1/(logd), and it holds for any fixed v € R? that
1
2
100) > .
I7/100) = 272(8 + 3log(t?))

PROOF. Recall that if Z is a nonnegative random variable with finite mean, then

IP’(a’(x,v)2 > |v

E[Z;Z > L] =LIP’(ZzL)+/OoIP’(ZZZ.)dz.
L

Therefore, for any 0 < 6 < L we can bound
EZ <O0P(Z<0)+LPO <Z<L)+E[Z;Z > L]

oo
=L—-(L-0)P(Z 59)4—/ P(Z > z)dz
L
Eexp(AZ)
D.4 L—(L-0)P(Z=<60)+ —.
Taking 6 < min{EZ, L} and rearranging gives
L—-EZ Eexp(AZ)
P(Z <0) <
D.5) (z=0)= L-96 (L —6)Aexp(AL)
' - 1_I[*EZ—G Eexp(AZ)
- L (L —0)Aexp(AL)

Turning to the proof of the claim, we now take Z = ||x||?, so EZ = 1 by (A2).
First, taking & = L in (D.4) and applying Lemma D.2 gives (forany 0 < ¢ < d/2)

272 Y([x)*—L) 272 Y(e>(1+y/d)— L)
1§L+7Eexp{T}§L+Texp{ 772 .

Setting L = t2(1 + v¥/d) and rearranging gives

1
D.6 T >1—0(d~"?),
(D-6) “1+vy/d+2/v T ( )
where the last inequality is by optimizing over 0 < ¥ < d/2. Next consider
(D.5), where we again set L = t2(1 4+ ¥/d) with 0 < ¥ < d/2, but now take
6 < 1—1/(ogd). It follows from (D.6) that (L — 6)~! < O((logd)/L) <
O((log d)/7?). Substituting into (D.5) gives

1-6 2t%2/y 1-6 O(logd)
P(|x|?<60) <1— —— 1—
(Ix* = 0) = Tt = 205 y/d) "
1—6 O(logd)
Sl =

where the last step is by optimizing over 0 < ¢ < % as before. This proves the
first claim.

For the second claim, note that (A3) implies that (x,v) € R! is T?-subgaussian
with 72 = 72||v||?/d. We assume without loss of generality that |[v||?> = d, so
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that (x, v) is (t?/d)-subgaussian. We also have E[({x, v)?] = 1 by (A2). Applying
(D.5) then gives

1-6 2f2/¢ Y((x,v)*>~ L)
P((x,v)? <9)<1—T+ 7 0 {T}
Applying Lemma D.2 with d = 1 gives (assuming 8 < min{l, L} and0 < ¢ < 1)
1-60 2t2exp{—vL/(27%)}
L (L=0)ya—y)/2

If we take y = 2, L = B2 > 1,and § < min{L, 1}/100, then
1 (100/99)33/272 1
P 2y <1——(1—g—7777 " ) <1—
(i =0 = 1= o0B/3 )= T 26 4 sloed)

where the last inequality is by taking 8 = 8 4 3log(z?) and recalling 6 < 1,/100.
This proves the second claim. U

P((x,v)2<6)<1-—

The following bound is very well known (see, for instance, [25, thm. 5.39]); we
include the short proof here in order to have an explicit dependence on t.

LEMMA D.4. Suppose ay,...,ar are i.i.d. random vectors in R4 satisfying (A2)
and (A3) and denote Ag = as(as)'. Suppose r grows polynomially in d. Then,
with very high probability,

>4
S<r °op

<r/d + (logd)®’® max{z(r/d)"/?,t%}

< (log a’)s/4 max{r/d, rz}.

PROOF. Denote x = ay and consider Z = xx' — I /d. Recalling (E.2), we
have || Z|op < 212 with very high probability. Write A < B to denote that B — A
is positive semidefinite. It holds for any constant M > 0 that

0 < E[Z?] = E[||x||?xx" —1/d?
Ef|lx|?xx"]
< ME[PexT] + E[L{||x|I* = M}(llx]|> — M)xxT].
Taking norms (and applying the triangle inequality and Jensen’s inequality) gives
IE[Z*]lop < M/d + E[(Ix[I> = M) |x ] [Ix|* = M] < 2¢%/d,

where the last inequality holds for sufficiently large d by another application of
(E.2). Combining this with the truncated Bernstein bound (Proposition A.3) gives,
with very high probability,

(A5 — I/d)| < (logd)®® max{t(r/d)"/?, 1?}.
» |, = Goza)®” Ve

The claimed bound follows by using the triangle inequality. U
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D.2 Observation of Contracted Tensor, Diagonal Component
The key technical step in our result is the following estimate on W.
PROPOSITION D.5. Suppose ay,...,a, are i.i.d. random vectors in R4 satisfying
(A1), (A2), and (A3), and suppose r < d?. Let G and W be as in (D.2) and (D.3).
If 8> max{r,d} > 1, then
 diag max{l,r/d}

W = G < =

with high probability.

PROOF. Recall the notation Ay = a; (as)T. Write a5, = ag ® a;, and denote
Ags = agi(as)” = Ay ® A;. We also abbreviate Eij =e; (ej)T where e; denotes
the i standard basis vector in R?. For £ < d let I¢, J¢ denote the d x d matrices
with entries

(Y = Luj. (JYsg = Jisg.
Recall from (D.2) that

G = Z(as,at)Asl = Gdiag 4 GOross,
s,

The observed version W of G can be decomposed analogously:

W = Z Cs; © Agp = Wdiag + eross

s,
where, for each s, < r, we define the d? x d? matrix
1
(D.7) Coo = 5 > aga (1t e JY.
{<d

Let E” denote expectation over the indicators / and J, and note that E” W diag —
G422, We show below (Propositions D.6 and D.7) that

. . 1 r
diag _ ~diag
cross max{1,r/d}
(D.9) W |op < T gi2g
Since W — GYae = (Wdiag _ Gdiag) 1 Peross | the triangle inequality gives the
claimed bound. O

We now prove (D.8) and (D.9). These proofs are slightly involved, and may
not offer much insight on a casual reading. We supplement these proofs with an
analysis of G422 and G, given in Appendix E. In particular, our analysis of
WSS is modeled after the analysis of G (which is easier and corresponds to



SPECTRAL ALGORITHMS FOR TENSOR COMPLETION 2413

the special case § = 1). Appendix E is not needed for the proof of Theorem 4.1
but may supply some intuition. We now turn to the analysis of

(D.10) Wi =3 " Cys © Ass.
s<r
PROPOSITION D.6. Suppose ai,...,ar are i.i.d. random vectors in R4 satisfy-

ing (A1), (A2), and (A3). Let GY°€ and W92 pe as in (E.1) and (D.10). If
§2 max{r,d} > 1, then

. . 1 r
diag _ ~diag

with very high probability.

PROOF. Let amax denote the maximum of all the values |as;| (s < r,i < d)
and |{ag,a;)| (s # 1); we have amax < d~'/? with very high probability. Let
St=1teJt—E"(It® JY) and

1 1 . .
D10 Z°= 5 (a)?S* 0 Ass = 55 ) (a50)*(diagass) S (diag asy).

S<r S<r

Under the randomness of I and J, the matrices Z* are independent with zero
mean, and

Wdiag . Gdiag — Wdiag _ E//Wdiag — Z ZZ
l<d

Note that |[E”I%|op = ||§117||lop = d8, while the Bernstein matrix inequality
(Proposition A.1) gives ||1¢ —E"I¢|op < max{(d8)'/?, 1} with very high proba-
bility. It follows from the triangle inequality that || /¢ lop < max{dd, 1}, and so

15%op < 17 =E" 1)@ I flop+ I(E" T @ (I ~E"T ) lop < max{(d8)*2, 1.
Recalling the definition (D.11), we conclude that with very high probability

7 (@max)®

D.12) (2% S

{ r r

Next note that we can express Z tas 57284 © Tt where

Te = Z(as,é)zAss-

S<r
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The d? x d? matrix T* is symmetric and satisfies the entrywise bound || 7% oo <
Famax)® < r/d3. Writing M* = (T*)2, we compute

(1-6)?
§2

1—
st =E"1z4ZHT = nmb) + TgM’f oz 117

»¢.0 .1

1-6
+TM€®(11T®ld).

»¢.2
Each 40 is simply a diagonal matrix, so
¢ 2007 )2 2
M lloo _ d=(IT llo0)™ _ _r
52 - 52 ~dAs?’
Let M ®¢ denote the d x d matrix with entries (M ©¥%) g = (M by, fig- We can

decompose M ()€ a5 the sum of two components,

MOLEE = 3 ) g *(@5.0)” As.

S<r

M(l)f,cross — Z(asﬁatﬁ)2<as,at>zas,iat,ias(at)T-
sF#t

We have ||M(")e":r°“||OlD < r?d(amax)'® < r?/d*, while

2z

s<r

€0
IZ""llop =

|M(i)€,diag”0p < d—3

< max{l,r/d}/d>
op

using Lemma D.4. Combining these inequalities gives || M )¢ lop < max{1,r%/d}/d>,
and so

- max{1,r2/d}
op d3s

=5t < 5| 37 B 0 1"
i<d
It follows from the above estimates that
HZEZ 1/2<rnax{ r ! il }:max{L ;é
= op d3/28° dsi/2’ g3/251/2 d3/28 dsi/2 |’
Combining this with (D.12) and the truncated Bernstein bound (Proposition A.3)
gives

. . 1 r r
di di
|wdiee _ G ag”"PSmax{dSI/z’d3/28’d352}’

It follows from our assumptions that
(D.13) d35% > 82 max{r,d} > 1,

and the claim follows. O
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D.3 Observation of Contracted Tensor, Cross Component

We now turn to analyzing

D.14) W = 37 ¢y 0 Ay
sFEt
where Cy; is asin (D.7) and A5, = Ay ® A;.
PROPOSITION D.7. Suppose ay,...,a, are i.i.d. random vectors in R satisfying

(A1), (A2), and (A3), and suppose r < d?* and 8§ max{r,d} > 1. Then the matrix
WSS of (D.14) satisfies

max{l,r/d}

Cross
”W ||0p 5 d1/28

with very high probability.

PROOF. By the symmetry assumption (A1) and the matrix decoupling inequal-
ity (Proposition A.5), it suffices to prove the bound of Proposition D.7 for

wsien = Z5sttCst O Agt
sF#t
in place of W, Recalling the notation E;; = ¢;(e j)T, we have
Coo= D Eij®Cups= ) Csuire) ® Egg
i,j<d fig=d
where C(;j)s; and Cyy( rg) are d X d matrices with entries
(Cajyst)re = (Cse(fe))ij = (Cst)if, je-
After some straightforward manipulations we find

W)

(DIS) Wsign = Z (EU ® 11T) ® {Z5sttAs X (C(l])st © A[)%

i,j<d s#t
(D.16) = Z (llT b Efg) O] {Zﬁstt(cst(fg) O 4s) ® At} .
f.g=d sF#t
W&
We will show below (Lemma D.8) that
) max{1,r/d}
W Doy 5 =l

with very high probability. Let E’ denote expectation over I only; we then have
E'W@) = E/'Wsign, Under the assumptions r < d? and §? max{r,d} > 1, we
show below (Lemmas D.8 and D.9) that

max{l,r/d}

maX{”E/WSlgn”Op, ||W81gn _ ElWSlgn”Op} s d1/25
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with very high probability. The claimed bound follows from the triangle inequality.
0

LEMMA D.8. In the setting of Proposition D.7, the matrix w @) of (D.15) satisfies

max{1,r/d}

()]
||W ||Op 5 d1/25

with very high probability.

PROOF. Fix i, j and abbreviate I's; = C;;)s, 80 I'sy is a d x d matrix with
entries

1
(Tst)re = 2 Z LyijJofgaseas.
{<d

It follows from the standard Bernstein inequality that, with very high probability,

1 1
[Tstlloo < Max§——=, =5 ¢-
d1/2§° d§?

Now denote Ws; = I's; ©® Ay, and note that
W =3 sa 0 ( Y tWa).
S<r te[r)\s

We can express Wy, = (diagay) s (diagay), so, with very high probability,

2 -1
[Wstllop < (latlloo) [ Tsellop < d™ st llop = [ITstlloo

(D.17) < 1 1
S max —dl/Zg’W .

Conditional on ag, I, J, then the W, (indexed by ¢ € [r] \ s) are independent. For
f, g < d we have

(Wit (I/Vst)T)fg =

8i4atfatg Z(atk)2<z Lyij Jufkasuatu><2 Lyij ngkasvatv)-

k<d u<d v<d

Let Eg denote expectation conditional on ag, I, J; we now estimate X =
Es[Ws: (Wy:)T], making use of the symmetry assumption (A1). On the diagonal
(f = g), only the u = v terms survive, so

1 1 1
(Sst)py = 8—4ku2<:d(a3u)2[uij JurkEl(a paxasm,)®] < max {—(d8)2’ —(d8)4§’
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where the last bound holds with very high probability over ag, I, J. Off the diago-
nal (f # g) we must have {u,v} = {f, g}, so
1
(Zsi)regl = | 5aasraselrijleis > Usridggk + Je i rer)El(@rsargas)’]
k=<d

1 1
< e s i

where the last bound holds with very high probability over ag, J. Then, with very
high probability over 7, the number of nonzero entries in Xy, is < max{1, (d§)?},
SO

TS0l S max } o o —
LSsIE S I 4250 (@8)* (@s)3 |

Combining the diagonal and off-diagonal estimates gives altogether

Pape

te[r)\s

< max { r r }
op (d8)?’ (d&)*

Combining this with (D.17) and the truncated Bernstein bound (Proposition A.3)

gives
H Z teLss g, =2 ; 52’ d’(;z d2154 a’;“}
te[rl\s (d5) (d5)

op

It then follows from the matrix Rademacher bound (Proposition A.4) that

2
E t: s © A )

op
te[r]\s s<r

with very high probability. Combining this with Lemma D.4 gives

2
||W(”)|| <Lmax max 11, =4 max {1 L,L ’r_ .
op ~ 82 d "d’dés? d*582

By using the assumptions r < d? and §2 max{r,d} > 1, the claimed bound then
follows. O

@2 <
WIS, < (lglsagc

LEMMA D.9. In the setting of Proposition D.7, with wsien g in (D.15) and E’/

denoting expectation over I only, the matrix Z = WS — E/'WSE" satisfies

max{l,r/d}

1Zllop £ ——775—
d1/2§

with very high probability.

PROOF. Recalling (D.16), we can further decompose

7/e —wie _gp'wle = Z VAYES
{<d
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where Z4/¢ is defined as
T/

1
zlfe = 8—2Jgfg(lg 811" o (Zﬁsttasgat(atfatg/ls)% ® Efg.
sF#t

Mtrg

Recalling that I’ denotes expectation over I only, we have

Jng (1- 8)
53
By a Chernoff bound, we have ||T%¢||o < r/d? with very high probability, so

d|T%|3 r?
8—300 < Jef

£d583°
Next note that Z¢/8(Z48)T = (M8 (M) ® Ey, so altogether

| 3 mrze@om| | < mad 30 1 ) o)

E/[Mﬁfg(Mefg)T] - H(Tefg (Tﬁfg)T)'

IE [MYE (MY op < Tore

f.g=d t,g=<d
< r? max{d?§,1} r?
~ d583 ~ 4352

where the bound holds with very high probability over J, and the last step uses
(D.13). By employing r < d? and max{r,d}8> > 1, the same argument as in
Lemma D.8 gives

max{l,r/d
I 7/g lop < {—/}
d/2§
with very high probability. Combining the above estimates with the truncated ma-
trix Bernstein inequality (Proposition A.3) gives the claimed bound. U

D.4 Tensor Completion Algorithm

Recall G = G4 + G from (D.2), and W = W2 4 Weross from (D.3).
We have from Proposition D.5 that, with very high probability,

max{l,r/d}

dizs
Choose § large enough such that € < n < 1, where 7 is a parameter to be deter-
mined. Let P be the orthogonal projection onto the subspace of (R%)®2 spanned
by singular vectors of G%2 with singular values > 2. Let Q be the orthogonal
projection onto the subspace of (R%)®2 spanned by singular vectors of W with
singular values > 7. Denote the complementary projections as P = I ;> — P and
Q = 1,2 — Q. It follows by Wedin’s theorem (Proposition A.2) that

(D.19) IPQllop < €/n < 1.

(D.18) €= [GME - W] <
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Recall from (D.3) the formation of W using indicators /, J. Let K be an indepen-
dent copy of 7, and let T denote the tensor with entries (T');jx = 8_1KijkT,-jk.
Define the estimator

(D.20) T =T;®0).
In what follows we will show that T* is close to T in the Frobenius norm, where
ITIE =D llasl® + Y as.ar)’.
s<r s#t
Recalling the proof of Proposition E.2, we have

6 3 F
Yo lasl® = Y asan)’| 5 .

s<r s#t

so altogether | T ||p = r'/2.

LEMMA D.10. Suppose ay, ..., a, arei.i.d. random vectors in R4 satisfying (A1),
(A2), and (A3), and suppose r grows polynomially in d. Let T be as in (D.1), and
let P = I — P as above. Then it holds with very high probability that | T (I ®
P)|le < nt/4rt/2,

PROOF. Let fy; = (P(as ® as), P(a; ® a;)). By definition, ||1’3Gdiag13||Op <
21, so
nllas ® as”2 > (as ® as)TPGdiagﬁ(as ® as)

(D.21) =Y llac|(650)* = llas|*(6ss)>.

t<r

Let (s5)s<r be a collection of symmetric random signs: by assumption (A1), the
original tensor T is equidistributed as

ngn == Zﬁsas ®as ®as.
S

Note that T and T°¥" map to the same Gdiag,_so the projection matrix P is inde-
pendent of the signs s;. Therefore ||T (/; ® P) ||% is equidistributed as

1T @ PYIE =D llasP0ss + D ss( D selasar)bs ).

s<r s te[r]\s

Recall from (D.21) that |65 < n/2|as]|, so the first term is < 5'/2r. Meanwhile,
by combining (D.21) with the decoupling inequality and the Rademacher bound,
the second term is < '/2(r/d)'/2. The claimed bound follows. O

PROOF OF THEOREM D.1. We decompose

T-T =TU®PO)+T(®PO)+ (T -T)I® Q).
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Since O is a projection matrix we have ||Q lop < 1,50
1T ® PO)r < ITU ® P)llp < 0'/*r'/2 = 0!/ T s
by Lemma D.10. Recall from (D.19) that ||P§||0p < €/n K 1; we then have
1T ® PO)lIr < Tl POllop < (¢/MIT k-
Lemma C.3 gives rank Q < r, and combining with Lemma C.5 gives

(T = T)YT ® Q)llr < r"/*Junfold"2(T = T)I & 0))llop
< ( r max{l,r/d})l/ZHT”F

d3/2 d1/2§
The result follows by setting 1 equal to the parameter A, of the theorem statement,
and then recalling the bound on € from (D.18). 0

Appendix E Remarks on Contracted Tensor

This section supplements Appendix D by analyzing G (of (D.2)). As noted
above, the estimates below are not required for the proof of Theorem 4.1. We in-
clude them because they may supply some intuition, and may be useful for related
problems such as tensor decomposition.

E.1 Contracted Tensor, Diagonal Component
We begin with the diagonal component
(E.1) G =" Jlas|*(as ® as)(as ® as)".
S<r
For this component, we have a slightly better estimate if we make the additional
assumption that 72 < 21/20. This is due to the following:

COROLLARY E.1. Suppose x is a random vector in R4 satisfying (A2) and (A3)
with t2 < 21/20. Then it holds for any deterministic v € R4 that
P(||x||*> = 1/100 and d (x, v)? > ||v[?/100) > 1/1000
for sufficiently large d.
PROOF. The corollary follows from Lemma D.3 and a union bound. O

Applying this corollary, we obtain the following estimates for the spectral norm
of GYiag;

PROPOSITION E.2. Suppose ai, ..., a, are i.id. random vectors in R? satisfy-
ing (A2) and (A3), and define GY2g gs in (E.1). Suppose that r grows at least
polynomially in d, i.e., that (logr)/(log d) stays bounded away from 0.

(a) There exists an absolute constant ¢ such that, with very high probability,
c

logd"

16 lop = 1 —
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(b) Suppose that (A3) is satisfied with t> < 21/20 and that (logr)/(logd)
stays bounded away from infinity as well as from 0. Then there exists an
absolute constant ¢ such that, with very high probability,

diag _r/d
167 op = C(l * (logd)S/S) '

PROOF. For any s such that ag 7% 0 we have

. (as ® a5, G (ay ® ay)) (as,ar)*
[GY2¢ o > == ”Sa - ”; = asl®+ DO W > [las|°.
g refr\s °
Lemma D.3 gives max; ||as|| = 1—0(1)/log d since r grows at least polynomially
in d. This implies the result of (a). Turning to the proof of (b), we will lower bound

|G4eu |
—_— U= Zas X ag.
[

S<r

1G9 o =

From Lemma D.2, if x is (t2/d)-subgaussian, then

d(|x|*> = 1) 3d  dt

2

€2 P(lx? 2 1) < Eexp {T cop{ ]

so P(||x||> > 272) < exp{—d/8}. For any deterministic v € R? with ||v||? = d,
we have (by the same calculation as above, for the case d = 1)

’ z_t 3 t
(EB) P((X,U>2EI)EECXP{%% Sexp{g_m}’

so that (x,v)2 < (logd)®® with very high probability. Taking a union bound

over r (and using that r is at most polynomial in d), we conclude that the event
2(log d)8/>

N {||as||2 <22 and max |(as,ar)|? < JasI700ed) }

s<r relri\s d

occurs with very high probability. Combining these gives for all s < r that

1 6/5 log d 6/5
o= W lanan) = Ja? (sl + B0 ) < 202202 4 TEDD),
t<r

and so we conclude

log d)®/>
(E.4) u||?> = chs <r- 2t2(212 + %).

S<r

We next turn to lower bounding.

. 2
E5) 16%%u)? = [ 3 ksllaslPas @ )| = 3 ki llasPllar | (as, ar).
s<r s,t
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In what follows, we use ¢; to denote positive absolute constants. By Lemma D.3,
since r grows polynomially in d, the event

ﬂ{us gl 2 172312 1

s<r
2 ||as||2} y

,
{z e[r]\s:(as,a:)” > 1004 | = 5028 + 310g(‘[2))}

occurs with very high probability. Combining these gives for all s < r that

I’/d c1r
o 2 lal? (1l + fories) = fasl?(lasl? + 2,

By Corollary E.1, using the additional assumption 72 < 21/20, the event

al

S<r

and

telr]\s: la:)? = 1 and (a;, a;)? > llas || o
=~ 100 = 1004 || = 2000

also occurs with very high probability. It follows that for all s < r,

corflas|*(1 + r/d
Z Kt”al”2<as,al)22 27|l s”; / )’
te[r\s

and consequently

|G Y2 > sznasnz(xsnasnG 4
S

> car(1+r/d)>.
Combining (E.4) and (E.6) proves

carlas|*(1 + r/d))

(E.6) d

ca(l +r/d)
(logd)3/>

Combining with the lower bound from (a) gives the result of (b). O

1G¥48]|gp >

E.2 Contracted Tensor, Cross Component
Recalling (D.2), we now turn to showing that

(E.7) G =Y (a5, a;)(as ® ar)(as ® ar)"
sF#t

has smaller spectral norm than G422, We follow a similar argument from [12,
prop. 5.5].

PROPOSITION E.3. Suppose ay,....,a, are i.i.d. random vectors in R4 satisfying
(A1), (A2) and (A3), and suppose r grows polynomially in d. Then, with very high
probability,

(logd)*3

Cross
6o < =5

max{r/d, t?}.
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PROOF. Recall the notation Ay = as(as)". Let (55, ts)s<r be a collection of
i.i.d. symmetric random signs. By the symmetry assumption (A1), a is equidis-
tributed as sgas where the s are independent symmetric random signs, so G is

equidistributed as
Z5sAs (3¢ ( Z 5t<as,at)At)-

s<r te[r]\s

In view of the decoupling inequality (Proposition A.5), it is enough to prove the
claimed bound for the matrix G**", which is defined as above but with {; in place
of s;. To this end, let us first bound the spectral norm of

Gs = Z t:(as,ar)As.

te[r]\s

Conditional on ag, the summands Gs; = t;(as,a;) Ay are independent with zero
mean. Recalling (E.2) and (E.3), conditional on a; it holds with very high proba-
bility that
(log d)*/>?|las|

dl/2
Next, arguing similarly as in the proof of Lemma D.4, we have
(log d)®/° 2 |as

d? '

It follows using the truncated Bernstein bound (Proposition A.3) that, with very
high probability,

2
”Gst”op = |{as, ar)|||a:||” <

”E[(Gst)z'as] ”0p =<

(logd)* |as |

7172 max{(r/d)l/z,r}

IGsllop =

for all s < r. It also holds with very high probability that max; ||as||*> < 272. Now
consider

G = ZssAs ® Gy.

S<r

Recalling the matrix Rademacher bound (Proposition A.4), we shall bound

0(G*") = | 3(4y ® Go)(As 8 Gy)' ngz

s<r

Each (A5 ® Gs)(As ® Gy)' is positive semidefinite, so

1/2
o (G < (msax ||Gs||)HZ AS(AS)THop
S<r

1/2
op

< (max gl (max las) | 3 4

S<r
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By the preceding estimates together with Lemma D .4,

(loga.’)3_1/4f3

o(G*®") < max{r/d, v}

dl /2
with very high probability. The claimed result follows by conditioning on the event
that the above bound holds, and then applying Proposition A.4. O
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