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ABSTRACT

Nanoscale field-effect transistors (FETs) represent a unique platform for real time, label-free
transduction of biochemical signals with unprecedented sensitivity and spatiotemporal resolution,
yet their translation toward practical biomedical applications remains challenging. Herein, we
demonstrate the potential to overcome several key limitations of traditional FET sensors by
exploiting bioactive hydrogels as the gate material. Spatially-defined photopolymerization is
utilized to achieve selective patterning of polyethylene glycol (PEG) on top of individual graphene
FET devices, through which multiple bio-specific receptors can be independently encapsulated
into the hydrogel-gate. The hydrogel-mediated integration of penicillinase has been demonstrated
to effectively catalyze enzymatic reaction in the confined microenvironment, enabling real time,
label-free detection of penicillin down to 0.2 mM. Multiplexed functionalization with penicillinase
and acetylcholinesterase has been demonstrated to achieve highly specific sensing. In addition, the
microenvironment created by the hydrogel-gate has been shown to significantly reduce the
nonspecific binding of non-target molecules to graphene channels, as well as preserve the
encapsulated enzyme activity for at least 1 week, in comparison to free enzymes showing
significant signal loss within one day. This general approach presents a new biointegration strategy
and facilitates multiplex detection of bioanalytes on the same platform which could underwrite

new advances in healthcare research.



KEYWORDS

Bioelectronics / hydrogel / polyethylene glycol / physiological fluids / photopolymerization /
projection lithography

Hydroge| %1 g Penicillin
312
—~ 311
< 247 T
=246 ACh
Hydrogel witr: E 23 !
enicillinagg O 164
: ]g-g Blank Hydrogel
— 16.1

<= ik

Time (s)

0 200 400 600 800 1000 1200 1400 1600




The optimal detection of biomolecules and their interactions represents a key to understanding,
interrogating and directing many biologically significant processes. Nanoscale FETs have been
exploited as label-free transducers for ultrasensitive biomolecular detection with unprecedented
spatiotemporal resolution!-. Different from traditional electrical/ electrochemical sensors which
involves redox reactions between target molecules and electrodes and only work with certain
electroactive species, nanoscale FETs function by detecting the variation of charge or electric
potential at the surface and represent a more general and less invasive platform that could
potentially work for all charged molecules. By functionalizing FET surface with biospecfic
receptors, such as antibodies*°, enzymes®’, or single-strand DNA probes®’, selective binding to
targeted biomolecules in solution could be achieved. The surface charges of target biomolecules,
which are dependent on the isoelectric point, solution pH, or the charge transport induced by
enzymatic reactions, will modulate the carrier density of FET channel and transduce the
binding/unbinding events into electrical conductivity change in real time. Nanoscale FETs can be
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configured with a variety of semiconductor materials, including silicon nanowires ™", carbon
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nanotubes , graphene'>"16, and layered MoS:'”. Because of the comparable dimensions of
nanomaterials (diameter or thickness) to most biomolecules and high surface-to-volume ratio,
ultimate sensitivities have been demonstrated for protein disease biomarkers*”!> (femtomolar

level), nucleic acids®*!® (tens of femtomolar level) as well as single viruses® and bacteria'®.

However, the translation of FET-based nanosensors for practical biomedical applications
remains a challenge. The high-ionic strength in physiological environment makes the charged
biomolecules undetectable as a result of Debye charge screening!®?’. Additional desalting
pretreatment has been used to remove ionic species from physiological fluids (such as blood
serum, urine, etc.) and would compromise the real time sensing capability of FET?!. In addition,
the natural physiological environment contains a high concentration of proteins and other
biomolecules at the level up to tens of mg/mL. This overwhelming background will cause
significant nonspecific absorption and false-signal transduction on nanoscale FETs due to the
increased surface area and superior sensitivity. This issue becomes particularly serious when
carbon based nanomaterials, such as graphene or carbon nanotubes, are exploited as FET
channels, as they are known for strong interaction with biomolecules through n-w stacking®>%.

Moreover, most biospecific receptors, enzymes, have limited stability in the in vitro environment

and would lose their activity quickly at room temperature after integration with FET devices.
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Strategies need to be developed to better preserve these sensitive elements in local
microenvironment without compromising device performance®*. Hydrogel, a crosslinked three-
dimensional polymeric network that retains a significant fraction of water, has been widely used
for a range of biointerfacing applications. Particularly, PEG has been found to play important
roles in modifying the local dielectric microenvironment on charge-based nanoelectronic

biosensors to increase the effective Debye screening length and achieve real time label-free
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detection of biospecies under physiological relevant condition
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Figure 1. Schematic representation of (a) graphene FET device arrays with individually patterned
biologically-encoded hydrogel-gates. Gold, electrode interconnects for the graphene FET devices. Black,
graphene channels, Red, green and blue, specifically encoded hydrogel-gates. (b) PEGylated bioreceptor

molecules encapsulated in biofunctional gates on graphene FET channels.

To this end, we exploited spatially-defined functional hydrogels as the interfacing material to
develop a hybrid FET sensing platform that improves biosignal transduction at molecular level.
As demonstrated schematically in Figure 1a, different biologically-encoded hydrogel-gates are
individually patterned on top of graphene FET channels, through which different bio-specific
receptors can be selectively encapsulated into these hydrogel “gates” to independently encode
device selectivity for multiplexed real time molecular detection. The biofunctional hydrogels
were formed by copolymerization of PEG linker/conjugated biomolecule complex and
polyethylene glycol diacrylate (PEGDA) in presence of Eosin Y as photoinitiator to trigger
covalent crosslinking and gelation. The creation of the hydrogel microenvironment in close
proximity to graphene channels (Figure 1b) is expected to significantly extend the lifetime of

sensitive bio-receptor/enzymes, reduce the nonspecific binding between graphene and non-target

4



bio-species, and modulate local dielectrics to mitigate charge-screening effect and enable real

time sensing directly from the high-ionic strength physiological fluids without pre-processing.

Figure 2. (a) Schematic representation of projection microlithography setup for biofunctional hydrogel
patterning. (b) Bright field microscopic image demonstrating spatial resolution limit of patterned
hydrogels with features down to ~1 wm, with the projection microlithography. Scale bar, 20 um. (c)
Fluorescence microscopic image of complex patterns of hydrogel with red and green fluorescent dyes.
Scale bar, 250 um. (d) Stacked bright field and fluorescence microscopic images of graphene FET array
with hydrogel-gate highlighted with red, green and blue fluorescent dyes. Scale bar, 20 pm.



Our strategy involves a unique approach to directly functionalize specifically encoded hydrogels
onto target FET channels through diffraction limited projection microlithography (Figure 2a). In
brief, the microlithography system has been established with collimated light from a Zeiss
inverted microscope filtered and masked by a LCD based spatial modulator; the LCD pattern is
then demagnified and projected onto the bottom of device by microscope objectives®. The LCD
mask can be easily programmed through computer interface, and hydrogel structures
successfully formed with feature down to ~1 um have demonstrated the diffraction limited
photopolymerization?® (Figure 2b). To enable the integration of multiple bio-receptors on the
same platform, we have also developed microfluidic platforms (Figure 2a) for sequential
delivery and polymerization of different monomer combinations, as demonstrated by the
patterning of multi-fluorophores-encoded hydrogels®’ (Figure 2c). As a proof-of-concept, single
layer graphene prepared by chemical vapor deposition®® on copper foil was transferred onto
photolithographically patterned gold electrodes and configured as FET channels® (Figure Sla).
Then hydrogels-encoded with red, green and blue colored fluorescent dyes®’ conceptually
representing multiplexed bio-receptors were patterned onto graphene channels with the
projection microlithography setup (Figure 2d). These well-established hydrogel patterning
techniques enable the precise and high-resolution integration of a broad spectrum of hydrogel

materials to fulfill various biomedical needs?*.

The conductance of graphene FET biosensors exhibits pH value dependence. To characterize
such dependence, a PDMS microfluidic channel was first aligned and bonded onto the as-
fabricated FET sensors chip for varied buffer delivery®°. Then, Ag/AgCl electrode was mounted
as reference to enable liquid-gate measurements. Last, the FET sensor chip was connected to the
data acquisition system using receptacle connector arrays (Figure S1b). By sequentially
introducing buffer solution with different pH values into the microfluidic channels, the
conductance of the graphene FET sensors can be quantitatively evaluated (Figure S2a).
Specifically, increased conductance has been observed when the FET channel is subjected to
higher pH value buffers, which indicates p-doping of the graphene FET without gate modulation.
Independent signal values attributed to each pH value change was calculated according to liquid
gate measurement (Figure S2b) and summarized in Figure S2c. The plot conveys a linear change

of conductance with pH over the range from 6.2 to 8.2.



(a)8or . (b) 1055}
2-3 s : 1050}
2.. 8v6 [ E.. 10.45 r
38_5:_§0--._. 21040 y
T 84f 30 o £ 1036}
E 83} & - £ 1030}
3 82k 87 v £ el T
S 66F & 0 10 20 T 8.15 T
i Penicillin Concentration (miV) 810k
B[  dmstbrnnay Poaorsen et it tsess B e i W PP
6_4 -' L i 1 M L i 1 a 1 M L 2 1 M 1 805 B L i 1 i 1 M 1 M 1 i L
0 500 1000 1500 2000 2500 3000 3500 0 100 200 300 400 500
Time (s) Time (s)

Figure 3. (a) Real time penicillin sensing. Blue and red traces represent penicillinase-encoded and blank
hydrogel-gate FET channels, respectively. Arrows depict the time points chronologically of solution
switching to buffer with 0.2 mM penicillin, 0.4 mM penicillin, 0.6 mM penicillin, 0.8 mM penicillin, 1.0
mM penicillin, 1.5 mM penicillin and 2.0 mM penicillin. Inset plot represent the correlation between
signal amplitudes as a function of penicillin concentration in the buffer. (b) Blue and red traces represent
bare graphene FET and hydrogel-gate FET channels, respectively, representing the nonspecific absorption
of BSA is minimized with the existence of hydrogel-gate. Arrows show the time point of solution

switching to buffer-BSA.

We initially tested the hydrogel-gate graphene FET as real time label-free biosensor for
Penicillin G as a demonstrative analyte. In order to detect Penicillin G, aforementioned
photopolymerization was carried out to selectively pattern bioactive PEG hydrogel encapsulating
penicillinase®! (Figure S1a, inset). The specific enzymatic reaction will generate penicilloic acid

and cause local acidification within the hydrogel?

, resulting in a decrease in conductance of
graphene FET biosensor. Real time recording of conductance changes (blue) while switching the
same buffer with various concentration of Penicillin G from 0.2 mM to 2.0 mM demonstrates the
sensing capability>?, in clear comparison with the stable conductance (red) simultaneously
measured from control FET sensor with blank PEG hydrogel (Figure 3a). The measurements
were carried out under a constant flow of the buffer solutions at a rate of 1.5 mL/h. Under such
flow rate, it takes about 180 s for the exchanged solutions to reach FET devices. The signal

voltage values from penicillin sensing were converted according to the transconductance of the

bioactively gated device derived from liquid gate measurement and an almost linear trend is
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observed in the presence of 0 to 2.0 mM analyte. (Figure 3a inset). Limit of detection (defined as
3 times standard deviation), although shows variation across different devices, has been
experimentally testified below 200 uM, while it is capable to reach 50 uM estimated by

interpolation.

Bovine Serum Albumin (BSA) was used as model system to assess the effect of hydrogel-gate
on nonspecific absorption of biomolecules onto graphene FET channels, which is a critical
shortfall on nanoscale FET biosensors. More than 50% of blood serum is consisted of Serum
Albumin (SA) which signifies its role as a dominant source of false signal generation*,
Simultaneous recording from bare graphene FET and graphene FET patterned with blank
hydrogel-gate (Figure 3b) demonstrated that the conductance of bare graphene FET sensor (blue)
depicts a 0.14 pA increase upon exposure of 100 uM BSA, corresponding to negatively charged
BSA under pH value at 7.4%. Meanwhile no signal was generated from hydrogel-gate graphene
FET sensor (red) which indicates the nonspecific adsorption of BSA on the graphene channel has

been largely suppressed with the hydrogel passivation.
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Figure 4. Real time multiplexed sensing of penicillin and acetylcholine chloride. Blue, green and red
traces represent penicillinase-encoded, acetylcholinesterase-encoded and blank hydrogel-gate FET
channels, respectively. Arrows depict the time points chronologically of solution switching to buffer-

penicillin, buffer, buffer-acetylcholine, and buffer. After the analyte solution is switched into pure buffer,

the device current rapidly returns to the original baseline, demonstrating the reversibility of sensing.



We chose penicillin and acetylcholine chloride to demonstrate the capability for multiplexed
sensing with specifically encoded hydrogel-gate FET sensors (Figure 4). Simultaneous recording
from graphene FET sensors with penicillinase-encoded hydrogel, acetylcholinesterase-encoded
hydrogel and blank hydrogel has portrayed the specific signals upon introduction of different
analytes (Figure 4). Buffer solution containing 3 mM Penicillin G solution was first introduced,
leading to a conductance drop only in the penicillinase-encoded hydrogel-gate FET sensor
(blue). Following a wash with pure buffer solution, another buffer solution with 1.5 mM
acetylcholine chloride was subsequently introduced into the microfluidic channel which yields a
conductance drop only in the acetylcholinesterase-encoded hydrogel-gate FET sensor (green).
The lower conductivity as a result of enzymatic reaction between acetylcholinesterase and
acetylcholine chloride can be associated with formation of carboxylic acid which deprotonates at

neutral pH and increase the acidity of the local environment*?

. No signal was generated from the
blank hydrogel-gate graphene FET sensor (red). Different hydrogel-gate FETs are 50-100 um
apart and signal transduction from each channel does not affect others. Hence, the enzymatic
reactions are confined within the microenvironment formed by the biologically-encoded
hydrogels, paving the way to the real time multiplexed detection of analytes with the same

hydrogel-gate FET biosensor platform.
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Figure 5. Absolute signal amplitudes measured from devices with hydrogel-encapsulated penicillinase
(blue) and free penicillinase (red), representing enzyme activity changing over a week. Each measurement

was repeated 3 times.



In addition to the specific and multiplexed detection of multiple analytes, it is also expected that
the encapsulation of proteins and enzymes within the hydrogel microenvironment can extend
their lifetime and preserve the activity. Proteins and enzymes have limited stability due to their
relatively fast and progressive chemical and structural degradation in solutions*. Silk has been
used to extend the shelf life of antibiotics, vaccines and enzymes by encapsulation to produce
protective microenvironments, barriers, and immobilizing the protein structure to reduce protein
unfolding®®37. Crosslinked PEG**’, alginate*®® and gelatin*' hydrogels have also been reported to
successfully entrap enzymes and antibodies in order to preserve their activity. Here, we expect
the photopolymerized PEG can enhance the stability of enzymes in solution and preserve the
high sensitivity of enzymatic reaction based nanoelectronic biosensor over an extensive period of
time. As a proof-of-concept, the device sensitivity of graphene FET with penicillinase-encoded
hydrogel-gate over time was assessed longitudinally with 10 mM Penicillin G as the analyte. A
high concentration of 10 mM was chosen to avoid the penicillin concentration as the limiting
factor of the enzymatic reaction and to show clearly the changes caused by any possible
degradation or irreversible consumption of the enzymes. As illustrated in Figure 5, the analyte
solution were periodically introduced to the chip while voltage signal amplitudes measured from
three different devices and converted with individual transconductance of each device were
recorded and plotted as a function of time for up to a week. Hydrogel-gate devices suffer no
degradation of sensitivity over a week (blue), proving the significantly enhanced stability of
enzyme molecules as well as minimal irreversible binding with the enzymes. As a control
experiment, a stock solution of 1 mg/mL penicillinase has been used to evaluate the lifetime of
the free enzyme, which showed ~70% loss of signal amplitude in less than 4 hours and no
measurable activity within one day (red). The hydrogel encapsulation strategy offers an
alternative approach to preserve the high sensitivity of multiplexed nanoelectronic biosensors

based on enzymatic activity as well as protein bioreceptors*.

In conclusion, we outline a novel and general strategy to overcome the common limitations of
FET biosensing platforms by exploiting molecularly-encoded functional hydrogel as the gate

material. Spatially-defined photopolymerization is utilized to achieve selective patterning of
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hydrogel on top of individual graphene FET devices with diffraction-limited spatial resolution.
Combined with on-chip microfluidic control, bio-specific receptors can be sequentially
encapsulated into the hydrogel-gate to independently encode selectivity in FET device arrays.
The hydrogel-mediated integration of penicillinase, for example, has been demonstrated to
effectively catalyze enzymatic reaction in the confined FET microenvironment, enabling real
time, label-free detection of penicillin down to 0.2 mM. When additional enzymes (such as
acetylcholinesterase) are incorporated into adjacent devices, highly specific and localized signals
can be recorded with minimal cross-talk, thus demonstrating the unique potential of the current
strategy in high spatial resolution multiplex sensing. In addition, the passivation of the graphene
FET device with a hydrogel layer is found to significantly reduce the nonspecific binding of
analyte molecules to graphene. Lastly, from the longitudinal measurements of hydrogel FET
performance, the controlled microenvironment preserve the enzyme activity for at least 1 week,
in comparison to free enzymes showing a 70% signal loss after 4 hours. Our current
demonstrations are mainly focused on detection of small molecules; for detection of larger
molecules, the microstructure of hydrogel can be further tailored on demand, such as formulating
meso- or macro-porous hydrogel structures via inclusion of inactive porogens during the
photopolymerization process. Moving forward, this strategy can also be implemented for other
semiconducting materials used as FET channel such as silicon nanowires, carbon nanotubes and
transition metal dichalcogenides. The current work represents a strategic approach to enable the
application of existing nanoelectronic tool sets in physiologically relevant conditions and has
potential for use in real time point-of-care diagnostics and in vivo monitoring of disease

progression through long-term tissue interfacing applications*+*4.
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