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Abstract

Recognizing emotions using few attribute dimensions such as
arousal, valence and dominance provides the flexibility to ef-
fectively represent complex range of emotional behaviors. Con-
ventional methods to learn these emotional descriptors primar-
ily focus on separate models to recognize each of these at-
tributes. Recent work has shown that learning these attributes
together regularizes the models, leading to better feature rep-
resentations. This study explores new forms of regularization
by adding unsupervised auxiliary tasks to reconstruct hidden
layer representations. This auxiliary task requires the denois-
ing of hidden representations at every layer of an auto-encoder.
The framework relies on ladder networks that utilize skip con-
nections between encoder and decoder layers to learn powerful
representations of emotional dimensions. The results show that
ladder networks improve the performance of the system com-
pared to baselines that individually learn each attribute, and
conventional denoising autoencoders. Furthermore, the unsu-
pervised auxiliary tasks have promising potential to be used in a
semi-supervised setting, where few labeled sentences are avail-
able.

Index Terms: speech emotion recognition, regularization.

1. Introduction

Affective computing plays an important role in human com-
puter interaction (HCI). Emotions are conventionally repre-
sented with discrete classes such as happiness, sadness, and
anger [1-3]. An alternative emotional representation is through
attribute dimensions such as arousal (calm versus active), va-
lence (negative versus positive) and dominance (weak versus
strong) [4-7]. These attribute dimensions provide the flexibil-
ity to represent multiple complex emotional behaviors, which
cannot be easily captured with categorical descriptors. Further-
more, attribute dimensions can represent varying intensities of
emotional externalizations which are lost when we use broad
categorical descriptors such as “anger” (e.g., cold versus hot
anger). Therefore, constructing models that can accurately pre-
dict attribute scores is an important research problem.

Conventionally emotional attributes are individually mod-
eled [8], assuming that the attribute dimensions are orthogonal
to each other. However, previous studies have shown significant
correlation between different attributes [9]. This observation
strongly suggests the need for jointly modeling multiple emo-
tional attributes. An appealing way to do this task is through
multi-task learning (MTL) where auxiliary tasks representing
various emotional attributes are jointly learned [10, 11]. Learn-
ing the auxiliary task along with the primary task regularizes
the learning process and the models generalize better.

While MTL generalizes the models, it requires labeled data
(supervised auxiliary tasks). Regularization can also be per-
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formed with the help of unsupervised auxiliary tasks [12, 13].
One appealing approach is the reconstruction of intermedi-
ate feature representations using autoencoders [14]. Generally
these unsupervised auxiliary tasks are performed as pre-training
which is followed by normal supervised training of the primary
task [12]. The main criticism of this approach is that the feature
representation learned by the autoencoder does not necessarily
support the supervised classification or regression tasks, which
require the learning of invariant features that are discriminative
for the task.

This paper proposes ladder networks for emotion recogni-
tion, showing its benefits for emotional attribute predictions.
Ladder networks conveniently solve unsupervised auxiliary
tasks along with supervised primary tasks [15, 16]. The unsu-
pervised tasks (with respect to the primary task of predicting
emotional attribute value) involve the reconstruction of hidden
representations of a denoising autoencoder with lateral (skip)
connections between the encoder and decoder layers. The rep-
resentations from the encoder are simultaneously used to solve
the supervised learning problem. The reconstruction of the hid-
den representations regularizes our primary regression task of
predicting emotional attributes. The skip connections between
the encoder and decoder ease the pressure of transporting in-
formation needed to reconstruct the representations to the top
layers. Therefore, top layers can learn features that are use-
ful for the supervised task, such as the prediction of emotional
attributes. Interestingly, the framework also allows us to add
multiple supervised tasks creating ladder networks with MTL
structures.

This paper analyses the benefits of unsupervised auxiliary
tasks to predict emotional attributes with ladder networks. We
compare performance of these architectures with three base-
lines. The first baseline uses features from a denoising autoen-
coder that does not consider emotional labels to create the fea-
ture representation (i.e., unsupervised autoencoder). The sec-
ond baseline is the conventional supervised single task learn-
ing (STL), where the emotional attributes are individually pre-
dicted. The third baseline is the MTL framework proposed by
Parthasarathy and Busso [10], which does not use unsupervised
auxiliary tasks (i.e., ladder networks). The performance shows
that the architectures that use unsupervised auxiliary tasks con-
sistently outperform the baselines. Furthermore, ladder net-
works with MTL structures have the best performance, improv-
ing the predictions of emotional attributes in the MSP-Podcast
dataset.

2. Background
2.1. Related Work
Few studies have focused on using auxiliary tasks to improve
emotion recognition. Parthasarathy and Busso [10] proposed
the joint learning of arousal, valence, dominance through multi-
task learning (MTL). They showed significant improvement in
performance when attributes are jointly predicted compared to
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Figure 1: Various architectures with supervised and unsupervised auxiliary tasks for emotion prediction. The first three structures
are the baseline systems. The last two are the proposed models with ladder networks. While in (a) the reconstruction of the input
is independent of the output prediction (shown with dashed arrows), in (d) the reconstruction in ladder network jointly considers the

output prediction (shown with solid arrows).

single task learning. Chen et al. [11] jointly learned arousal and
valence for continuous emotion recognition, leveraging the re-
lationship between the attributes. Their approach achieved im-
proved performance for the affect subtask on the AVEC 2017
challenge. Xia and Liu [17] proposed a scheme to use the re-
gression of emotional attributes as auxiliary task to aid the clas-
sification of emotional classes. Chang and Scherer [18] pro-
posed a valence classifier that used predictions on arousal as a
secondary task. Their MTL framework did not show any im-
provement over learning just the primary task. Kim et al. [19]
proposed using gender and naturalness of data as auxiliary tasks
to recognize emotions. Finally, Le et al. [20] proposed a clas-
sifier that continuously recognized emotional attributes. The
attribute values were discretized using the k-means algorithm
with k& € {4,6,8,10}. The discretized attribute values were
treated as classes which were jointly predicted with MTL.

The proposed approach builds upon ladder networks that ef-
fectively combine supervised classification or regression prob-
lems with unsupervised auxiliary tasks. Valpola [16] proposed
using lateral shortcut connections to aid deep unsupervised
learning. Rasmus et al. [15, 21] further extended this idea to
support supervised learning. They included a batch normaliza-
tion to reduce covariate shift. They also compared various de-
noising functions to be used by the decoder. Finally, Pezeshki et
al. [22] studied the various components that affected the ladder
network, noting that lateral connections between encoder and
decoder and the addition of noise at every layer of the network
greatly contributed to their improved performance. We describe
in detail this framework in Section 3.2.

2.2. Database

This study uses the version 1.1. of the MSP-Podcast dataset
[23]. The dataset contains emotionally colored, naturalistic
speech from podcasts downloaded from audio sharing web-
sites. The podcasts are processed and further split into smaller
segments between 2.75s and 11s of duration. The segments
are long enough so meaningful features can be extracted, and
short enough so the emotional content does not change across
the speaking turn. The dataset contains 22,630 (38h56m) au-
dio segments. We manually identified the speaker identity of
18,991 sentences spoken by 265 speakers. The speaker infor-
mation is used to create the train, development and test parti-
tions. The partitions aim to have speaker independent sets. The
test set contains 7,181 segments from 50 speakers, the devel-
opment set contains 2,614 sentences from 20 speakers, and the
train set includes the rest of the corpus (12,835 sentences). Au-
dio segments are emotionally annotated on Amazon Mechanical
Turk (AMT). The annotations are collected through perceptual
evaluations from five or more raters. The emotional attributes
are annotated with self-assessment manikins (SAMs) on a seven
likert-scale for arousal (1-very calm, 7-very active), valence (1-

3699

very negative, 7-very positive), and dominance (1- very weak,
7 - very weak). The ground-truth labels for the attributes of a
segment are the average scores provided by the evaluators.

3. Methodology
3.1. Proposed method

An important challenge while designing emotion recognition
systems is to make models that generalize across different con-
ditions [24]. Conventional models (Figure 1(b)) show poor per-
formance when trained and tested on different corpora [10, 25].
Therefore, regularizing deep learning models is crucial in emo-
tion recognition to find representations that are not overfitted
to a particular domain. Regularization can be implemented
with various approaches including early stopping criterion and
dropout. The approach proposed in this study is to solve aux-
iliary tasks along with the primary task of predicting emotional
attributes. By training models that are optimized for primary
and auxiliary tasks, the feature representations are more gen-
eral, avoiding overfitting. There are multiple ways to introduce
auxiliary tasks to model emotion recognition. Previous studies
for emotion recognition have focused on supervised auxiliary
tasks, involving learning multiple emotion attributes [10] (Fig-
ure 1(c)), combining emotional classification problem with re-
gression of emotional attributes [17], and learning other labels
such as gender and age along with the emotion [19]. While
these approaches are appealing, the supervised nature of the
tasks require auxiliary labels for the training samples. Labels
for emotional data commonly come from perceptual evaluations
where multiple raters judge the emotional content of the stim-
uli. These evaluations are both expensive and time consuming.
Therefore, annotating additional meta-information is not a fea-
sible alternative. Its appealing to create unsupervised auxiliary
tasks to regularize the network.

While traditional autoencoders (Figure. 1(a)) reconstruct
input features in an unsupervised fashion, the intermediate la-
tent representations are not trained for the underlying regression
or classification task. This paper proposes to employ the unsu-
pervised reconstruction of inputs as an auxiliary task to regular-
ize the network, while optimizing the performance of an emo-
tion regression system. We efficiently achieve this goal with
ladder network architectures (Figure. 1(d)). The addition of an
unsupervised auxiliary task not only regularizes the learning of
the primary task, but also helps learning powerful discrimina-
tive representations of the input features. Furthermore, since
there is no constraint on the primary task itself, we can com-
bine it with other supervised auxiliary tasks to produce powerful
models for predicting emotional attributes (Figure. 1(e)).

3.2. Ladder Networks

Ladder networks combine supervised primary task with unsu-
pervised auxiliary tasks. The auxiliary tasks reconstruct the
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Figure 2: Architectures using auxiliary tasks for emotion attribute prediction. 2(a) illustrates the ladder network with unsupervised
auxiliary tasks. 2(b) illustrates the MTL network that jointly learns multiple attribute values.

hidden representations of a denoising autoencoder. The encoder
of the autoencoder is simultaneously used to train the primary
task at hand. The key aspect of the ladder network is the lateral
connections between encoder and decoder layers. These skip
connections allow the decoder to directly learn the represen-
tation from the encoder layer, bypassing the top layers of the
encoder which can then learn representations that would help
with the primary supervised task. Figure. 2(a) illustrates a con-
ceptual ladder network with two hidden layers used for a re-
gression task. Note that the true benefits of the ladder network
is for semi-supervised setting where few labeled samples for
the primary task are available in the target domain. However,
this study focuses on the fully-supervised setting where we have
emotional labels for every sample. The semi-supervised case is
left as a future work.

Encoder: The encoder of the ladder network is a fully con-
nected multilayer perceptron (MLP) network. A Gaussian noise
with variance o2 is added to each layer of the noisy encoder
(Figure. 2(a)). The representation from the final layer z) of
the encoder is used as the target for the supervised task. The
decoder tries to reconstruct the latent representation z at every
layer using, as target, a clean copy of the encoder z. Note that
the supervised task, in this study the prediction of emotional
attributes, is trained with the noisy encoder which further regu-
larizes the supervised learning. However, for inference we use
the predictions from the clean encoder. We describe the choice
of hyper-parameters for the network in Section 4.3.

Decoder: The goal of the decoder is to denoise the noisy la-
tent representations. The denoising function, g(), in Figure 2(a)
combines top-down information from the decoder and the lat-
eral connection from the corresponding encoder layer. With lat-
eral connections, the ladder networks perform similar to hier-
archical latent variable models. Lower layers are mostly re-
sponsible for reconstructing the input vector. This approach
allows higher layers to learn more abstract, discriminative fea-
tures needed for the supervised task. We use the denoising func-
tion proposed by Pezeshki et al. [22], modeled by an MLP with
inputs [u, Z,u © z], where w is the batch normalized projection
of the layer above and ® represents the Hadamard product. We
use an MLP with 1 hidden layer and 4 hidden nodes to model
the denoising function g(). The overall loss function is:
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where C. is the supervised loss, C;l) is the reconstruction loss
at layer [ and )\; is a hyper-parameter weight for the loss.

3.3. Ladder Network with Multi-task learning

While ladder network utilizes the reconstruction cost as an un-
supervised auxiliary task, regularization can also be achieved
through supervised tasks. With emotional attributes, MTL can
achieve this goal by joint learning multiple attributes as pro-
posed by Parthasarathy and Busso [10]. Figure 2(b) illustrates a
two hidden layer MTL network that jointly predicts three emo-
tional attributes: arousal, valence and dominance. The overall
loss for the MTL network is given by

Curr = aClaro + BCha + (1 — @ — B)Claom 2)

with 0 < a,8 < 1 and a + S < 1. Parthasarathy and
Busso [10] showed that MTL networks perform better than
STL networks for predicting emotional attributes. An appeal-
ing framework is to combine the proposed ladder network with
MTL as shown in Figure 1(e). The supervised loss C'. in Equa-
tion 1 is replaced by the MTL loss Cas7r, from Equation 2. This
approach aims to combine supervised and unsupervised auxil-
iary tasks, creating an architecture that can learn powerful fea-
ture representations targeted for the prediction of emotional at-
tributes (while the target attribute is the primary task, the other
two attributes are auxiliary tasks).

4. Experimental Evaluation
4.1. Acoustic Features

We use the feature set introduced for the Computational Par-
alinguistic Challenge at Interspeech 2013 [26]. The feature ex-
traction process involves two parts. First, low level descrip-
tors (LLDs) are extracted on a frame-by-frame basis. The set
includes mel frequency cepstral coefficients (MFCCs), funda-
mental frequency (FO) and energy. Various statistics, denoted as
high level features (HLFs) are calculated over the LLDs. Over-
all, the feature set contains 6,373 features which we use for the
various tasks in this study. The features were extracted with
OpenSMILE [27].

4.2. Baselines

We compare our results with three baseline networks. Fig-
ure 1(b) shows the first baseline, which is a deep neural net-
work (DNN) separately trained for each emotional attribute
(i.e., STL). Figure 1(a) shows the second baseline, which learns



Table 1: CCC values for the validation and test sets. The evaluations include 256 nodes per layer for arousal (Aro), valence (Val),
and dominance (Dom). Bold values indicate the model(s) with the best performance per attribute (multiple cases are highlighted when

differences are statistical significant). * indicates significant improvements of the ladder networks compared to all the baselines.

Task Validation Test
Aro Val Dom Aro Val \ Dom
Autoencoder 0.358 £ 0.069 | 0.136 £ 0.141 0.305 +0.139 0.272 £ 0.136 -0.006 +0.012 | 0.284 +0.148
STL 0.778 £ 0.004 | 0.443 +0.008 | 0.722 4 0.004 0.737 £ 0.008 0.292 £+ 0.007 | 0.670 & 0.007
MTL 0.791 £ 0.003 | 0.469 + 0.010 | 0.735 4+ 0.003 0.745 + 0.008 0.285 £+ 0.007 | 0.676 4 0.006
Ladder+STL | 0.801 & 0.002* | 0.443 £ 0.007 | 0.742 £ 0.002* || 0.765 & 0.002* | 0.294 & 0.007 | 0.687 & 0.003*
Ladder+MTL | 0.803 & 0.002* | 0.458 +0.004 | 0.746 + 0.001* || 0.761 & 0.002* | 0.289 + 0.008 | 0.689 + 0.002*

feature representations using an autoencoder in an unsupervised
fashion. The feature representations learned are then used as in-
put for the supervised task. Unlike the ladder networks, the
feature representation is independently learned from the super-
vised task. The objective of the autoencoder is to learn hidden
representations that are useful for denoising the noise added to
the features. All weights and activations of the encoder are
frozen, and an output layer is then added on the top layer of
the encoder for the prediction task. Figure 1(c) shows the third
baseline, which uses MTL to jointly predict the three emotional
attributes. Following the work of Parthasarathy and Busso [10],
we train three MTL networks, one for each target emotional
attribute, optimizing « and S in Equation 2 to maximize the
performance for each attribute. By learning all three tasks, we
obtain feature representations that generalize well across differ-
ent conditions.

4.3. Implementation Details

All the deep neural networks in this study have two hidden
layers with 256 nodes per layer. We use rectified linear unit
(ReLU) activation at the hidden layers and a linear activation for
the output layer. We optimize the networks using NADAM with
a learning rate of 5¢~°. The networks are implemented with
dropout p = 0.5 at the input and first hidden layer. Following
Trigeorgis et al. [28], we use the concordance correlation coef-
ficient (CCC) as the loss function for training the models. We
also use CCC to evaluate the models. All the hyper-parameters
are set maximizing performance on the validation set, including
the parameters for MTL («, ). We train all the networks for
50 epochs with early stopping based on the results observed in
the validation set. The best model on the validation set is then
evaluated on the test set. All the models are trained 10 times
with different random initializations, reporting the mean CCC.

For the ladder network, we add noise with variance o2=0.3
to each layer of the encoder. We conducted a grid search
for the weights for the reconstruction loss with values A; €
{0.1,1,10, 100}. A value of \; = 1 gives the best result on the
validation set. We use the mean squared error as the reconstruc-
tion cost and a dropout with probability p = 0.1 at the input
layer and the first hidden layer. Notice that the original paper
implementing ladder network did not use dropout. However,
the high dimensionality of our feature vector and the violation
of the independence assumption in our features motivate us to
further regularize the network by adding dropout.

5. Results

Table 1 illustrates the mean CCC and standard deviation of the
proposed architectures and the baselines for the validation and
test sets. We analyze the performance of various models us-
ing the one-tailed t-test over the 10 trials, asserting significance
if p-value<0.05. We highlight with an asterisk when the lad-
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der models perform better than the baselines. First, we note
that the results on the validation set are significantly higher than
performance on the test set for all emotional attributes and all
models. Comparing the performance of the different architec-
tures on the test set, we note that all the networks perform better
than the autoencoder baseline. This result shows that the feature
representation learned by the autoencoder does not fit well for
the primary regression task. Next, amongst the baselines we
see that MTL models perform the best in all cases, except for
valence on the test set. This result further confirms the bene-
fits of supervised auxiliary tasks through the joint learning of
multiple emotional attributes, shown in our previous study [10].
Observing the proposed architectures, we note that in almost
all cases the ladder networks perform significantly better than
the baselines and give the best performance. For valence, while
MTL performs better than all other methods on the validation
set, it does not translate to the test set where the Ladder+STL
architecture has the best performance. The role of regulariza-
tion for valence is an interesting topic which requires further
study [29]. Amongst the proposed architectures, Ladder+MTL
performs better than Ladder+STL in many cases. The results
show the benefits of combining both unsupervised and super-
vised auxiliary tasks for predicting emotional attributes. Over-
all, the unsupervised auxiliary tasks greatly help to regularize
our network improving the predictions and providing yet state-
of-the-art performance on the MSP-Podcast corpus.

6. Conclusions

This work proposed ladder networks with multi-task learning
to predict emotional attributes, achieving state-of-the-art per-
formance on the MSP-Podcast corpus. We illustrated the ben-
efits of using auxiliary tasks to regularize the network by com-
bining unsupervised auxiliary tasks (ladder network) and super-
vised auxiliary tasks (multi-task learning). The emotional mod-
els generalize better across various conditions providing signif-
icantly better performance than the baseline systems.

There are many future directions for this work. First, the
true potential of using unsupervised auxiliary tasks is in har-
nessing the almost unlimited amount of unlabeled data. We
can extend the framework to work in a semi-supervised man-
ner, where we can combine large number of unlabeled samples
with fewer emotionally labeled samples, providing a more pow-
erful feature representation. Second, the feature representations
produced by the ladder network can be further studied and used
as general input features for other emotion recognition prob-
lems such as classification of emotional categories. Finally, the
auxiliary tasks could be extended to cover multiple modalities
generalizing the models even more. The promising results in
this study suggest that these extensions can lead to important
improvements in emotion prediction performance.
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