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A primary focus of historical biogeography is to understand changes in species 
ranges, abundance and genetic connectivity, and changes in community composition. 
Traditionally, biogeographic inference has relied on distinct lines of evidence, including 
DNA sequences, fossils and hindcasted ecological niche models. In this review we 
propose that the development of integrative modeling approaches that leverage 
multiple distinct data types from diverse disciplines has the potential to revolutionize 
the field of biogeography. Although each data type contains information on a distinct 
aspect of species’ biogeographic histories, few studies formally integrate multiple types 
in analysis. For example, post hoc congruence among analyses based on different data 
types (e.g. fossils and genetics) is commonly assumed to indicate likely biogeographic 
histories. Unfortunately, analyses of different data often reach discordant conclusions. 
Thus, fundamental and unresolved debates continue regarding speed and timing of 
postglacial migration, location and size of glacial refugia, and degree of long distance 
dispersal. Formal statistical integration can help address these issues. More specifically, 
formal integration can leverage all available evidence, account for inherent biases 
associated with different data types, and quantify data and process uncertainty. Novel, 
quantitative integration of data and models across fields is now possible due to recent 
advances in cyberinfrastructure, spatial modeling, online and aggregated ecological 
databases, data processing and quantitative methods. Our purpose is to make the case 
for and give examples of rigorous integration of genetic, fossil and environmental/
occurrence data for inferring biogeographic history. In particular, we 1) review the 
need for such a framework; 2) explain common data types and approaches used to 
infer biogeographic history (and the challenges with each); 3) review state-of-the-art 
examples of data integration in biogeography; 4) lay out a series of novel, suggested 
improvements on current methods; and 5) provide an outlook on technical feasibility 
and future opportunities.
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Glossary

ABC (approximate Bayesian computation; also see Box 1) – a 
simulation-based statistical method that approximates the 
likelihood of a model through comparisons of summary 
statistics calculated from simulated and observed data.

Biogeographic history – the study of processes and patterns 
related to: geographic range shifts, contractions and 
expansions; demographic fluctuations; locations of 
refugia; and migration patterns.

Bottleneck – a drastic reduction in population size that often 
also results in a loss of genetic diversity; colonization at a 
continental scale often involves serial bottlenecks.

Coalescent theory – a body of theory that uses probabilistic 
models to reconstruct the genealogy of a sample backward 
in time from the sampled lineages (present) to the most 
recent common ancestor (past).

DRM (dynamic range model) – a hierarchical Bayesian 
approach to estimate parameter values of species’ range 
dynamics, including dispersal and demographic rates 
dependent on environmental conditions.

ENM (ecological niche model) – as used here, a correlative 
model for predicting suitable environment of a species.

Genetic differentiation – differences in allele frequencies 
between two populations.

Haplotype – a segment of DNA inherited from a single 
parent, often used in phylogeography as representing a 
distinct lineage.

PVM (pollen vegetation model) – a mathematical or 
statistical model used to estimate vegetation from fossil 
pollen count records.

Introduction

A major goal of ecologists and evolutionary biologists is to 
document and understand species’ historical dynamics in 
space and time, i.e. where they existed (phylogeography), 
with what abundance and genetic connectivity (population 
biology), with what other species (community ecology), and 
due to what ecological processes. We refer to the study of 
species’ historical dynamics in space as biogeographic his-
tory. The science of biogeographic history includes the study 
of processes and patterns related to geographic range shifts, 
contractions and expansions, demographic fluctuations and 
changes in migration rates. The focus of many such investiga-
tions, and the focus of this review, is biogeographic history 
during the Quaternary (such as species’ dynamics during or 
following glacial periods or Holocene temperature fluctua-
tions). Understanding recent biogeographic history provides 
an opportunity to document pre-anthropogenic ecosys-
tems and assess how species respond to rapid climatic shifts. 
Investigations at this temporal and spatial scale can draw upon 
diverse data sources, including paleoclimate models with rel-
atively high spatial (~100 km) and temporal (~10–100 years; 
Lorenz et al. 2016, Fordham et al. 2017) resolution during 

this time period, and extensive, well-curated records of fos-
sils (especially pollen from sediment cores). DNA from living 
organisms or fossils also holds information about the past at a 
range of time scales, including population-level demographic 
processes that occurred within tens to hundreds of genera-
tions (Luikart et al. 1998, Dellicour et al. 2014). Processes 
such as intercontinental dispersal, speciation and human-
mediated events, e.g. crop domestication and invasions, are 
aspects of biogeographic history, but are outside the focus of 
this paper. Nonetheless, some of the methods we discuss can 
be used in these areas.

During climate fluctuations of the Quaternary, species 
experienced dramatic shifts in their geographic range and 
abundance, resulting in changes to community composition, 
genetic variation and biotic interactions (Davis 1983, Hewitt 
2000, Gill  et  al. 2009). For example, in eastern North 
America and Europe, glaciers and intense cold forced many 
species southward during the glacial periods (Hewitt 2000), 
though the degree of isolation and latitude of refugia may 
have differed between continents (Lumibao  et  al. 2017). 
In contrast, in California and South America, populations 
contracted into multiple, climatically stable refugia 
(Grivet et al. 2006, Carnaval et al. 2009). While such broad 
characterizations of historical demography are informative, 
the details remain elusive. Open ecological questions include 
the following: with what speed and trajectory did species 
change their distributions? To what degree did long distance 
dispersal contribute to range shifts? What factors limited 
species ranges? What traits determined the degree of change 
a species experienced? Did closely-related species, or species 
in the same communities, react similarly? Open evolutionary 
questions include: How large and numerous were refugia? To 
what degree did refugia experience genetic divergence? What 
changes in adaptive and neutral genetic diversity occurred 
during recolonization? Answering these questions requires 
quantifying key facets of biogeographic history including 
location of refugia, population sizes, migration rates and 
timing of demographic changes.

Resolving Quaternary biogeographic history is important 
not only for fundamental ecological and evolutionary sci-
ence, but is also crucial for addressing applied scientific ques-
tions about species’ response to contemporary climate change 
(Barnosky  et  al. 2017, Nogués-Bravo  et  al. 2018). Species 
geographic ranges, demography and community composition 
are already changing under climate change, which will impact 
ecosystem services, carbon cycling/carbon storage, and global 
biodiversity. Humans may be able to mitigate some socioeco-
nomic and ecological impact if we can understand, forecast, 
plan and react to ongoing shifts. Prediction and mitigation 
of species’ response will depend upon sound knowledge of 
the speed at which species can disperse into new habitat, the 
degree to which species will respond in synchrony and main-
tain community structure, the length of time that species can 
persist at small population sizes in suboptimal habitat, and 
the traits that limit or enhance species’ successful response 
(Petit et al. 2008, Woolbright et al. 2014). Such knowledge 
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can also assist in designing protected area reserve networks 
and choosing species for restoration (e.g. species with robust 
climate tolerances) or translocation (e.g. those species that 
are unable to move on their own). In addition, knowing the 
distribution of rates of species’ movement provides a sense of 
overall risk for all species. Of course, contemporary habitat 
fragmentation will present species with new challenges not 

faced in the past (i.e. the Holocene); nonetheless, knowl-
edge about how species and communities respond to chang-
ing conditions is foundational for ecosystem management 
in the future. Finally, a better understanding of geographic 
and genetic structure during glacial periods can help identify 
regions and environments that have supported species’ sur-
vival (which may be informative for placing contemporary 

Box 1. Approximate Bayesian computation

A major challenge to integrating disparate types of biogeographic data is that each represents the outcome of different ecological and 
measurement processes. As a result, measurement and process uncertainty differ among data types. Bayesian statistical approaches 
provide a natural framework for incorporating different sources of information and accounting for multiple sources of uncertainty. 
Approximate Bayesian computation (ABC) is a method for statistical inference in situations in which it is difficult or impossible to 
articulate the likelihood of the model (Bertorelle et al. 2010). As an illustration of a simple ABC analysis, consider the two population 
divergence models presented in Fig. 6. In ABC, a generative model that describes the process of interest (i.e. population divergence, 
Fig. 6A) is used to simulate datasets whose parameter values are randomly drawn from user-defined prior distributions (Fig. 6E–G). 
Summary statistics (Fig. 6B–C) are calculated for each simulated dataset (e.g. individual genotypes) and recorded along with the 
parameter values used to generate the dataset. Examples of these statistics may include FST in genetic studies, the tree topology in 
phylogenetics (Jackson et al. 2017), or community composition in ecology. Choice of summary statistics is an important aspect of 
ABC, as the summary statistics must reflect changes in the underlying parameters driving the simulations; there is not a single set of 
summary statistics that will be informative for all studies (a point we revisit in section 3, Advance 1). Summary statistics from the 
simulated datasets are then compared to summary statistics calculated from an observed dataset, and the difference between observed 
and simulated statistics is quantified using a distance metric. This process of simulation and computation of a distance metric is 
repeated many times (e.g. >106). For each repetition, inputs (i.e. parameter values) and outputs (i.e. summary statistics) are recorded. 
Simulations that produce summary statistics closest to those calculated from the observed data are retained (typically 0.1–3% of all 
simulations, with authors often testing multiple thresholds to ensure results are not sensitive to the precise choice, Fig. 6D; see also 
Bertorelle et al. 2010) based on the assumption that they best reflect the true process. These retained parameter values are collectively 
used to form posterior distributions for relevant parameters (e.g. dispersal components, population size changes, refugium locations; 
Tavaré et al. 1997, Pritchard et al. 1999, Beaumont 2010, Fig. 6E–G). In the example in Fig. 6, two summary statistics provide a 
strong signal for estimation of two model parameters (Fig. 6E–F) and a poor signal for a third (Fig. 6G).

Since its introduction (Tavaré  et  al. 1997, Pritchard  et  al. 1999), ABC has been widely used in population genetics to study 
biogeographic processes including invasion (Estoup et al. 2001, 2010, Benazzo et al. 2015), historical demography (Thornton and 
Andolfatto 2006, François et al. 2008, Rougemont and Bernatchez 2018) and the role of environmental change and geological pro-
cesses in determining biodiversity (Patiño et al. 2015, Barnes and Clark 2017). The ABC statistical framework is flexible; it can be 
applied to any system that can be described using a generative model and for which a set of informative summary statistics can be 
identified. ABC studies in ecology use a variety of modeling approaches for the focal system such as a system of difference or differ-
ential equations, agent-based models, or cellular automata. In population genetic studies, a reverse-time coalescent simulation model 
is parameterized by an explicitly-defined set of demographic events (e.g. population divergence or size change), and outputs a set of 
individual genotypes. However, it is possible to couple coalescent simulations with detailed agent-based forward-time simulations of 
population dynamics (in which only demographic parameters are set by the user). With this formulation, demographic history (i.e. 
all colonization events and population sizes through time) is an output of the stochastic agent-based model (rather than defined a 
priori). This demographic history then informs the more computationally efficient coalescent simulation. Agent-based simulations 
are computationally expensive but facilitate more realistic spatial and demographic processes (Hoban et al. 2012). At the same time, 
algorithms are constantly becoming more efficient and ABC simulation lends itself to easy parallelization on ever-growing compute 
clusters, both of which offset the computational costs of model realism. Nonetheless, there are limits to complexity of models and scale 
of resolution (as with any inference methods).

One main advantage of ABC is the ability to make inference about complex processes such as biogeographic histories (species’ 
populations moving across space) which often include multiple bottlenecks, spatial expansions, changes in migration rate, etc. 
Another advantage of ABC is that quantitative evaluation of confidence in model selection and parameter estimation is built into 
the framework via the analysis of pseudo observed datasets, which provides an assessment of the confidence in model selection and 
the accuracy and precision of parameter estimates (Bertorelle  et  al. 2010). In addition, the underlying demographic and genetic 
models for ABC are built on well-understood processes (e.g. migration, coalescence). Complex models can be constructed by adding 
together many simple components at varying spatial and temporal scales (Bertorelle et al. 2010, Csilléry et al. 2010, Hoban 2014). 
A final benefit of ABC (elaborated on in section 3) is the ability to incorporate prior information from different sources – a natural 
way of combining existing information with new data. However, in practice, ABC analyses in population genetics often rely on 
broad, uninformative prior distributions (Fig. 6E–G), or priors defined by intuition and the investigator’s interpretation of available 
knowledge, missing an opportunity to leverage data from other fields in a quantitative fashion. Future developments in ABC will 
likely benefit from combining non-genetic data with genetic data such that both are used in the simulation and analysis.
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protected areas), and regions which could harbor high genetic 
variation today. These regions may also be useful reservoirs of 
genetic resources for seed banks, breeding or translocation 
(Fady et al. 2016).

To understand species’ biogeographic histories, differ-
ent scientific communities have used various data types and 
methods for translating data to inferences. In this review 
we focus on three approaches: 1) ecological niche models 
(ENMs), in which species’ occurrences (contemporary and/
or historical) are combined with environmental data to esti-
mate ecological niches; 2) paleoecological approaches, in 
which fossils (especially fossil pollen, wood fragments, bones 
or shells) are used either directly or in a pollen–vegetation 
model to track species ranges through space and time; and 
3) genetic/phylogeographic approaches, in which ancient or 
modern DNA sequence data are combined with coalescent 
or phylogeographic models to quantify demographic change. 
In discussing these approaches, we will focus particularly on 
plants, while including animal examples when possible. The 
reasons for a plant focus include: 1) there are extensive net-
works of well-curated fossil pollen records; 2) new advances 
in pollen–vegetation modeling now make it possible to 
translate these pollen records to vegetation abundance; and 
3) chloroplast DNA from plants is inherited via the unit of 
colonization (seeds), and thus provides a long-lasting record 
of colonization history. Nevertheless, the concepts and meth-
ods we discuss also apply to historical data types indicative 
of presence of any taxa (e.g. packrat middens, shell collec-
tions, macrofossils, historical human accounts, archaeological 
materials, etc.).

In each of these three approaches, early inferences were 
often based on the visual interpretation of mapped data (e.g. 
DNA haplotype distributions or clines of percentage of fossil 
pollen). In subsequent decades, major breakthroughs in the 
size and resolution of datasets, aggregated databases, and new 
statistical analyses have transformed each of these disciplines. 
While the use of multiple datasets is on the rise (Gavin et al. 
2014), many investigations still use only, or primarily, one 
data source (e.g. only genetics) and methods for true integra-
tion across approaches are lacking. At best, results of different 
strands of analysis are qualitatively compared (see examples 
in Gavin et al. 2014). Fundamentally, each data type reflects 
different aspects of species’ biogeographic history, and thus 
intuitively no single data type alone is sufficient to reveal all 
aspects of a species’ biogeographic history. This is because 
each type of data is the outcome of different underlying pro-
cesses (e.g. mutation, dispersal, demography, sedimentation, 
etc.), reflects different spatial and temporal scales, and has rec-
ognized limitations and errors. Each data type also typically 
has different spatial coverage of a species’ range, and different 
abundance and resolution (e.g. all data types have collector 
bias; fossil pollen sites and specimen records are more abun-
dant than genetic samples). As a consequence, importantly, 
inferences from analyzing different data types often conflict 
with each other. Of course, all statistical estimation will have 
associated error, and the objective is to minimize the error. 

However, even after decades of work, achieving sufficient res-
olution of species’ biogeographic histories (i.e. where species 
were, when and why) remains a challenge (Feurdean  et  al. 
2013, de Lafontaine et al. 2014, Fuentes-Utrilla et al. 2014).

We assert that an analytical revolution is needed to resolve 
ongoing disagreements in biogeographic understanding. 
Specifically, a true advance will require quantitative integra-
tion of the data and models used in different disciplines. 
The biogeographic community has recognized the need for 
a comprehensive framework to combine information from 
multiple approaches and data types (Fordham  et  al. 2013, 
Gavin et al. 2014, Collevatti et al. 2015a), and some progress 
has been made. Cutting edge approaches (section 3) include 
the integration of dispersal and demographic processes into 
niche models (Pagel and Schurr 2012) or the use of one data 
type to define conditions or priors for a model informed by 
another data type (Espíndola et al. 2012, Alvarado-Serrano 
and Knowles 2014, Brown  et  al. 2016). Nonetheless, an 
approach that truly integrates all data sources has yet to be 
developed.

An integrative framework should 1) leverage data and 
understanding from different fields; 2) model the key relevant 
processes that produce the data (not only demographic pro-
cesses but also mutation, pollen deposition, etc.); 3) quantify 
uncertainty within and among data types and processes; and 
4) be computationally tractable and well-validated (Schaub 
and Abadi 2011, Fordham  et  al. 2013, Collevatti  et  al. 
2015a). The development of new, integrated informat-
ics approaches will allow for improved understanding and 
quantification of fundamental aspects of biogeographic his-
tory mentioned above (i.e. speed and timing of migration, 
location and size of refugia, degree of long distance dispersal, 
etc.). Ideally, these integrative approaches would account for 
the various sources of uncertainty inherent in the data and 
processes. This characterization of uncertainty will allow for 
improved accuracy in parameter estimates and an understand-
ing of statistical confidence. Additionally, bias will be reduced 
compared to analysis of single data types (Schaub and Abadi 
2011, Talluto et al. 2016). This will ultimately help achieve 
biological understanding by resolving the above-mentioned 
fundamental, long-standing questions regarding how species 
and communities responded to Quaternary climate change. 
Integrative advancements will be enabled by recent improve-
ments in data and models, including the following: the avail-
ability and curation of large biological and environmental 
datasets (e.g. Sequence Read Archive, Neotoma Paleoecology 
Database, Global Biodiversity Information Facility, GeOMe, 
CHELSA, WORLDCLIM, etc.), new pollen–vegetation 
models for reconstructing past species’ ranges and forest com-
munities (Dawson et al. 2016), advances in spatially-explicit 
demographic modeling (Ray et al. 2010), availability of high 
quality ancient DNA (Llamas et al. 2016), identification of 
new and informative spatial-genetic summary statistics (Peter 
and Slatkin 2013, Alvarado-Serrano and Hickerson 2016, 
2018), and joint demographic-niche models (Pagel and 
Schurr 2012).
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In this article, we will: 1) describe the major data 
sources, including their strengths and weaknesses, as well 
as approaches used to infer biogeographic history from 
each in isolation (section 1); 2) review the current state-
of-the-art of integrative approaches, focusing in particular 
on approximate Bayesian computation (ABC) (section 2); 
3) propose a novel set of scaffolded and feasible modeling 
advances to aid in integrating these data more tightly and 
in a more quantitative manner (section 3); and 4) provide 
an outlook on future opportunities and computational 
and technical feasibility (section 4). Readers interested in 
this topic may also turn to recent, complementary papers. 
Fordham  et  al. (2013) focus on practical applications of 
forecasting models that use multiple data sources for bio-
diversity conservation, e.g. predicting biodiversity loss or 
determining species’ endangerment status; Maguire  et  al. 
(2015) explain the complementary use of fossil and 
environmental data for delineating a species’ niche and 
testing for niche change over time; Alvarado-Serrano and 
Knowles (2014) focus in particular on integrating genetic 
and ecological niche models; and finally, Gavin et al. (2014) 
focus on post hoc methods for combining data sources (e.g. 
analyzing data separately and comparing conclusions by 
overlaying maps).

1. Introduction to data types and approaches

Different kinds of evidence contain different information 
into species’ biogeographic history including: georeferenced 
modern and historic natural history collections; geological 
and climatic evidence of changes (e.g. glacial advances and 
retreats); pollen, charcoal and macrofossils; archeological 
evidence (e.g. evidence of human use of particular species); 
modern measures of traits, dispersal and demographic pro-
cesses; and modern and ancient DNA data (Fig. 1). These 
different sources of evidence (Fig. 1) are influenced by a com-
bination of shared and distinct processes, and consequently 
each can provide complementary and unique knowledge 
about biogeographic history. For example, georeferenced 
collections data can be used to calibrate niche models for 
hindcasting habitat suitability which provides information 
about environments where species could potentially survive. 
Fossil evidence, interpreted through appropriate models and 
temporal calibration, provides physical documentation of 
species presence and relative abundance. Genetic data can 
be used to estimate temporal changes in abundance and 
migration between populations. Because each is influenced 
by different, but overlapping, processes (Fig. 2), these data 
are heterogeneous and incomplete and vary in spatial and 

Figure 1. Conceptual summary of the data types and methods used to infer species’ biogeographic history. The top row shows a hypothetical 
(unobserved) distribution, abundance and genetic trajectory of the species through time. The leftmost column illustrates different types of 
data (observations) used by the respective methods (ecological niche modeling combined with global circulation models, pollen–vegetation 
modeling, genetic analysis) to infer biogeographic history (right four columns). Note that fossil pollen can be modeled using either an ENM 
or a PVM. Each data type and method reflects part of the real history, but also suffers from data gaps, issues with false positives and 
negatives, and limited ability to depict all relevant aspects of biogeographic history (note the black arrows). The examples are for a simulated 
species whose characteristics and history are based on green ash Fraxinus pennsylvanica.
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temporal resolution (Table 1). The raw data themselves must 
be collated, cleaned, and often used in concert with mod-
eling approaches and additional datasets (e.g. environmen-
tal data, Maguire  et  al. 2015). Biologists have worked for 
decades with these approaches to infer species’ past ranges, 
resulting in key discoveries (e.g. pollen diagrams have shown 
that Pinus was among the first postglacial colonizers in North 
America (Davis 1983), while Petit et al. (2003) used popu-
lation genetic data to document isolated glacial refugia in 
southern peninsulas and mid-latitude ‘mixing’ of lineages in 
Europe). Nonetheless, recent work demonstrates that current 
understanding of biogeographic history is lacking, and some-
times misleading, due to increasingly-recognized issues with 
data and models in respective disciplines. For example, rates 
of postglacial forest movement inferred by molecular marker 

data are two to five times slower than rates inferred from 
pollen data (McLachlan et al. 2005, Cheddadi et al. 2014), 
and both are faster than expected based on observed seed 
dispersal (Reid 1899, Clark et al. 1998). This conflict, and 
broadly the inability of any one data type to unambiguously 
resolve biogeographic history, means that the use of only one 
approach limits our collective understanding of evolutionary 
and community dynamics.

Inference of biogeographic history is an inherently diffi-
cult problem. The processes of interest occur at scales that 
vary by several orders of magnitude (e.g. from meters to 
hundreds of kilometers, and hourly to millenial), and data 
coverage is inconsistent and uneven across space and time 
(e.g. genetic data collection is typically not systematic, pol-
len records from unglaciated regions during the last glacial 

Table 1. Summary of major data types and their predominant advantages and disadvantages (IE – indirect evidence; DE – direct evidence). 
See Glossary for definition of other terms and abbreviations.

Type Process
Common method 

of analysis Advantage
Disadvantage for biogeographic 

inference

Fossil pollen occurrence Presence of a species in a 
region (DE)

PVM, sometimes 
ENM

Moderate spatial and 
temporal accuracy

Pollen can disperse far from a 
population; abundance is 
relative to other species

Macrofossils occurrence Presence of a species in a 
locale (DE)

ENM, sometimes 
ABC

Good spatial and 
moderate temporal 
accuracy

Are relatively rare 

Modern DNA Demographic and spatial 
change (IE)

ABC simulations Reveals non-relative 
abundance especially 
low abundance

Decreasing resolution through 
time; some processes 
produce same pattern

Ancient DNA As modern DNA and 
fossils (IE/DE)

In development As above but more spatial 
and temporal accuracy

Technically difficult; rare and 
thus coarse resolution; error 
prone

Contemporary observations, 
historical records

Suitable habitat (IE) at a 
point in space and time

ENM, sometimes 
ABC

Bounds where a species 
can likely exist; 
precise

Many assumptions (static niche, 
etc.); cannot distinguish 
sinks/sources

Mutation,
selection,
mating  
systems

Contemporary 
processes

Seed 
dispersal

Pollen 
dispersal

Population 
size

Seed 
dispersal

Pollen 
dispersal

Historical 
processes

Population 
size

Fossil pollen 
distribution

Genotype 
distribution

Current-day 
species
distribution

Preservation,
incomplete 
sampling

Observed data

Nuisance 
processes

Figure 2. The directional influences of major processes on the observations of three data types used for historical biogeographic inference. 
Circles represent observed evidence, rectangles represent generative processes, and arrows represent causal relationships. Orange and blue 
boxes correspond to historical and contemporary processes whereas green rectangles describe processes that influence observed data, but that 
are not of immediate concern when estimating range-shifts. While ‘nuisance processes’ are enormously important in other realms of ecology 
and evolutionary biology, here they represent processes that typically do not directly influence biogeography. Note that while genetic and 
occurrence data continue to be influenced through contemporary processes, fossil evidence reflects only historical processes.
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maximum are sparse due to the lack of glacial lakes, occur-
rence records may show collector bias, etc.). In addition, there 
are numerous parameters of biogeographic history that need 
to be simultaneously inferred, i.e. species’ abundance at key 
time points; process parameters such as proportion of long 
distance dispersal events; location(s) of glacial refugia; and 
the timing and rate of post-glacial expansion. Due to these 
considerations as well as data-specific attributes, benefits and 
limitations, we expect that joint biogeographic inference 
based on all data types will reduce gaps in information and 
knowledge and reduce uncertainty and bias resulting from 
inference based on a single data type (Schaub and Abadi 
2011). Before discussing recent and proposed developments 
towards integration of information, we begin by summa-
rizing the following: 1) environmental data and specimen 
occurrence records; 2) fossil (especially pollen) data; and 3) 
genetic data. For each of these data types, we describe how 
it is obtained, measured and analyzed; its scale; correspond-
ing key assumptions, weaknesses and strengths; and some 
successful applications.

Environmental and specimen occurrence data
Contemporary occurrence data (geolocation for each indi-
vidual, ideally with a stated accuracy) can be obtained from 
modern global repositories like the Global Biodiversity 
Information Facility (GBIF 2018; though extensive cleaning 
and checking may be required), while environmental data for 
those same geolocations (e.g. minimum temperature, sum-
mer rainfall, etc.) may be obtained from a growing number of 
environmental databases like CHELSA (Karger et al. 2017) 
and WORLDCLIM (Fick and Hijmans 2017). Ecological 
niche models (ENMs, i.e. species distribution models) are 
used to relate information on occurrence and environmental 
data. Depending on whether presence/absence or presence-
only data are used to train the model (Guillera-Arroita et al. 
2015), they estimate either the probability of occurrence or 
habitat suitability by identifying correlations between species’ 

geo-located occurrence records and environmental data at 
those locations (Fig. 3). ENMs can be trained with contem-
porary data or macrofossils and datasets from paleoclimate 
simulations (Nogués-Bravo 2009), but as we explain below, 
pollen fossil occurrences can be interpreted through a separate 
modeling framework which takes into account the processes 
producing the data. The spatial grain of the model depends 
on the spatial resolution of the environmental data; the finest 
grain obtainable for contemporary continental-scale climate 
data is usually ~1 km (Fick and Hijmans 2017, Karger et al. 
2017), although spatial uncertainty in occurrence data 
coordinates may require using coarser environmental data. 
Climate reconstructions from paleoclimate models can be 
downscaled to the same resolution as contemporary environ-
mental datasets, but typically the ‘native’ resolution at which 
it is modeled is 50–200 km. ENMs are frequently used to 
‘hindcast’ a species’ likely historical geographic distribution 
by projecting the model to environmental layers for historical 
periods (Guralnick 2007, Nogués-Bravo 2009, Roberts and 
Hamann 2012). This approach has helped to answer diverse 
questions about biogeographic history, e.g. locating refugia to 
which species retreated during past periods of environmen-
tal stress (Carnaval and Moritz 2008, Roberts and Hamann 
2015) and paths of subsequent expansion (Forester  et  al. 
2013); understanding the relative importance of drivers of 
historic range shifts (Smith 2013, Santos  et  al. 2017); and 
identifying evolutionarily significant yet cryptic taxonomic 
units (Phuong et al. 2014).

Despite their utility, use of ENMs for historical infer-
ence is predicated on the key assumptions that 1) the species’ 
spatial distribution is in equilibrium with its environment 
during the period in which the model is trained and pro-
jected (Wiens et al. 2009, Peterson et al. 2011, Maguire et al. 
2015); 2) the fundamental niche does not evolve across time; 
3) there is no local adaptation to environmental conditions 
(Valladares et al. 2014, Maguire et al. 2015, Smith et al. 2019); 
and 4) the environmental data to which species’ occurrences 
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Figure 3. Environmental and specimen occurrence record data can be used to construct an ecological niche model (ENM). The input data 
consists of matching environmental data (left) representing climatic conditions, soil and geology, and other factors with occurrence records 
(second from left). The model then identifies conditions most conducive to presence of the species (second from right). This model can then 
be projected back onto a landscape using contemporary environmental conditions (right) or to environmental layers for different time 
periods.
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are matched, and to which the model is projected, reflects 
the key factors driving distribution (Franklin  et  al. 2013) 
and has relatively low error (Varela et al. 2015). As a result, 
correlative ENMs do not account for phenomena such as 
ecological sinks, dispersal limitation, low population sizes, 
or missing mutualists such as pollinators (Franklin 2010, 
Guisan and Thuiller 2005). ENMs are also limited in their 
ability to predict across time periods experiencing dramatic 
environmental change because current distributions (and 
thus the model) may not encompass all environments inhab-
itable by a species (Jackson and Overpeck 2000, Barve et al. 
2011, Maguire  et  al. 2016). A further challenge is spatial 
estimation of microclimates in areas with variable topogra-
phy such as mountains. Lastly, projections to the past using 
ENMs are challenged by variability among different historic 
global climate models (Varela  et  al. 2015). Current devel-
opments in niche modeling seek to address some of these 
issues by incorporating dispersal (Midgley et al. 2010, Pagel 
and Schurr 2012, Thuiller  et  al. 2013) and biotic interac-
tions (Ovaskainen  et  al. 2010, Anderson 2017), correcting 
for sampling bias and error (Velasquez-Tibata  et  al. 2016, 
Hefley  et  al. 2017), and accounting for local adaptation 
(Smith et al. 2019).

Paleoecological data
Fossil pollen and macrofossils are biological artifacts 
deposited and preserved in sediment. Samples that are taken 
from a sequence of sediment depths (with depth as a proxy 
for age as sediment is laid down over time) provide informa-
tion, with varying degrees of certainty, about past vegetation 
communities. Each sediment record represents changes in 
vegetation at different spatial scales. The spatial resolution of 
the vegetation signal in a sediment record depends on many 
factors, including the size of the sedimentary basin, as well as 
landscape structure and composition. Despite this variable 
spatial resolution, when networks of paleoecological records 
are considered collectively, it is possible to make reasonable 
inference on shifts in species’ ranges and relative abundance 
over space and time. These large-scale analyses are facilitated 
by recent advances in cyberinfrastructure and data reproduc-
ibility, especially the digitization and curation of thousands 
of sediment cores in high-quality and easily accessible data-
bases (e.g. Neotoma Paleoecology Database; Williams et al. 
2018). To associate calendar dates with paleoecological 
samples, age–depth relationships are estimated based on 
stratigraphic constraints that typically include radiometric 
or biostratigraphic dates. As a result of this process, sample 
ages are not known with certainty, though recent advances 
in Bayesian age–depth model development allow for more 
robust estimation of sample age (Blaauw and Christen 2011, 
Parnell et al. 2011).

Paleoecological data is arguably the best evidence of past 
vegetation change since it provides physical confirmation of 
species existence and relative abundance. Pollen data itself 
has revealed phenomena including the mid-Holocene decline 
of eastern hemlock (Tsuga canadensis; Zhao  et  al. 2010) 

and shifts in the northeastern US prairie–forest boundary 
(Williams et al. 2009). For more than a century, fossil pol-
len and macrofossils (e.g. seeds or wood) have been used to 
infer past distributions and abundances of vegetation. Early 
biogeographic inference from paleoecological data was based 
on the qualitative interpretation of raw pollen percentage 
maps. More recently, especially in the last several decades, 
quantitative methods have been applied in paleoecol-
ogy to make inference about past vegetation distributions. 
First, quantitative approaches were developed to account 
for the non-linearity of the pollen–vegetation relationship; 
these methods included the R-value method (Davis 1963, 
Parsons and Prentice 1981) and the modern analogue tech-
nique (Overpeck  et  al. 1985). While the modern analogue 
technique has been widely used, it is described as a more 
qualitative approach, and does not account for biological 
and physical processes that govern pollen–vegetation rela-
tionships. More recent quantitative approaches build upon 
the process-based ideas behind the R-value model, and for-
malize theoretical understanding of the key processes that 
link vegetation and sediment pollen. These key processes 
minimally include pollen productivity, dispersal and sedi-
mentation. These approaches, referred to as pollen–vegeta-
tion models (PVMs; Fig. 4), include LOVE/REVEALS 
(Sugita 2007a, b) and the more recently developed STEPPS 
(Dawson et al. 2016). Both PVMs formalize understanding 
of key processes, though LOVE/REVEALS is more widely 
used. However, LOVE/REVEALS requires input parameters 
describing atmospheric conditions and pollen characteristics, 
and does not account for spatial or temporal dependence. As 
a result, with the LOVE/REVEALS model, vegetation can 
only be estimated for locations and times for which there is 
pollen data. The more recently developed PVM STEPPS is 
a Bayesian hierarchical model that improves upon existing 
methods by 1) accounting for spatio-temporal dependence, 
2) not requiring parameter inputs, and 3) allowing for the 
estimation of past vegetation with explicit accounting of 
uncertainty. STEPPS was recently used to reconstruct forest 
composition for the upper midwestern United States for the 
last two millennia (Dawson et al. 2016). We note that fos-
sils, including fossil pollen, can be used as input to ENMs, 
but here we discuss them primarily via the PVM because 
(a) the PVM includes the processes influencing pollen fossil 
occurrence while using pollen counts in an ENM would not 
account for this, and (b) use of the fossil pollen in multiple 
places in the framework we propose below would equate to 
using this data source twice, perhaps over-inflating its influ-
ence on inferences.

Despite the advances in PVMs and cyberinfrastruc-
ture, paleoecological data presents several challenges. These 
include poor taxonomic resolution (i.e. inability to identify 
pollen to the species level, rather than only to genus level 
in species-rich genera like Quercus, Davis 1983), temporally 
varying pollen–vegetation relationships (Kujawa et al. 2016), 
and both false-positive and false-negative errors (i.e. evidence 
of species’ presence in a location where it was not; lack of 
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evidence in a location where the species truly was, sometimes 
called ‘cryptic’ refugia). For example, present day locations 
of low-density American beech Fagus grandifolia populations 
are not evident based only on pollen occurrence in the sedi-
ment, suggesting that low-density historic populations may 
also fail to be identified (McLachlan and Clark 2004). This 
problem is further complicated by the appearance of beech 
pollen found in sediment hundreds of kilometers from any 
known populations (McLachlan and Clark 2004). Lastly, 
pollen shows latitudinal bias in preservation as a function of 
the distribution of glacial lakes; in North America this trans-
lates to more northern records. As a result, many sites at lower 
latitudes that may have served as refugia or expansion corri-
dors are poorly represented in these data, which is a major 
challenge for studies seeking to identify these locations.

Genetic data
Genetic data are obtained from living (or once living) 
individuals. For analysis, these data are often aggregated to 
frequencies of alleles at a population level. These popula-
tion genetic data have been used in traditional phylogeog-
raphy to visualize distinct genetic clusters, or haplotypes, on 
a map (Avise  et  al. 1987). Divergent lineages can provide 
evidence of distinct, isolated refugia, while high diversity 
may lead to conclusions about centers of endemism, refugia 
and other phenomena. For example, chloroplast DNA hap-
lotypes revealed southern Ice Age refugia in European oaks 
(Ferris  et  al. 1993) and elevational, rather than latitudinal, 
migration in California oaks (Grivet et al. 2006). As with pol-
len data, early interpretation was entirely visual, but the past 
two decades have seen development of model-based meth-
ods (e.g. the software IMa, Nielsen and Wakeley 2001; the 
software BEAST, Drummond and Rambaut 2007) for infer-
ring migration rates or demographic dynamics, from genetic 
data. For example, Bayesian skyline plots (a method to infer 

effective population size through time) revealed multiple 
expansions and contractions in musk ox over 60 000 years 
(Campos  et  al. 2010). More recently, the desire for more 
flexible models and better accounting for uncertainty has 
led to the use of approximate Bayesian computation (ABC, 
see Box 1) to estimate migration parameters and track 
colonization and invasion routes (Estoup et al. 2010).

Genetic data retain signatures of past demographic and 
selective processes, including strong signals of changes 
in population size and migration (Milligan  et  al. 1994, 
Csilléry et al. 2010). A century of development of popula-
tion genetics theory has improved inferential power, e.g. 
cane toad Bufo marinus invasion rates as inferred from 
genetic estimates were 50 km year−1, matching estimates 
from field observations of 55 km year−1 (Estoup  et  al. 
2010). Genetic data are often easy to collect in contempo-
rary organisms (e.g. non-invasive sampling of hair, feath-
ers, or feces) and sometimes available for calibrated dates in 
the past (e.g. ancient DNA). Additionally, the quantity of 
DNA that can be sequenced in a typical study has expanded 
by two to five orders of magnitude in recent years, increas-
ing the precision of parameter estimates. Typically, modern 
DNA is analyzed, but in the past decade analysis of ancient 
DNA (sometimes thousands of years old) has become 
feasible (de Bruyn et al. 2011).

A major disadvantage of biogeographic inference based 
on genetic data is that most genetic models do not include 
aspects of realistic biogeography that may be key for mak-
ing inferences. They often ignore variability through time, 
space and among individuals in demographic and migration 
processes (e.g. models often assume constant migration when 
migration events may occur in distinct bursts, Marino et al. 
2013). While rapid developments in sequencing technolo-
gies have allowed researchers to survey far larger proportions 
of the genome, using these data to estimate parameters in 
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Figure 4. Conceptual schematic of a pollen–vegetation model (PVM). Two stages are identified: calibration and prediction. In the calibration 
stage, the parameters that describe the key process that link pollen to vegetation are estimated. In the prediction stage, parameters estimated 
during calibration are used to predict vegetation from pollen data back through time. As noted in the figure, spatial and/or temporal  
dependence exist in the data; some PVMs account for this dependence while others do not.
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complex demographic models remains a challenge. Inferences 
drawn from model-based phylogeography are inherently lim-
ited by the number of models considered in the analysis and 
the degree to which they reflect the real world. New methods 
to best utilize computational resources and genomic data are 
still being developed, but have somewhat lagged behind the 
explosion of genomic data (Robinson et al. 2014, Shafer et al. 
2015). A continual challenge in genetics-based inference is 
that very different demographic processes can sometimes lead 
to similar genetic signatures (e.g. fragmentation and popula-
tion bottleneck), leading to ‘false signals’ and identifiability 
issues (Petit et al. 1997, Gong et al. 2008). For example, range 
expansions create signals easily confounded with adaptation 
(Beaumont and Nichols 1996, Lotterhos and Whitlock 
2014), while long distance colonization from one refuge has 
a pattern similar to multiple refugia (Bialozyt  et  al. 2006). 
Lastly, genetic data are (usually) limited to extant lineages – 
thus loss of alleles results in lost information. Ancient DNA 
holds great promise to alleviate this issue. However, ancient 
DNA is quite rare, is only preserved in certain suitable loca-
tions, and when present is typically restricted to organelle 
DNA (chloroplast or mitochondria, Parducci  et  al. 2012). 
Compared to nuclear DNA, organelle DNA may show strong 
bias (e.g. from sex-biased dispersal) and only represents one 
genealogy and thus has low information content.

2. Recent advances towards integration

As described above, approaches for inference of past range 
shifts based on each data type individually have seen sub-
stantial methodological developments and expanded appli-
cation in both paleobiology and paleoecology. Known 
weaknesses and conflicting conclusions from different 
approaches indicate that combining information will be nec-
essary for true advancement. However, few studies simulta-
neously integrate information from genetic, paleoecological 
and environmental/occurrence data (Svenning et  al. 2011). 
While an increasing number of studies do consider two lines 
of evidence (e.g. ENM and genetic), such studies only assess 
agreement qualitatively (reviewed by Alvarado-Serrano and 
Knowles 2014, Collevatti et al. 2015a). Typical practice is to 
analyze different data types separately (e.g. a genetic dataset 
and a niche model), then base ultimate inference on visual, 
non-quantitative comparison of results (Fordham et al. 2013, 
Gavin  et  al. 2014, Bagley  et  al. 2018). Another approach 
involves using ENMs to develop hypotheses to be tested using 
phylogeographic data (Richards  et  al. 2007, Forester  et  al. 
2013, Alvarado-Serrano and Knowles 2014, Collevatti et al. 
2015b, Roberts and Hamann 2015).

Recently, investigators proposed using ENM output (i.e. 
predictions of the niche) to inform simulations for ABC-based 
biogeographic inference (He et al. 2013, Brown et al. 2016, 
He et al. 2017). Specifically, in these simulations, ENM out-
put was used to define habitat quality. Carrying capacity was 
thus allowed to vary as a function of changing habitat quality 
(Brown and Knowles 2012). Thus, an ENM-based habitat 

suitability surface ties demography directly to habitat, at a 
much finer temporal and spatial resolution than previously 
achieved. For example, Brown et al. (2016) used ENMs to 
create habitat suitability maps for time slices throughout the 
last 50 000 years for the perennial herb Penstemon deustus. The 
challenge was to then translate these habitat suitability maps 
to demographic parameters (i.e. population carrying capac-
ity, habitat ‘friction’). To determine the appropriate transla-
tion, a set of possible transformations (linear, sigmoid, etc.) 
were tested (Brown et al. 2016), and the translation that best 
fit contemporary data was selected. The authors employed 
ABC-based analyses (Box 1) in which demography was con-
strained by the habitat matrix, using the best fit translation, 
to infer parameters governing ancestral population size, max-
imum carrying capacity, and migration rates. They then used 
these parameters to forecast future population trajectories for 
the next century. Others have recently used ENM-informed 
ABC to determine relative support among models of post-
glacial population fragmentation (Dellicour  et  al. 2014, 
Massatti and Knowles 2016). As ENMs are an accessible and 
popular method, we expect more investigators to follow these 
examples in the future.

Similar proposed approaches (Richards  et  al. 2007, 
Knowles and Alvarado-Serrano 2010, Fordham et al. 2013) 
have only been applied in a handful of empirical studies 
(Knowles and Alvarado-Serrano 2010, He et al. 2013, 2017, 
Brown et al. 2016, Massatti and Knowles 2016) partly due 
to a lack of a comprehensive informatics framework and 
infrastructure. Moreover, ongoing work is making strides 
but 1) takes ENM-derived habitat suitability as ‘known’ then 
simulates population and genetic processes without account-
ing for uncertainty in the ENM fit (Brown  et  al. 2016), 
2) has prohibitive data requirements (dispersal and multi-
site demographic data from many generations at each site, 
Pagel and Schurr 2012) and/or 3) does not use all three data 
types. These problems will be explored below. Despite their 
strengths, state-of-the-art studies lack true quantitative inte-
gration of all data types and/or do not handle uncertainty 
and feedback among steps.

We assert that an ideal framework for integrative mod-
eling for species’ historical biogeographic inference would 
account for limitations of all available data types/analyses 
and leverage their strengths. At a minimum, this novel inte-
grative modeling framework would need to: 1) cohesively 
and quantitatively combine data and understanding from 
different fields, 2) identify and model key processes, 3) 
quantify uncertainty in data and processes, and 4) be com-
putationally tractable. Such a framework would have the 
advantages of using the full range of data available, allowing 
for the filling in of temporal or spatial gaps, reducing the 
impacts of data limitations and biases, and quantifying the 
confidence in conclusions (Schaub and Abadi 2011, Pagel 
and Schurr 2012, Talluto et al. 2016). In the following sec-
tions we describe existing and proposed methods to facili-
tate full integration of ENMs, fossil pollen and genetic data 
(ancient or contemporary) in a spatially-explicit analytical 
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framework (Fig. 5). Several of these advances include inte-
gration via ABC (Box 1).

3. Key advances needed for integrative modeling

In this section we describe key advances that are necessary 
for an integrative approach to biogeographic inference. These 
advances are presented in order of increasing complexity.

Advance 1. Significant improvements in the state-of-the-art
We begin by suggesting three improvements to better advance 
the state-of-the-art outlined above: simulation detail, more 
fully incorporating uncertainty, and identifying/developing 
informative new summary statistics.

The first improvement is to increase the modeling capa-
bilities of the types of spatially-explicit simulation soft-
ware used in current state-of-the-art integrative modeling 
studies (see previous section). The current commonly used 
software (SPLATCHE, Ray et al. 2010, PHYLOGEOSIM, 
Dellicour et al. 2014) couple forward-in-time demographic 
simulations with backward-in-time coalescent simula-
tions to generate genetic datasets across a spatial domain. 
These software programs allow population presence, size or 

connectivity to depend on habitat suitability, which is often 
determined using ENMs (He et al. 2013, Alvarado-Serrano 
and Knowles 2014, Prates et al. 2016). This approach has 
facilitated research to better understand range shifts and 
fragmentation (Arenas  et  al. 2012, White  et  al. 2013, 
Antoniazza et al. 2014, Dellicour et al. 2014, Mona et al. 
2014). However, existing simulation frameworks do not 
have the ability to sufficiently reflect the fundamental pro-
cesses in nature that drive biogeographic processes and pat-
terns, especially dispersal syndrome, reproductive strategy, 
fecundity and life span (Sukumaran and Knowles 2018). 
Improvements to existing simulation approaches include the 
specification of complex dispersal kernels and age- or stage-
based demographic transition rates (Hoban 2014). Other 
logical improvements relate to a more realistic characteriza-
tion of organism dispersal. For plants, this improvement 
would be to model seed and pollen dispersal separately; for 
animals, this would be to allow dispersal to vary as a func-
tion of life stage (i.e. adult versus juvenile) or sex (given that 
males and females often have different dispersal propensi-
ties). This advance would help ensure that model outputs 
can accurately represent spatial genetic structure of nuclear 
and organelle genomes (Petit et al. 2005).
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Second, it is essential to account for the uncertainty in 
data and processes used to inform the components in the 
ABC framework, specifically uncertainty in the habitat 
suitability matrix. The habitat matrix depends on choice of 
climate model, ENM algorithm that relates climate to occur-
rence (number of variables, type of algorithm and its param-
eterization), and transformation of habitat suitability into 
demographic parameters (Brown and Knowles 2012). Each 
choice results in a different habitat matrix (i.e. surface), but 
in the state-of-the-art typically only a single representative or 
mean habitat surface is used in the final analysis (Brown et al. 
2016). However, different candidate algorithms with alternate 
parameterizations can produce qualitatively and quantitatively 
different predictions of habitat suitability (Warren and Siefert 
2011, Radosavljevic and Anderson 2014, Qiao et al. 2015). 
Thus, using only a single habitat surface from a chosen model 
or an ensemble of models ignores uncertainty in this crucial 
step, leading to posterior credible intervals that are smaller 
than warranted (i.e. higher confidence than we should have). 

The mapping between ENM-derived habitat suitability and 
abundance also requires better characterization, as available 
evidence suggests conflicting relationships (VanDerWal et al. 
2009, Weber  et  al. 2017, Dallas and Hastings 2018). It is 
possible that this relationship varies by context and species, 
and thus should be incorporated into an integrative frame-
work (cf. Brown and Knowles 2012). Of course, simulat-
ing demography with multiple algorithms, combinations of 
environmental layers, and mappings of habitat suitability to 
abundance rapidly increases the number of simulations that 
must be performed – a computational challenge which will 
be revisited in section 4.

Third, the summary statistics used in the ABC frame-
work to evaluate the distance between simulations and data 
(and thus to estimate parameters of biogeographic history) 
can be improved. Traditionally in ABC, simple summary 
statistics are used, e.g. genetic differentiation, gene diversity, 
number of alleles or haplotypes, number of segregating sites 
in each sampled population, and bottleneck indices. These 

Figure 6. (A) A simple three-parameter model of population divergence, simulated 100 000 times using the R ‘coala’ package (Staab and 
Metzler 2016). Time elapses from top to bottom; ‘T’ signifies the time of divergence. Light grey shows population divergence while dark 
gray lines track lineage divergence. Nm is migration rate between lineages. (B–C) summary statistics from simulated datasets convey 
information about simulated parameter values (B – summary statistic FST is a function of both migration rate and divergence time, 
C – summary statistic total number of segregating sites S is a function of the parameter θ, which is defined as 4× effective population 
size × mutation rate). (D) Simulated datasets summarized by FST and the number of segregating sites, grey dots correspond to datasets with 
Euclidean distances from the observed data (red diamond) above the 2.5th percentile, while green dots correspond to accepted simulations 
(n = 2500). (E–G) Posterior distributions for model parameters, with simulated (known) values shown as red vertical dashed lines 
(E – θ, F – migration rate, 4 Nm, G – divergence time in units of 4 N generations).
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have often been applied in ABC studies of historical events 
(Benazzo  et  al. 2015). However, to make inference about 
spatial processes of postglacial colonization, expansion or 
contraction will require statistics that can capture spatial 
information for both single and multiple populations. Some 
new summary statistics have already been developed (Peter 
and Slatkin 2013, Dellicour  et  al. 2014, Alvarado-Serrano 
and Hickerson 2016, 2018); others have been proposed but 
not thoroughly tested (Kelleher  et  al. 2016, Prunier  et  al. 
2017). In particular, spatial summary statistics may be espe-
cially useful when trying to make inference about spatial pro-
cesses (e.g. long distance dispersal) or identify locations of 
refugia. This is an important advance on previous ABC work, 
which has mostly used non-spatial summary statistics such 
as mean pairwise FST or mean number of alleles. Based on 
our own exploratory simulations, we propose the following 
distance-dependent summary statistics (see Fig. 7 for other 
examples of within- and among-population diversity statis-
tics): 1) the slope and intercept of a regression of pairwise 
divergence on Euclidean distances (isolation by distance), 
2) the slope and intercept of regressions of latitude versus 
number of alleles, and 3) the breakpoint of a segmented 
regression of number of alleles versus latitude. Non-genetic 
summary statistics, i.e. any other description of states of the 
system that can be calculated on both observed and simu-
lated data, have not been used frequently in ABC but could 
also prove useful. For example, when applying ABC to an 
individual-based model of white-starred robin Pogonocichla 
stellata population dynamics, Sirén et al. (2018) tested com-
binations of genetic data and information on the number, age 
and sex of captured birds as summary statistics. Their analyses 
highlight the utility of incorporating multiple data sources 
which provide complementary information for estimation of 
model parameters, into ABC analyses. Relevant non-genetic 
summary statistics for Quaternary migrations could include 
summaries of the entire species distribution (e.g. weighted 
geographic centroid or latitude of quantiles of species’ abun-
dance; Watts  et  al. 2013) and dynamic processes (e.g. age/
stage structure).

Advance 2. Formal integration of fossil data into the inference 
framework
Maps of fossil occurrences are commonly used to define 
hypotheses about biogeographic history. However, to the 
best of our knowledge fossil occurrences have yet to be for-
mally used in a quantitative approach that integrates genetic 

Figure 7. Summary of results from forward-time simulations illus-
trating how three spatial summary statistics respond to changes in a 
simulation input parameter. Simulations were conducted on a 
2-dimensional landscape with a 10 × 10 grid of populations. 
Populations were colonized from a single refugium at the center of 
the bottom row and simulations proceeded until complete coloniza-
tion of landscape. Genetic parameters are calculated from 100 co-
dominant loci evolving through drift, dispersal and a mutation rate 
of 10−6 mutations/generation. In each panel the simulated 

parameter of interest (and independent variable) is the proportion 
of long-distance dispersal events. Top panel: change in mean hetero-
zygosity (gene diversity) in populations at top row of the 10 × 10 
grid. Center panel: variance among populations in allele frequencies 
across the same top grid row as in the top panel. Bottom panel: best 
estimate of the scale parameter of a two-parameter Weibull proba-
bility density function fit to the range-wide distribution of among-
population pairwise FST estimates.

Figure 7 Continued.
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and fossil data for inferring detailed biogeographic history. 
One approach to integrating fossil data is to combine it 
simultaneously with contemporary occurrences as inputs in 
an ecological niche model that leverages the temporal distri-
bution of samples by calibrating the ENM using data from 
multiple time intervals simultaneously (Nogués-Bravo 2009, 
Maguire et al. 2016). A different approach, which is a natu-
ral extension to methods mentioned in section 2, is to allow 
fossil data to inform habitat suitability in an ABC frame-
work. The abundance of pollen fossils in the sediments make 
them highly suitable for this use. Animal macrofossils may 
also be suitable for determining habitat suitability if there 
are a sufficient number of samples identifiable to species or 
genus (i.e. Sigmodon, Stangl and Dalquest 1991, or mussels, 
Popejoy et al. 2018). However, this approach is complicated 
by over- and under-representation of certain species in the 
fossil record. For plants, pollen vegetation models (PVMs) 
are used to reconstruct vegetation from fossil pollen records 
by modeling the processes that relate vegetation to observed 
pollen in the sediment, with the goal of accounting for 
these complications regarding representation. PVMs such as 
STEPPS (Dawson et al. 2016) can thus be used to create spa-
tio–temporal maps of vegetation relative abundance, which 
could be used in place of an ENM as a proxy for habitat 
suitability. Alternatively, such maps could be merged with 
ENM-based maps using a weighting scheme to calculate hab-
itat suitability (Fig. 5). Additionally, fossils that do not need 
interpretation through a process model (well-dated macrofos-
sils, for example), can be integrated into ABC simulations as 
nodes which must be colonized by certain time periods for 
simulations to be retained for estimation.

Despite their strengths, neither of these two approaches 
would make use of information inherent in each data type 
(i.e. contemporary and fossil occurrences). The key innova-
tion necessary will be to account for the diverse underlying 
processes generating each data type in one model. Although 
occurrence and fossil data both reflect habitat suitability, 
and to some degree abundance and successful dispersal (i.e. 
because populations of the species were present in that locale 
or region), a key difference is that fossil data additionally 
reflect site- and taxon-level differences in fossil deposition 
and formation (and, for pollen, production and transport). 
Another difference is that ENMs can reflect uninhabited yet 
suitable habitat, whereas fossils (if analyzed correctly) provide 
a sample from the realized distribution. The two are also mea-
sured differently, i.e. occurrence is usually unary or binary, 
while fossil data are either counts or proportions. Moreover, 
fossils may only be identifiable to the genus level, while con-
temporary occurrences are typically identifiable to species. 
An improvement on the above-mentioned efforts would 
employ, for example, a hierarchical Bayesian framework in 
which pollen dispersal and deposition surfaces for higher taxa 
are used as priors for species-specific ENMs. Alternatively a 
joint attribute model (Clark et al. 2017) for occurrence and 
pollen data could be used to integrate and faithfully reflect 
the characteristics of the data types. In sum, an analytical 

synthesis would leverage the strengths in each type of data, 
i.e. most natural history occurrence data reflect contempo-
rary distributions (i.e. the last ~250 years), while depositional 
pollen data reflect distribution across millennia.

Advance 3. Truly integrative models
Increasingly, the limiting assumptions of ‘traditional’ ENMs 
(namely, the species is at equilibrium with its environment 
and all inhabited locations are suitable) are being addressed by 
the development of a broad class of methods called dynamic 
range models (DRMs) which integrate multiple data types 
(Zurell et al. 2016). For example, Pagel and Schurr (2012) 
developed a Bayesian DRM composed of a sequence of con-
ditional, probabilistic equations that describe abundance, 
detectability, dispersal, population growth, and the influ-
ence of the environment on carrying capacity. While power-
ful, existing DRMs have the following drawbacks: 1) they 
require detailed demographic data from many populations 
for multiple generations (impossible for most species), and 2) 
they ignore population genetic processes and information in 
other types of data (e.g. pollen). An alternative to a DRM is 
a hierarchical Bayesian metamodel that uses a mechanistic or 
correlative model to constrain an ENM using genetic, pheno-
logical, trait, pollen–vegetation, experimental, or other data 
(Talluto et al. 2016).

The next development would be a joint ENM/PVM/
genetic range model where key processes that impact all of 
the data types are described and then formally linked to each 
set of observations. This will facilitate the joint estimation 
of state–space and process parameters because each data 
type is influenced in part by a set of common underlying 
demographic and genetic processes, and in part by unique 
and multi-scale processes. For example, genetic data not 
only provide information on migration rates and population 
size changes, but at fine scales can provide data on typical 
mating patterns and dispersal for a species. Similarly, 
environmental suitability estimated by a joint ENM/PVM 
could be used to inform reproduction and survival modeled 
in the demographic stage. By integrating the ENM, PVM, 
DRM and genetic components in a single inferential 
framework, the steep data requirements for DRMs may be 
obviated. For example, DRMs have been shown to perform 
poorly when long distance dispersal is common (Pagel and 
Schurr 2012), but genetic data may help constrain this 
weakly characterized yet critical aspect of demography. A 
joint inferential framework would also make it possible to 
incorporate additional information as available, such as field 
or experimental observations.

Advance 4. Modeling groups of species
Another innovation is to combine the described advances 
in a framework that incorporates communities, traits, and/
or phylogenetics. The previous advances and examples in 
this review assumed that the goal was to understand biogeo-
graphic history for only a single focal species. A joint multi-
species framework would allow species to ‘borrow’ inferential 
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strength from other species in the same geographic region 
(Chan  et  al. 2014). Also, traits facilitate colonization suc-
cess (Feurdean et al. 2013, Lankau et al. 2015, Estrada et al. 
2016), and so species with similar traits like dispersal mode, 
height, cold tolerance and successional status (or species that 
are closely related phylogenetically) may show similar timing 
and rate of colonization (see also Lawing and Matzke 2014). 
It is also possible that species within a community may have 
similar resource requirements and environmental tolerances, 
and therefore migrate in tandem. Of course, there is also evi-
dence that many communities are not coherent through time 
(e.g. ‘no analog’ communities; Gill et al. 2009). Regardless, 
a Bayesian framework would allow integration of such prior 
knowledge, allowing multiple species to be analyzed jointly, 
using hyperparameters to model movement rates for similar 
species, and a single parameter that determines the ‘coher-
ence’ of species’ responses. The idea of estimating community 
coherence is not new; in earlier work a coherence parame-
ter was used to test hypotheses about the timing of species’ 
divergence (Hickerson  et  al. 2006, Stone  et  al. 2012) and 
simultaneous demographic expansion (Chan  et  al. 2014). 
The hyperparameter in these studies was the degree of syn-
chronicity in timing of species’ divergence or range expan-
sion, while the effective population sizes of each species were 
treated as nuisance parameters. As opposed to performing 
independent ABC studies for each species, multi-species hier-
archical ABC (hABC) can utilize hyperparameters describ-
ing community level responses which link species-responses 
together (Hickerson et al. 2006). This approach facilitates the 
ability to quantitatively test hypotheses about simultaneous 
range expansions and can, in theory, be used to test for other 
shared parameters like proportion of long distance dispersal, 
carrying capacity and location of glacial refugia.

Section 4. Continued challenges and frontiers

This section presents challenges and frontiers for integrative, 
quantitative biogeographic inference. These challenges and 
frontiers include method validation, computational feasi-
bility, sampling, new data sources, applications to taxa with 
sparse information in the fossil record, and genetic adapta-
tion during range expansion.

The current state-of-the-art and future improvements will 
need to be fully validated for accuracy of parameter inference. 
For example, it would be important to assess uncertainty 
by making ABC inferences using different sets of compo-
nents, (genetic + ENM, genetic + pollen and genetic + pol-
len + ENM), to understand the degree to which each data 
type influences posterior distributions. It will also be critical 
to assess sensitivity to the scaling of habitat suitability matrix 
with abundance (Brown and Knowles 2012, Brown  et  al. 
2016), such as allowing the ENM to have strong or weak 
influence on demography. As noted above, a benefit of ABC 
is the ability to quantify confidence in model selection and 
parameter estimation with minimal additional computation 
(Bertorelle et al. 2010). To this end, datasets simulated under 

candidate models (e.g. refugium location) or alternative 
parameter values are subjected to ABC model selection and 
parameter estimation analyses in leave-one-out cross valida-
tions. This is a standard practice for testing new methods in 
evolutionary genetics when we cannot observe the real state 
of the system (e.g. large scale ecosystem dynamics since the 
last glacial maximum) but we can observe such a system in 
silico (Bertorelle  et  al. 2010, Hoban 2014, Robinson et al. 
2014, Zurell et al. 2016). Validation provides an assessment 
of model identifiability, expected accuracy of parameter 
estimates, and coverage of credible intervals.

ABC and range models typically already require cluster 
computers with hundreds of processors. More complex 
models, as we have outlined, will only increase computa-
tional demands and thus will require efficient algorithms, 
potentially exploiting computer architectures such as graphi-
cal processing units for highly parallel problems. Careful con-
sideration of simulation details such as spatial and temporal 
resolution and extent are also important; there are tradeoffs 
in the ability of a model to resolve fine scale versus domain 
size processes. Scaling of population sizes in the demographic 
simulations may help to some degree (He et al. 2017). Also, 
even in comparatively simple coalescent models, summary 
statistic calculation can be computationally expensive relative 
to the coalescent simulation itself. To help avoid this expense, 
‘checks’ based on simple (and thus computationally fast) 
summary statistics could be calculated first to determine if 
simulations should be retained, and if so then more demand-
ing summary statistics could be calculated; to our knowledge 
such an approach has not been tested. Another way to reduce 
compute time is to reduce parameter space, possibly by first 
simulating a limited set of key processes using a general 
simulation model (Gotelli et al. 2009), then choosing likely 
parameter combinations via semi-manual tuning (Barnes 
and Clark 2017), and on this basis develop detailed simula-
tions. Lastly, machine learning approaches are now helping 
to find better matches between observed and simulated data, 
thereby reducing computation needs by one to two orders 
of magnitude in recent studies (Blum and François 2010, 
Pudlo et al. 2016).

Future advances should ideally be open-source (to facili-
tate community contributions and further encourage broad 
application of integrative modeling approaches) while lever-
aging existing software and databases. For instance, existing R 
packages that access the GBIF (GBIF 2018) database (rgbif, 
Chamberlain and Boettiger 2017) and construct ecologi-
cal niche models (ENMTools, Warren et al. 2010, wallace, 
Kass et al. 2018, enmSdm, Smith 2019) could be linked with 
packages for realistic models of population demography (e.g. 
rmetasim, Strand 2002, Strand and Niehaus 2016), coales-
cent simulations (e.g. coala, Staab and Metzler 2016), and 
analysis of population genetic data (e.g. strataG, Archer et al. 
2016, poppr, Kamvar et al. 2014).

Computational power is not the only limitation. In spatial 
genetics and spatial ecology it is important to sample in the 
right spatial locations with enough samples to capture the 
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signal (Storfer et al. 2007). Bias in data collection can lead 
to erroneous conclusions (Phillips  et  al. 2009, Kalinowski 
2011). As datasets are now trending towards more molecular 
markers and fewer individuals, spatially optimized sampling 
of individuals (i.e. choosing between transect or grid sam-
pling) may become more important. Similar questions regard 
the number of observations, spatial and environmental cover-
age, and detectability for ENMs (Loiselle et al. 2008). Best 
practice recommendations for all data types are sorely needed. 
Fortunately, the same simulations that are used for valida-
tion can be used to determine optimal sampling strategies 
(Benazzo et al. 2015).

Excitingly, additional sources of data are becoming avail-
able. Ancient DNA has increased in reliability and informa-
tion content such that intraspecific variation can be detected 
and simple genetic analyses performed (Palkopoulou  et  al. 
2015). However, obtaining such data is still impos-
sible for most research groups due to the facilities and 
expertise required, and protocols still need optimization.  
Moreover, as yet, ancient DNA analysis is usually only able to  
be performed on plastid markers (chloroplast, mitochon-
dria) because there are many copies per cell. Still, popula-
tion genetic analysis on ancient DNA is on the horizon 
(Llamas  et  al. 2016, Wagner  et  al. 2018). Another source 
of data is sediment cores from near-offshore locations (de 
Vernal and Hillaire-Marcel 2008, Leroy et al. 2013), which 
can reveal vegetation composition of land that was exposed 
during the Ice Age (possibly supporting refugial populations) 
but is now submerged.

As noted in the introduction, the modeling framework 
and future directions introduced here are particularly well-
suited to application in plants, given the rich information 
in sedimentary pollen fossils. Extension of the integrative 
models to species with less representation in the fossil 
record will pose a significant challenge. In particular, relative 
abundance across space and time will be more challenging 
to estimate. However, even sparse fossil data may be usefully 
integrated as an indication of known presence in a region at 
a point in time. Such information could be used to constrain 
simulation histories or, potentially, used as a non-genetic 
summary statistic. For example, some animal taxa which were 
used by indigenous peoples may be common in assemblages 
from archeological sites, though models may be needed to 
account for the preservation of such remains. Also, ancient 
DNA, which is well preserved in some animal fossils, may 
compensate for fossil rarity by providing richer genetic data. 
Database developments in the future, including the expansion 
of existing fossil (e.g. Neotoma; Williams et al. 2018; PBDB; 
pbdb.org) and contemporary occurrence (e.g. GBIF; GBIF 
2018) databases, will undoubtedly facilitate integration of 
these data in the types of modeling efforts proposed above.

Continued improvements in ENMs are occurring, such as 
use of non-point occurrence data like range maps (Merow et al. 
2017), multi-species modeling (Nieto-Lugilde  et  al. 2018, 
Zhang  et  al. 2018), and accommodations for imperfect 
detection (Koshikana  et  al. 2017). Another interesting 

avenue is to incorporate multiple molecular marker types 
and genomic-scale data. As yet, most genetic ABC studies 
use only one marker type (i.e. nuclear microsatellites). Plastid 
and nuclear genomes hold complementary information due 
to different modes of dispersal, effective population size and 
mutation rates (Petit  et  al. 2005). Additionally, microsatel-
lites, large SNP datasets such as produced by RADseq, and 
sequences (from nuclear genomes and from chloroplasts) 
each offer different information content due to mutation and 
recombination, thus combining marker types should increase 
the ability of integrative modeling to make demographic 
inference, a point which to our knowledge is rarely exploited 
in the literature. Continuous declines in the cost of DNA 
sequencing, and new sequence capture approaches (e.g. 
Rapture, Ali  et  al. 2016), allow for cost-effective collection 
of genomic-scale data. These datasets offer increased power 
for estimating demographic parameters (e.g. contemporary 
effective population size; Waples et al. 2016). Likewise, a bet-
ter understanding of how functional traits relate to the envi-
ronment (Kostikova et al. 2013, Soudzilovskaia et al. 2013, 
Smith et al. 2017) coupled with growing databases on traits 
(Kattge et al. 2011) could help constrain models of species’ 
spread (Angert et al. 2011).

It is important to note that the methods and models we 
have discussed all ignore adaptation via natural selection as 
well as genetic load and inbreeding depression. Thus, it is 
assumed that a species niche and fundamental traits such 
as dispersal do not change over time. However, species are 
already adapting to modern climate change, and adaptive 
evolutionary change may have occurred over the Quaternary. 
As one example, dispersal abilities can increase on the edge of 
a colonization front (Phillips et al. 2010). It may be infeasible 
to incorporate species-specific models of environmental 
adaptation into the simulations we describe, as detailed 
knowledge of the number of genes, their effect sizes and their 
selection coefficients exists for very few species (Tiffin and 
Ross-Ibarra 2014, Hoban et al. 2016, Csilléry et al. 2018). 
However, simple models of selection at a small number of 
genes (Schiffers  et  al. 2013) could be integrated into the 
framework outlined above, possibly making inferences 
more robust. Mathematical models of genetic variance 
and adaptation could also be useful (Polechová and Barton 
2015). Alternatively, a parameter that allows a degree of niche 
shift could be used to allow the environmental relationship 
captured by the ENM (and thus the correlation between 
a given climate variable and probability of occurrence) to 
evolve (Kearney et al. 2009, Bush et al. 2016).

Summary and outlook

This paper is meant to serve as a guide for recent and future 
developments to the methods for quantitative inference of 
biogeographic history, along with advantages, disadvan-
tages and challenges. We are not the first to highlight the 
need for a more robust integrative framework; as noted in 
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the Introduction, for decades discrepancies among expan-
sion rates have suggested this need. Here, we propose a set 
of scaffolded and feasible advancements to existing meth-
ods. These advances increasingly integrate the three main 
lines of evidence (genetic, ENMs and fossil) used for infer-
ring species’ recent biogeographic histories. As noted above, 
a coherent integration of data types may not always lead to 
final resolution, but rather in some cases could lead to greater 
uncertainty. We emphasize that this is still a major advance-
ment, i.e. a more complete characterization of uncertainty 
based on all available evidence and understanding will result 
in less-biased conclusions. This statement holds true even if 
the bounds of certainty are not reduced. To paraphrase the 
philosopher Carveth Read, ‘It is better to be roughly right 
than precisely wrong.’ Full description of uncertainty will 
also help identify avenues of improvement in datasets or 
models in the future. If advances such as those reviewed here 
can be achieved and verified, investigators will not only be 
able to infer parameters about refugia and rates of migration 
for single species, but also will finally answer long-standing 
questions about the nature of refugia (i.e. how species persist 
in environmentally stressful times), community coherence, 
niche stability and long-distance dispersal.
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