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ABSTRACT

In this paper, a light scattering model for Total Internal Reflection Microscopy (TIRM) is described.
The model handles the scattering by an axisymmetric particle of arbitrary orientation situated in
the evanescent field near a plane surface, and the imaging of the scattered light via microscope
optics. The scattering problem is solved by using the T-matrix method and the rotation addition
theorem for spherical vector wave functions, while the image of the scattered field is computed by
using the Debye diffraction integral. The numerical simulations provide evidence of two working

ARTICLE HISTORY
Received 11 December 2018
Accepted 31 March 2019

KEYWORDS

Total internal reflection
microscopy; light scattering
model; T-matrix

regimes for TIRM: the first regime, corresponding to an incident angle less than the critical angle of
total internal reflection, provides information on the size and the orientation of the particle, while
the second regime, corresponding to an incident angle larger than the critical angle of total internal
reflection, is recommended for measuring the distance between the particle and plane surface.

1. Introduction

Total Internal Reflection Microscopy (TIRM) has proven
to be an effective technique to measure weak interaction
forces between spherical colloidal particles and surfaces
with a resolution of a few femtonewton [1]. In an exper-
imental setup a laser beam is coupled into a prism and
hits the glass-water interface with an angle slightly above
the critical angle of total internal reflection. This gener-
ates an evanescent field near the interface that decays in
the lower refractive index medium (water) with a char-
acteristic penetration depth which depends on the angle
of incidence. A colloidal particle that is dispersed in the
medium will scatter light from the evanescent field if it
is in the vicinity of the surface. TIRM has proven to be
a valuable tool for the precise measurement of weak col-
loidal interactions such as double layer forces [2,3], van
der Waals forces [4,5], electrically mediated interactions
[6,7], polymer mediated steric repulsion [8,9], and deple-
tion forces [10,11]. An exhaustive review on TIRM can be
found in [12,13].

To design a TIRM instrument for a specific measuring
problem, a light scattering model is needed. Essentially,
we have to model the scattering by an axisymmetric par-
ticle of arbitrary orientation situated near a plane surface,

and the imaging of the scattered light through an optical
system. Either a photomultiplier tube that automatically
integrates the scattered light signal or a digital camera
that collects an image of the scattering [13], which is then
integrated, are used to conduct TIRM. As the scattering
problem is a multiple scattering problem, the separa-
tion of variables technique is a highly suitable simulation
approach. The approach based on the T-Matrix method
was originally developed by Helden et al. [14], and it has
been validated by comparing the measurements [15].

To model the scattering problem in the framework of
the separation of variables technique, one must address
how the radiation interacts with the particle and with
the plane interface. The incident field strikes the parti-
cle directly, while the fields emanating from the particle
may reflect off the surface and interact with the par-
ticle again. The transition matrix relating the incident
and scattered field coefficients is computed in the frame-
work of the T-matrix method, and the reflection matrix
characterizing the reflection of the scattered field by the
surface is computed by using the integral representation
for the spherical vector wave functions. To handle an
arbitrary particle orientation, we will use the rotation
addition theorem for spherical vector wave functions.
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Essentially, this theorem will enable us to pass from the
field expansions in the global coordinate system to the
field expansions in the particle coordinate system and
vice versa. In general, if the particle coordinate system
Ooxpypzp is obtained by rotating the global coordinate
system OoXoy0Zo thought the Euler angles (ap, Bp, ¥p)s
the rotation addition theorem for spherical vector wave
functions is [16]

H
M (kr,6,9) = 3 Diy@ps By YoMy, (k1 6, 0p),
m=—n

(1)

H
Ny (kr,0,0) = > Db (o, By ¥p)Ny, (kr, 6, 0p),

B @)

where D), are the Wigner D-functions, (r,6,¢) are
the spherical coordinates of a field point in the global
coordinate system, and (r, 6, ¢p) are the spherical coor-
dinates of the same field point in the particle coordinate
system. A direct consequence of the arbitrary particle ori-
entation is that the scattering problem will not decouple
over the azimuthal modes as it happens when the axis
of symmetry of the particle is perpendicular to the plane
surface [17].

As an imaging system, we consider pairs of lenses
arranged in a 4f configuration, that is to say they are
placed such that their foci coincide, for both illumination
and image formation. The particle is placed in the front
focal plane of the first lens, such that a corresponding
image field results in the back focal plane of the second
lens in a phase correct manner. Critically, the aperture
stop is placed in the common focal plane of the lens pair,
yielding an afocal and telecentric system from both object
and image spaces.

The next parts of the paper are organized as follows. In
Section 2, we present the mathematical model of TIRM
dealing with scattering by an axisymmetric particle of
arbitrary orientation situated near a plane surface, fol-
lowed by imaging of the scattered light. A numerical
analysis of the TIRM model is the objective of Section 3,
while conclusions are formulated in Section 4.

2. Theory

The geometry of the scattering problem and the imaging
system are shown in Figure 1. An axisymmetric particle
of arbitrary orientation is situated in the neighbourhood
of a plane surface ¥. The imaging system is represented
by the two sections of the Gaussian reference spheres of
the collector and detector lens, P, and P;, respectively.

Let Ogxo)02o be a coordinate system centred at the par-
ticle, and in this way at the focal point of the collector
lens, and O;x;y;z; a coordinate system centred at the focal
point of the detector lens. In the (global) coordinate sys-
tem OgxoY02o, the axial position of the plane surface
¥, which is perpendicular to the z,-axis, is specified by
the distance zp, and we have zg = d + R, where R is the
radius of the sphere circumscribing the particle and d is
the effective distance between the particle and the plane
surface (i.e. the distance between the plane surface and
the circumscribing sphere). Moreover, in the coordinate
system Oo%XoYoZo, let the orientation of the particle be
described by the Euler orientation angles (cp, Bp). The
refractive index of the particle is np, the refractive index
of the substrate is ng, and the refractive indices in the
object space (ambient medium) and the image space are
no and n;, respectively. The focal lengths of the collector
and detector lens are f, and f;, respectively.

2.1. Scattering by the particle near the substrate

The incident field is a linearly polarized vector plane wave
propagating in the glass substrate and is given by

Eq(r) = (Bopep + Eoaea)e™. (3)

The incident wave vector ks = kseg, where ks = kons is
the wavenumber in the substrate, kg is the wavenumber
in free space, and (ex, eg, ey) are the spherical unit vec-
tors associated with kg, is assumed to be in the xy2,-plane
and to enclose the angle B with the z,-axis. The vector
plane wave transmitted (or refracted) into the ambient
medium is

Ej (r) = (Ejgepr + E ear)™”, (4)

where
Egg = ty(Bs)eker0(osb—mncoship, (5)
Egy = tL(B)efon(@sFmncsBIEy,, ()

ko = koegr is the transmitted wave vector, ko, = kong is
the wavenumber in the ambient medium, ms = ng/n, is
the relative refractive index of the substrate with respect
to the ambient medium, and (ext, egr, e, 1) are the spher-
ical unit vectors associated with k. The Fresnel transmis-
sion coefficients are given by

_ 2my cos fs
f(Bs) = cos Bs + mys cos 8 ; @)
) — RS e (®)

mys cos Bs + cos B F

while the angle of refraction is computed by means of
Snell’s law:

sin B = my, sin B, 9)
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Figure 1. Geometry of the scattering problem and the imaging system.

cos B = +/1 —sin? B.

Evanescent waves appear for real m;s and incident angles
Bs > Bsc, where Bsc = arcsin(1/mys) is the angle of total
internal reflection. In this case, sin8 > 1 and cosf is
purely imaginary. For r = (xq, o, o) and negative values
of z,, we have

(10)

exp(jko - r) = exp(jkolzo| cos B + jkoxo sin B),

and we choose the sign of the square root such that
Im(cos B) > 0. This choice guarantees that the amplitude
of the refracted wave propagating in the negative direc-
tion of the z,-axis decreases with increasing the distance
|zo|- In the global and particle coordinate systems, the

transmitted incident fields can be expanded in terms of
regular spherical vector wave functions, that is,

EmM=)" Y AnMu,kor.6.0)

n=1m=—n

+ B} NL (kor,0,9)

:Z Z a.LnMrhn(kOr’BP’(ap)

n=1m=—n

+ by Ny (kor, 0, ¢p), (11)

where (r,0,p) are the spherical coordinates of a
field point in the global coordinate system Ooxo¥oZo,
(r,6p, p) are the spherical coordinates of the same field
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point in the particle coordinate system Ooxpypzp,

i 4j"

A =~ s limmn" (B) Egy + 7" (B) Eoa)
(12)
BT ——Lﬂ[ Il (8YET. — jmm!™ (B) EL ],
mn ‘\/MT 0g J n O 12
(13)
and
gy = Z AL D (ap, Bp.0), (14)

m=—n

Z mn mm’(ap’ﬁp’o) (15)

m=—n

Similarly, in the global and particle coordinate systems,
the scattered field is expanded in terms of radiating
spherical vector wave functions:

o0

n
Esct(r) = Z Z anMim (kor, 8, ¢)

n=1m=—n

+ GunN2,, (kor, 6, 90)

= Z Z fmannn(kofsep;Qop)

n=1m=—n

+gmﬂN?nn(kOr: 6})) ‘Pp)» (16)

where

Fun= Y funDpp ©.—Bpap),  (17)

m=—n

n
Gpn = Z gmnD"mmr(O, _ﬁpaap)- (18)

mM=—n

In addition to the fields described by Equations (11)
and (16), a third field exists in the ambient medium. This
field is called the interacting field, and it is the result of the
scattered field reflecting off the surface and striking the
particle. In the global coordinate system, the interacting
field can be expressed as

o0

n
Egct (r) = Z Z ananli(ko?'a 0,)

n=1m=—n

2 Gm,,Nmn(kor,G,go), (19)

where MR (kor,0, ¢) and N3R (kor, 8, @) are the radiat-
ing spherlcal vector wave functmns reflected by the plane
surface. For r inside a sphere enclosed in the particle and

a given azimuthal mode m, the reflected spherical vector
wave functions can be expanded as

M3R n(kor,0,9) >\ [ @mnw
( mn(kﬂfa 0, (9) H,Z - Mrlmx’ (kor’ 0, (9)

=1 ('8 '"”"') N (kor,0,0), (20)

mnn’

whence inserting Equation (20) into Equation (19), we
obtain the following series representation for the inter-
acting field in terms of regular spherical vector wave
functions:

o n'
Egc =) Y Fr M, (kor.6,0)

n'=1 m=—n’

+GR NL (kor,0,0), (21)

where

F e ’ o0 o ’ 7
r];m - Z mnn Fpy + Ymnn Gy (22)
Gm " = Bmnw Smnn’

In [17], the expressions of the expansion coefficients
Q' Bmnn's Ymnn' and Sy have been derived by mak-
ing use of the integral representation of the radiating
spherical vector wave functions; the results are

n/2—joo
A nn' (n —|— (' +1) f

Umnn’ =
x [mry" (Bl (x — B)ry(B)
+ o "(B)T (m—B)r L (B)]ePko50 P sin BB,
(23)
n/2—joo
ﬁmmx* = f
Jnn’(n —|— 1)(n' + 1)
x mlzy™ ()t (x — Byry (B)
+ o (B (r—B)r . (B)]eHRo0 03B sin B,
(24)
n/2—joo
Ymnn' = f
Jnn’(n —|— 1)(n' +1)
x m[oy™ (B)x " (x — Byry(B)
+ 74" (B) Ty (T —B)r 1 (B)]ePo <05 sin Bd,
(25)
H—n m/2—joo
3mm:* = 2} J

' (n+ 1) (0’ + 1)
x [o" (B — Byry(B)



+m*m" By — ByrL(B)]
x eHko20¢0sB gin BB (26)

Note that the integrals in Equations (23)-(26) are of the
form

m/2—joo .
I= f f(cos B)eH1%sh sin BdB.
0

By changing variables from 8 tox = —2jg(cos 8 — 1), we
are led to the integrals

2jg poo
| f(1—i)e—xdx,
2j9 Jo 29
which can be computed efficiently by using the Laguerre

polynomials. In the particle coordinate system, the
expansion of the interacting field reads as

00 n'
Egct () = Z Z nljn’M:nn’(kﬂr’GP’wP)
n'=1m=—n’

+ g,]:‘m;N}m, (kot, 6p, ©p), 27)

with

win = D FnnDpm @p: Bp:0), (28)

m=—n
H
b= Z Grun Dy @ps Bp» 0). (29)
m=—n

Then, accounting of Equations (17), (18), (22), (28),
and (29), we obtain the following representations of f.,
and ggn in terms of fiu, and gpp:

n'
Y mrnw Dl (0, —Bp, tp)

'

oo n

o =2 D

m'n —
n=1m=—n m'=—n

X D:::,,m,(ap, ﬁpa 0)]fmn

n
+| D Vmrnw Dlpr (0, —Bpr p)
m'=—n'

X Dg”m’ (Ofp, ﬁP’ 0)] gmn} s (30)
oo n 4

g}}i’n* = Z Z Z ﬁm*’nn’D::,mH(Oa —ﬁp,a'p)
n=1m=—n m'=—n'

x D:::!fm!(ap; ﬂp, 0)]fmn
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i
+ Z (Sm”nn’D:!an(O: _;Bp, aP)
n

mf——n'
x Dnm!ﬂmr (ap: ﬁps 0)] gmn} . (31)

In the particle coordinate system, the scattered field
coefficients are related to the expansion coefficients of
the fields striking the particle through the transition
matrix T. Truncating the expansions given by Equa-
tions (11), (16) and (21), we find the following matrix
equation:

mn ag‘t’n! n:l}! n
=Bl | |2 |5 . i3
mn bmrn! g m'n’

Here, n and n’ range from 1 to Nk, while m and m’
range from —Miank t0 Mrank, with Nrapk and Miapk being
the maximum expansion and azimuthal orders, respec-
tively. In the particle coordinate system, the expansion
coefficients of the interacting field are related to the scat-
tered field coefficients by the so-called reflection matrix:

R
| = Rt ] [ | (33)
gm;n: gmn

where, in view of Equations (30) and (31), we have

anm’n’j| , (34)

ﬁmnm’ n ‘Smnm’ n

Ymnm'n'

[Rmnm’n’] = |:
with
nf
'’ = Z amnme:!an(O, —ﬁp,ap)
m'=—n'

x Dy (@ps Bps 0), (35)

and similarly for Bynmw's Ymnmnw and 8y . Now it is
apparent that the scattered field coefficients fi;,;, and gmn
can be obtained by combining the matrix equations (32)
and (33); we get

an !
(l — [Tmn,m’n’] [Rmnm’n’]) [ m”j| . [Tmn,m*n’] [f}; ”j| 4
m'n’

Emn

where | is the identity matrix. It should be noted that
for axisymmetric particles with arbitrary orientation,
the scattering problem has to be solved simultaneously
for all azimuthal modes. The matrices which enter in
Equation (36) are of dimension 2Nz X 2Npax, where

Nmax = Nra.nk + Mrank(erank = Mrank + l)-

For this reason, the computer code dealing with arbi-
trary particle orientation is more time consuming than
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the code dealing with particles having the axis of symme-
try perpendicular to the plane surface. Once the scattered
field coefficients in the particle coordinate system fin
and g, have been computed, the scattered field coeffi-
cients in the global coordinate system Fy;,; and Gy, can
be obtained from Equation (17).

In the far-field region, the scattered field below the
plane surface (/2 < 6 < ) sums the contribution of
the direct electric far-field pattern E2_ (6, ¢),

1 o0 H
Ege(6:9) = - Y Y )" Fmnmmn (6, 0)

n=1m=—n

7 ijﬂnmn('g:‘P)] (37)

and the interacting electric far-field pattern EX (8, ¢),

1 oo H .
Eo®:0) =172 D ()" [Ennmiz, (6, 0)
0 p—1m=—n
+ jGmnnpy (6, 9)], (38)

where my,, and n,;, are the vector spherical harmon-
ics, and m%,, and n&,, are the reflected vector spherical
harmonics,

R _ 1 —2jkozn cos B | Im|
m,,, (0,p) = —me [imm, ' (0)r)(6)es
— " O)rL@)e,le™, (39)
R _ 1 —2jkozg cos B |m]
n,,0.¢) = —me [tn ' (O)r)(@)eg

+jmal™ (6) r1(0)e,]e™. (40)

In Equations (39) and (40), rj and r; are the Fresnel
reflection coefficients given by

My COS O — cos by

n©@) = (41)

s cos @ + cos By’

cos 6 — s cos O

ri(0) = (42)

cos @ + myg cos O

with sin 6s = (1/mys) sin 6.

Thus, the solution of the scattering problem in the
framework of the separation of variables method involves
the following steps:

(1) calculation of the T matrix relating the expansion
coefficients of the fields striking the particle to the
scattered field coefficients;

(2) calculation of the reflection matrix R characterizing
the reflection of spherical vector wave functions by
the surface;

(3) computation of an approximate solution by solving
matrix equation (36);

(4) computation of the far-field pattern by using (37)
and (38).

2.2. Imaging of the scattered light

Calculation of the image of the scattered field involves the
following steps:

(1) computation of the scattered field on the Gaussian
reference sphere of the collector lens,

(2) computation of the transmitted field on the Gaussian
reference sphere of the detector lens, and

(3) computation of the focus field by means of the Debye
diffraction integral.

Before proceeding, we note that the aperture angles in
the object and image spaces, i.e. the polar angles under
which the Gaussian reference spheres are observed at the
foci of the collector and detector lens, respectively, are
computed as

®, = arcsin(NA,/n,),

®; = arctan (‘% tan @a) 5

1

where NA, is the numerical aperture of the collector
lens and NA; = n; sin ©; is the numerical aperture of the
detector lens.

Step 1. The scattered field on the Gaussian reference
sphere of the collector lens is given by

Es(0,¢) = Esp(6,9)eg + Esp(0,9)ey,  (43)

where

Ey(6,¢) = e ED 0(0.9) + ER ,(0.9)], (44)

oikofo
Esy(0,9) = f—[E?m
0

while the so-called integral response of the detector is
computed as

2 Bg
P :f§£ fo [1Ew(6,0)2

+ |Esp (8, 9)|*] sin 6d0de. (46)

eikafo
[
(4]

(6,9) + Egoy 0, 9)],  (45)

Step 2. The transmitted field in the image space can be
computed by (vector) ray tracing. We assume that a ray
propagating in the object space in the direction (8, ¢) is
deflected into a ray that propagates in the image space in
the direction (6;, ¢;), where

0; = arctan[(f,/f;) tan(@ — )],



oi=vi+nx=3n/2—¢.

Consequently, the polar unit vectors ey and e, are
deflected into the polar unit vectors eg; and ey; given by

egi = c0s 0; cos giexi + cos b; sin pjey; — sinBiezi, (47)

epi = — sin gjex + cos gjeyi, (48)

where (exi, eyi, e;;) are the Cartesian unit vectors in the
global coordinate system Ojxjyiz; centred at the focal
point of the detector lens. The transmitted field on the
Gaussian reference sphere of the detector lens is then
written as

Esi(6i, i) = ToEso (61, @i)eai + TyEsy(Bi> pi)egi, (49)

where Tp = Ty (6;, ¢i) and Ty, = T, (6;, ;) are the trans-
mission coefficients (pupil function, apodization) for
parallel and perpendicular polarization, respectively.
Accumulated phase distortions, i.e. aberrations at the
principal plane of the detector lens, as well as attenua-
tions, i.e. amplitude factors, are integrated into the com-
plex parameters Ty and T,. The computation of Ty and
T, requires the knowledge of the imaging system and is
based on the Fresnel equations. In our model, Ty and T,
are input parameters.

Step 3. In microscopy, the plane wave spectrum
method is the essence of the Debye approximation and
is often used for the calculation of the electromagnetic
field near the focus of high numerical aperture objec-
tives. However, for optical systems with high numerical
aperture, this classical problem turns into a computa-
tional challenge due to the highly oscillatory behaviour
of the involved functions. A novel and flexible implemen-
tation of the Debye integral incorporating the effects of
amplitude, phase and polarization in an overall manner
has been proposed in [18]. Instead of direct integra-
tion, the vector Debye diffraction integral is evaluated in
the entire focal region with the fast Fourier transform.
This implementation, which is used in our derivation, is
summarized below.

In the Debye approximation, the transmitted field Eg
as given by Equation (49) is the plane wave spectrum of
the field E near the focus of the detector lens. Hence,
the electric field E at a point (x;, y;,2;) is obtained by
integrating the propagating plane waves, i.e.

fl 2
E(xi, i, zi) = —Jgf
0

x elkxitkyyithas) gin g.do.de;,  (50)

B;
Ei (65, ¢1)
0

where ©); is the aperture angle of the detector lens, and

kix = k; sin 6; cos g;, (51)
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kiy = kj sin 6; sin g, (52)
kiz = ki cos @, (53)

with ki = kon;. Using representations (51) and (52), we
express the integral in Equation (50) as

Esi(ei; (01) ejk-lzi cos 6;

.
(i, yi> zi) Jlokiz ka cos 6;
. ej(kix:q+kiyj’i)dkixdkiy, (54)
with

and K = kjsin ®; = kg NA;. For an equidistant sam-
pling kiy = mAK and kjy = nAK, where AK = K/M,
M is the number of sampling points over K, and m,n =
—M, ..., M, the sampling polar angles are

K\x m2 + n2) , (56)

(A
BOimn = arcsin (T
e ) : (57)

i
®imn = arccos (Jrrﬂ:_l_?ﬂ
and the numerical implementation of integral (54) is

M

flAKZ m(ann:@vnn)
E 3 > - _
(xl Yi Zl) m—X—:M H_Z_ cos 9mm
¢ e]kizicos9meJﬁK(mxi+”)’i], (58)
with

Esi (Gimn> @imn) =0  for v m2 4+ n? > M.

A fast Fourier transform (FFT) is then used for computa-
tion of the double sum in Equation (58). For this purpose,
we choose the number of FFT sampling points per trans-
formed dimension N = 2°, where s is an integer, such
that the condition N > 4M is satisfied. This condition
can be explained as follows. Due to the Debye diffraction
integral, the field Eg is the plane wave spectrum of the
field E, and usually, the smallest area (aperture matrix)
containing Eg # 0 is transformed. The spectral prod-
uct exp(jkizzi)Esi/ cos 6; represents the spatial convolu-
tion F (exp(jkizzi)) * JF (Esi/ cos 6;), where F denotes the
Fourier transform. In general, the result of the convo-
lution is non-zero on an area larger than the aperture
size, which may cause aliasing. Therefore, the aperture
matrix is enlarged by zero padding to at least twice its
dimensions (N > 2(2M)) before performing the trans-
form. In a final step, simple cropping of the transform
output removes the padding. Mathematically this process
can be described as follows:
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(1) for my,n; =0,...,N — 1, compute the aperture
matrix as

E (zi) jﬁAK2 Esi Girmy —Mny > Pimy —Mmy —M)
A i) = —
mymy (i kokf €08 Bim,—Mn;—M

% elkizi €08 Gimy _Mn;—M ,
with
EAml "y (zi)

= 0fory/(m; — M)2 + (n; — M)2 > M;

(2) compute the Fourier-transformed matrix

EFm1n1 (zi) = F(EAm[m (zi));

(3) for my,np = —N/2+1,...,N/2, compute the
focus field E at the sampling points xjm, = maAx
and yin, = myAy as

E(Xim;y > Yimy» 2i) = EEmy+N/2—1ny+N/2—1(21)»

where
A= =,
X=Ay= m, (59)
(4) crop the matrix E(Xim,,Yim,,zi) by restricting my
and np to vary in the range mjy,ny = —N¢/2 +

1,...,N./2, where N. < N.

Along the zj-direction, the sampling can be chosen
arbitrarily by respecting the condition

2(NA)D? il

J— Ay R0

Condition (60) also known as the sampling condition
guarantees that the propagation factor exp(jkiz; cos 6;) is
calculated with high resolution. In particular, the phase
term k;z;j cos 6; does not change by more than 7 between
neighbouring sampling points in the Gaussian reference
sphere. In addition, a lower limit of M > 50 was found to
be necessary for an accurate sampling of ¢;. Deviations
from these sampling conditions result in granular arte-
facts in the final computed image. As a typical value for
M, we chose M =120, while for the axial distance z;, we
impose |zj| < 25A¢, corresponding to |z| < 16 um at a
wavelength of 635 nm. The final result is the distribution
of the intensity

M > (60)

Tmyny (i) = | Ex(Ximy» Yima» 20)|* + |Ey (i Yimy» 2i) >
+ | Ex(Ximy» Yimy> 20) 1%

at the sampling points (xijm, = maAx, yin, = n3Ay) in
the axial plane z;.

3. Numerical simulations

In our numerical simulations, we choose the wavelength
in free space A9 = 0.635 um , the refractive index in the
object space (water) n, = 1.33, the refractive index of the
particle np, = 1.591, the refractive index of the substrate
(glass) ng = 1.51, the refractive index in the image space
(water) n; = 1.33, the transversal magnification myp =
fi/fo = 60, and the numerical aperture in the object space
NA, = 1.0. The polarization angle of the incident wave is
Cpol = 45°,

First, we analyse the accuracy of the newly developed
code devoted to the scattering analysis of axisymmetric
particles with arbitrary orientation. For this purpose, we
take the results obtained for a spherical particle as in
[17]. In the new code, the spherical particle is treated
as an axisymmetric particle, and the parameters of cal-
culation are chosen as follows: a = b= 1.0um, ap =
30°, Bp = 45°, and Bs = 45°. By this choice of the par-
ticle orientation angles (i.e. ap = 30° and By = 45°), we
check the correctness of the new implementation based
on the rotation addition theorem. The results illustrated
in Figure 2 show a complete agreement between the
scattering curves.

In Figure 3, we show the focus intensity distribu-
tion along the xj-axis for an axisymmetric particle with
a = 1.0 umand b = 0.5 um. The original image I, , (0)
with N=512 is first cropped by considering the image
Linyny (0) with N = 128, and then filtered out by setting
Iinyny (0) = 0 if I;myny (0) < €Imax(0), where Imax(0) =
MaXy, 1, Imyn, (0) and & = 1073, In this simulation and
the subsequent ones, we choose M =120, so that the
condition N > 4M is satisfied.

From our theoretical analysis, we know that if B <
Bsc, the particle is illuminated by a propagating wave,
while in the converse situation, namely when 85 > B,
the particle is illuminated by an evanescent wave. Note
that for the scattering problem under examination, the
critical angle of total internal reflection (after which
evanescent waves appear) is

Bsc = arcsin (E) ~ 61.73°.
Hg
In Figure 4, we illustrate the focus intensity distributions
for a particle placed at an effective distance d = 0.1 um
with respect to the plane surface, and being illuminated at
two angles of incidence: B = 0° < Bsc and Bs = 62° >
Bsc- In the first case, the image of the particle has a good
contrast, while in the second case, the image is blurry. In
Table 1 we show the integral response of the same par-
ticle for three values of the incident angle B, and two
values of the effective distance between the particle and
the plane surface d. As it can be seen, for Bs < Bsc, the
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Figure 3. The focus intensity distribution along the x;-axis. The original image is first cropped and then filtered.

integral response is insensitive with respect to d, while
for Bs > Bsc, the integral response decreases by a factor
of 5 when d increases from 0.1 gm to 1.0 xm.

The plots in Figures 5 and 6 confirm the above find-
ings. For Bs < Bsc, the image in Figure 5, with an excel-
lent quality in terms of sharpness and contrast, carries
information on the size and the orientation of the par-
ticle, while for s > Bsc, the image in Figure 6 is blurry.

However, in the second case, the integral response P plot-
ted in Figure 7 contains information about the effective
distance d. In fact, this combination of figures demon-
strates an approach for determining the impact of col-
lecting scattered light from an image [11,13], as is done
with a digital camera. Experiments consist of collecting
images similar to those shown in Figure 5 with subse-
quent integration, as is shown in Figure 7. Note, however,
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Figure 4. The focus intensity distributions for a particle witha =
1.5 um,b = 0.5 um, ap = 45°,and By = 90°. Theincident angle
is Bs = 0° (a) and S5 = 62° (b). The effective distance between
the particle and the plane surfaceisd = 0.1 um.

Table 1. Integral response of a particle with a = 1.5um, b =
0.5 em, ap = 45°, and Bp = 90° for three values of the incident
angle Bs, and two values of the effective distance between the
particle and the plane surface d.

Bs d=0.1pum d=1.0um
o° 1.07E403 1.07E4-03
45° 3.53E+02 3.52E402
62° 4,08E4+00 7.5E—01

that the influence of the camera itself has not been
included.

Referring again to Figure 7, a rough estimate can be
made: if P can be measured with a resolution of 1/AP,
where AP = Pax — Pmin & 2.8, then d can be measured
with a resolution of about 10 nm. Moreover, it is appar-
ent that the integral response decays exponentially with
the distance. Fitting the model data with the exponen-
tial curve P(d = 0) exp(—d/ p), we found that the decay
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Figure 5. The focus intensity distribution for a particle with a =
3.0 um and b = 1.5 um. The incident angle is 85 = 0°, and the
effective distance between the particle and the plane surface is
d = 0.1 um. The azimuth orientation angle of the particleis ap =
45°, while the zenith orientation angle are S = 90°(a), Bp = 45°
(b), and Bp = 0° (c).
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Figure 6. The focus intensity distributions for a particle witha =
20um,b = 1.0 um,ap = 45° and fp = 90°. Theincidentangle
is B = 62°, and the effective distance between the particle and
the plane surface is d =0.1um (a), d = 0.5um (b), and d =
1.0 um (c).
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length is p = 0.55 um . This value is very close to the
penetration depth of the evanescent wave pg, estimated
as [19]

Ao

pPo = -
47 ./ (ns sin Bs)? — n2

Experimental application of the model to TIRM will
require an apparatus utilizing a digital camera, rather
than a photomultiplier tube. The camera will capture
images of the morphology of evanescent wave scattering
from a particle. As shown above, the scattering morphol-
ogy contains information related to the separation dis-
tance, orientation, and shape of the particle. Morphology
mapping simulations will be paired with experiments, in
which images of scattering from particles of known ori-
entation, separation distance, and shape will be obtained.
These maps will provide not only experimental verifica-
tion of the model, but also a reference, either via direct
comparison or analytical expression, for the measure-
ment of a particle of unknown orientation and separation
distance. Previous work has shown how to subsequently
assemble a potential energy landscape from these sep-
aration distance and orientation observations [20]. We
suggest the name for the technique, where scattering
morphology (instead of the integrated intensity) is used
to calculate particle position and orientation, as ‘Scat-
tering Morphology Resolved Total Internal Reflection
Microscopy (SMR — TIRM)’.

/2 0.543 pm. (61)

4, Conclusions

In this paper, a light scattering model for TIRM is
described. The model deals with scattering by an axisym-
metric particle of arbitrary orientation situated near a
plane surface, and imaging of the scattered light. Scatter-
ing by an axisymmetric particle of arbitrary orientation
situated near a plane surface is analysed by using the T-
matrix method and the rotation addition theorem for
spherical vector wave functions. Essentially, this theorem
enabled us to pass from the field expansions in the global
coordinate system to the field expansions in the particle
coordinate system and vice versa. A direct consequence
of the arbitrary particle orientation is that the scattering
problem does not decouple over the azimuthal modes
as it happens when the axis of symmetry of the particle
is perpendicular to the plane surface. The computation
of the image of the scattered field has been performed
in three steps: (i) computation of the scattered field on
the Gaussian reference sphere of the collector lens, (ii)
computation of the transmitted field on the Gaussian
reference sphere of the detector lens, and (iii) computa-
tion of the focus field by means of the Debye diffraction
integral.
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Figure 7. Integral response of the same particle as in Figure 6 as a function of the effective distance between the particle and the plane
surface d. The solid curve is the exponential function fitted to the data (dots).

Our numerical simulations indicated that two work-
ing regimes for TIRM can be identified.

(1) The first regime, corresponding to an incident angle
less than the critical angle of total internal reflection,
provides information on the size and the orientation
of the particle; the computed images have a good
contrast, and the particle shape is clearly visualized.

(2) The second regime, corresponding to an incident
angle larger than the critical angle of total inter-
nal reflection, is recommended for measuring the
effective distance between the particle and plane sur-
face. As a matter of fact, it seems that TIRM offers
the possibility to measure effective distances with a
resolution of 10 nm.
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