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Abstract—The problem of allocating limited resources to
maintain components of a multi-component system, known
as selective maintenance, is naturally formulated as a high-
dimensional Markov Decision Process (MDP). Unfortu-
nately, these problems are difficult to solve exactly for real-
istically sized systems. With this motivation, we contribute
an Approximate Dynamic Programming (ADP) algorithm
for solving the selective maintenance problem for a series-
parallel system with binary-state components. To the best of
our knowledge, this paper describes the first application of
ADP to maintaining multi-component systems. Our ADP is
compared, using a numerical example from the literature,
against exact solutions to the corresponding MDP. We
then summarize the results of a more comprehensive
set of experiments that demonstrate the ADP’s favorable
performance on larger instances in comparison to both
the exact (but computationally intensive) MDP approach
and the heuristic (but computationally faster) one-step-
lookahead approach. Finally, we demonstrate that the ADP
is capable of solving an extension of the basic selective
maintenance problem in which maintenance resources are
permitted to be shared across stages.

Index Terms—Maintenance optimization, Selective main-
tenance, Approximate dynamic programming

ACRONYMS
ADP Approximate Dynamic Programming
MDP Markov Decision Process
MWO Multiple Weighted Objectives
NOTATION
m Number of subsystems
n; Number of components in subsystem i €
{1,...,m}
T Number of missions
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Reliability of components in subsystem i €
{1,...,m}

Number of failed components in subsys-
tem ¢ € {1,...,m} at the end of mission
t € {0,..., T}, where S is the number of
initially failed components in subsystem ¢

Number of components in subsystem ¢ €
{1,...,m} to be repaired in break t €
{0,...,T -1}

Number of failed components in subsystem
i € {1,...,m} immediately after mainte-
nance is completed in break t € {0,...,T—
1}, 8Pt =St —at

Amount of resource [ € {1,...,p} required
to maintain components in subsystem ¢ €
{1,...,m}

Amount of resource [ € {1, ...
during each break

,p} available

State space given as S = {0,1,...,n1} X
{0,1,...,mo} x---x{0,1,..., 0}
Value function of state s € S, t €
{0,...,T}, defined as the maximum ex-
pected number of successful missions re-
maining among missions ¢+ 1,... T if the
system is in state s’ after mission ¢

Value function of post-decision state s €
S, defined as the maximum expected num-
ber of successful missions remaining among
missions ¢ + 2,...,7T if (after complet-
ing maintenance action a! in break ¢ €
{0,...,T — 1}) the system is in state s*-*
Approximate value function of post-decision
state st € S, t €40,...,T -1}
Parameter vector of the approximate value

function V(-|n') associated with mission
te{0,...,T—1}



I. INTRODUCTION

Maintenance is necessary for reliable operation of
industrial and military systems, but it is also very
costly. Due to resource limitations, it may be cost-
prohibitive or impractical to fully maintain a system at
every opportunity. This paper presents an approximate
dynamic programming approach for optimizing selective
maintenance decisions over time. We consider a series-
parallel system subjected to a sequence of missions in
which we have the opportunity to replace a subset of
the failed components between each pair of successive
missions. Our base model is identically the model of
Maillart et al. [1]; however, we are the first to address
the issue of solving large-scale instances of this problem.

The topic of selective maintenance has garnered recent
attention in the literature. Rice et al. [2] contributed the
first work in the area of selective maintenance, formu-
lating a mathematical model to maximize the reliability
of a series-parallel system given limited maintenance
time. They considered repair time as a limited resource
and developed a heuristic to identify which subset of
failed components to repair to maximize reliability. Chen
et al. [3] considered selective maintenance of multi-
state series-parallel systems, developing a mathematical
model that accounts for system reliability and attempts to
minimize maintenance cost. Cassady et al. [4] compared
optimal selective maintenance decisions for a series-
parallel system under three different objective functions:
maximizing reliability, minimizing cost, and minimizing
repair time. Cassady et al. [5] considered practical ex-
tensions of the reliability-maximization model, includ-
ing Weibull-distributed component lifetimes, multiple
maintenance actions, minimal repair, and corrective or
preventive replacement. To enhance the efficiency of
the enumerative solution procedure used by Cassady et
al. [5], Rajagopalan and Cassady [6] proposed a series
of improvements that reduce the solution space.

Researchers have incorporated a variety of elements
to make these types of models more realistic. For in-
stance, Dao et al. [7] and Xu et al. [8] proposed selec-
tive maintenance models for multi-state series parallel
system under economic dependence that arises when
there are savings to be realized by jointly maintaining
components. Dao and Zuo [9] incorporated dependence
and component degradation within a multi-component
maintenance problem. Chen et al. [10] proposed a math-
ematical model for selective maintenance of aging com-
ponents with uncertainty maintenance duration. Khatab
et al. [11], [12] extended the basic selective maintenance
problem to allow for stochastic duration of missions and
breaks.

In all selective maintenance problems for series-
parallel systems reviewed thus far, decisions are made
for only one future mission. Maillart et al. [1] formulated
a selective maintenance model that considers a finite
or infinite horizon of future missions. This model is
formulated and solved as a Markov decision process
(MDP) and the resulting optimal infinite-horizon policy
is compared to both the optimal single-mission and two-
mission policies. This study considers only relatively
small systems having no more than three subsystems.
Our research extends the work of Maillart et al. [1] by
enabling maintenance planning for series-parallel sys-
tems with a greater number of subsystems and/or com-
ponents. To overcome the difficulty of solving MDPs,
an approximate dynamic programming (ADP) approach
is proposed. The idea behind ADP is to develop useful
approximations of a high-dimensional MDP that enable
time and/or memory savings as compared to solving the
MDP exactly. We refer the reader to [13] and [14] for
an introduction to ADP.

Relative to the ADP literature, our primary contribu-
tion is the selective maintenance application. ADP has
applications to numerous other sequential and stochastic
decision problems in the literature, including: managing
energy storage in the electric grid [15], [16], [17], [18];
scheduling links in a wireless communications network
[19]; positioning emergency service vehicles [20], [21];
controlling the flight of an aircraft [22]; routing vehicles
[23]; assigning truck drivers to loads [24]; relocating
empty containers in a distribution network [25]; and
batching and dispatching products for outbound trans-
portation [26]. To the best of our knowledge, ADP has
not yet been applied to optimize maintenance of multi-
component systems.

Our contributions are as follows: We (i) provide an
ADP algorithm that exploits the structure of the selective
maintenance problem. We perform computational exper-
iments to (ii) verify that the ADP identifies solutions that
are near-optimal for small instances that can be solved
to optimality as MDPs, and (iii) demonstrate that the
ADP identifies solutions for larger and/or more complex
instances that are superior to those attainable via less
sophisticated (e.g., myopic) approaches. In order to solve
larger instances using ADP in a reasonable time, we (iv)
incorporate a heuristic method called Multiple Weighted
Objectives (MWO), due to Coit and Konak [27], inside
the ADP. Leveraging the ADP solution methodology,
we also (v) extend the selective maintenance model
of Maillart et al. [1] to the expanded-state-space case
where resources are shared across missions and (vi)
present insights upon solving numerical examples of this



extended model.

The remainder of this paper is organized as follows:
Section II summarizes the selective maintenance MDP
model of Maillart et al. [1]. Section III develops the ADP
algorithm, “ADP-Concave,” and Section IV compares its
performance with (exact) MDP solutions for a numerical
example from the literature. In Section V, the MWO
heuristic is incorporated within ADP-Concave to enable
solving larger instances in a reasonable time. Section
VI extends ADP-Concave to allow resources to shift be-
tween missions. Section VII summarizes computational
experiments investigating solution properties, sensitivity
analysis, and algorithm performance for larger instances,
and Section VIII concludes.

II. MODEL DEFINITION AND ASSUMPTIONS

In this section, we present the selective maintenance
MDP model for series-parallel systems. With the ex-
ception of minor notational differences, this model is
identical to the MDP model of Maillart et al. [1].

Consider a series-parallel system comprised of m
independent subsystems connected in series such that
each subsystem ¢ has independent components connected
in parallel. Let n; denote the number of components
in subsystem ¢ = 1,...,m, and define N; = {[i,]] :
j =1,...,n;} as the set of components in subsystem
1. Let N = U2, N; denote the set of components
in the system. We consider a sequence of 7' missions
denoted ¢ = 1,...,7T, with breaks between missions.
For t = 1,...,T — 1, “break t” refers to the break
that occurs immediately after mission ¢, and “break 0”
refers to a break before the first mission. Failures happen
only during the missions and maintenance is performed
during breaks. Fig. 1 illustrates the timing of missions
and breaks implied by the above assumptions.

Let the state vector S* = [S%, 85 ...,8%] € S,
t =0,...,T, denote the number of failed components
in each subsystem after mission ¢ where S° denotes
the initial state of the system. In what follows, we will
use the capitalized notation S} to refer to an uncertain
future state and the lower-case s! to refer to a specific
realization of S!.

There are limited resources available to repair the
failed components during each break. In state s, ¢t =
0,...,T—1, define the set of maintenance actions A(s")
as the set of a} satisfying

ZPHGESBI’ vz:la"'apa (])
i=1

0 <al <s! integer,Vi=1,...,m, 2)

where a} is the number of components to be repaired in
subsystem ¢. Thus, the reliability of the series-parallel
system for mission ¢ 4 1 is given by

m

R(st,at) = [0 - —ry)ms4e), t=0,..., T~ 1.

i=1

3)
Let Zf“ denote the number of components failing dur-
ing mission £+ 1. Thus, the number of failed components
at the end of mission ¢ + 1 is

Sl — gt gt 4zt 4)
forall t =0,...,7 — 1, where
ZI ~ binomial(n; — st +al, 1 —1r;). (5)
Let b(y,n,p) = (},)p?(1 — p)"~" denote the binomial
probability mass function. Then, for 7 = 1,...,m and
t=0,...,T — 1, the transition probabilities are

PRSI = s71) = Pr(ZE = 71— st 4 df)

=b(sit — st +al,n; — st Fal,1—1). (6)
Under action a’ € A(s'), the system transitions from
state s' € S to state ' € {0,1,...,n1 —si +al} x
{0,1,...,ng—sbk+ab} x---x{0,1,..., 0y —st, +al,}
with probability p(st*1|s?, a?) defined as

m
p(s s, at) = [T Pr(sitt = i)
i=1

= [[oGsi™" = st +aloni — st +al, 1 —1i).(7)
i=1

We define the value function V(s) as the maximum ex-
pected number of successful missions remaining among
missions ¢ + 1,...,T if the system is in state s* € S
after mission t. For t = 0,...,T and s* € S, the value
function can be expressed as

max

t ot
ateA(st) {R(s @)
FE{VEL(STH) |8t = St}}
2%, (R )
+ Z Vt+1(st+1)p(8t+1|st,at)}.(8)
sttleS

We define VT(sT) = 0 for all s € S such that (8)
remains defined for ¢t =T

Vish) =

III. MAINTENANCE DECISION MAKING USING ADP

By increasing the number of components and/or sub-
systems, the state space, action space, and outcome space
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Fig. 1: Timeline of events in the selective maintenance problem

grow quickly, thus making the MDP difficult to solve.
ADP aims to overcome these challenges by employing
tractable approximations of V'(-) that avoid looping over
every possible state of the value function and integrating
over the range of all random variables.

A. Optimality Recursion for Post-Decision States

Reformulating Equation (8) around the so-called post-
decision state variable is a well-known strategy (see [14])
for reducing the difficulty associated with approximating
the expectation in (8). Let the post-decision state S; *
denote the number of failed components in subsystem
1 immediately after maintenance is completed in break
t=0,....,T—1,1ie.,

SEt =

t t
i S; — a;.

©))

Let V!(S*!) denote the maximum expected number
of successful missions remaining among missions ¢t +
2,...,T if (after completing maintenance action a’
in break t), the system is in state S*! = S§* — ql.

Conditioning on the outcome of mission ¢ + 1, we have

Vt(sw,t) _ Z Vt+1 (st+1)p(st+1|st,at),
sttleS
=0,...,T—1, (10)
or equivalently
Vt(sz,t) :E{Vt+1(st+1)|sm,t — Szr,t}’
t=0,...,T —1. (11)
Therefore, substituting (10) into (8), we have
Vt t — R t Vt x,t
(s") a%ﬁét){ (s'a") + VI(s™ )},
t=0,...,T —1. (12)

Substituting (12) for period ¢t + 1 into (11) for ¢t =
0,...,T — 2, the optimality equations are formulated
around the post-decision state variables as

Vt(sa:,t) —
E{ max
attle A(St+1)
gt :5“}, t=0,...,T—1,

{R(St—&-l)at—&-l) n Vt+1(Src,t+1)} ‘

13)

where VI=1(s%1=1) =0, Vs*T=1 € S and VO(s°) =
maxqoea(s0) { R(s’,a%) + VO(570)} can be used to
compute the value function for the initial state.

Using post-decision state variables, the expectation in
(13) is now outside of the maximization. This is ad-
vantageous, because evaluating (or approximating) (13)
for state s™' under known (or approximated) V(.
requires only solving a deterministic optimization prob-
lem for each possible realization (or sampled subset
of realizations) of S**!. By comparison, evaluating (8)
for a single state requires solving a complex stochastic
program.

B. Value Function Approximation

The state space is exponential for this problem, mean-
ing it is impractical to store the value function V*(s%")
for each discrete state s®*. Thus, there is a need for
defining reasonable approximating strategies to compute
value function for each state. There are various meth-
ods to approximate the value function in ADP, which
typically entail building predictive models—in a manner
that is computationally less burdensome than building a
full lookup table—that can be used to approximate the
value function associated with a given state. Commonly,
the value function is approximated by defining a set of
basis functions ¢¢(s), f € F, over a set of important
features F', such that ¢¢(s) will represent the contribu-
tion of feature f to the approximated value function in
state s € S. We define features corresponding to each
subsystem (i.e., such that F' = {1,...,m}) and therefore
denote the basis functions as ¢;(s), i =1,...,m.

Let ¢;(s7"") denote a basis function that will approxi-
mate the value function reduction from the unreliability
of subsystem i. We assume ¢; has the form

i(sy") = ()" ™

where 0 < nf < 1 is a parameter. This basis function
satisfies

¢i(1) = ¢i(0) > ¢+ > ¢i(n;) — pi(n; — 1),

which is desirable because subsystem unreliability is
also concave and increasing in the number of failed

(14)

15)



components. Because the basis functions have been
constructed to satisfy (15), we will refer to the resulting
ADP as “ADP-Concave.”

To further capture the correspondence between system
reliability and the system’s value function, we assume
functions ¢;(-) are combined to approximate the value
function as

m

V(™) = T (1= =)
i=1

t=0,...,T—1, (16)

where parameter 0 < 7§ < T — ¢ represents an upper
bound on the number of remaining successful missions.

Our choice of Equation (16) is somewhat nontradi-
tional in the sense that ADPs commonly approximate
the value function as a weighted sum of basis functions,
and not as a product. The product form of Equation (16)
is dually motivated, as summarized below.

Motivation 1: This form seeks to capture the structure
of serially connected subsystems. The approximate value
function V*(s%!|n') is intended to provide an estimate
of the true value function V*(s™'), which equals the
maximum expected number of successful missions re-
maining among missions ¢ + 2,...,7T. Therefore, for
i € {1,...,m}, the i-th term in the product of Equa-
tion (16) might loosely be interpreted as “an estimate
of the maximum probability that subsystem ¢ survives
a given future mission ¢ € {t + 2,...,T}, given the
current post-decision state sf’t.” Thus, this form enables
(i) separately estimating the impact of each subsystem’s
failed components after break ¢ on system failures among
missions ¢ € {t+2,...,T} and (ii) using knowledge of
the system’s structure to aggregate these estimates into
an approximation of the value function.

Motivation 2: As demonstrated in Section V, this form
yields optimization subproblems of the ADP that are
conveniently solved by established methodologies for the
classical redundancy allocation problem.

Parameters 7' are updated through a sequence of
iterations n = 1,..., N. Let n®" denote the (m + 1)-
vector of parameter estimates associated with period
t = 0,...,7 —1 and iteration n = 1,...,N. In
each iteration n = 1,..., N a sample path represented
by {s'}_, and {s%*}7 ' is generated by solving for
each ¢t = 0,...,7 — 1 the approximate version of
Equation (12), i.e.,

f/t,n(st) — max {R(St, at) + Vt(sm,tmt,n—l)} )

ateA(st)
a7

Given parameter estimates n°"~1, ¢t € {1,...,T — 1},

we generate the updated parameter estimates 1’ =" by
seeking to minimize

t—1,n/, t—1 *El Vt-l(gut—1,t=1y _jrtn gt 2
gt = By (VISR ) - Vin(sh))

(18)
subject to 0 < pf < T —tand 0 < ! <1, Vi =
1,...,m, where the expectation is taken over S%?~!

z,t—1

and S. In view of (18) and the observed states s
and s? from this iteration, we apply a stochastic gradient

descent update to generate ‘=", Vt =1,...,T — 1,
as
,r]tfl,n — ntfl,nfl

—a, (Vt—l(sz,t—l |,'7t—1,n—1) _ f/t,n(st))
Xvnt_l‘_/vt—l(sx,t—l|nt—1,n—1>7 (19)

where 0 < a,, < 1 1is the step size at iteration n. Element
0 of Vyea VITH (™17 pt 1) is

8‘7t—1(sz,t—1|nt—1) m gt
o T (- o,
0

i=1

(20)

and element i = 1,...,m of V1 VI=(sm!= 1 pt=1)
is

AVt (571t 1) _
o~
_ (TL . Sa;,t—l) (ntfl)ni—s?t
? 7 7

< 1

ire{1,...,m}\i

1 _
i h

(1= =) en

The stochastic gradient descent algorithm is a well-
known machine learning method to update regression
parameters (see, e.g., [28]) incrementally as training
observations (in this case, s®!~! and s') are added.
In our problem, there is a feasible region defined for
nt’”*l based on two constraints: 0 < né < T —t and
0<nt <1, Vi=1,...,m. If updating the parameters
based on (19) violates one of the constraints, we do not
update the parameter in this iteration.

Given an initial state s°, ADP-Concave determines
the maintenance actions during break 0. A formal
statement of ADP-Concave follows.

ADP-CONCAVE

Step 0: Initialization

(0a) Setn =1 (N is the maximum number of iterations)
(Ob) Initialize 75 = 0 and 7' = 1 —r;, V&t =

(2

0,....,T—1,Vi=1,....,m



Fig. 2: Small system with n = [5, 3, 2]

Step 1: For ¢t =0,..., T -1,
(la) Set Vin(st) as

"‘/t,n(st) — {R(St, at) + Vt(sw,t|nt,n—1)}
(22)
and let a** denote the obtained optimal action.
(1b) Set s'*1 = st — a** + Z1, where Z!T', i =
1,...,m is generated from
Z ~ binomial(n; — st +a*, 1 — ;).

max
ateA(st)

Step 2: For t = 1,...,T — 1, generate '~%" from
nt~ 1= by applying Equation (19).

Step 3: If n < N, increment n and go to Step
1; Otherwise, return the value functions V&N for
t=0,...,T— 1.

As is common in ADP, the idea behind ADP-Concave
is to focus computational effort—by stepping forward
through time instead of solving the MDP by traditional
backward dynamic programming—on states that are rel-
atively likely to be visited, given the initial state s”. The
resulting value function approximations may therefore
differ depending on the initial state. Thus, if decisions
are desired for multiple possible initial states, we suggest
re-running ADP-Concave for each initial state.

IV. NUMERICAL EXAMPLE

In this section, we represent the results of ADP
algorithm for a small example. In order to validate
the developed ADP algorithm, we choose the example
illustrated in [1], which is solved optimally using finite-
horizon MDP approach for different initial states. This
example is a small system with three subsystems and
10 components, as depicted in Fig. 2. The reliabilities
for subsystems are r; = 0.7962, r = 0.8623, and
rg = 0.9558. There are limited resources for mainte-
nance at each time period t = 0,1,...,7 —1 as follows:

1.93a} + 3.82a% + 1.52a} < 11.7
2.85a} + 3.28ah + 3.47a), < 20.1
2.84a% + 1.06al, + 3.76a% < 20.2

The ADP-Concave method is employed to solve the
problem with N =500 and « = 0.1 for T € {1, 2}.

The optimal action and value function based on the
finite-horizon MDP (a%,(s), Vs(s)) and ADP-Concave
(a*(s), Vac(s)) are represented for T' € {1,2,5,10}
in Table I. The value reported for Vac(s) is the sample
average of 500 sample paths based upon using the
approximated value function to determine maintenance
actions during each break. Based on Table I, the selected
actions based on the ADP method for 7" = 1 are the
same as the finite-horizon MDP for all of the initial
states. This is the expected result because both the MDP
and ADP capture the first mission’s reliability explicitly
when T = 1. For T € {2,5,10}, the best actions
selected using ADP-Concave are the same as the finite-
horizon MDP as well. For most of the initial states, both
the MDP and ADP maintain all of the failed components
in the third subsystem because it has comparatively fewer
components and requires more resources to repair.

V. ENHANCED ADP wiTH MWO HEURISTIC

Although the previous section demonstrates that the
ADP performs well on a small instance, there are re-
maining challenges that must be overcome in order to
solve larger problem instances with the ADP. Notably,
the statement of ADP-Concave given in Section III as-
sumes availability of an oracle for solving Equation (22).
The method (i.e., totally enumerating A(s')) utilized
in the previous section may be too time consuming
for larger instances, especially when considering that
Equation (22) must be solved repeatedly throughout the
ADP. This section enhances ADP-Concave by applying
a specialized method to solve Equation (22).

The maximization problem inside Equation (22) is an
extended version of the redundancy allocation problem
(see, e.g., [29], [30], [31]). Because this problem is
known to be NP-hard [32], we develop a heuristic
method to solve Equation (22). This method is based on
the MWO heuristic proposed by Coit and Konak [27],
and it involves the transformation of a single-objective
problem into one with multiple objectives. When using
MWO to solve Equation (22), we refer to the resulting
ADP-Concave implementation as “ADP-MWO.”

We now summarize the MWO heuristic used in ADP-
MWO. Our implementation of MWO follows closely to
Coit and Konak [27]; therefore, we have opted for a
brief description here, referring the reader to Coit and
Konak [27] for a detailed description. Fort =0, ...,T—



sere T cere [T 6sLy  [g'1el  cost [Tl A3 S vl o A € S 4l e | ¢eg0 gl szgo  lrrel [zl
sv86  locel 986 loTel L98v  locel  ¥88+v  locel 0681 locel 1681  lo'Tel 6680 [0zl 8060 [oTal [1°¢'6]
or8'6  locel 6166  [o'TTl 6067 loced  veev  locdd ce6'l oz ¢eol loTad 6£60  lo'cel  6£60  loTed [0°¢*s]
s¥86 g1l 9166 [T1'Tl w8y lTr'd ey Tl (43 S a4 < o S ol | 6£60  [1°1°¢l 6860 [1°T°¢] [zzs]
see6  l11el  oLee  [1°1°¢] oy L1'1'el  viey  [1°1°¢] 996’1 [1°1°¢l 9961 [1°1°¢] 1L660  [11'¢el 1600 [1°1°¢] [1°2°6]
1.86  [0'1v]  ¥S6'6  [01°%] 9ty [0°T'¥]  096%  [0'1°%] L6l [0'1'v] 261 [0'1'7] 8,60 [01'v]  8L60 [0°1'¥] [o'T's]
L166  [Tov]l 0966  [T0] 0s6vy  [zo'vl 996+  [T0t] el [Tovl  Tel  [Tov] 8,60 [z'ov]  8L60  [co¥] [z1°6]
Lie6  l1'1el  sLee  [11'¢l psev  [1'1'el  9Le6v [1°1°¢] 86l [1'1el 7861 [1'1'¢] L86'0  [r'rgl 1860 [rrel [1°1°6]
6966 [0'1'¥] 166 [0'T'¥] cvoy o1yl 186v  [0°T'¥] 686’1 [0'1'v] 6861 [0°1'] 66'0  [0°T'F]  $660  [01%] [o‘1°6]
8886 [T0v]l  LL66  [TOW] 16y [Tov]l  8L6v  [T0] 686’1 [0yl 6861 [T0v] 7660 [0l +66'0  [T0Y] [z0%]
86 [1°T1] 6266 [1°C1] 6687 111 og6v  [1°C1] 881 (1Tl 0681 [1°T1] 6680 111 8060 [1°C'1] [T¢'y]
6986 1zl 8¢66 (1Tl so6r L1l wvev (1T 0£6'1 [1'z1l geo1 (171 6¢6'0  [ocel  e6g60 [oTTl [1°¢yl
0686 [0z s966 local ssery  locel  oLer  locad 9961 lo'cel 9961  loTcal 1L,60  [ocel 160 [oTcdl [o'¢y]
966 lz1'el 6966 il seoy el sev i 96’1 lg'1'edl  s961  [Trd 1,60 [g1'el 160 [Trdl [zTyl
9¢6'6  l1'r'el 2966 l1'r¢l g1y [1'1'¢l 196  [1°1°¢] 7 S N T A A S 8,60 [r'1'el 860 [rrel [Tyl
w6 ot eve6 [0l oc6y  lo'cel  es6v  loTad 86’1 locel 2861 locdd 1860 lo'c'el 1860 loTed 0Tyl
6166 Iz'1'cl 8166 [T1el 6r6y g1l eLetr  [TiTd 410 S v v 4 1 R ol | L86'0 [g1el 1860 I[z'1'e] [Z1%]
o6 l1'r'el 666 [1'1'¢l 1sev  [r'r'el  v86v  [1°1°¢] 686’1 [1'1°¢l 6861  [1'1°¢] 660 [1'1'¢l  v66'0  [1°1°¢] [17'%]
ar86  [zzol  sve6  z'Tol so6ry  [z'col  osev  [T'Tol €e6'l [z'zol  ¢e61  [TT0] 6¢6'0  [1°C'1] 6860  [1°CT1] [zeel
966 (1Tl 166 [1'C1] c6v it ¢ey 1Tl 961 izl s961  [reil 1L60  [1T1] 160 [1T1] [1°¢'¢l
0686 loced 8966 locel oty lo‘cdd  9Ley  loTel el loced  wer  loeed 8,60 locel  8L60  [locdl [0¢'¢l
6L86  lT1'tl  vee  [Trel ey lTrd  Lev Tl el [Tl wel Iz 8460 [z'17l  8L60 [z'rdl [Tzl
€866 11l 9866 (1Tl 6cory 1Tl 186w [1°C1] 86l 1Tl zee1 1Tl L86'0 [1T1l 1860 [1'z1] [17°¢]
vLe'6  lo'cel 1866 [o'Tel 96y locel 886t locel 886’1 [o'cel 6861  locel 660 [o'c'el  v66'0  loTTl [oc'el
(oL vl I Y7 Y T (A | ovey  lzrd 86y [Tl 686’1 [T1'7] 6861 [T'1Td 766'0  [T'1'7]  ¥660 [T1°C] [z1°¢l
¥88'6  [g'T0l  $96'6  [c'T0l grer  [g'Tol 16t [Tl 996’1 [g'Tol 9961 [zTol 1L60  [gT0l 160  [zTTol [z¢ed
evo6 1Tl 6966 [1°T1] gcoy  l1'c'tl  cey 1Tl (70 S 4 V N S A Y| 8,60 1zl 860 [reil [1°¢T]
LL86 lo'c'ol  9L66  lo'col 1s6v  lo'col  €86%  lo'col 86’1 [o'c'ol 2861 [ocol £860  [o'c'ol  £86'0 [0c'0l [o¢'e]
0686 lz'zol 266 [TTol 196y [g'zol  ¢L6v  [T'Tol 86’1 [g'Tol 2861 [zTol L86'0 [z'zol 1860 [z'T0] [z'zed
886  [1'T'1l  6g66 (1Tl evey LTl evey 1Tl 686’1 11l 6861  [1T1] 66’0 [1°C'1] w660 [1°CT1] [1z'e]
SL86  [z'zol 8966 [zTol 6l6v  [g'col 696+ [0l L6l [z'zol 7ol [TTol 8,60 [z'zol  8L6'0  [TT0l [zetl
ove'6 (1Tl sLe6  [1°T1l psey 1Tl 8Le6v  [1°T°1] pLe'l 1Tl veer 1Tl 6L60  [1'T'1]  6L60  [1T1] [1°¢'1]
6886 [o'co]l 0866  [0'c0l ey [0'c'0l  086v  [0°c0l 686’1 [o'c'ol 6861 [0°¢0] 660 [0'¢'0]l  +66'0  [0€'0] [o¢'1]
w66 lzcol  9e6  [TTol LLey  [T'Tol 086+ [zTol 686’1  [g'Tol 6861 [zTol 660 [T'T0l  +66'0  [z'T0l [zl
L68'6 lz'zol  ¢L66  [TTol ey lg'col  sLev  [zTol yL6'l  [T'Tol  vie'l [Tl 6L60  [T'T0l  6L6'0  [zTol [z¢'ol
968'6  [1'T0l 6966 [1'T0l 196y [1'zol  vier  [1°T0l ¢L6'1 1ol wLer  Lrzol 6,60 [1'T'0]l  6L6'0  [1°C'0] [1°¢'0]
G G O GO GO N GO ¥ O ot/ O GO N O O G s /7N O O L /W G - R O e W G VO OV O T G

2ABOUO)-dAY dan 9ABOUOD-dAV dan 2ABdUOD-dJV dan AABdUOD-dAV dan 9els [enuf

0l =.L S=.1 =1 1=.0

Al UOT}O9S UISOUEISUL JOJ SUOIIOUNJ ON[BA PUR SUOIOR Pajod[os I A IAVL



1, the maximization problem in (22) is

max { H[l — (1 — ri)ni—sé-"—af]

i=1

—+n3”]j[I[l——<n?"1>"i-si+ai]}, (23)
i=1

s.t. Constraints zl )—(2).

The MWO heuristic attempts to identify high-quality
solutions to Model (23) by employing a surrogate model
in which each of the m terms in the first product and
(m + 1) terms in the second product of Objective (23)
are maximized separately. The surrogate model is the
(2m + 1)-objective problem

max {1 —(1- Tl)m—si-i-ai’l —(1- r2)n2—s§+a§’

Ceey 1— (1 — Tm>nm_sfn’+a:n

t,n—1
770 9

1— ("Mt 1 (e,

9

e U (24)

s.t. Constraints (1)—(2).

t,nfl)nmfsfnJrafn },

The surrogate model, Model (24), conveniently allows
for the nonlinear objectives to be reformulated into lin-
ear objectives. Removing the constant-valued objective
776’”71 and negating the remaining objectives yields that
that Model (24) is equivalent to the 2m-objective model

min {(1 — rl)”l_siJrai, (1- r2)”2_55+‘15,

i) (1 - T'rn)nm*S:n+a:n7

(n?n—l)m—ﬁ—&-al{ 7 (né,n—l)nz—sgﬂlé ,

t t
o (sl }

s.t. Constraints (1)—(2).

(25)

After defining \; = —In(l — 7;) and Abml
—ln(ﬁf ’"_1), applying a natural logarithm to each of the
2m objectives in Model (25) yields the equivalent, linear,

2m-objective model
max{(m — sﬁ + aﬁ)/\h (ng — 35 + atz))‘%
ooy (M — 8L, 4 al) A,
(n1 — s +af)y "
ceey (nm — an + afn)'ﬁﬁn_l}v

s.t. Constraints (1)—(2).

) (n2 - St2 + ag)7§7n_1>

(26)

Following Coit and Konak [27], we derive solutions to
Model (26) by solving a single-objective model in which
the objectives of Model (26) are combined using weights

wi, © =1,...,m. Similar to Coit and Konak [27], we set
w; = 1/(2m), Vi =1,...,m, placing equal weight on
the 2m objectives from Objective (26). This assignment
of weights is sensible because the system is structurally
symmetric with regard to the set of subsystems (i.e.,
failure of any subsystem causes the system to fail). These
weights yield the integer linear program

max Zwi (nl —st+ aﬁ) ()\i + ’yf’n_l) , 27D
i=1
s.t. Constraints (1)—(2).

Solving Model (27) yields a feasible solution to
Model (23); however, the “weighted objectives” form
of Model (27) tends to lead to solutions in which one
or more of the subsystems ¢ € {1,...,m} yields a
value of 1 — (1 — r)mi—sitai or 1 — (pb"~Hymi—sital
that is “too small”—that is, such a solution would have
prohibitively reduced the value of Objective (23) even
though it happens to be optimal for Model (27). In order
to address this issue, we add the constraints

(ni — st +a)X; > —In(1 — R;), Yi=1,...,m, (28)

(ni—st+al)y?" ' > —In(1 - R.), Vi=1,...,m,
(29)

where R; and R] respectively denote unacceptable
values of subsystem ¢’s reliability and value function
contribution that must be exceeded in future iterations
of solving Model (27). These are written as “greater
than” constraints, but in practice, they are changed
to a “greater than or equal to” by adding a small ¢
term to the right hand-side. (We use ¢ = 0.00001 for
all of the instances reported in this paper.) We solve
Model (27)—(29) iteratively in which Constraints (28)
and (29) are tightened (by adding a pre-specified
A-value) in order to improve the smallest reliability
and value function contribution in the next iteration.
Model (27)—(29) can be solved using available integer
programming algorithms and software. The algorithm
for a given A-value is described below.

MWO HEURISTIC

Step 0: Set ¢ <+ 1. Set R; «+ 0, R, < 0, and
w; < 1/(2m) fori=1,...,m.

Step 1: Solve Model (27)-(29) using CPLEX. If the
model is infeasible, go to Step 3. Otherwise, re~tain the
obtained optimal action a*? and optimal value V™ for
iteration ¢, and go to Step 2.

Step 2: For iteration ¢, let k& € argmin,(R;(a.?))

K2



and j c 7]”1'*82*“? ),

Ri(a;") =

R, + Rk(aZ)—&—A, R;- — (1—77”7
and ¢ < ¢+ 1. Go to Step 1.

argmin, (1 — where
(1 — (1 — r)mi—sita®) Update
RAESEYN

Step  3: Return the best objective value
V*hn = max, Vqt’" and solution a* = a'¥, where

(7t,n
v € argmax, V"

VI. MAINTENANCE WITH SHARED
RESOURCES

We now demonstrate that ADP-Concave can be ex-
tended to the case where resources are shared across
maintenance breaks. For simplicity, we assume in this
section that there is only one resource (hereafter referred
to as budget) with 31 units available. In order to model
this case, we add the state variable B*, t =0,...,7T—1,
to represent the remaining budget at the end of mission
t, where BY = f3; represents the total available budget.
Thus, A(s") is changed to A(s*,BY), t=0,...,T —1,
by replacing Constraint (1) with

m

Z pi1a§ S Bt.
i=1

State transitions occur as before with the exception that
we now add for £ = 0,...,T — 1 the transition function

Bt szlam

in order to update the remaining budget. We modify the
ADP-Concave algorithm by adjusting Equation (16) as

V ( wt Bt|770577176t) =

z=1

(30)

Bt+1 (31)

Bt+1

ne(1— " 7

t(nt S ))’ (32)

where 0 < @ < 1 is a new parameter. Analo-
gous to the discussion after Equation (16), the term
(1 - HtBHl/ A ') might be interpreted loosely as “an
estimate of the maximum probability that shortage of
resources does not cause failure in a given future mis-
sion t € {t + 2,...,T}” By incorporating 60, the
modified value function approximation in Equation (32)
now has the ability to capture the impact of remaining
budget on the maximum number of remaining successful
missions—because (1—9tBt+1/51) is increasing in B**1,
Equation (32) enables penalizing over-aggressive use of
the budget in early periods.

The parameters in Equation (32) are updated based on
stochastic gradient descent method represented in (19).

Element 0 of V-1 Vi1 (s™t 7 pt~1 6 is
th—l(sx,t—lmt—l et)

6,'71571
(- ﬁ (1= @), 63)

i=1
,m of Ve a VITL(s™E 1 pt=1 6t) is
AV (571 [t gt)

element 1 =1,...

o}~
—(1—9t%l)
< (my— sy <nf—1>”f*8f'“ s
S | B € B K PR

ire{1,...,m}\i

and 6° is updated based on
OVt—L(smt 11 gty
00 N

t+1 t+1
B Qt(Bﬁl -1) ¢—1

B "o
% ﬁ (1 — (n; l)m—s?"*l) '
i=1

To implement MWO inside the ADP, we define utvn_l =
—In(A*"~1) and rewrite the objectives (26) as

(35)

max {(nl — st +al)A, (ng — s+ ab) s,
s (Mg — 8L 4 al )\
B,
gt
(nq — st + al)vf " (ng — sh+ab)yy"
L al )it} (36)

* (nm -

t4+1

Let R” denote an unacceptable value of (1 — gt? 8 )

that is initialized to O and updated at each iteration. We

then solve the MWO algorithm in Section V in which
we replace Model (27) with

1 i e

i=1
Bt+1 . 1
+ S (37)
B "
s.t. a' € A(s', BY), (38)
Bt+1/1,t’n_1 > —Blln(l _ RH), (39)

Constraints (28), (29), and (31).



Following Coit and Konak [27] and the discussion in
Section V, the above model results after applying equal
weights to the (2m + 1) objectives in Equation (36).

VII. COMPUTATIONAL RESULTS

In this section, we test the performance of the ADP
algorithms and analyze their solutions. Using a set of
instances that vary in size, Section VII-A compares
the ADP algorithm performance against the MDP and
myopic algorithms and analyzes ADP solutions in detail.
Section VII-B performs a further investigation of the
ADP’s performance on a broader set of instances. Sec-
tion VII-C analyzes the effect of varying input param-
eters on the value function and maintenance decisions.
Section VII-D applies and analyzes the shared-budget
model on the instances from Section VII-A and com-
pares solutions to the shared-budget and original models.

A. ADP Performance and Solution Analysis

In this section, we compare the performance of ADP-
Concave against the (exact) backward dynamic program-
ming algorithm for solving the MDP (see [14]). We
also compare against a myopic approach in which we
sequentially solve the one-step-lookahead redundancy
allocation problem to determine the maintenance ac-
tions in each state—that is, the myopic approach solves
max,eea(st) R(s',a’) (ignoring the expected number
of successful missions after mission ¢ + 1) to deter-
mine the maintenance actions in state s € S. Both
ADP-Concave and the myopic approach are amenable
to solving subproblems using the MWO heuristic of
Section V, so we have implemented two versions of
each of these approaches: one that includes MWO, one
that solves by enumeration. We utilize N = 500 and
step size a, = 0.1, Vn 1,...,N in both of the
ADP implementations and A = 0.0001 in both of the
MWO implementations. In what follows, we will refer
to the five solution approaches as “MDP” (the backward
dynamic program), “Myopic” (the myopic approach in
which subproblems are solved by enumeration), “ADP-
Concave” (the version of ADP-Concave in which sub-
problems are solved by enumeration), “Myopic-MWO”
(the myopic approach in which subproblems are solved
by MWO), and “ADP-MWO” (the version of ADP-
Concave in which subproblems are solved by MWO.
Each algorithm is implemented in JAVA using the Uni-
versity of Arkansas High Performance Computing Cen-
ter and the time limit is set for three days (259,200 s).

We compare the algorithms across eight instances
with m € {3,4,5,6,7,8,9,10} and parameters given in
Table II. The instances are solved for T € {1,...,10}
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TABLE II: Numerical instance parameters

Subsystem, %
1

n; T
0.8
0.8
0.7
0.9
0.9
0.8
0.8
0.7
0.9
0.9

>

i1

O 01NN B~ W
[V, BNV, BV, BV, BV, BV, BV, BV BV R |
|V, BNV, BNV, BV, BV, BV, BV, BV, BV, B, |

—
=)

and one available resource (hereafter referred to as
“budget”) with 81 = 5m units available for maintenance
in each break and 2 failed components in each subsystem
as the initial state. Tables III, IV, and V respectively
display (i) each algorithm’s expected number of success-
ful missions, (ii) the computation time required by each
algorithm, and (iii) the selected maintenance actions in
break O for the instances with 7" = 10. In Table III,
the value functions for the MDP are exact; however, for
the ADP and myopic approaches, we report a sample
average over 500 simulated sample paths. In Table IV,
the computation time for both ADP algorithms is the
time required to train the model parameters over 500
sample paths. However, no training is required for the
myopic approaches, and we therefore (for consistency
with the ADP results) report the time required to find the
best maintenance policy over a single generated sample
path. Consequentially, the time required to evaluate the
performance of the myopic and ADP algorithms (by
generating 500 additional sample paths) is not included
in the time reported in Table IV.

For small systems (e.g., m < 5), the MDP is prefer-
able to the other algorithms in the sense that it yields
an optimal solution whose value function exceeds that
of all the other algorithms; however, as indicated in
Tables II-1V, the MDP runs out of memory for 7" > 8
when there are m = 6 subsystems and for 7" > 4 when
there are m = 10 subsystems. By contrast, the remaining
algorithms solve within a few minutes for all of the
instances. On the instances that MDP can solve, the
reported ADP-Concave and ADP-MWO value functions
tend to be only slightly less than the MDP value function.
Both ADP approaches and both myopic approaches
are capable of solving larger instances in a reasonable
time, but with ADP-Concave and ADP-MWO requiring
more computation time than Myopic and Myopic-MWO;
however, there are significant differences in the quality



TABLE III: Value function (expected number of successful missions) for instances in Section VII-A, where “>" denotes that
the algorithm did not terminate within 259, 200s

m  Algorithm T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
MDP 0.9949 1.9885 29827 3.9769 49711 59654 69596 7.9539 89481 9.9423
Myopic 0.9949 19769 29339 3.8732 4.8279 5.7818 6.7421 7.7017 8.6612 9.6188

3  ADP-Concave 0.9949 1.9826 29733 39666 49478 59348 6.9299 79139 8.8989 9.8722
Myopic-MWO 09899 1.9692 29249 3.8637 4.7859 5.7033 6.6445 7.5769 8.5028 9.4409
ADP-MWO 09912 19811 2.9669 3.9469 49228 59097 6.8916 7.8738 8.8528 9.8212
MDP 0.9934 19858 29792 3.9727 49662 59598 6.9533 7.9468 8.9403 9.9338
Myopic 0.9934 19759 29229 3.8571 4.7962 5.6866 6.5992 7.5168 8.4518 9.3605

4 ADP-Concave 0.9934 1.9828 2.9681 3.9528 49374 59112 6.8989 7.8678 8.8227 9.8124
Myopic-MWO 09872 1.9639 2.8953 3.7894 4.6986 5.6038 6.5221 7.4518 8.3809 9.2998
ADP-MWO 09899 19748 29622 3.9417 49239 59008 6.8828 7.8514 8.8115 9.7997
MDP 0.9937 19867 29805 3.9742 49679 59617 69554 7.9491 8.9428 9.9366
Myopic 09937 19769 29494 3.8589 4.7899 5.6902 6.6312 7.5778 8.5212 9.4578

5 ADP-Concave 0.9937 1.9829 29695 39419 49196 5.8797 6.8522 7.8188 8.8022 9.7787
Myopic-MWO 09819 1.9487 28797 3.7756 4.6772 55988 6.5299 7.4698 8.4034 9.3379
ADP-MWO 09891 19771 29653 3.9327 4.8902 5.8582 6.8149 7.7926 8.7701 9.7479
MDP 09899 19779 29821 3.9781 49756 59712 6.9702 > > >
Myopic 09899 19642 28792 3.8153 4.7588 5.6712 6.6087 7.5623 8.5569 9.5411

6 ADP-Concave 09899 19712 29524 39298 49046 5.8522 6.8297 7.8272 8.8136 9.8018
Myopic-MWO  0.9689 1.8992 2.8059 3.7276 4.6537 5.5588 6.5026 7.4999 8.4767 9.4628
ADP-MWO 09888 1.9689 29512 3.9202 4.8886 5.8423 6.8101 7.7889 8.7668 9.7342
MDP 09884 19765 29789 3.9755 4.9721 59711 > > > >
Myopic 09884 1.9626 2.8655 3.7836 4.7178 5.6455 6.6135 7.5511 8.5398 9.5274

7 ADP-Concave 0.9884 1.9708 29511 39178 4.8923 5.8489 6.8276 7.8142 8.8012 9.7889
Myopic-MWO 09675 1.8839 2.7665 3.6855 4.6093 5.5349 6.5003 7.4867 8.4622 9.4589
ADP-MWO 0.9882 1.9628 2.9444 39095 4.8802 5.8388 6.8124 7.7799 8.7578  9.7245
MDP 0.9887 1.9889 29776 3.9742 4.9689 > > > > >
Myopic 0.9887 1.9515 2.8539 3.7511 4.6851 5.6401 6.6388 7.5354 8.5112 9.5188

8 ADP-Concave 0.9887 1.9799 2.9397 39067 4.8612 5.8588 6.8135 7.8098 8.7865 9.7612
Myopic-MWO  0.9662 1.8764 2.7466 3.6533 4.5616 5.5288 6.4994 7.4728 8.4411 9.4389
ADP-MWO 09876 19616 29225 3.8788 4.8443 5.8222 6.8109 7.7675 8.7312 9.7188
MDP 09871 19824 29722 3.9714 > > > > > >
Myopic 09871 1.9698 2.8452 3.7424 4.6717 5.6288 6.6211 7.5887 8.5513 9.5189

9 ADP-Concave 09871 1.9765 2.9274 3.8855 4.8599 5.8434 6.8298 7.7968 8.7598 9.7467
Myopic-MWO 09654 1.8727 2.7323 3.6353 4.5487 5.5026 6.4875 7.4612 8.4267 9.4154
ADP-MWO 09856 19735 29178 3.8616 4.8299 5.8034 6.8078 7.7599 8.7225 9.7079
MDP 0.9865 19812 2.9785 > > > > > > >
Myopic 09865 19621 2.8298 3.7369 4.6488 5.6005 6.6189 7.5728 8.5226 9.5065

10 ADP-Concave 0.9865 1.9722 29145 3.8612 4.8387 5.8221 6.8187 7.7865 8.7377 9.7325
Myopic-MWO  0.9622 1.8653 2.6813 3.6133 4.5122 54998 6.4767 7.4436 8.4101 9.4021
ADP-MWO 09843 19685 29188 3.8478 4.8112 5.7824 6.7788 7.7364 8.7101 9.6821
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TABLE IV: Computation time (s) for instances in Section VII-A, where “>" denotes that the algorithm did not terminate within

259, 200s
m  Algorithm T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
MDP <1 <1 <1 1 1 1 1 2 2 2
Myopic <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
3  ADP-Concave <1 <1 <1 2 3 4 5 6 7 7
Myopic-MWO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ADP-MWO <1 <1 <1 1 1 2 2 3 4 4
MDP <1 2 46 95 144 199 240 292 340 401
Myopic <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
4  ADP-Concave <1 5 9 11 16 18 25 34 42 54
Myopic-MWO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ADP-MWO <1 2 4 6 10 12 15 21 26 34
MDP <1 103 8267 17009 25641 34441 43309 51402 60791 69275
Myopic <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
5  ADP-Concave <1 12 19 25 38 45 56 77 95 136
Myopic-MWO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ADP-MWO 1 4 7 10 24 27 35 48 66 89
MDP 25 5369 8992 16467 22560 60880 125788 > > >
Myopic <1 <1 <1 <1 <1 2 4 8 15 21
6 ADP-Concave 28 62 112 159 191 224 264 297 324 356
Myopic-MWO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ADP-MWO 2 8 15 24 35 56 79 95 136 188
MDP 60 8877 15225 30665 77445 145660 > > > >
Myopic <1 <1 <1 <1 <1 <1 2 4 5 8
7  ADP-Concave 65 115 185 215 266 287 311 356 378 412
Myopic-MWO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ADP-MWO 5 16 30 55 78 110 142 178 212 245
MDP 109 12556 25665 66055 156223 > > > > >
Myopic <1 <1 <1 <1 <1 1 3 5 8 11
8  ADP-Concave 105 187 236 289 365 412 466 499 557 621
Myopic-MWO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ADP-MWO 12 38 65 88 112 152 176 198 236 287
MDP 256 26650 65990 167880 > > > > > >
Myopic <1 <1 <1 <1 <1 3 6 10 12 16
9 ADP-Concave 244 297 322 345 388 421 465 499 534 565
Myopic-MWO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ADP-MWO 42 90 125 142 167 216 244 267 297 343
MDP 368 50340 159440 > > > > > > >
Myopic <1 <1 2 4 8 12 17 21 27 35
10 ADP-Concave 368 426 489 532 579 612 645 675 699 736
Myopic-MWO <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
ADP-MWO 62 122 136 185 211 244 245 274 322 364
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TABLE V: Maintenance actions in break O for instances in Section VII-A with 7" = 10, where “>" denotes that the algorithm
did not terminate within 259, 500s

Reliability, ; 0.8

m  Algorithm 1=
MDP 0
Myopic 0

3 ADP-Concave 0
Myopic-MWO 0
ADP-MWO 0
MDP 1
Myopic 1
4 ADP-Concave 1
Myopic-MWO 1
ADP-MWO 1
MDP 1
Myopic 1
5  ADP-Concave 1
Myopic-MWO 1
ADP-MWO 1
MDP >
Myopic 1
6 ADP-Concave 1
Myopic-MWO 1
ADP-MWO 1
>

1

1

1

1

>

1

1

1

1

>

1

1

1

1
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1

1

1

1
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MDP
Myopic

7  ADP-Concave
Myopic-MWO
ADP-MWO
MDP
Myopic

8  ADP-Concave
Myopic-MWO
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MDP
Myopic

9 ADP-Concave
Myopic-MWO
ADP-MWO
MDP
Myopic

10 ADP-Concave
Myopic-MWO
ADP-MWO

e S S YA T S I R A B e Y A I N R N Y A e R R A e R R e i i e B
el Y B A Y e VA e Y

e S IRV A B R A e Y Y]

SN S SN SRV S S SR VA PO S S OV

—o—=0oV/iooooV
1

13



of these solutions, with the ADP approaches consistently
outperforming the myopic approaches. Fig. 3(a), 3(b),
3(c), and 3(d) display the optimality gap (defined as
100% times the ratio of the difference between an
algorithm’s attained value and the MDP’s attained value,
divided by the MDP’s value) for the instances with
m=3,m=4, m=2>5, and m = 6.

For each value of m and each solution approach, the
optimality gap is increasing in the number of missions.
Further, ADP-Concave and ADP-MWO exhibit signifi-
cantly smaller optimality gaps in comparison to Myopic
and Myopic-MWO.

From Table V, all of the algorithms tend to maintain
all failed components in subsystems 3 and 8, which have
the smallest reliability. Whereas all failed components
in subsystems 2 and 7 are maintained in Myopic and
Myopic-MWO, these resources are used in MDP, ADP-
Concave, and ADP-MWO to maintain one component
in subsystems 2, 4, 7, and 9. By increasing the num-
ber of missions, there is a greater probability that the
highly reliable components in subsystems 4 and 9 will
fail during the planning horizon. Because both Myopic
and Myopic-MWO maximize the reliability of the next
mission, neither of these algorithms captures the effect
of a prolonged planning horizon on the need to maintain
components of subsystems 4 and 9. By incorporating
information about the expected impact on future mis-
sions, both ADP-Concave and ADP-MWO are thus able
to improve upon the myopic algorithms.

B. ADP Performance for Expanded Instance Set

In order to further test the performance of ADP,
we vary the parameters in Table II. Table VI defines
three settings for the component reliabilities r;, 7 &€
{1,...,m}: original (R,), high (Rp) and low (R;).
Table VII defines four settings (I, II, III, and IV)
for the number of components n; in each subsystem
i € {1,...,m}, with T corresponding to equal number
of components in each subsystem and II-IV becoming
progressively less balanced (i.e., with some subsystems
containing many more components than other subsys-
tems). Table VIII defines four settings (I, II, III, and IV)
for the maintenance resource requirements p;; in each
subsystem i € {1,...,m}, with setting I representing
balanced resource requirements (i.e., maintenance ac-
tions in each subsystem have the same cost) and II-IV
progressing toward maintenance actions costing much
more in some subsystems than in others. All algorithms
from Section VII-A are compared for m 10 and
T € {3,10}, and we report the results for all combina-
tions of the three “component reliability” settings with
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TABLE VI: “Component reliability” settings R,, R;, and Rj,
for instances from Section VII-B

Component reliability, r;

Subsystem, R, R; Ry,
1 0.8 0.75 0.85
2 0.8 0.75 0.85
3 0.7 0.65 0.75
4 0.9 0.85 0.95
5 0.9 0.85 0.95
6 0.8 0.75 0.85
7 0.8 0.75 0.85
8 0.7 0.65 0.75
9 0.9 0.85 0.95
10 0.9 0.85 0.95

either (in Table IX) the four “number of components”
settings or (in Table X) the four “maintenance resource
requirement” settings.

Tables IX and X indicate that the reported value
functions for ADP-Concave and ADP-MWO are slightly
less than the MDP for 7" = 3. The MDP runs out of
memory for 7" = 10, but the remaining algorithms are
capable of solving the large instances. Computationally,
the remaining algorithms perform similarly to the results
in Section VII-A: For all instances, ADP-Concave and
ADP-MWO significantly outperform both Myopic and
Myopic-MWO in terms of solution quality, both for
T = 3 and T 10. Furthermore, on the T 3
instances, the optimality gaps (as depicted in Fig. 4 and
5) with respect to the exact MDP value are small for both
ADP-Concave and ADP-MWO. The value functions in
Tables IX decrease upon changing from balanced (setting
I) to imbalanced (settings II, III, and IV) allocations of
component redundancies; however, the value functions
in Table X increase upon changing the maintenance
resource requirement from balanced (setting I) to im-
balanced (settings II, III, and IV) across subsystems.

In both Sections VII-A and VII-B, ADP-Concave
slightly outperforms ADP-MWO in terms of solution
quality for all of the instances, but at the expense
of a significant increase in computation time. Thus,
depending on the size of the “maintenance action” sets
A(s'), st € S, either ADP-Concave or ADP-MWO
could be justified as a solution approach. Throughout
the remainder of this paper, we consider a number
of instances in which the maintenance action sets are
larger due to either (in Section VII-C) increased numbers
of components and maintenance budgets, or (in Sec-
tion VII-D) allowing for resource-sharing across the time
horizon. We have therefore opted to use ADP-MWO
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TABLE VII: “Number of components” settings I, II, III, and
IV for instances from Section VII-B

Number of components, n;

Subsystem, 1 II 11 v
1 5 4 3 2
2 5 4 3 2
3 5 4 3 2
4 5 4 3 2
5 5 4 3 2
6 5 6 7 8
7 5 6 7 8
8 5 6 7 8
9 5 6 7 8
10 5 6 7 8

TABLE VIII: “Maintenance resource requirement” settings I,
II, III, and IV for from Section VII-B

Resource requirement, p;;

Subsystem, 1 1II I v
1 5 4 3 2
2 5 4 3 2
3 5 4 3 2
4 5 4 3 2
5 5 4 3 2
6 5 6 7 8
7 5 6 7 8
8 5 6 7 8
9 5 6 7 8
10 5 6 7 8

throughout the remainder of our computational results.

C. Sensitivity Analysis

In this section, we investigate the effect of changing
input parameters on the value function and computa-
tion time. We vary the total budget level, number of
components in each subsystem, and initial state for the
10-subsystem instance from Table II with 7' = 5, and
solve using ADP-MWO. The results are presented in
Tables XII and XIII. The value function (in Table XII)
and computation time (in Table XIII) increase by in-
creasing the number of components in each subsystem.
Also, by increasing the total budget, the value function
first increases and then levels off when there are enough
resources to maintain all failed components in each sub-
system during each mission. There is an increasing and
then decreasing trend in computation time because little
room for optimization exists when the budget is small or
large. For example, when initial state is [1,1,...,1], all



TABLE IX: Value function (expected number of successful missions) for instance combinations defined in in Tables VI and VII

n; (I) n; (ID n; (11D n; (IV)

r;  Algorithm T=3 T=10 T=3 T=10 T=3 T=10 T=3 T=10
MDP 2.9246 - 2.8756 - 2.8129 - 2.5896 -
Myopic 27788 9.4666 2.7582 9.4213 2.6995 9.3824 25112 9.2666

R, ADP-Concave 2.8788 9.7011 2.8518 9.6523 2.7987 9.5722 25799 9.5125
Myopic-MWO  2.6544 9.3823  2.6325 9.3323 2.6112 9.2765 2.4501 9.0761
ADP-MWO 2.8665 9.6688 2.8302 9.6339 2.7756 9.5323 2.5588  9.4898
MDP 2.9785 - 29124 - 2.8434 - 2.6422 -
Myopic 2.8298 9.5065 2.7886  9.5598 2.7234 9.5147 2.5334 9.4112

R, ADP-Concave 29145 9.7325 28687 9.6777 2.8001 9.6012 2.6102 9.5523
Myopic-MWO  2.6813 9.4021 2.6415 9.4727 2.6098 9.4389 2.4289 9.3367
ADP-MWO 29188 9.6821 2.8565 9.6515 2.7889 9.5812 2.5988 9.5289
MDP 2.9889 - 2.9556 - 2.9024 - 2.8233 -
Myopic 2.8545 9.6577 2.8231 9.5883 2.7786 9.5441 2.7272 9.4623

Ry ADP-Concave 29434 9.7555 29088 9.7033 2.8612 9.6333 2.8022 9.5828
Myopic-MWO 27128 9.6145 2.6896 9.5221 2.6478 9.4935 2.5923 9.4221
ADP-MWO 29217 9.7092 2.8876 9.6777 2.8482 9.6016 2.7926 9.5445

TABLE X: Value function (expected number of successful missions) for instance combinations defined in in Tables VI and VIII

pi1 (D pi1 (ID pi1 (1) pi1 (IV)

T Algorithm T=3 T=10 T=3 T=10 T=3 T=10 T=3 T=10
MDP 2.9246 - 2.9395 - 2.9537 - 2.9767 -
Myopic 2.7788 9.4666 2.7999 94826 2.8329 9.5115 2.8633 9.5338

R;  ADP-Concave 2.8788 9.7011 29145 9.7336 2.9396 9.7566 29656 9.7839
Myopic-MWO  2.6544 93823 2.6888 9.4144 27118 9.4432 2.7339 9.4898
ADP-MWO 2.8665 9.6688 2.8996 9.6856 2.9229 9.7147 29553 9.7446
MDP 2.9785 - 2.9823 - 2.9888 - 2.9912 -
Myopic 2.8298 9.5065 2.8555 9.5333 2.8832 9.5655 29146 9.5988

R, ADP-Concave 29145 9.7325 29345 97819 29637 9.8115 29746 9.8624
Myopic-MWO  2.6813 9.4021 2.7033 9.4334 2.7256 9.4882 2.7638 9.5119
ADP-MWO 29188 9.6821 29212 9.7635 2.9433 97889 2.9667 9.8223
MDP 2.9889 - 2.9898 - 2.9912 - 2.9967 -
Myopic 2.8545 9.6577 2.8676 9.6788 2.8777 9.7088 2.8897 9.7335

Ry ADP-Concave 2.9434  9.7555 29635 9.7967 29726 9.8212 29812 9.8515
Myopic-MWO  2.7128 9.6145 27889 9.6314 2.8019 9.6555 2.8225 9.6727
ADP-MWO 29217 9.7092 29413 97399 29588 9.7833 29727 9.7999

of the failed components can be maintained with B > 50
in the first mission and the problem gets easier to solve
by increasing the total budget level. Increasing the initial
number of failed components in each subsystem reduces
the value function and increases the computation time.

The best maintenance action for the first mission
depends only on the total available budget for mainte-
nance and does not change by varying the number of
components in each subsystem or initial state. By in-
creasing the total budget level, the number of maintained
components in each subsystem changes according to the
reliability of subsystems. For example, Table XI presents
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the ADP-MWO solutions under varying budget values
for the instance with 5 components at each subsystem
and initial state [5, 5, ..., 5]. The number of components
maintained in each subsystem increases as the budget
increases, and the least reliable components (in this case,
subsystems 3 and 8) are more frequently maintained as
compared to higher-reliability components.

D. The Shared-Budget Model

In this section, we report the results from applying the
shared-budget model of Section VI to the instances of
Table III. The total available budget for this model is the
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summation of budget available for maintenance at each
mission for the original model, i.e., BY = T35, = 5T'm.
The value function and computation time are represented
in Tables XIV and XV for both MDP and ADP-MWO
for T > 2 (because the the shared-budget model is
identical to the original model for 7' = 1). Because
the missions are related together in this model, there
is no clear extension of the myopic approach. Thus, we
have not implemented Myopic and Myopic-MWO for
these instances. Based on the results, the MDP runs
out of memory when 7' > 8 and there are m = 4
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subsystems. Not surprisingly, this problem turns out to
be more difficult to solve than previous problem because
the state space is larger. However, ADP-MWO works
well in comparison to the exact solution obtained based
on MDP for smaller instances and it can solve larger
instances in a reasonable time.

By sharing the total budget across the missions, there
is on average a 2.14% increase in the value function in
comparison with the previous problem. The maximum
possible improvement relative to upper bound T, is
on average 2.87%. Thus, by allowing the optimization



TABLE XI: First-period maintenance decision for instances in
Section VII-C

Num. components maintained
B=50 B=8 DB=100 B=120

Subsystem, ¢

1 1 2 3 3
2 1 2 2 3
3 3 4 5 5
4 0 0 0 1
5 0 0 0 0
6 1 2 3 3
7 1 2 2 3
8 3 4 5 5
9 0 0 0 1
10 0 0 0 0

model to determine when to expend resources, we obtain
a significant improvement to the system’s reliability.

Table X VI presents the maintenance actions of the first
mission for both the original and shared-budget mod-
els based on ADP-MWO for a 10-subsystem instance,
initial state [2,2,...,2], total budget B° 507, and
T € {1,...,10}. Under the the original model (with
budget separated by period), all failed components in
subsystems 3 and 8 are maintained they have the smallest
reliability. Also, all failed components in subsystems 2
and 7 are maintained for 7" < 5, but for 7" > 6 these
resources are reallocated to maintain one component in
subsystems 2, 4, 7 and 9. Evidently, the longer planning
horizon forces the model to place more importance on
the increased possibility that components in the (highly
reliable) subsystems 4 and 9 will fail during the planning
horizon. As T increases, changes in the maintenance
action for each subsystem are formatted in bold.

For the shared-budget model, the maintenance actions
for T € {1, 2} are identical to the original. By increasing
the number of missions (increasing the total available
budget), the shared-budget model tends to maintain more
failed components at the beginning of planning horizon.

VIII. CONCLUSION

In this paper, we develop an approximate dynamic
program for the multi-mission selective maintenance
problem. We implement a heuristic approach inside the
ADP algorithm to solve the larger instances in a reason-
able time. Using numerical experimentation, we evaluate
the performance of the ADP algorithm in comparison
with exact solution of the MDP. The results demonstrate
that the developed algorithm performs well for small
instances and solves larger instances in a reasonable
time. The ADP’s increased capabilities open the door
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to allowing the model to determine how the mainte-
nance budget should be allocated across the planning
horizon. The results for the shared-budget model suggest
that incorporating this feature may lead to significant
improvements in the system’s reliability.

Future work may seek to further improve solution
methods for this class of problems. Additionally, the
development of ADP methodology for selective mainte-
nance problems may open the door to other modeling ex-
tensions, including (i) selective preventive maintenance
actions on a system with increasing failure rate compo-
nents and (ii) selective maintenance on more generally
structured (i.e., not series-parallel) systems.
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