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 

Abstract—We firstly analyze the nonlinearities in the analog 

radio-over-fiber-based (A-RoF-based) mobile fronthaul (MFH) 

systems with a multi-user uplink load. The inter-band cross 

modulations (XM) present in the common fiber channel cause 

severe inter-user interference. Then, we propose a novel complex-

valued multi-level artificial neural network nonlinear equalizer 

(ANN-NLE) for single carrier frequency division multiple access 

(SC-FDMA) signal uplink transmissions. The inter-user 

interference can be mitigated by employing a multi-user ANN-

NLE. Finally, we design an experimental testbed comprising a 60-

GHz wireless link and an A-RoF link in order to verify the model 

predictions and thereby demonstrate the ability of the ANN-NLE 

to overcome the nonlinear intra-band and inter-band XM in the 

case of simultaneous joint equalizations of all users (multi-point-

to-single-point) as well as in the case of individual user 

equalizations (point-to-point). From the experimental and 

simulation results, we demonstrate that the ANN-NLE can 

substantially reduce the inter-user interference and 

communication bit error. 

 
Index Terms—5G mobile communication, frequency division 

multiaccess, neural network applications, optical fiber 

communication.  

 

I. INTRODUCTION 

 n the newly proposed 5G architecture, the digital baseband 

processing hardware (baseband unit: BBU) is moved from 

several isolated base stations to a common centralized station 

that supports numerous remote radio units (RRUs). In the new 

radio (NR) architecture, the current consensus declares that 

there should be two splits for the baseband functions. The first 

split is between the RRU and the distributed unit (DU); the 

second split is between the DU and the central unit (CU) [1]. 

As a result, the mobile fronthaul (MFH) is split into two parts 

i.e., Fronthaul I and Fronthaul II. In Fronthaul I, Option 8 

separates the RF from the PHY layer and enables the 

centralization of all the processes at the protocol layer levels at 

the DUs, leading to tight coordination and more efficient 

resource and traffic management that reduce initial capital 

expenditures (CAPEX) and subsequent operational 

expenditures (OPEX) [2]. Analog radio-over-fiber (A-RoF) 

based MFH is of particular interest because of its high 
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bandwidth efficiency and low latency. However, current A-RoF 

schemes suffer from the severe nonlinear degradations in the 

fiber-wireless channels. 

The DUs should be able to simultaneously handle the 

distorted signals from different users and channels, mitigating 

the nonlinear inter-user interference. The analog MFH relies on 

A-RoF technology, in which nonlinear transmission 

impairments can be severe, especially for multi-user signals 

with high peak-to-average power ratios (PAPR) [3, 4]. The 

aggregated A-RoF channels simultaneously suffer from fiber 

and wireless channel nonlinear impairments because at the 

RRU, the signals are launched directly to air or fiber without 

any digital processing.  

This paper is an extension of our recent work published by 

OFC 2018 [5]. We introduce, for the first time, a multi-user 

ANN nonlinear equalizer (ANN-NLE) located at the DU, as 

shown in Fig. 1. ANN-NLE is used to minimize the nonlinear 

impediments in A-RoF-based MFH uplink transmissions using 

single carrier frequency domain multiple access (SC-FDMA) 

signaling. In this letter, we discuss the overfitting problem and 

parameter setting of the ANN-NLE. Moreover, the inter-user 

cross modulation (XM) in a common fiber channel is 

particularly studied and it cannot be overcome by traditional 

point-to-point equalization schemes. The proposed ANN-NLE 

is experimentally demonstrated to mitigate the intra/inter-band 
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Fig. 1.  The A-RoF-based Fronthaul I consisting of three individual wireless 

channels and one common fiber channel. 
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interferences caused by the nonlinear impairments in multi-user 

environments.  

II. OPERATING PRINCIPLE 

Fig. 1 shows the Fronthaul I architecture based on A-RoF 

system with multi-user uplink transmissions. The channel can 

be separated into two parts: the individual SC-FDMA wireless 

channels and the common fiber channel. In wireless 

transmissions, a single-user signal is quasi single-carrier and 

only suffers from data-dependent intra-band XM between the 

in-phase (I) and quadrature-phase (Q) components of the vector 

signals [6, 7]. After transmissions through the wireless channels, 

the signals from different users are aggregated into one 

common fiber channel. The strong sidelobes caused by the 

nonlinearities in wireless channels lead to inter-user 

interference in multi-user scenarios. This kind of interference 

can be mitigated by introducing the guard bands between the 

adjacent channels at the cost of spectral efficiency. The 

nonlinearity induced by the increasing PAPR in the common 

fiber link produces nonlinear inter-band XM between users. 

Inter-band XM between users imposes even more critical signal 

impairments because one user can interfere with all the other 

users regardless of carrier frequency positions, a situation that 

cannot be ameliorated by guard bands, as illustrated at the DU 

stage in Fig. 1.  

With increasing number of users in the common fiber 

channel, the optical signal is more likely to reach a higher PAPR, 

leading to nonlinear XM in the common fiber channel. The 

signals from multiple users are more vulnerable to the 

nonlinearities due to their higher PAPRs and sidelobe 

interference. 

Fig. 2 shows the structure of a delay tap that is specific to an 

ANN-NLE with one hidden layer. A sigmoidal function with 

two saturation regions is the most commonly used activation 

function in the neuron because of its ability to process small and 

large signals and because it is readily differentiable. However, 

in higher order coding applications, such as 16QAM, currently 

used in SC-FDMA uplink transmissions in 4G LTE, the ANN-

NLE architecture with two saturation regions does not lend 

itself to easy adaptation. As a workable solution, in this paper 

we employ the previously proposed complex-valued multi-

level activation functions for the ANN-NLE in this paper [7]. 

The input vector Xi(n)=[xi(n), xi(n-1),…, xi(n-M+1)]T (i=1, 2, 3 

and 4) denotes the signals from the ith user. Where [‧]T denotes 

matrix transposition and M is the tap number for each user and 

it depends on the system inter-symbol interference (ISI) level. 

The function yout,i(n) represents the output results of the ith user. 

Due to the fact that the neurons in the ANN are interconnected 

with all the other neurons, the proposed ANN-NLE is able to 

realize joint equalizations with multiple users. The weight 

values are represented by wk,ij, where k represents the weight of 

the link from the kth layer to (k+1)th layer, i and j represent the 

link from neuron i in the former layer to neuron j in the next 

layer. The neural network is trained by a complex-valued back-

propagation algorithm [8]. 

One of the main problems that may occur in machine 

learning is referred to as the problem of “overfitting”. A good 

characteristic of a machine learning model is its ability to 

generalize accurately from the training data to any future data 

previously unseen by the model. Over parameterizing the neural 

network, that is, having a large number of neurons in the hidden 

layer, can lead to a high probability of “overfitting”. The neural 

network may work well with the training data but exhibit poor 

performances with previously unseen data with high variance. 

Fig. 3(a) shows the bit error rate (BER) performances of an 

ANN-NLE with 4 users as a function of training data set size 

for each user. The training error grows as a function of the 

training data set size because the larger the training set, the 

harder it becomes for the ANN-NLE to fit the training set 

perfectly. On the other hand, the test error decreases with 

increasing training data set size. The ANN-NLE reaches its test 

BER floor when the training data set size is over 10,000 

symbols. From Fig. 3(b), we can obtain the optimal scale of 

ANN-NLE when jointly equalizing 4 users. In the following 

experiments, the number of neurons in the hidden layer is 24 

and the tap number of each user is 5. The training discussed 

above is offline training and it is completed before applications. 

Therefore, the latency caused by the offline training can be 

avoided.  

Fig. 4 shows the constellations of the equalized signals in the 

case of four simultaneously transmitting users jointly equalized 

with different numbers of neurons in the hidden layer. When the 

parameters in the ANN-NLE are insufficient, as shown in Fig. 

4(a), the constellations of training and test data sets show “high 

equivalent noise” due to “underfitting”. When the neuron 

number increases to 24 (in Fig. 4(b)), a “low equivalent noise” 

constellation is produced for both training and test data. The 

condition of overfitting, in which the ANN-NLE closely 

follows local data variations, is demonstrated in Fig. 4(c) with 

40 neurons in the hidden layer. 
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Fig. 2.  The structure of delay-tap ANN-NLE with one hidden layer. 
 

 
Fig. 3.  BER performances of ANN-NLE with 4 users as functions of (a) 

training data set size of each user and (b) neuron numbers in hidden layer with 

training and test data set. 
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Fig. 4.  Constellations of the equalized signals when transmitting 4 users with 

(a) 4, (b) 24 and (c) 40 neurons in hidden layers. 
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III. EXPERIMENTAL SETUP AND RESULTS 

The proof-of-concept A-RoF MFH testbed, shown in Fig. 5, is 

composed of user equipment (UEs), RRU and DU. Lacking 

sufficient RF sources, antennas and amplifiers, the 4-user 

wireless signals are generated in Matlab, amplified and 

transmitted by one arbitrary waveform generator (AWG) port 

through one pair of antennas and amplifiers for simplicity. The 

N and M in DFT/IDFT and FFT/IFFT are 16 and 256. Four 

subcarriers are used as guard band spacing. Localized 

bandwidth allocation SC-FDMA signaling is used, followed by 

the addition of a 32-point cyclic prefix (CP). Every UE is 

filtered by a digital square root raised cosine (SRRC) filter with 

a roll-off factor of 0.2. The additional nonlinear channel module 

after digital-to-analog converter (DAC)/ radio frequency (RF) 

in the AWG is used to simulate the individual nonlinear 

wireless channel of each user. Each channel has its own 

nonlinear channel module that generates wireless nonlinearity 

and suffers the nonlinear intra-band XM induced by the 

simulated channel. The nonlinear module is built up with a 

sigmoid transfer function which approximates the tested 

wireless channel as shown in Fig. 5(b). The samples are 

converted to analog waves by the AWG running at 4 GSa/s. The 

bitrate and intermediate frequency (IF) are 266.7 Mbps (with 4 

users, 66.7 Mbps per user) and 400 MHz bandwidth. A 60-GHz 

local oscillator (LO) signal and an IF data source from AWG 

are mixed in a millimeter-wave mixer. The 60-GHz wireless 

signal is transmitted over a distance of 0.8 m, where the signal 

is electrically amplified and detected by an envelope detector 

used for down-conversion from 60 GHz to IF. In this 

experiment, all components and devices before the Mach-

Zehnder modulator (MZM) are designated as the “wireless 

channel”. Then, the remained components are designated as the 

“fiber channel”. The MZM is intentionally operated off its 

optimal bias point Vπ/2 (Vbias=3.6 V, Vπ=3 V) in order to 

introduce a degree of nonlinearity in the MZM’s transfer 

function to approximate inter-user interference. In practice, the 

nonlinearities in RRU may be generated in electrical amplifiers 

(EA), envelope detector or MZM and inter-user XM happens. 

The electrical spectrum of the received signals from the 4 users 

are shown in Fig. 5(a). Fig. 5 insets (b) and (c) show the 

nonlinear transfer curves of the wireless channel and MZM, 

respectively. Fig. 5(d) shows the nonlinear performances of the 

wireless channel when transmitting one single user in a SC-

FDMA system with QPSK and 16QAM signaling, both of 

which are commonly used in 4G LTE uplink transmissions. The 

error vector magnitude (EVM) data in Fig. 5(d) are separately 

measured into a 50-Ω load, captured by an oscilloscope (OCS) 

at the end of the wireless channel at RRU. When VRMS is small 

(VRMS<100 mV), the EVM is dominated by random noise, 

typical of low signal-to-noise ratio (SNR). With increasing 

VRMS (VRMS>100 mV), the EVM clearly degrades due to 

inherent nonlinearities of the mixers, amplifiers and envelope 

detectors.  

Fig. 5(e) shows the EVM behaviors of the signals with 4 

users transmitted through the cascaded wireless and fiber 

channels, indicative of nonlinearities in the fiber channel. 

EVMs are measured in the case of four simultaneous users 

while the AWG output, VRMS, is varied within the condition 

VRMS<100 mV to maintain low nonlinearity in the wireless 

channel. Combined with Fig. 5(d), when VRMS is larger than 50 

mV and smaller than 100 mV, the signals mainly suffer from 

the nonlinearity in MZM and it causes XM between users.  

Fig. 6 shows the measurements under conditions that 

wireless nonlinearities differs substantially from one user to the 

next, as determined by the nonlinear wireless channel modules 

in Matlab (See Fig. 5). Each of the user is distorted in its 

wireless channel by intra-band XM. The equivalent VRMS in the 

experimental system for each user are 64 mV, 127 mV, 191 mV 

and 255 mV, respectively. The nonlinearly distorted signals are 

then transmitted through the testbed within a relatively small 

VRMS (65 mV~80 mV) range so as to avoid additional wireless 

nonlinearities from the mixer at the UE and amplifiers at the 

RRU in the wireless channel. The MZM is working with 

Vbias=3.6 V to additionally introduce nonlinearities in the 

common fiber channel, causing inter/intra-band XM. Fig. 6(b)-

(e) track how the BER performances of each user vary with IF 

VRMS signal strengths into the mixer. User-2/3 have relatively 

worse BER performances than User-1/4 because they are 

subjected to sidelobe interference from each nearest neighbor 

in frequency. User-2 has the worst BER because of its lower 

SNR, which itself is due to the overall channel non-flat 

frequency response. In order to highlight the advantages of the 

proposed joint equalization scheme over all users 

  
Fig. 5.  Experimental setup of the A-RoF-based MFH testbed that uses an ANN-NLE to co-equalize multiple users. Inset (a) is the frequency spectrum of the 4 

users at DU. (b) is the measured nonlinear transfer curve of the wireless channel. (c) is the measured transfer curve of MZM, (d) and (e) are the EVMs of the 
received SC-FDMA signals as functions of VRMS at the output of AWG when suffering from wireless channel nonlinearity and fiber nonlinearity. CP: cyclic prefix, 

SRRC: square root raised cosine, DFB: distributed feedback laser, PC: polarization controller, MZM: Mach-Zehnder modulator, EA: electrical amplifier, SMF: 

single mode fiber, EDFA: Erbium doped fiber amplifier, PD: photo detector, OCS: oscilloscope. VRMS is mean square voltage of the intermediate frequency data 

envelope waveform. 
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simultaneously, first we separate the multi-point-to-single-

point transmissions into four point-to-point transmissions and 

individually equalize every user. In the case of individual 

equalizations, we use ANN-NLEs with a scale of 5-12-1 and 

one ANN-NLE for one user. The ANN-NLE has been proven 

to be better than the traditional equalizers in point-to-point 

transmissions, such as Volterra-based equalizers [9-11]. As 

shown in Fig. 3(b), the optimal solution for the joint 

equalization of 4 users is obtained with an ANN-NLE with a 

structure 20-24-4 (5 taps for each user at the input layer). When 

VRMS is in the small value range (65 mV, 70 mV), the advantage 

of joint equalization is not obvious because of the weak inter-

band XM among users. However, when the VRMS increases to 

80 mV, the benefits of the ANN-NLE co-equalization method 

stand out in the presence of stronger inter-user interference. The 

results show that it is not sufficient to only affect point-to-point 

channels when mitigating inter-user interference in the A-RoF-

based Fronthaul I channel, one must simultaneously equalize all 

users in both the wireless and fiber channels.  

Fig. 7(a) illustrates the BER performances of the ANN-NLE 

as a function of tap numbers. The tap number is highly 

dependent on the bandwidths of the signals and the frequency 

response of fiber-wireless channels. Increasing the tap number 

can help mitigate ISI. However, continually increasing the tap 

number leads to the overfitting problem and BER degradations. 

It can be observed that the optimal tap number with 24 neurons 

in the hidden layer is 5. Fig. 7(b) shows the mean square error 

(MSE) of the ANN-NLE with different step sizes η and verifies 

the tradeoff between the learning rate and the MSE floor. 

IV. CONCLUSIONS 

In this paper, we demonstrate, for the first time, how to 

design and implement an ANN as a mean to optimize a 

converged optical and wireless access network. The inter-band 

XM between users that occurs in the aggregated common fiber 

channel causes critical inter-user interference and greatly 

degrades the signal quality. We have verified that the inter-band 

interference in the fiber channel from multiple users can be 

successfully mitigated by the proposed multi-user ANN-NLE. 

We have demonstrated that conventionally designed point-to-

point nonlinear equalizations are unable to mitigate inter-user 

interference caused by the nonlinear inter-user XM in a 

common fiber channel. The theoretical analyses and 

experimental results presented in this paper have proved the 

validity of our machine learning method for multi-user 

performance optimization in A-RoF-MFH system.  
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Fig. 7.  (a) BER performances of the ANN-NLE as functions of tap numbers   

with different number neurons in hidden layer. (b) MSE performances of ANN-

NLE with different step sizes η. 
 

 
Fig. 6. (a) Constellations of the 4 users with different levels of nonlinearities in 

their individual wireless channels. (b)-(e) BER performances of the 4 users after 
transmitted through the fiber-wireless link under different VRMS into the mixer. 

 


