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A Novel ANN Equalizer to Mitigate Nonlinear
Interference in Analog-RoF Mobile Fronthaul
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Abstract—We firstly analyze the nonlinearities in the analog
radio-over-fiber-based (A-RoF-based) mobile fronthaul (MFH)
systems with a multi-user uplink load. The inter-band cross
modulations (XM) present in the common fiber channel cause
severe inter-user interference. Then, we propose a novel complex-
valued multi-level artificial neural network nonlinear equalizer
(ANN-NLE) for single carrier frequency division multiple access
(SC-FDMA) signal uplink transmissions. The inter-user
interference can be mitigated by employing a multi-user ANN-
NLE. Finally, we design an experimental testbed comprising a 60-
GHz wireless link and an A-RoF link in order to verify the model
predictions and thereby demonstrate the ability of the ANN-NLE
to overcome the nonlinear intra-band and inter-band XM in the
case of simultaneous joint equalizations of all users (multi-point-
to-single-point) as well as in the case of individual user
equalizations (point-to-point). From the experimental and
simulation results, we demonstrate that the ANN-NLE can
substantially reduce the inter-user interference and
communication bit error.

Index Terms—S5G mobile communication, frequency division
multiaccess, neural network applications, optical fiber
communication.

I. INTRODUCTION

I n the newly proposed 5G architecture, the digital baseband
processing hardware (baseband unit: BBU) is moved from
several isolated base stations to a common centralized station
that supports numerous remote radio units (RRUs). In the new
radio (NR) architecture, the current consensus declares that
there should be two splits for the baseband functions. The first
split is between the RRU and the distributed unit (DU); the
second split is between the DU and the central unit (CU) [1].
As a result, the mobile fronthaul (MFH) is split into two parts
i.e., Fronthaul T and Fronthaul II. In Fronthaul I, Option 8
separates the RF from the PHY layer and enables the
centralization of all the processes at the protocol layer levels at
the DUs, leading to tight coordination and more efficient
resource and traffic management that reduce initial capital
expenditures (CAPEX) and subsequent operational
expenditures (OPEX) [2]. Analog radio-over-fiber (A-RoF)
based MFH is of particular interest because of its high
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Fig. 1. The A-RoF-based Fronthaul I consisting of three individual wireless
channels and one common fiber channel.
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bandwidth efficiency and low latency. However, current A-RoF
schemes suffer from the severe nonlinear degradations in the
fiber-wireless channels.

The DUs should be able to simultaneously handle the
distorted signals from different users and channels, mitigating
the nonlinear inter-user interference. The analog MFH relies on
A-RoF technology, in which nonlinear transmission
impairments can be severe, especially for multi-user signals
with high peak-to-average power ratios (PAPR) [3, 4]. The
aggregated A-RoF channels simultaneously suffer from fiber
and wireless channel nonlinear impairments because at the
RRU, the signals are launched directly to air or fiber without
any digital processing.

This paper is an extension of our recent work published by
OFC 2018 [5]. We introduce, for the first time, a multi-user
ANN nonlinear equalizer (ANN-NLE) located at the DU, as
shown in Fig. 1. ANN-NLE is used to minimize the nonlinear
impediments in A-RoF-based MFH uplink transmissions using
single carrier frequency domain multiple access (SC-FDMA)
signaling. In this letter, we discuss the overfitting problem and
parameter setting of the ANN-NLE. Moreover, the inter-user
cross modulation (XM) in a common fiber channel is
particularly studied and it cannot be overcome by traditional
point-to-point equalization schemes. The proposed ANN-NLE
is experimentally demonstrated to mitigate the intra/inter-band
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interferences caused by the nonlinear impairments in multi-user
environments.

II. OPERATING PRINCIPLE

Fig. 1 shows the Fronthaul I architecture based on A-RoF
system with multi-user uplink transmissions. The channel can
be separated into two parts: the individual SC-FDMA wireless
channels and the common fiber channel. In wireless
transmissions, a single-user signal is quasi single-carrier and
only suffers from data-dependent intra-band XM between the
in-phase (I) and quadrature-phase (Q) components of the vector
signals [6, 7]. After transmissions through the wireless channels,
the signals from different users are aggregated into one
common fiber channel. The strong sidelobes caused by the
nonlinearities in wireless channels lead to inter-user
interference in multi-user scenarios. This kind of interference
can be mitigated by introducing the guard bands between the
adjacent channels at the cost of spectral efficiency. The
nonlinearity induced by the increasing PAPR in the common
fiber link produces nonlinear inter-band XM between users.
Inter-band XM between users imposes even more critical signal
impairments because one user can interfere with all the other
users regardless of carrier frequency positions, a situation that
cannot be ameliorated by guard bands, as illustrated at the DU
stage in Fig. 1.

With increasing number of users in the common fiber
channel, the optical signal is more likely to reach a higher PAPR,
leading to nonlinear XM in the common fiber channel. The
signals from multiple users are more vulnerable to the
nonlinearities due to their higher PAPRs and sidelobe
interference.

Fig. 2 shows the structure of a delay tap that is specific to an
ANN-NLE with one hidden layer. A sigmoidal function with
two saturation regions is the most commonly used activation
function in the neuron because of its ability to process small and
large signals and because it is readily differentiable. However,
in higher order coding applications, such as 16QAM, currently
used in SC-FDMA uplink transmissions in 4G LTE, the ANN-
NLE architecture with two saturation regions does not lend
itself to easy adaptation. As a workable solution, in this paper
we employ the previously proposed complex-valued multi-
level activation functions for the ANN-NLE in this paper [7].
The input vector Xy(n)=[xi(n), xi(n-1),..., x{n-M+1)]" (i=1, 2, 3
and 4) denotes the signals from the i user. Where [-]” denotes
matrix transposition and M is the tap number for each user and
it depends on the system inter-symbol interference (ISI) level.
The function you () represents the output results of the i user.
Due to the fact that the neurons in the ANN are interconnected
with all the other neurons, the proposed ANN-NLE is able to
realize joint equalizations with multiple users. The weight
values are represented by wy ;;, where k represents the weight of
the link from the k™ layer to (k+1)™ layer, i and j represent the
link from neuron i in the former layer to neuron j in the next
layer. The neural network is trained by a complex-valued back-
propagation algorithm [8].

One of the main problems that may occur in machine
learning is referred to as the problem of “overfitting”. A good
characteristic of a machine learning model is its ability to
generalize accurately from the training data to any future data

Fig. 2. The structure of delay-tap ANN-NLE with one hidden layer.
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Fig. 3. BER performances of ANN-NLE with 4 users as functions of (a)
training data set size of each user and (b) neuron numbers in hidden layer with
training and test data set.
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Fig. 4. Constellations of the equalized signals when transmitting 4 users with
(a) 4, (b) 24 and (c) 40 neurons in hidden layers.

previously unseen by the model. Over parameterizing the neural
network, that is, having a large number of neurons in the hidden
layer, can lead to a high probability of “overfitting”. The neural
network may work well with the training data but exhibit poor
performances with previously unseen data with high variance.
Fig. 3(a) shows the bit error rate (BER) performances of an
ANN-NLE with 4 users as a function of training data set size
for each user. The training error grows as a function of the
training data set size because the larger the training set, the
harder it becomes for the ANN-NLE to fit the training set
perfectly. On the other hand, the test error decreases with
increasing training data set size. The ANN-NLE reaches its test
BER floor when the training data set size is over 10,000
symbols. From Fig. 3(b), we can obtain the optimal scale of
ANN-NLE when jointly equalizing 4 users. In the following
experiments, the number of neurons in the hidden layer is 24
and the tap number of each user is 5. The training discussed
above is offline training and it is completed before applications.
Therefore, the latency caused by the offline training can be
avoided.

Fig. 4 shows the constellations of the equalized signals in the
case of four simultaneously transmitting users jointly equalized
with different numbers of neurons in the hidden layer. When the
parameters in the ANN-NLE are insufficient, as shown in Fig.
4(a), the constellations of training and test data sets show “high
equivalent noise” due to “underfitting”. When the neuron
number increases to 24 (in Fig. 4(b)), a “low equivalent noise”
constellation is produced for both training and test data. The
condition of overfitting, in which the ANN-NLE closely
follows local data variations, is demonstrated in Fig. 4(c) with
40 neurons in the hidden layer.
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Fig. 5. Experimental setup of the A-RoF-based MFH testbed that uses an ANN-NLE to co-equalize multiple users. Inset (a) is the frequency spectrum of the 4
users at DU. (b) is the measured nonlinear transfer curve of the wireless channel. (c) is the measured transfer curve of MZM, (d) and (e) are the EVMs of the
received SC-FDMA signals as functions of Vrys at the output of AWG when suffering from wireless channel nonlinearity and fiber nonlinearity. CP: cyclic prefix,
SRRC: square root raised cosine, DFB: distributed feedback laser, PC: polarization controller, MZM: Mach-Zehnder modulator, EA: electrical amplifier, SMF:
single mode fiber, EDFA: Erbium doped fiber amplifier, PD: photo detector, OCS: oscilloscope. Vrys is mean square voltage of the intermediate frequency data

envelope waveform.

ITII. EXPERIMENTAL SETUP AND RESULTS

The proof-of-concept A-RoF MFH testbed, shown in Fig. 5, is
composed of user equipment (UEs), RRU and DU. Lacking
sufficient RF sources, antennas and amplifiers, the 4-user
wireless signals are generated in Matlab, amplified and
transmitted by one arbitrary waveform generator (AWG) port
through one pair of antennas and amplifiers for simplicity. The
N and M in DFT/IDFT and FFT/IFFT are 16 and 256. Four
subcarriers are used as guard band spacing. Localized
bandwidth allocation SC-FDMA signaling is used, followed by
the addition of a 32-point cyclic prefix (CP). Every UE is
filtered by a digital square root raised cosine (SRRC) filter with
aroll-off factor of 0.2. The additional nonlinear channel module
after digital-to-analog converter (DAC)/ radio frequency (RF)
in the AWG is used to simulate the individual nonlinear
wireless channel of each user. Each channel has its own
nonlinear channel module that generates wireless nonlinearity
and suffers the nonlinear intra-band XM induced by the
simulated channel. The nonlinear module is built up with a
sigmoid transfer function which approximates the tested
wireless channel as shown in Fig. 5(b). The samples are
converted to analog waves by the AWG running at 4 GSa/s. The
bitrate and intermediate frequency (IF) are 266.7 Mbps (with 4
users, 66.7 Mbps per user) and 400 MHz bandwidth. A 60-GHz
local oscillator (LO) signal and an IF data source from AWG
are mixed in a millimeter-wave mixer. The 60-GHz wireless
signal is transmitted over a distance of 0.8 m, where the signal
is electrically amplified and detected by an envelope detector
used for down-conversion from 60 GHz to IF. In this
experiment, all components and devices before the Mach-
Zehnder modulator (MZM) are designated as the “wireless
channel”. Then, the remained components are designated as the
“fiber channel”. The MZM is intentionally operated off its
optimal bias point Vin (Vbias=3.6 V, Vz=3 V) in order to
introduce a degree of nonlinearity in the MZM’s transfer
function to approximate inter-user interference. In practice, the
nonlinearities in RRU may be generated in electrical amplifiers
(EA), envelope detector or MZM and inter-user XM happens.
The electrical spectrum of the received signals from the 4 users
are shown in Fig. 5(a). Fig. 5 insets (b) and (c) show the
nonlinear transfer curves of the wireless channel and MZM,

respectively. Fig. 5(d) shows the nonlinear performances of the
wireless channel when transmitting one single user in a SC-
FDMA system with QPSK and 16QAM signaling, both of
which are commonly used in 4G LTE uplink transmissions. The
error vector magnitude (EVM) data in Fig. 5(d) are separately
measured into a 50-Q load, captured by an oscilloscope (OCS)
at the end of the wireless channel at RRU. When FVrums is small
(Vrms<100 mV), the EVM is dominated by random noise,
typical of low signal-to-noise ratio (SNR). With increasing
Vams (Vrms>100 mV), the EVM clearly degrades due to
inherent nonlinearities of the mixers, amplifiers and envelope
detectors.

Fig. 5(e) shows the EVM behaviors of the signals with 4
users transmitted through the cascaded wireless and fiber
channels, indicative of nonlinearities in the fiber channel.
EVMs are measured in the case of four simultaneous users
while the AWG output, Vrws, is varied within the condition
Vrms<100 mV to maintain low nonlinearity in the wireless
channel. Combined with Fig. 5(d), when Vrus is larger than 50
mV and smaller than 100 mV, the signals mainly suffer from
the nonlinearity in MZM and it causes XM between users.

Fig. 6 shows the measurements under conditions that
wireless nonlinearities differs substantially from one user to the
next, as determined by the nonlinear wireless channel modules
in Matlab (See Fig. 5). Each of the user is distorted in its
wireless channel by intra-band XM. The equivalent Vrus in the
experimental system for each user are 64 mV, 127 mV, 191 mV
and 255 mV, respectively. The nonlinearly distorted signals are
then transmitted through the testbed within a relatively small
Vrms (65 mV~80 mV) range so as to avoid additional wireless
nonlinearities from the mixer at the UE and amplifiers at the
RRU in the wireless channel. The MZM is working with
Vbias=3.6 V to additionally introduce nonlinearities in the
common fiber channel, causing inter/intra-band XM. Fig. 6(b)-
(e) track how the BER performances of each user vary with IF
Vrus signal strengths into the mixer. User-2/3 have relatively
worse BER performances than User-1/4 because they are
subjected to sidelobe interference from each nearest neighbor
in frequency. User-2 has the worst BER because of its lower
SNR, which itself is due to the overall channel non-flat
frequency response. In order to highlight the advantages of the
proposed joint equalization scheme over all wusers
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Fig. 6. (a) Constellations of the 4 users with different levels of nonlinearities in
their individual wireless channels. (b)-(¢) BER performances of the 4 users after
transmitted through the fiber-wireless link under different Veusinto the mixer.
simultaneously, first we separate the multi-point-to-single-
point transmissions into four point-to-point transmissions and
individually equalize every user. In the case of individual
equalizations, we use ANN-NLEs with a scale of 5-12-1 and
one ANN-NLE for one user. The ANN-NLE has been proven
to be better than the traditional equalizers in point-to-point
transmissions, such as Volterra-based equalizers [9-11]. As
shown in Fig. 3(b), the optimal solution for the joint
equalization of 4 users is obtained with an ANN-NLE with a
structure 20-24-4 (5 taps for each user at the input layer). When
Vrus is in the small value range (65 mV, 70 mV), the advantage
of joint equalization is not obvious because of the weak inter-
band XM among users. However, when the Vrums increases to
80 mV, the benefits of the ANN-NLE co-equalization method
stand out in the presence of stronger inter-user interference. The
results show that it is not sufficient to only affect point-to-point
channels when mitigating inter-user interference in the A-RoF-
based Fronthaul I channel, one must simultaneously equalize all
users in both the wireless and fiber channels.

Fig. 7(a) illustrates the BER performances of the ANN-NLE
as a function of tap numbers. The tap number is highly
dependent on the bandwidths of the signals and the frequency
response of fiber-wireless channels. Increasing the tap number
can help mitigate ISI. However, continually increasing the tap
number leads to the overfitting problem and BER degradations.
It can be observed that the optimal tap number with 24 neurons
in the hidden layer is 5. Fig. 7(b) shows the mean square error
(MSE) of the ANN-NLE with different step sizes # and verifies
the tradeoff between the learning rate and the MSE floor.

IV. CONCLUSIONS

In this paper, we demonstrate, for the first time, how to
design and implement an ANN as a mean to optimize a
converged optical and wireless access network. The inter-band
XM between users that occurs in the aggregated common fiber
channel causes critical inter-user interference and greatly
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Fig. 7. (a) BER performances of the ANN-NLE as functions of tap numbers
with different number neurons in hidden layer. (b) MSE performances of ANN-
NLE with different step sizes 7.

degrades the signal quality. We have verified that the inter-band
interference in the fiber channel from multiple users can be
successfully mitigated by the proposed multi-user ANN-NLE.
We have demonstrated that conventionally designed point-to-
point nonlinear equalizations are unable to mitigate inter-user
interference caused by the nonlinear inter-user XM in a
common fiber channel. The theoretical analyses and
experimental results presented in this paper have proved the
validity of our machine learning method for multi-user
performance optimization in A-RoF-MFH system.

REFERENCES

[1]  C.T1and J. Huang, “RAN revolution with NGFI (xHaul) for 5G,” in the
Optical Networking and Communication Conference & Exhibition (OFC),
2017, paper WIC.7.

[2]  S.Cho, H. Park, H. S. Chung, K. H. Doo, S. Lee and Jong. Hyun. Lee, “Cost-
effective next generation mobile fronthaul architecture with multi-IF carrier
transmission scheme,” in the Optical Networking and Communication
Conference & Exhibition (OFC), 2014, paper Tu2B.6.

[3] J. Wang, Z. Yu, K. Ying, J. Zhang, F. Lu, M. Xu, L. Cheng, X. Maand G. K.
Chang, “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-
bit/two-bit Delta-Sigma modulation supporting carrier aggregation of 32
LTE-A signals with up to 256 and 1024QAM,” in European Conference and
Exhibition on Optical Communications 2016 (ECOC), 2016, pp. 914-916.

[4] H.G. Myung, J. Lim and D. J. Goodman, “Single carrier FDMA for uplink
wireless transmission,” IEEE Veh. Techol. Mag., vol. 1, no. 3, pp. 30-38,
2006.

[S]  S.Liu, Y. M. Alfadhli, S. Shen, H. Tian and G. K. Chang, “Mitigation of
multi-user access impairments in 5G A-RoF-based mobile fronthaul utilizing
machine learning for an artificial neural network nonlinear equalizer,” in the
Optical Networking and Communication Conference & Exhibition (OFC),
2018, paper W4B. 3.

[6] J.Wang, C. Liu, M. Zhu, A. Yi, L. Cheng and G. K. Chang, “Investigation of
data-dependent channel cross-modulation in multiband radio-over-fiber
systems,” J. Lightw. Tech., vol. 32, no. 10, pp. 1861-1871,2014.

[71 S. Liu, M. Xu, J. Wang, F. Lu, W. Zhang, H. Tian and G. K. Chang,
“Multilevel artificial neural network nonlinear equalizer for millimeter-wave
mobile fronthaul systems, ” J. Lightw. Tech., vol. 35, no. 20, pp. 44064417,
2017.

[8]  N.Benvenuto and F. Piazza, “On the complex backpropagation algorithm,”
IEEE Trans. Signal Process., vol. 40, no. 4, pp. 967-969, 1992.

[9]  Z. Wan,J.Li, L. Shu,M. Luo, X. Li, S. Fu and K. Xu, “Nonlinear equalization
based on pruned artificial neural networks for 112-Gb/s SSB-PAM4
transmission over 80-km SSMF,” Opt. Express, vol. 26, no. 8, pp. 10631-
10642, 2018.

[10] C. Chuang, C. Wei, T. Lin, K. Chi, L. Liu, J. Shi, Y. Chen and J. Chen,
“Employing deep neural network for high speed 4-PAM optical interconnect,”
in European Conference and Exhibition on Optical Communications 2017
(ECOC), 2017, pp.W.2.D.

[11] P.Li L. Yi, L. Xue and W. Hu, “56 Gbps IM/DD PON based on 10G-class
optical devices with 29 dB loss Budget enabled by machine learning,” in the
Optical Networking and Communication Conference & Exhibition (OFC),
2018, paper M2B. 2.



