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Abstract: We firstly conceive an artificial neural 

network (ANN) equalizer with a special S-shape 

activation function to decimate linear/nonlinear 

impairments. By means of this ANN equalizer, we 

achieve a large improvement of ~4.67 dB in Q-factor. 
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1  Introduction 

The increasing demand of broad bandwidth requires 

short-reach optical fiber systems in data centers and 

inter-connected applications to operate at a very high 

data rate. Such high-speed transmission systems can be 

implemented by quadrature-amplitude-modulation 

(QAM), dual polarization (DP), coherent detection and 

digital signal processing (DSP) [1]. However, the high 

cost and complexity of coherent detection technique is 

prohibitive in short reach applications. Intensity 

modulation and directly detection (IM-DD) are the 

widely used practical solutions for their easily 

implementations with a directly modulated laser (DML) 

or an external modulator with a single photodiode. 

Subcarrier multiplexed (SCM) QPSK or quadrature 

amplitude modulation (QAM) signaling is a good 

candidate for spectrally efficient direct detection in 

wavelength division multiplexing (WDM) systems. 

DML stands out by its low cost, compact size, lower 

power dissipation and high output optical power in 

comparison to the externally modulated laser transmitter 

[2]. However, DMLs suffer from the chirp- and driver 

amplifier-induced nonlinearities, which limit their 

transmission distance and channel capacity [3]. When 

we transmit at the wavelength of 1550 nm, the 

DML-based systems are more seriously limited by the 

interplay between the large frequency chirp and fiber 

chromatic dispersion [4]. An adaptive feedforward 

nonlinear equalizer based on polynomial structure is 

employed to decimate the nonlinearity in the conversion 

of drive current into optical intensity [5]. Artificial 

neural network nonlinear equalizers (ANN-NLE) 

demonstrate their superiority in computation capability 

and universality. In a previous report, an ANN-NLE 

with multi-saturated output regions was proposed in 

order to deal with QAM signals of any constellation size, 

but their results are limited within simulations [6]. To 

our knowledge, the ANN-NLE applications in 

DML-based transmission systems have not been 

reported before. 

In this paper, we propose a complex-valued ANN-NLE 

with an S-shape activation function for M-QAM signal 

equalizations in a high-speed, low-cost DML-based 

transmission system for the first time. This S-shape 

activation function is capable of accommodating any 

level of QAM signals without modifying the 

characteristics of the function. With the help of the 

proposed ANN-NLE, the DML-based system has been 

demonstrated successfully to transmit 80-Gbps 16QAM 

Nyquist-SCM signals at a wavelength of 1550 nm 

through a 15-km dispersion shifted fiber (DSF) under 

pre-forward error correction (FEC) limit of bit error rate 

(BER) 3.8×10-3. 

2  Principle of the ANN-NLE with S-shape 

activation function 
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Figure 1 Structure of ANN-NLE with one hidden layer. 

The ANN with multiple layers owns a powerful ability 

to approximate a nonlinear input-output mapping of a 

general nature. Fig. 1 shows the structure of the 

proposed ANN-NLE with one hidden layer. The inputs 

are the tap delay of the received signals 𝑋(𝑛) =

[𝑥(𝑛)   𝑥(𝑛 − 1)  …    𝑥(𝑛 − 𝑀 + 1)]𝑇 . The weight values 

between different layers are represented by 𝑤1,𝑖𝑗(𝑛) and 

𝑤2,𝑖(𝑛). The neurons are inter-connected with each other 

by different weight values. 

Every neuron occupies an activation function to process 

the data sent by the previous layer. For M-QAM 
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equalizations, we define the complex-valued function as 

[6]: 
𝑓(𝑥) = 𝑥 + 𝛼sin (𝜋𝑥)                             (1) 

𝐹(𝑧) = 𝑓(real(𝑧)) + j𝑓(imag(𝑧))                    (2) 

where 𝑥 is a real value and 𝑧 is a complex value at the 

input of the defined complex-valued activation function. 

This function has a generality of M-QAM signals and M 

can be any size. Fig. 2(a) gives the diagram of function 

𝑓(𝑥) in (1) with different 𝛼 values which define the 

nonlinearity in the activation function. Fig. 2(b) 

illustrates the derivatives of 𝑓(𝑥). The function 𝑓(𝑥) is 

differentiable at all values. For all 𝑥, 𝑓′(𝑥) must be 

bigger than zero, so the weight updating is guaranteed. 

That is, 0 < 𝛼 < 1/𝜋. The nonlinear factor 𝛼 gives the 

ANN-NLE a nonlinear computation capability. We can 

define the regions approximate values -3, -1, +1 and +3 

as saturation regions in 𝑓(𝑥), in which the values of 

𝑓′(𝑥) are small. In the standard back-propagation (BP) 

algorithm, when the input value approximates the 

saturation regions, the weight updating at each iteration 

is minimized due to its small gradient. This saturation 

characteristic makes the input value at saturation regions 

have less effect in updating the weights in a neural 

network and maximizes the influence of the input far 

from the these regions. Also, due to the multi-saturation 

characteristic of the S-shape function, the points in the 

constellation can be compressed to their corresponding 

locations and robust to the input random noise. Fig. 3 

shows the absolute value of the complex-valued function 

𝐹(𝑧) which is defined by (2). The z-axis corresponds to 

the power of the points in constellations. Saturation 

characteristics of 𝐹(𝑧) is demonstrated in Fig. 3 as well.  

 

Figure 2 (a) Activation function and (b) derivative of the 

activation function with different α values. 

 

Figure 3 Absolute value of the complex function 𝐹(𝑧). 

For the complex-valued neural network training, the BP 

algorithm is extended to the complex-valued BP 

algorithm [7]. The BP algorithm consists of two phases. 

The first phase is feed forward. This phase calculates the 

output vectors from the input vectors. It can be 

expressed as follows: 

{
 

 
𝑆1(𝑛) = 𝑊1(𝑛)

𝑇𝑋(𝑛)

𝑌1(𝑛) = 𝐹(𝑆1(𝑛))

𝑠2(𝑛) = 𝑊2(𝑛)
𝑇𝑌1(𝑛)

𝑦𝑜𝑢𝑡(𝑛) = 𝐹(𝑠2(𝑛))

          (3) 

where 

𝑋(𝑛) = [𝑥(𝑛)   𝑥(𝑛 − 1)  …    𝑥(𝑛 − 𝑀 + 1)]𝑇  (4) 

𝑊1(𝑛) =

[
 
 
 
𝑤1,11(𝑛)   𝑤1,12(𝑛)  …  𝑤1,1𝑀(𝑛) 

𝑤1,21(𝑛)   𝑤1,22(𝑛)  …  𝑤1,2𝑀(𝑛)
   …             …          …            …

𝑤1,𝑁1(𝑛)   𝑤1,𝑁2(𝑛)  …  𝑤1,𝑁𝑀(𝑛)]
 
 
 
𝑇

  (5) 

𝑆1(𝑛) = [𝑠1,1(𝑛)  𝑠1,2(𝑛)  …   𝑠1,𝑁(𝑛)]
𝑇   (6) 

𝑌1(𝑛) = [𝑦1(𝑛)  𝑦2(𝑛)  …   𝑦𝑁(𝑛)]
𝑇   (7) 

𝑊2(𝑛) = [𝑤2,1(𝑛)  𝑤2,2(𝑛)  …   𝑤2,𝑁(𝑛)]
𝑇   (8) 

𝐹(‧) is the activation function given by (1) and (2). 

s2(𝑛)  is the input of neuron in the last layer and 

y𝑜𝑢𝑡(𝑛)  is the output of the neural network. The 

symbols in (3)-(8) are defined Fig. 1. The error value is 

defined as, 

𝑒(𝑛) = 𝑦𝑜𝑢𝑡(𝑛) − 𝑑(𝑛)          (9) 

where 𝑑(𝑛) is the desired signal. The second phase is 

back propagation. In this phase, the calculated error is 

back propagated to the earlier layers from the output 

layer. The weight values 𝑊1(𝑛)  and 𝑊2(𝑛)  are 

updated as, 

𝑤2,𝑖(𝑛 + 1) = 𝑤2,𝑖(𝑛) − 𝜇∇𝑤2,𝑖(𝐸(𝑛))      (10) 

𝑤1,𝑖𝑗(𝑛 + 1) = 𝑤1,𝑖𝑗(𝑛) − 𝜇∇𝑤1,𝑖𝑗(𝐸(𝑛))     (11) 

The objective function definition mean square error 

(MSE) is a little different: 

𝐸(𝑛) = |𝑒(𝑛)𝑒(𝑛)∗| = 𝑒𝑅(𝑛)
2 + 𝑒𝐼(𝑛)

2   (12) 

where 𝑒𝑅(𝑛)  and 𝑒𝐼(𝑛)  are the real and imaginary 

parts of 𝑒(𝑛) , respectively. To minimize the 𝐸(𝑛) , 

according to the steepest descent technique, derivative of 

𝐸(𝑛) in the complex field is required. For the weights 

between the output and hidden layers, the gradient with 

complex values is defined as, 

∇𝑤2,𝑖(𝐸(𝑛)) =
𝜕𝐸(𝑛)

𝜕𝑤𝑅2,𝑖(𝑛)
+ 𝑗

𝜕𝐸(𝑛)

𝜕𝑤𝐼2,𝑖(𝑛)
      (13) 

𝑤2,𝑖(𝑛)  represents the ith weight value between the 

hidden layer and output layer, which is also defined in 

Fig. 1. Then according the definitions in (13), we can 

obtain the gradient values: 
𝜕𝐸(𝑛)

𝜕𝑤𝑅2,𝑖(𝑛)
= 2𝑒𝑅(𝑛)𝑓

′(𝑠𝑅2(𝑛))𝑦𝑅𝑖(𝑛)

+ 2𝑒𝐼(𝑛)𝑓
′(𝑠𝐼2(𝑛))𝑦𝐼𝑖(𝑛)                     (14) 

𝜕𝐸(𝑛)

𝜕𝑤𝐼2,𝑖(𝑛)
= −2𝑒𝑅(𝑛)𝑓

′(𝑠𝑅2(𝑛))𝑦𝐼𝑖(𝑛)

+ 2𝑒𝐼(𝑛)𝑓
′(𝑠𝐼2(𝑛))𝑦𝑅𝑖(𝑛)                    (15) 

For simplification, define 

∆2(𝑛) = 𝑒𝑅(𝑛)𝑓
′(𝑠𝑅2(𝑛)) + 𝑗𝑒𝐼(𝑛)𝑓

′(𝑠𝐼2(𝑛))  (16) 
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Then we can obtain 

∇𝑤2,𝑖(𝐸(𝑛)) = 2∆2(𝑛)𝑦𝑖
∗(𝑛)          (17) 

For the weights between the input and hidden layers, 

∇𝑤1,𝑖𝑗(𝐸(𝑛)) =
𝜕𝐸(𝑛)

𝜕𝑤𝑅1,𝑖𝑗(𝑛)
+ 𝑗

𝜕𝐸(𝑛)

𝜕𝑤𝐼1,𝑖𝑗(𝑛)
    (18) 

For the real part of (18) 
𝜕𝐸(𝑛)

𝜕𝑤𝑅1,𝑖𝑗(𝑛)
=

𝜕𝐸(𝑛)

𝜕𝑠𝑅2(𝑛)

𝜕𝑠𝑅2(𝑛)

𝜕𝑤𝑅1,𝑖𝑗(𝑛)
+
𝜕𝐸(𝑛)

𝜕𝑠𝐼2(𝑛)

𝜕𝑠𝐼2(𝑛)

𝜕𝑤𝑅1,𝑖𝑗(𝑛)
   (19) 

𝜕𝑠𝑅2(𝑛)

𝜕𝑤𝑅1,𝑖𝑗(𝑛)
= 𝑤𝑅2,𝑖𝑓

′ (𝑠𝑅1,𝑖(𝑛)) 𝑥𝑅(𝑛 − 𝑗 + 1)

− 𝑤𝐼2,𝑖𝑓
′ (𝑠𝐼1,𝑖(𝑛)) 𝑥𝐼(𝑛 − 𝑗 + 1)       (20) 

𝜕𝑠𝐼2(𝑛)

𝜕𝑤𝑅1,𝑖𝑗(𝑛)
= 𝑤𝐼2,𝑖𝑓

′ (𝑠𝑅1,𝑖(𝑛)) 𝑥𝑅(𝑛 − 𝑗 + 1)

+ 𝑤𝑅2,𝑖𝑓
′ (𝑠𝐼1,𝑖(𝑛)) 𝑥𝐼(𝑛 − 𝑗 + 1)       (21) 

For the imaginary part of the (18) 
𝜕𝐸(𝑛)

𝜕𝑤𝐼1,𝑖𝑗(𝑛)
=

𝜕𝐸(𝑛)

𝜕𝑠𝑅2(𝑛)

𝜕𝑠𝑅2(𝑛)

𝜕𝑤𝐼1,𝑖𝑗(𝑛)
+
𝜕𝐸(𝑛)

𝜕𝑠𝐼2(𝑛)

𝜕𝑠𝐼2(𝑛)

𝜕𝑤𝐼1,𝑖𝑗(𝑛)
     (22) 

𝜕𝑠𝑅2(𝑛)

𝜕𝑤𝐼1,𝑖𝑗(𝑛)
= −𝑤𝑅2,𝑖𝑓

′ (𝑠𝑅1,𝑖(𝑛)) 𝑥𝐼(𝑛 − 𝑗 + 1)

− 𝑤𝐼2,𝑖𝑓
′ (𝑠𝐼1,𝑖(𝑛)) 𝑥𝑅(𝑛 − 𝑗 + 1)      (23) 

𝜕𝑠𝐼2(𝑛)

𝜕𝑤𝐼1,𝑖𝑗(𝑛)
= −𝑤𝐼2,𝑖𝑓

′ (𝑠𝑅1,𝑖(𝑛)) 𝑥𝐼(𝑛 − 𝑗 + 1)

+ 𝑤𝑅2,𝑖𝑓
′ (𝑠𝐼1,𝑖(𝑛)) 𝑥𝑅(𝑛 − 𝑗 + 1)      (24) 

From (18)-(24), we can obtain the value of ∇𝑤1,𝑖𝑗(𝐸(𝑛)). 

However, the calculation process is very complicated 

and confusing. The expressions require some 

simplifications. 

According to the definition of back propagation, the 

value of 𝑒(𝑛) obtained from the output of the network 

is transferred to the previous layers of the network 

through the weights 𝑊2(𝑛). Therefore, we define the 

error value transported to the hidden layer as  

𝑒ℎ,𝑖(𝑛) = 𝑤2,𝑖
∗ (𝑛)∆2(𝑛)         (25) 

Similar to (16), we can define 

∆1,𝑖(𝑛) = 𝑒ℎ𝑅(𝑛)𝑓
′ (𝑠𝑅1,𝑖(𝑛)) + 𝑗𝑒ℎ𝐼(𝑛)𝑓

′ (𝑠𝐼1,𝑖(𝑛))  (26) 

Finally, compared with (18)-(24), we can obtain 

∇𝑤1,𝑖𝑗(𝐸(𝑛)) = 2∆1,𝑖(𝑛)𝑥
∗(𝑛 − 𝑗 + 1)     (27) 

3  Experimental demonstration and results  
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Figure 4 Experimental setup for the DML-based 80-Gbps 

high-speed transmission system using the proposed ANN-NLE. 

AWG: arbitrary waveform generator, SRRC: square root raised 

cosine, DML: directly modulated laser, EDFA: Erbium doped 

fiber amplifier, PD: photo detector, OCS: oscilloscope.  

Fig. 4 shows the experimental setup of the DML-based 

80-Gbps 16QAM Nyquist-SCM transmission system 

based on the proposed ANN-NLE. Under the help of a 

square-root-raised-cosine (SRRC) filter with a roll-off 

factor of zero, we realize Nyquist pulse shaping and 

halve the bandwidth, allowing us to implement 

half-cycle SCM. The output of an arbitrary waveform 

generator (AWG) running at 60 Gbps is fed into a 

1550-nm DML. After 15-km DSF transmissions, the 

signal is detected by a photo detector (PD) and sampled 

by an analog-to-digital converter in an oscilloscope 

(OCS) running at 80 GSa/s. In the experiment, we try to 

transmit 60- and 80-Gbps 16QAM Nyquist-SCM signals. 

The ANN-NLE is trained for 75 epochs, of which the 

first 50 epochs with step size 𝜇=0.0005 and the rest of 

the epochs with 𝜇 =0.00002. Fig. 5 shows the 

convergence process of the ANN-NLE as a function of 

MSE with different 𝛼 values. It can be obtained that 

larger 𝛼 leads to a lower MSE floor, representing a 

stronger nonlinear computation capability. Therefore, in 

the rest of the experiment, 𝛼 is set to be 0.3 to provide 

enough nonlinearity. Fig. 6(a) and (b) give the optical 

and electrical spectrum of the 60-Gbps and 80-Gbps 

16QAM Nyquist-SCM.  

 

Figure 5 Convergence of the ANN with different α values 

measured as MSE.  

Figure 6 (a) Optical spectrum and (b) electrical spectrum of in 

the experiment.  

Fig. 6(a) gives the optical spectrum at the output of the 

DML with 60/80-Gbps 16QAM SCM signals. Fig. 6(b) 

shows the electrical spectrum of the received signals and 

the fluctuated response indicates the serious 

inter-symbol interferences (ISI) in the system. 

Fig. 7 illustrates that with increase of the driving voltage 

of DML, the asymmetry of the optical spectrum 

becomes obvious, indicating the chirp effect happening 

in the DML. The DML is a commercial device with a 

threshold current around 12 mA, as shown in Fig. 8(a). 

The saturated bias current of the DML is about 150 mA. 

Fig. 8(b) illustrates the BER performance of the 

60-Gbps 16QAM signals as a function of bias current. 

The DML has a 3-dB bandwidth of 20 GHz when the 
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bias current is above 120 mA. Given in Fig. 8(b), when 

the bias current is larger than 120 mA, the system 

reaches its best performance. 

 

Figure 7 Optical output power of the 20-GHz DML at 

different bias currents. 

 

Figure 8 (a) Optical output power of the 20-GHz DML at 

different bias currents. (b) BER performance of the system 

with changing bias current.  

Fig. 9(a) investigates the relationship of the training data 

set sizes and BER performances of the ANN-NLE. With 

increasing training data set size, better BER performance 

can be obtained due to the sufficient training. 

Insufficient training data set causes overfitting problem 

of the neural network. A good characteristic of a 

machine learning model is its ability to generalize 

accurately from the training data to any future data 

previously unseen by the model. In the case of 

overfitting, the ANN-NLE may work well with training 

data but may exhibit poor performances with previously 

unseen data. With increasing training data set size, the 

overfitting problem can be avoided.  

The input tap number highly depends on the bandwidth 

of the signals and frequency response of the channels. 

Increasing the tap number can help to mitigate the ISI, 

as shown in Fig. 9(b). With the tap number larger than 

10, we have optimal BER performances with vibration 

smaller than 10%.  

 

Figure 9 BER performances with varying (a) training data size 

and (b) input tap numbers. 

Fig. 10 shows the Q-factor performances of the 60-Gbps 

signals with/without the help of ANN-NLE as functions 

of driving voltage of the DML. In this experiment, there 

are 20, 20 and 1 neurons in the input, hidden and output 

layers of the network. The training set is a sequence of 

symbols with length 3200, 10% of the whole sequences. 

The Q-factor is calculated from the BER value by 𝑄 =

20𝑙𝑜𝑔10[√2𝑒𝑟𝑓𝑐
−1(2𝐵𝐸𝑅)]. With small driving voltage, 

the signals suffer from low signal-to-noise ratio (SNR). 

The continual increasing driving voltage leads to the 

nonlinearities caused by drivers and chirp in the DML. 

We can get a ~4.67 dB Q-factor enhancement at 180 mV 

with ANN equalizations. 

 

Figure 10 Q-factor of the system as functions of the driving 

voltages with and without the ANN-NLE. 

Fig. 11 shows the system sensitivity using 60/80-Gbps 

16QAM Nyquist-SCM. After equalizations, power 

sensitivity -15/-2 dBm at the FEC limit of BER 3.8×10-3 

can be observed in the cases of 60/80-Gbps, 
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respectively. 

 

Figure 11 BER performances of 16QAM signals as functions 

of the received power. 

4  Conclusions 

We have proposed a novel ANN-NLE with a 

complex-valued S-shape activation function for 

delivering high-speed Nyquist-SCM 16QAM signals in 

a DML-based transmission system. The multi-saturated 

characteristics of the activation function enables the 

ANN-NLE to possess a nonlinear computation 

capability and makes it robust to the input noise. With 

the help of the proposed ANN-NLE, we have achieved a 

~4.67 dB Q-factor improvement at the driving voltage 

180 mV in the 16QAM transmission experiments. We 

also observe power sensitivity of the 60/80-Gbps signals 

at BER 3.8×10-3 to be -15 and -2 dBm, respectively. 

Acknowledgements 

This research was supported by the fund of NSFC under Grant 

No. 61372038 and 61431003 and the project of Joint 

Laboratory for Undersea Optical networks, China.  

References 

[1] Abdullah S. Karar and John C. Cartledge. Generation 

and detection of a 56 Gb/s signal using a DML and 

half-cycle 16-QAM Nyquist-SCM. IEEE PHOTONICS 

TECHNOLOGY LETTERS, 2013, 25(8):757-760. 

[2] Abdullah S. Karar and John C. Cartledge. Electronic 

post-compensation of dispersion for DML systems using 

SCM and direct detection. IEEE PHOTONICS 

TECHNOLOGY LETTERS, 2013, 25(9):825-828. 

[3] Nobuhiko Kikuchi, Riu Hirai and Takayoshi Fukui. 

Nonlinear compensation of high-speed PAM4 signals 

from directly-modulated laser at high extinction ratio. 

European Conference on Optical Communication. 

2016:1-3. 

[4] S. H. Bae, Hoon Kim and Y. C. Chung. Transmission of 

51.56-Gb/s OOK signal using 1.55-μm directly 

modulated laser and duobinary electrical equalizer. 

OPTICS EXPRESS, 2016, 24(20):22555-22562. 

[5] Yasuhiro Matsui, Thang Pham, William A. Ling, Richard 

Schatz, Glen Carey, Henry Daghighian, Tsurugi Sudo 

and Charles Roxlo. 55-GHz bandwidth short-cavity 

distributed reflector laser and its application to 112-Gb/s 

PAM-4. The Optical Networking and Communication 

Conference & Exhibition. 2016:Th5B.4. 

[6] Cheolwoo You and Daesik Hong. Nonlinear blind 

equalization schemes using complex-valued multilayer 

feedforward neural networks. IEEE TRANSACTIONS 

ON NEURAL NETWORKS, 1998, 9(6): 1442-1455. 

[7] N. Benvenuto and F. Piazza. On the complex 

backpropagation algorithm. IEEE TRANSACTIONS ON 

SIGNAL PROCESSING, 1992, 40(4): 967-96

 


