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We explore, both experimentally and theoretically, the response of an elongated Bose-Einstein
condensate to modulated interactions. We identify two distinct regimes differing in modulation frequency
and modulation strength. Longitudinal surface waves are generated either resonantly or parametrically for
modulation frequencies near the radial trap frequency or twice the trap frequency, respectively. The
dispersion of these waves, the latter being a Faraday wave, is well reproduced by a mean-field theory that
accounts for the 3D nature of the elongated condensate. In contrast, in the regime of lower modulation
frequencies, we find that no clear resonances occur, but with an increased modulation strength, the
condensate forms an irregular granulated distribution that is outside the scope of a mean-field approach. We
find that the granulated condensate is characterized by large quantum fluctuations and correlations, which
are well described with single-shot simulations obtained from wave functions computed by a beyond-
mean-field theory at zero temperature, the multiconfigurational time-dependent Hartree for bosons method.
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I. INTRODUCTION

Spatial patterns frequently emerge in driven fluids in a
variety of contexts, including chemistry, biology, and
nonlinear optics [1]. Instabilities in these systems can
generally be categorized as Rayleigh-Bénard convection,
Taylor-Couette flow, or parametric surface waves. One of
the earliest and best-known examples of the latter type are
the surface waves found by Faraday when a vessel con-
taining a fluid is shaken vertically [2]. The resulting
standing-wave patterns that appear on the fluid surface
arise from the parametric excitation of collective modes of
the fluid. The Faraday experiment has been repeated in
various geometries where complex patterns were observed
for small driving amplitudes [3]. Chaotic behavior, such as
subharmonic bifurcation, is seen when the drive amplitude

is strong [3–6], and this behavior has been connected to the
onset of turbulence [7].
A model of the Faraday instability has been developed

for an inviscid fluid in which the underlying hydrodynamic
equations are linearized [8]. The linearized dynamics are
described by aMathieu equation, ẍþ pðtÞx ¼ 0, where x is
the displacement, pðtÞ ¼ Ω2½1þ ϵ cosðωtÞ� is the drive,
representing a parametrically driven (undamped) harmonic
oscillator with a natural frequency Ω, drive frequency ω,
and drive amplitude ϵ. Solving the equations using a
Floquet analysis results in a series of resonances at
ω ¼ 2Ω=n, where n is an integer [9].
Superfluids are particularly interesting in the context of

Faraday waves, because the damping of collective modes
can be much smaller than in normal fluids and because
patterns may dissipate by the formation of quantized
vortices in two or three dimensions. Several theoretical
works have investigated Faraday waves in Bose-Einstein
condensates (BECs) of atomic gases [10–16]. To our
knowledge, only three experiments on Faraday waves in
superfluids have been performed, one in which a vessel
containing liquid 4He is vertically shaken in a way similar
to the original Faraday experiment [17], a pioneering
experiment in which Faraday waves were excited by
modulation of the transverse trap frequency ωr of an
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elongated BEC of Rb atoms [18], and another in which a
nondestructive imaging technique is used to observe
Faraday waves in a BEC of Na atoms [19]. In the BEC
experiments, the transverse breathing mode, excited at a
frequency of 2ωr, strongly couples to the density and,
hence, to the nonlinear interactions of the condensate. This
coupling produces the longitudinal sound waves respon-
sible for creating Faraday waves [18,19]. The spatial period
of the Faraday waves was measured as a function of ω, and
the response to the strength ϵ of the drive was investigated
[18]. In a related BEC experiment, modulation of the
scattering length in a regime of large modulation amplitude
and frequency resulted in the stimulated emission of matter-
wave jets from a two-dimensional BEC of Cs atoms [20].
In this paper, we report measurements characterizing the

response of an elongated BEC to direct modulation of the
interaction parameter using a Feshbach resonance [21–23].
For drive frequencies near the first parametric resonance
(ω near 2ωr), we observe robust linear spatial patterns char-
acterized by a spatial period λFðωÞ consistent with Faraday
waves. We also observe the response of the gas to the next-
lowest “resonant” mode (ω near ωr) [15]. We have also
investigated how λF depends on the interaction strength.
These measurements are compared with a theory that fully
incorporates radial, as well as axial, dynamics using a
variational method [15], and, as we show, the agreement
is excellent.
Furthermore, we also explore a different modulation

regime, both experimentally and theoretically, where ω is
far from any trap frequency. The behavior in this regime is
distinctly different; no clear resonances are observed, and
much larger modulation amplitude and time are needed to
obtain a significant response. The response is not regular in
this regime, and no clear patterns emerge; rather, modu-
lation produces a series of irregular grains.
Granulation is found in a variety of systems extending

over many length and energy scales [24,25]. In quantum
gases, granular states have been discussed previously in the
context of perturbed atomic BECs and explored theoreti-
cally using a mean-field approach [26,27]. Granular states
have been defined to have the following properties [26]:
(i) They are dynamical quantum states where particles
cluster in higher-density grains interleaved by regions of
very low density, (ii) the spatial distribution of grains is
random, and (iii) the grain size is variable and of a
multiscale nature.
Our theoretical description uses the multiconfigurational

time-dependent Hartree method for bosons (MCTDHB or
MB) [28,29]. The MCTDHB captures many of the salient
experimental observations and goes systematically beyond
a mean-field description obtained from the Gross-Pitaevskii
equation. The discrepancies between the Gross-Pitaevskii
mean-field description and both the experimental observa-
tions and our MCTDHB results hint that granulation
emerges concurrently with many-body correlations.

II. FARADAY WAVES

In our experiment, we confine a gas of up to 8 × 105 7Li
atoms in a single-beam optical dipole trap and cool them to
well below Tc ¼ 330 nK, the transition temperature for
Bose-Einstein condensation [22]. This configuration results
in a highly elongated cylindrical trapping geometry whose
corresponding axial and radial harmonic frequencies are
ωz ¼ ð2πÞ7 Hz and ωr ¼ ð2πÞ475 Hz, respectively. The
atoms are optically pumped into the lowest ground-state
hyperfine level jF¼1;mF¼1i, where their s-wave scatte-
ring length may be controlled using a broad Feshbach
resonance located at 737.7 G [30–33]. The magnetic field is
sinusoidally modulated according to BðtÞ¼ B̄þΔBsinðωtÞ,
resulting in a modulated scattering length aðtÞ. The
modulation amplitude ΔB, modulation time tm, and hold
time th following tm are varied for each value of the
modulation frequency ω, as necessary to produce a Faraday
pattern with similar contrast. After th, we take a polariza-
tion phase-contrast image [34] with a probe laser propa-
gating along the x axis, perpendicular to the cylindrical
z axis of the trap. These images provide column-density
distributions that we integrate along the y axis to obtain
line-density profiles. We apply a fast-Fourier transform
(FFT) to these profiles in order to determine the spectrum
of spatial frequencies exhibited by the BEC following
modulation.

(a)

(b)

FIG. 1. (a) Column-density image; (b) FFT of the line density.
The modulation parameters are ω ¼ ð2πÞ950 Hz, B̄ ¼ 572.5 G,
ΔB ¼ 5 G, corresponding to a mean scattering length ā ¼ 4.2a0,
and a modulation amplitude Δa ¼ 0.9a0, where a0 is the Bohr
radius. In addition, tm ¼ 5 ms and th ¼ 20 ms. The blue arrow
indicates the calculated λ−1F for these parameters. The dc
component is subtracted, and the FFT amplitude is normalized
by this dc value.
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A typical image of a single experimental run is shown in
Fig. 1(a). In this example, ω ¼ ð2πÞ950 Hz is resonant
with the Faraday mode at ω ¼ 2ωr. A surface wave is
generated after tm ¼ 5 ms of modulation followed by
th ¼ 20 ms. The FFT, shown in Fig. 1(b), features a
single dominant peak corresponding to a spatial period
of λ ¼ 10 μm.

Figure 2 shows the spatial period of the observed
structure as a function of ω. Typically, th ¼ 0 ms and
20 < tm < 40 ms, with the exception of ω ¼ ωr and
ω ¼ 2ωr. Near these resonances, the modulation time
was kept short, tm ¼ 20 ms and tm ¼ 5 ms, respectively,
followed by th ¼ 20 ms. The blue data points correspond to
the spatial period of the primary peak in the FFT spectrum.
Except for the point at ω ¼ ð2πÞ475 Hz, the period
monotonically increases with decreasing ω. The blue line
in Fig. 2 is the result of a 3D variational calculation of λF
[15], which fits the data well. We verified that the standing-
wave surface-wave amplitude oscillates at ω=2 for ω near
2ωr, consistent with its identification as a Faraday wave,
which is excited parametrically.
The excitation at ω ¼ ð2πÞ475 Hz ¼ ωr is not a sub-

harmonic of the Faraday mode at 2ωr but rather the next-
lowest mode in the infinite series of modes, identified as the

“resonant” mode in Ref. [15]. In addition to having a
different dispersion relation, this mode is also weaker, and
therefore more difficult to excite, except exactly on
resonance, ω ¼ ωr, where the growth rate of the resonant
mode exceeds that of the Faraday mode [15]. A similar
excitation at ωr was previously reported [18]. The theo-
retical calculation of the period of this mode is indicated in
Fig. 2 by the red line, λR [15].
We find that, as ω is tuned away from 2ωr ¼

ð2πÞ950 Hz, a larger modulation amplitude ΔB and modu-
lation time tm are required to obtain a pattern with similar
contrast. For example, Fig. 3 displays the spectrum for
ω ¼ ð2πÞ200 Hz, for which ΔB ¼ 35 G, tm ¼ 20 ms, and
th ¼ 20 ms. Two peaks dominate the spectrum: the primary
peak at a lower spatial frequency and a secondary peak at
roughly twice this spatial frequency. These secondary
peaks appear only for ω≲ ð2πÞ400 Hz and are identified
by the red data points in Fig. 2. The appearance of the next-
lowest mode depends on being sufficiently near its reso-
nance frequency at ω ¼ ωr and far enough off resonant
with the Faraday mode at ω ¼ 2ωr that it does not
dominate the FFT spectrum. We have looked for additional
modes in the data, but the FFT spectrum is dominated by
the off-resonant response to the 2ωr and ωr resonances, and
we are unable to observe any resonances below ωr. A
comparison of the period of these secondary peaks with the
theoretically calculated solid red line indicates that they
correspond to the resonant mode λR.

FIG. 2. Spatial period vs ω. The blue data points are the primary
peak of the FFTs, while the red data points correspond to a
secondary peak, where one exists. The error bars here, and in each
subsequent figure, correspond to the standard error of the mean
determined from ten different experimental runs for each point.
The solid blue line is the calculated spatial period λF of the
Faraday mode, while the red is that of the resonant mode λR [15].
The resonant mode dominates only when ω is tuned to resonance
at ωr, producing the observed primary peak.

(a)

(b)

FIG. 3. (a) Image at ω ¼ ð2πÞ200 Hz. (b) Spectrum showing
the primary peak, which corresponds to λF, and the secondary
peak due to the resonant mode. The blue and red arrows indicate
the calculated values for λ−1F and λ−1R , respectively, for these
parameters. Here, ΔB ¼ 35 G, but, since aðBÞ is a nonlinear
function of ΔB, the bounds aþ ¼ 12a0 and a− ¼ −0.9a0 are not
symmetrically located about ā ¼ 4.2a0. Also, tm ¼ th ¼ 20 ms.
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We also explored a more impulsive regime, with short tm
and where ω is kept within 10% of the Faraday resonance at
ω ¼ 2ωr. In this case, with short tm, we find that the
wavelength of the resulting Faraday pattern is constant,
independent of ω.
The Faraday period also depends on the strength of the

nonlinearity, as shown in Fig. 4, where both the measured
and calculated [15] values of λF are plotted vs the
interaction parameter ā ρ̄, where ρ̄ is the line density
obtained by integrating the column density along the
transverse direction. The measured period is consistent
with the 3D theory from Ref. [15].
We also explore the dynamics for the emergence of the

Faraday pattern and its persistence following a short modu-
lation time interval of tm ¼ 5 ms near 2ωr. Figure 5(a)
shows the magnitude of the primary peak in the FFT
spectrum vs th. Following modulation, the Faraday pattern
forms after th ≃ 20 ms. By th ¼ 50 ms, however, the
Faraday pattern vanishes before reemerging again at
th ≃ 90 ms. A subsequent weaker collapse and revival
occur at later th. We can gain some intuition as to the
origins of this behavior by comparing measurements of the
condensate length vs th. Figure 5(b) shows the axial
Thomas-Fermi radius during the same th interval. It shows

that a low-frequency collective mode is excited by the
coupling to the modulated nonlinearity. The parameters
of this condensate place it between the 1D mean-field
and the 3D cigar regimes [35]. In the 3D Thomas-Fermi
limit, the lowest m ¼ 0 quadrupolar mode for an elongated
condensate has a frequency of

ffiffiffiffiffiffiffiffi
5=2

p
ωz, while in the 1D

limit the collective mode oscillates at
ffiffiffi
3

p
ωz [35–37]. For

ωz ¼ ð2πÞ7 Hz, the corresponding period for this mode
is, therefore, approximately 90 ms, which is close to the
observed oscillation period of 95 ms. We find that the
Faraday pattern is suppressed during axial compression
but subsequently revives as the condensate returns to its
original size. The phase of the two oscillations, the FFT
amplitude and the Thomas-Fermi radius, do not exactly
coincide. We attribute this observation to the delay in the
initial growth of the Faraday pattern. We have determined
experimentally that the frequency of the collapse and
revival of the Faraday pattern scales with the axial trap
frequency. A similar collapse and revival of the Faraday
wave was previously observed [19].

III. GRANULATION

A Faraday pattern is not observed for low-frequency
modulation, for which ω ≪ ωr. We find that, as ω is
reduced, both modulation time tm and modulation

FIG. 4. Interaction dependence of λF. The relevant interaction
parameter is ā ρ̄, where ρ̄ is the average line density and ā varies
between 1a0 and 26a0. Here, ΔB ¼ 5 G, corresponding to Δa ¼
0.7a0 for ā ¼ 1a0 and Δa ¼ 3a0 for ā ¼ 26a0. The data are
indicated by filled squares, while the solid line is the theory of
Ref. [15]. The error bars along the vertical axis correspond to the
standard error, determined from ten different experimental runs,
while the error bars along the horizontal axis arise from the
systematic uncertainty in determining ā [30].

(a)

(b)

FIG. 5. Growth and suppression of the Faraday pattern. (a) The
normalized amplitude of the primary spatial frequency in the FFT
spectrum as a function of th. (b) The fitted axial Thomas-Fermi
radius of the central region over the same time interval is shown
by the filled circles. The solid line is a sinusoidal fit correspond-
ing to a period of 95 ms. For these data, ω ¼ ð2πÞ950 Hz and
tm ¼ 5 ms.
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amplitude ΔB must be increased in order to observe any
change. As these parameters are increased, more spatial
frequencies contribute (see Fig. 3), and, as tm and ΔB are
increased further, we observe random patterns spanning a
broad spatial frequency range, resembling grains [26,27].
We do not observe a significant thermal fraction before or
after modulation, and therefore we attribute the observed
granular patterns to quantum fluctuations and use a theory
applicable to pure states.
In Fig. 6(a), we show experimental images and compare

them to Gross-Pitaevskii (GP) simulations. Note that the
axial and radial trap frequencies in this section are ωz ¼
ð2πÞ8 Hz and ωr ¼ ð2πÞ254 Hz, respectively. We observe
that granulation is remarkably persistent in time after the
modulation is turned off and that its structure is random
between different experimental runs. GP simulations for
similar parameters are shown in Fig. 6(b). In contrast to
the experimental images, the GP simulations produce
column-density distributions that resemble Faraday waves,
with a regularly spaced pattern. Without a stochastic
component, the GP model represents a crude approxima-
tion. The qualitative difference between the observations in
Fig. 6(a) and the GP simulations in Fig. 6(b) suggests that
the observed state of the atoms in the experiment goes
beyond what the GP mean-field theory can describe.
The GP ansatz is a product of one single-particle state

ϕGP: ΨGP ∼
Q

N
k¼1 ϕGPðrkÞ. This is a “mean-field state,”

because all particles in the many-body system occupy the
single-particle state ϕGPðrÞ. A GP product state cannot
describe correlations, where the properties of one or several
particles in the many-body system depend on the properties
of other particles in it. We go beyond the mean-field
GP theory by employing the MCTDHB or MB, which
can account for many-body correlations. The MCTDHB
ansatz incorporates all possible configurations ðn1;…; nMÞ
of N particles in M single-particle states, jΨi ¼

P
n1;n2;…;nM Cn1;n2;…;nM jn1;…; nMi. The MCTDHB ansatz

can therefore self-consistently describe correlations in the
many-body state [38].
We simulate the in situ single-shot images [39,40] from

the wave functions obtained with the MCTDHB for the
various experimental parameters and forM ¼ 2modes (see
Supplemental Material in Ref. [38] and Refs. [41–49]
therein). The simulated single-shot images correspond to
drawing random samples from the N-particle density
jΨðr1;…; rNÞj2 of the many-body state. Single-shot images
thus contain information about quantum fluctuations and
correlation functions of all orders, and the average of many
such single-shot images corresponds to the density.
Because of computational constraints, at present, we can
perform only 1D simulations. Along the axial direction, the
experimental data show grains that are typically 4–10 μm
in length in the axial direction, while granulation is sup-
pressed transversely, thus justifying the validity of the 1D
approximation and our comparison of the 1D theory with
the experimental line densities.
The simulation of single-shot images requires a model of

the many-body probability distribution jΨðr1;…; rNÞj2 as
provided by the MCTDHB. Classical field methods, in
contrast, approximate the time evolution of expectation
values using “classical-field trajectories,” i.e., solutions of
the GP equation with stochastic initial conditions. These
classical-field methods, however, do not supply a model for
the wave function jΨðr1;…; rnÞj2 from which single shots
can be simulated [39].
Figure 7(a) shows the line density for three independent

experimental shots and for four modulation frequencies,
ω=2π ¼ 0, 20, 60, and 80 Hz, where ω ¼ 0 corresponds to
no modulation. For these data, the timescales tm ¼ th ¼
250 ms are much longer than for the data discussed in the
context of Faraday waves. The 1D MB simulations of the
density and, for comparison to the experiment, two single

FIG. 6. (a) Experimental images and (b) GP simulations of column-density images for several values of th and with ω ¼ ð2πÞ70 Hz
and tm ¼ 250 ms. The axial and radial trap frequencies for the experiments and simulations in this section are ωz ¼ ð2πÞ8 Hz and
ωr ¼ ð2πÞ254 Hz, respectively. (a) For the experiment, B̄ ¼ 577.4 G and ΔB ¼ 41.3 G, corresponding to ā ¼ 5a0, aþ ¼ 15a0, and
a− ¼ −1a0. Each image, with indicated th, is a separate realization of the experiment. (b) Cylindrically symmetric 3D GP simulations
where the calculated 3D densities are integrated along one transverse direction to produce 2D column densities. For the simulations,
aþ ¼ 20a0 and a− ¼ 0.5a0.
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shots are shown in Fig. 7(b). The single-shot simulations
and experimental images are qualitatively similar, in con-
trast to the densities ρðx; tÞ, obtained from the MB model.
The shot-to-shot fluctuations in the single-shot simulations
result from the fact that single shots are random samples
distributed according to the many-body probability distri-
bution jΨðr1;…; rN ; tÞj2. At ω ¼ ð2πÞ20 Hz, the exper-
imental line density is somewhat broadened, perhaps
indicating an excitation of low-lying quadrupolar oscilla-
tions. For 60 Hz modulation, the single-shot images exhibit
large minima and maxima, which are even more pro-
nounced at 80 Hz. Thus, we find that there is a threshold
modulation frequency ωc, above which the line density is
significantly altered. The density, corresponding to the
average of a large number of single shots, does not exhibit
grains; they emerge only in single-shot images.
Figure 8 shows the second-order correlation functions

for the experiment Cð2Þðz; z0Þ, and the MB theory gð2Þðz; z0Þ,
where both quantities are defined in Supplemental Material
[38]. Cð2Þðz; z0Þ are evaluated using an average of up to four
experimental shots, whereas gð2Þðz; z0Þ are computed
directly from the MCTDHB wave functions.
In both the experiment [Fig. 8(a)] and MB theory

[Fig. 8(b)], we find that when ω < ωc the condensate is
practically uncorrelated, as evidenced by Cð2Þðz; z0Þ≈
gð2Þðz; z0Þ ≈ 1. However, when ω > ωc, we find that the
relatively constant correlation plane evolves into smaller
correlated and anticorrelated regions, as shown Fig. 8(c) for
the experiment and Fig. 8(d) for the MB theory.
To further characterize the granulated states, we plot the

contrast parameter D at each modulation frequency in
Fig. 9(a). D quantifies the deviation of a given set of single
shots from a parabolic fit—as discussed in Supplemental
Material [38] and Fig. S1 therein. A sharp threshold can be

FIG. 8. Second-order correlation functions. (a) Correlation
function Cð2Þðz; z0Þ calculated from the experimental data for
ω ¼ ð2πÞ20 Hz. (b) Correlation function gð2Þðz; z0Þ calculated
from the MB theory for the same parameters as (a). (c) Cð2Þðz; z0Þ
calculated from the experimental data for ω ¼ ð2πÞ80 Hz.
(d) gð2Þðz; z0Þ calculated from the MB theory for the same
parameters as (c). For the nongranulated states [(a),(b)], the
correlation function is approximately 1, indicating the absence of
second-order correlations. For the granulated states [(c),(d)],
regions with correlations (red hues) and anticorrelations (blue
hues) emerge. Theoretical and experimental second-order corre-
lations qualitatively agree: They are flat for the nongranular states
[(a),(b)] and exhibit patterns of comparable length scale and
magnitude for the granular states [(c),(d)]. All images correspond
to th ¼ tm ¼ 250 ms and ā ¼ 8a0, aþ ¼ 20, and a− ¼ 0.5a0.

FIG. 7. Experimental and theoretical line-density profiles. (a) Experimental data and (b) many-body simulations for different
modulation frequencies. (a) The rows show data for three independent experimental images (“shots”) for the indicated ω, where ω ¼ 0

corresponds to no modulation. Here, B̄ ¼ 590.8 G, ΔB ¼ 41.3 G, corresponding to ā ¼ 8a0, aþ ¼ 20a0, a− ¼ 0.7a0, and
tm ¼ th ¼ 250 ms. (b) The first column shows the density ρðz; tÞ as calculated from the 1D MB theory (see Methods), while the
second and third columns display two simulated single shots. We observe that granulation is present in the single-shot images but absent
in the average, ρðx; tÞ.
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seen in both the experimental data and the simulations at
ωc ≈ ð2πÞ30 Hz, beyond which grains start to form. For
ω < ωc, the gas oscillates coherently without a significant
deviation from a Thomas-Fermi envelope.
The threshold frequency ωc can be understood by

examining the second-largest eigenvalues (or occupations)

nð1Þ2 and nð2Þ2 of the first- and second-order reduced density
matrices (RDMs), respectively (see Methods [38]), which
are plotted in Fig. 9(b). These may be used as a measure of
the departure of our MB model from mean-field states.
Many-body systems, where multiple eigenvalues of the
first-order RDM are macroscopic (i.e., of the order of N),

are termed fragmented [47,50]. At zero excitation, only

nð1Þ;ð2Þ1 are macroscopic, while nð1Þ;ð2Þ2 are nearly zero. The
latter increase substantially with ω beyond ωc, heralding
the loss of first- and second-order coherence and the
emergence of correlations as shown in Fig. 8. At

ω ≈ ð2πÞ50 Hz, we observe a drop in nð2Þ2 , which, however,

results in an increase in nð2Þ3 and not an increase in nð1Þ;ð2Þ1 .
The MCTDHB computations thus show that the emergence
of granulation is accompanied by the conversion of initial
condensation (only a single macroscopic occupation [45])
into fragmentation.
Both observations, the emergence of fragmentation and

the loss of second-order coherence, underscore that the
granulation of Bose-Einstein condensates is a many-body
effect. The system thus cannot be described by a mean-field
product state any longer and has left the realm of GP
theory. Although the transition to fragmentation is not
sharp—the natural occupations nð1Þ;ð2Þi take on continuous
values—it is well established at sufficiently large ω.
Granulation features randomly distributed variably sized
grains of atoms which can be observed in single-shot
images. Fragmentation, or depletion, on the other hand, is
characterized by the reduced density matrix and its (macro-
scopic) eigenvalues and is not necessarily accompanied by
granulation of the density [47,50]. In our close-to-one-
dimensional setup, we observe granulation to emerge side
by side with fragmentation.
The dynamical evolution, as calculated from the MB

theory, of the density is shown in Figs. 10(a) and 10(d) for
ω < ωc and ω > ωc, respectively. In both cases, the
modulation of the Thomas-Fermi radius follows the exter-
nal perturbation. Once the modulation is turned off, the
radius oscillates at its natural quadrupolar frequency.
The first-order spatial coherence is shown in Figs. 10(b)
and 10(e) for the same parameters. The patterns that emerge
and persist in gð1Þðz; z0Þ demonstrate that spatial correla-
tions between particles at distinct and distant locations in
the granular state are present [Fig. 10(e)]. The length scale
of the patterns in gð1Þðz; z0Þ is similar to what is seen in
Fig. 8 for gð2Þðz; z0Þ. We infer that the process of granulation
in a BEC is accompanied by the emergence of nonlocal
correlations in the many-body state. Figure 10(f) shows the
emergence of two macroscopic eigenvalues of the reduced
one-body density matrix for ω > ωc. While these so-called
natural occupations are unaffected by modulation for
ω < ωc, as seen in Fig. 10(c), ω > ωc results in the second
natural orbital being macroscopically populated and, hence,
in the fragmentation of the BEC [Fig. 10(f)]. An exami-
nation of the total energy per particle (Et) imparted during
modulation for a time tm shows that Et ≈ 22 nK when
ω ¼ ð2πÞ20 Hz and Et ≈ 36 nK when ω ¼ ð2πÞ80 Hz,
both of which are much less than the critical temperature
Tc ≈ 330 nK.

FIG. 9. Granulation vs ω. (a) Comparison of the deviations
from a Thomas-Fermi distribution as quantified by the contrast
parameterD ¼ DðωÞ [38] for single shots simulated with the MB
theory with those taken in the experiment (EXP). The MB theory
predicts the threshold value ωc ≈ ð2πÞ30 Hz, where deviations
become large and grains form. Each symbol and its error bar are
the mean and standard error, respectively, of the mean of at least
four experimental measurements of D, while 100 single shots at
each ω are used for the MB simulations. (b) Eigenvalues of the
first- and second-order RDM. The growth of all three is observed
to occur for ω > ωc, indicating the emergence of correlations and

fragmentation. The growth of both nð1Þ2 and nð2Þ2 occur as ω ≈ ωc,

with the drop in nð2Þ2 near 60 Hz corresponding to the subsequent

growth in nð2Þ3 .
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FIG. 11. Experimental column densities showing the formation of grains. Representative column-density images taken at different tm.
For each value of tm, ω ¼ ð2πÞ70 Hz and th ¼ 250 ms. All other parameters are given in the caption of Fig. 7. Each image is a different
realization of the experiment.

FIG. 10. Time evolution, coherence, and fragmentation from simulations. (a),(d) The density ρðz; tÞ, (b),(e) first-order spatial
correlation function jgð1Þðz;−zÞj, and (c),(f) natural occupations nð1Þk ðtÞ are plotted vs time t. nð1Þ1 is denoted by the black line, while nð1Þ2

is indicated by the yellow line. (a)–(c) are calculated with ω ¼ ð2πÞ20 Hz < ωc and (d)–(f) with ω ¼ ð2πÞ80 Hz > ωc. All other
parameters are given in the caption of Fig. 7. The onset and formation of granulation are inferred by the simultaneous drop in the values
of jgð1Þj and nð1Þ1 , indicating the emergence of spatial correlations and fragmentation, respectively.
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The onset of granulation observed experimentally is
shown in Fig. 11. The condensate was modulated at ω ¼
ð2πÞ70 Hz for various tm followed by th ¼ 250 ms. For
tm < 100 ms, there is no discernable difference between
the modulated and unmodulated (tm ¼ 0 ms) cases, but for
tm > 100 ms grains are observed to form. Consistent with
Fig. 10, the transition to a granulated state is gradual with
increasing tm. The observed grains are also long-lived in
comparison to Faraday waves, as shown in Figs. 6(a)
and 5(a), respectively.
The transition to granular states occurs due to the

presence of quantum correlations. The second-order corre-
lations, shown in Fig. 8, and the first-order, nonlocal
correlations, shown in the middle panel in Fig. 10, result
from modulating the interaction and do not disappear after
the modulation is stopped. Our modeling of the state on the
many-body level suggests that granulation represents a
dynamical many-body state characterized by the presence
of quantum fluctuations, correlations, fragmentation, and
their persistence in time.
Granular states feature random patterns and lack perio-

dicity in their distributions, distinguishing them from
Faraday and shock waves [51]. The multicharacteristic
nature of quantum grains is supported by our observation of
additional anomalous features in real and momentum space.
Indeed, we find signatures of different coexisting phases of
perturbed quantum systems such as quantum turbulence and
localization in granulated states. We verified that the density
in momentum space (as calculated from the MB theory) of
the granulated state shows clear signs of a k−2 power-law
scaling (see Supplemental Material [38] and Fig. S2 therein),
which indicates a connection to turbulent BECs [52–55].

IV. CONCLUSIONS

We have explored the response of a BEC to modulated
interactions. In the regime where the drive frequency
ω≳ ωr, the drive couples to parametric and resonant modes
that result in one-dimensional spatial pattern formation. For
ω near resonance with 2ωr or ωr, very little modulation
time and amplitude are required to produce a significant
response. Near these resonances, the condensate undergoes
breathing oscillations that persist for a long time, resulting
in the formation of Faraday and resonant mode patterns for
th > 0. A pattern is also observed off resonance, but only
with an increased modulation amplitude and modulation
time. Because of the long modulation time, the resulting
pattern can be seen at th ¼ 0 and is a direct consequence of
the applied modulation. The dispersion relation of both
Faraday and resonant modes is well represented by a mean-
field theory that accounts for the three-dimensional nature
of the elongated condensate.
For lower drive frequencies, the modulated interactions

only weakly couple to the condensate. Significant response
is achieved only by increasing the modulation amplitude and
time and then only above a critical modulation frequencyωc.

Fluctuating and irregular spatial patterns, that we define as
grains, may then emerge and persist for long periods of time.
A theoretical description of granulation requires approaches
that go beyond the mean-field theory, indicating that
quantum granulation is characterized by nonlocal many-
body correlations and quantum fluctuations.

ACKNOWLEDGMENTS

This work was supported in part by the Army
Research Office Multidisciplinary University Research
Initiative (Grant No. W911NF-14-1-0003), the Office of
Naval Research, the National Science Foundation
(Grant No. PHY-1707992), the Welch Foundation (Grant
No. C-1133), the Austrian Science Foundation (FWF) under
Grants No. F41(SFB “ViCoM”) and No. P32033, theWiener
Wissenschafts- und TechnologieFonds (WWTF) Project
No. MA16-066 (“SEQUEX”), and by FAPESP, under the
CEPID program (Grant No. 2013/07276-1). Computational
time in the High-Performance Computing Center Stuttgart
(HLRS) is gratefully acknowledged. We also thank Mustafa
Amin for valuable discussions.

[1] M. C. Cross and P. C. Hohenberg, Pattern Formation
Outside of Equilibrium, Rev. Mod. Phys. 65, 851 (1993).

[2] M. Faraday, Xvii. On a Peculiar Class of Acoustical
Figures; and on Certain Forms Assumed by Groups of
Particles upon Vibrating Elastic Surfaces, Phil. Trans. R.
Soc. London 121, 299 (1831).

[3] S. Douady and S. Fauve, Pattern Selection in Faraday
Instability, Europhys. Lett. 6, 221 (1988).

[4] R. Keolian, L. A. Turkevich, S. J. Putterman, I. Rudnick,
and J. A. Rudnick, Subharmonic Sequences in the Faraday
Experiment: Departures from Period Doubling, Phys. Rev.
Lett. 47, 1133 (1981).

[5] S. Ciliberto and J. P. Gollub, Pattern Competition Leads to
Chaos, Phys. Rev. Lett. 52, 922 (1984).

[6] S. Ciliberto, S. Douady, and S. Fauve, Investigating Space-
Time Chaos in Faraday Instability by Means of the
Fluctuations of the Driving Acceleration, Europhys. Lett.
15, 23 (1991).

[7] M. J. Feigenbaum, The Onset Spectrum of Turbulence,
Phys. Lett. A 74, 375 (1979).

[8] T. B. Benjamin and F. Ursell, The Stability of the Plane Free
Surface of a Liquid in Vertical Periodic Motion, Proc. R.
Soc. A 225, 505 (1954).

[9] J. Bechhoefer and B. Johnson, A Simple Model for Faraday
Waves, Am. J. Phys. 64, 1482 (1996).

[10] J. J. García-Ripoll, V. M. Pérez-García, and P. Torres,
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