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ANDERSON-ACCELERATED CONVERGENCE OF PICARD
ITERATIONS FOR INCOMPRESSIBLE NAVIER–STOKES

EQUATIONS∗
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Abstract. We propose, analyze, and test Anderson-accelerated Picard iterations for solving the
incompressible Navier–Stokes equations (NSE). Anderson acceleration has recently gained interest
as a strategy to accelerate linear and nonlinear iterations, based on including an optimization step
in each iteration. We extend the Anderson acceleration theory to the steady NSE setting and prove
that the acceleration improves the convergence rate of the Picard iteration based on the success of
the underlying optimization problem. The convergence is demonstrated in several numerical tests,
with particularly marked improvement in the higher Reynolds number regime. Our tests show it can
be an enabling technology in the sense that it can provide convergence when both usual Picard and
Newton iterations fail.
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1. Introduction. We consider numerical solvers for the steady incompressible
Navier–Stokes equations (NSE), which are given in a domain Ω ⊂ Rd (d = 2, 3) by

u · ∇u+∇p− ν∆u = f,(1.1)

∇ · u = 0,(1.2)

u|∂Ω = g,(1.3)

where ν is the kinematic viscosity, f is a forcing, and u and p represent velocity and
pressure. For simplicity of our presentation and analysis, we consider homogeneous
Dirichlet boundary conditions, i.e., g = 0, but our theory can be extended to other
common boundary conditions.

We study herein an acceleration technique applied to the Picard method for solv-
ing the steady NSE. The Picard method is commonly used for solving the steady NSE
due to its stability and global convergence properties, and takes the form (suppressing
a spatial discretization)

uk · ∇uk+1 +∇pk+1 − ν∆uk+1 = f,(1.4)

∇ · uk+1 = 0,(1.5)

uk+1|∂Ω = 0,(1.6)
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This iteration can be written as a fixed point iteration, uk+1 = G(uk), with G denoting
a solution operator for the Picard linearization (1.4)–(1.6).

In practice, unfortunately, the Picard iteration often converges slowly, sometimes
so slowly that for all practical purposes it fails. To improve this slow convergence, we
employ an acceleration strategy introduced by Anderson in 1965 [1]. In recent years,
this strategy now commonly referred to as Anderson acceleration has been analyzed
in the context of multisecant methods for fixed-point iterations in [6] motivated by a
problem in electronic structure computations and in the context of generalized min-
imal residual methods in [17], where the efficacy of the method is demonstrated on a
range of nonlinear problems. We further refer readers to [10, 12, 17] and the references
therein for detailed discussions on both practical implementation and a history of the
method and its applications. Despite its long history of use, the first convergence
analysis for Anderson acceleration (in both the linear and nonlinear settings) appears
in 2015 in [16], under the usual local assumptions for convergence of Newton itera-
tions. However, this theory (which we summarize in section 2) does not prove that
Anderson acceleration actually improves the convergence of a fixed-point iteration.

The main contributions of this work involve Anderson acceleration applied to
the Picard iteration for the steady NSE. In this setting, we are able to prove that
Anderson acceleration gives guaranteed improvement over the usual Picard iteration in
a neighborhood of the fixed point. To our knowledge, this is the first proof of improved
convergence for Anderson acceleration applied to a nonlinear fixed-point iteration, and
thus may give insight into how a theory for general nonlinear fixed-point operators
might be developed. Additionally, we show with several numerical experiments that
Anderson acceleration can provide dramatic improvement in the Picard iteration, and
can even be an enabling technology in the sense that it provides convergence in cases
where both Picard and Newton fail. In addition to this result, we also investigate the
global convergence behavior of Anderson acceleration for contractive operators. We
find a relation between the gain from the optimization, bounds on the optimization
coefficients, and the convergence rate of the underlying fixed-point iteration that
assures the accelerated sequence converges at an improved rate, independent of the
initial error.

This paper is arranged as follows. In section 2 we provide some background
on Anderson acceleration and its convergence properties, and show global r-linear
convergence at an improved rate based on success of the optimization problem for
small enough coefficients. In section 3 we give preliminaries for the steady NSE and
associated finite element spatial discretization, and provide details of properties of
the solution operator of the fixed-point iteration associated with the discrete Picard
linearization of the steady NSE. In section 4 we then analyze the Anderson-accelerated
Picard iteration for the steady NSE. We extend the general convergence results of
[10, 16] to this problem, and for the particular cases of the acceleration algorithm
optimizing over either one or two additional prior residuals, prove that Anderson
acceleration improves the contraction ratio of the Picard iteration. In section 5 we
report on results of several numerical tests for Anderson-accelerated Picard iterations
for the steady NSE, and show that it can have a dramatic positive impact.

2. Anderson acceleration. We discuss now the general Anderson acceleration
algorithm and its convergence properties for contractive nonlinear operators. In later
sections, we will consider the specific case of Picard iterations for the steady incom-
pressible NSE. We start by stating the algorithm and reviewing the relevant known
theory. Theorem 2.5 is a new contribution to the theory for general nonlinear con-
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tractive operators. It shows that Anderson acceleration increases the convergence rate
of the fixed-point iteration when the optimization coefficients satisfy certain bounds.
We begin with the basic assumption of a contractive (nonlinear) operator.

Assumption 2.1. Let G : X → X be a contractive operator with contraction ratio
r < 1, i.e.,

‖G(u)−G(w)‖∗ ≤ r‖u− w‖∗ ∀u,w ∈ X,

for a given space X with norm ‖ · ‖∗ .

By standard fixed-point theory, under Assumption 2.1 there exists a unique u∗ ∈
X such that G(u∗) = u∗. Although in section 3 and beyond we will make specific
choices for G and X, we discuss the acceleration algorithm in this form to emphasize
its more general applicability.

Algorithm 2.2 (Anderson iteration). The Anderson acceleration with depth m
reads as follows:
Step 0: Choose u0 ∈ X.
Step 1: Find ũ1 ∈ X such that ũ1 = G(u0). Set u1 = ũ1.
Step k: For k + 1 = 1, 2, 3, . . . , set mk = min{k,m}.

[a] Find ũk+1 = G(uk).
[b] Solve the minimization problem for {αk+1

j }kk−mk

min
k∑

j=k−mk

αk+1
j =1

∥∥∥∥∥∥
k∑

j=k−mk

αk+1
j (ũj+1 − uj)

∥∥∥∥∥∥
∗

.

[c] Set uk+1 =
k∑

j=k−mk

αk+1
j ũj+1.

Remark 2.3. For the more general Anderson mixing algorithm, set uk+1 in Algo-
rithm 2.2 by

uk+1 = βk+1

k∑
j=k−mk

αk+1
j ũj+1 + (1− βk+1)

k∑
j=k−mk

αk+1
j uj

for damping parameter 0 < βk ≤ 1. Here we consider the undamped case βk = 1 for
all k as under Assumption 2.1 the fixed-point iteration converges with rate r < 1, and
βk < 1 scales the natural convergence rate of the iteration towards unity. However,
damping can be useful and is sometimes crucial for simulations in which the underlying
fixed-point operator is not globally contractive. In the current context of steady
Navier–Stokes under a small data assumption, the fixed-point operator is globally
contractive so we do not further consider the damping in this manuscript. The effect
of combining damping with acceleration is however of ongoing interest to the authors.

The convergence of Anderson acceleration is studied in [10, 16], and for general
nonlinear G it is known that in a small enough neighborhood of the solution, the
acceleration will not make the convergence significantly worse. To our knowledge
however there is no mathematical proof that Anderson acceleration increases the
convergence compared to the associated fixed-point iteration. The following result
is proven in [16, Theorem 2.3], and is the best known result for (locally) contractive
operators.
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Theorem 2.4 (convergence of Anderson acceleration). Assume operator G has
fixed point u∗, and satisfies the following two conditions under some norm ‖ · ‖∗.

1. G is Lipschitz continuously differentiable in a ball

B(ρ) = {u ∈ Xh : ‖u− u∗‖∗ < ρ}

for some ρ > 0.
2. There is a c ∈ (0, 1) such that for all u, v ∈ B(ρ), ‖G(u)−G(v)‖∗ ≤ c‖u−v‖∗.

Then if
∑mk

j=1 |αkj | is uniformly bounded for all k > 0, Algorithm 2.2 converges to u∗

with contraction ratio no greater than ĉ, where c < ĉ < 1, provided ‖u0 − u‖∗ is small
enough.

We improve on this result for steady NSE in section 4 where we show for the
contractive operator G associated with the Picard iteration that the convergence of
the residual to zero is guaranteed to be accelerated close enough to the solution.
While this result depends on the particular structure of the steady NSE and cannot
be immediately applied to general contractive operators, the tools we employ may
give insight into how a more general result of improved convergence rate can be
constructed.

Under some stronger assumptions on the coefficients α of the minimization step,
we first establish a globally accelerated rate of convergence of the difference between
successive iterates for general contractive operators. The idea of this analysis is to
characterize the improvement in the convergence rate by the balance between the
success of the optimization problem solved at each step and the magnitude of the
coefficients corresponding to earlier solutions. The common link between the analysis
here and in section 4 is in characterizing the improvement in convergence rate by the
gain from the optimization problem. We now fix some notation used in the remainder
of the article:

ek := uk − uk−1, ẽk := ũk − ũk−1, wk := G(uk)− uk.(2.1)

Here, (2.1) spells out three different types of error terms used in the analysis that
follows. The first, ek = uk − uk−1, is the difference between accelerated iterates.
Theorem 2.5 and its Corollary 2.6 address global convergence with respect to this
quantity. The second, ẽk = ũk− ũk−1 = G(uk−1)−G(uk−1), satisfies ‖ẽk‖ ≤ r ‖ek−1‖
under Assumption 2.1. The third, wk = G(uk)−uk, can be thought of as the residual
of the fixed-point iteration, G(u) = u. It can also, however, be thought of as the
update step between the preaccelerated ũk+1 and the accelerated iterate at step k,
by ũk+1 = uk + wk. Each of these quantities is equivalent to the error between the
current iterate and the fixed point u∗ as follows. Starting with the residual we have

uk − u∗ = (uk −G(uk)) + (G(uk)− u∗) = (uk −G(uk)) + (G(uk)−G(u∗)).

Taking norms of both sides yields ‖uk − u∗‖∗ ≤ ‖wk‖∗ + r ‖uk − u∗‖∗ with r < 1
under Assumption 2.1 by which

‖uk − u∗‖ ≤
1

1− r
‖wk‖ ,

which implies ‖uk − u∗‖∗ → 0 as ‖wk‖∗ → 0. For the reverse inequality

‖G(uk)− uk‖∗ ≤ ‖G(uk)−G(u∗)‖∗ + ‖u∗ − uk‖∗ ≤ (1 + r) ‖uk − u∗‖∗ .

In term of the difference of consecutive iterates, we also have the error ‖uk+1−u∗‖∗
goes to zero as the sequence ‖ej‖∗ → 0, j = k −mk, . . . , k. In other words the er-
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ror in the fixed-point iteration is controlled by the m consecutive differences between
iterates in the depth-m algorithm. We proceed under the additional assumption
that the optimization coefficients are bounded: there is some αM > 0 for which
|αkj | ≤ αM , j = k −mk, . . . k, for each iteration k. Establishing ‖ek‖∗ converges to
zero shows {uk} is a Cauchy sequence hence has a limit in the ambient space X; and,
by the following argument that limit must be u∗. Assuming boundedness of the opti-
mization coefficients and using Assumption 2.1 we have by Step k[c] of Algorithm 2.2
that

uk+1 − u∗ =

 k∑
j=k−mk

αk+1
j (G(uj)−G(uk+1))

+ (G(uk+1)− u∗)

=

 k∑
j=k−mk

(
j∑

n=k−mk

αk+1
n

)
(G(uj)−G(uj+1))

+ (G(uk+1)−G(u∗)).

The technique of telescoping the sum to subtract consecutive iterates will be repeated
in the next theorem used to show convergence of ‖ek‖ to zero. Taking norms of both
sides

‖uk+1 − u∗‖∗ ≤ r ‖uk+1 − u∗‖∗ + rγM

k∑
j=k−mk

‖uj+1 − uj‖∗ ,

where γM = max{(m−1)αM , 1} arises from maximizing the sums
∑j
n=k−mk

αk+1
n for

j ≤ k under the constraint
∑k
n=k−mk

αk+1
n = 1. This in turn implies

‖uk+1 − u∗‖∗ ≤
rγM
1− r

k∑
j=k−mk

‖uj+1 − uj‖ .

The reverse inequality follows more easily by ‖uk+1−uk‖∗≤‖uk+1−u∗‖∗+‖uk−u∗‖∗.
Having established the sufficiency of convergence to zero of either quantity ‖ek‖∗

or ‖wk‖∗, we next proceed with a global convergence analysis of ‖ek‖∗. To aid in the
analysis here and in section 4 we introduce an intermediate quantity

uαk =

k∑
j=k−mk

αk+1
j uj .(2.2)

In particular, uαk satisfies ‖uk+1 − uαk‖∗ = θk ‖ũk+1 − uk‖∗, where 0 < θk ≤ 1 denotes
the gain of the optimization of Step k[b] by

min
k∑

j=k−mk

αk+1
j =1

∥∥∥∥∥∥
k∑

j=k−mk

αk+1
j (ũj+1 − uj)

∥∥∥∥∥∥
∗

= θk ‖ũk+1 − uk‖∗ .(2.3)

As θk = 1 corresponds to the original fixed-point iteration, it is expected that θk < 1
for all k.

Theorem 2.5. Let the sequences {uk} and {ũk} be given by Algorithm 2.2. Let
G satisfy Assumption 2.1. Suppose the first mk coefficients of each αk+1

j satisfy
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|
∑l
j=k−mk

αk+1
j | ≤ ηk, l = k −mk, . . . , k − 1, for some 0 < ηk < 1, for each k > 1.

Define ek as in (2.1). Then ‖e2‖∗ ≤ (κθ1 + ηk) ‖e1‖∗ and it holds for 2 ≤ k ≤ m that

‖ek+1‖∗ ≤ (rθk + ηk) ‖ek‖∗ + (rθkηk−1 + ηk)

k−1∑
j=1

‖ej‖∗ .(2.4)

For k > m, (mk−1 = mk = m) it holds that

‖ek+1‖∗ ≤ (rθk + ηk) ‖ek‖∗ + (rθkηk−1 + ηk)

k−1∑
j=k−m+1

‖ej‖∗ + rθkηk−1 ‖ek−m‖∗ ,

(2.5)

where the sums are understood to be zero if the final index is less that the starting
index.

The above theorem shows that if η is small (requiring {αk+1
k } close to 1), then

Algorithm 2.2 can speed up convergence. The precise relationship between r, θ, and
η to assure r-linear convergence at a rate greater than r is given in the corollary that
follows. This estimate also suggests one of the ways the accelerated algorithm can
stall by failing to increase or even maintain the standard fixed-point convergence rate
if coefficients αk+1

j , j ≤ k− 1, corresponding to iterates earlier in the history are too
large.

Proof. The proof makes use of the decomposition

‖uk+1 − uk‖∗ ≤ ‖uk+1 − uαk‖∗ + ‖uαk − uk‖∗ .(2.6)

Expanding uk as a linear combination of G(uj), j = k − 1 −mk−1, . . . , k − 1, using
the property that the coefficients of αkj sum to unity and telescoping the resulting
difference, we have

‖G(uk)− uk‖∗ =

∥∥∥∥∥∥
k−1∑

j=k−1−mk−1

αkj (G(uk)−G(uj))

∥∥∥∥∥∥
∗

=

∥∥∥∥∥∥
k∑

j=k−mk−1

 j−1∑
n=k−mk−1−1

αkn

 (G(uj)−G(uj−1))

∥∥∥∥∥∥
≤ ‖G(uk)−G(uk−1)‖∗ + ηk−1

k−1∑
j=k−mk−1

‖G(uj)−G(uj−1)‖∗

≤ r

‖ek‖∗ + ηk−1

k−1∑
j=k−mk−1

‖ej‖∗

 ,(2.7)

where the last inequality follows from the Lipschitz property of G. By the same
reasoning as above

‖uαk − uk‖∗ =

∥∥∥∥∥∥
k∑

j=k−mk+1

(
j−1∑

n=k−mk

αk+1
n

)
ej

∥∥∥∥∥∥
∗

≤ ηk
k∑

j=k−mk+1

‖ej‖∗ .(2.8)

Putting (2.3), (2.7), and (2.8) together into (2.6) establishes the result.
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Theorem 2.5 gives an essential worst-case scenario where no cancellation between
the iterates is accounted for. Nonetheless, for a given bound η we can determine
sufficient optimization gain θ to ensure r-linear convergence ‖ek+1‖∗ ≤ rk ‖e1‖∗, where
r is the convergence rate of the underlying fixed-point iteration. A similar formula
can be derived for r-linear convergence at a given rate q.

Corollary 2.6. Let the sequence {uk} be given by Algorithm 2.2 and suppose
the hypotheses of Theorem 2.5 hold true. Then r-linear convergence with factor r
holds for k ≥ 1,

‖uk+1 − uk‖∗ ≤ r
k ‖u1 − u0‖∗ ,(2.9)

if it holds that θ1 < 1− η1/r, and for m = 1, k > 1, θk ≤ (r− ηk)/(r+ ηk−1), and for
m > 1

θk ≤


(

rk−ηk(1−rk)/(1−r)
rk+ηk−1(r−rk)/(1−r)

)
, k ≤ m,(

rm−ηk(1−rm−1)/(1−r)
rm+ηk−1(1−rm)/(1−r)

)
, k > m,

(2.10)

and ηk < rm(1− r)/(1− rm−1).

For instance, with r = 0.9 and ηk = ηk−1 = 0.1, we have for the m = 1 case
‖ek+1‖∗ ≤ rk ‖e1‖∗ for θ1 = 8/9 and θk ≤ (r − η)/(r + η) = 0.8, k > 1. For m = 2 we
require θk ≤ 0.62 for k > 2. The proof follows directly from the result of Theorem 2.5
by induction on k, first for k ≤ m, then for k > m, and is left to the interested reader.

The relevance of this result is that it quantifies a relation between the parameters
of the optimization and the contractive operator for which global convergence at a
given rate will be observed. In contrast, the results in section 4 and those in [10, 16]
prove an accelerated rate of convergence only once the residual is small enough. Corol-
lary 2.6 encompasses the preasymptotic regime, describing the global convergence seen
in section 5, and is consistent with results of [12] for finite difference approximations
to Richards’ equation in which a lack of significant dependence on choice of initial
iterate is demonstrated numerically. Some examples of how the θk and ηk relate in
practice are shown in section 5.

3. The Picard iteration for steady NSE. We next consider the steady in-
compressible NSE. First, we give the mathematical framework and define some nota-
tion including the Picard iteration and associated Picard solution operator. Then we
prove two important properties for the solution operator in order to relate it to the
developed convergence theory.

3.1. Mathematical preliminaries. We consider an open connected domain
Ω ⊂ Rd (d = 2, 3) with Lipschitz boundary ∂Ω. The L2(Ω) norm and inner product
will be denoted by ‖·‖ and (·, ·), and L2

0(Ω) denotes the zero mean subspace of L2(Ω).
Throughout this paper, it is understood by context whether a particular space is
scalar or vector valued, and we do not distinguish notation.

For the natural NSE velocity and pressure spaces, we denote X := H1
0 (Ω) and

Q := L2
0(Ω). In the space X, the Poincaré inequality is known to hold: there exists

λ > 0, dependent only on |Ω|, such that for every v ∈ X, ‖v‖ ≤ λ‖∇v‖. The dual
space of X will be denoted by X ′ with norm ‖ · ‖−1. We use the notation 〈·, ·〉 to
denote the dual pairing of functions in X and X ′.

Define the skew-symmetric, trilinear operator b∗ : X ×X ×X → R by

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v),
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and recall from, e.g., [7] that there exists M depending only on Ω such that

(3.1) |b∗(u, v, w)| ≤M‖∇u‖‖∇v‖‖∇w‖

for every u, v, w ∈ X.
Let τh be a conforming, shape-regular, and simplicial triangulation of Ω with

maximum element diameter h. Denote by Pk the space of degree k globally continuous
piecewise polynomials with respect to τh, and P disck the space of degree k piecewise
polynomials on τh that can be discontinuous across elements.

Throughout the paper, we consider only discrete velocity-pressure spaces
(Xh, Qh) ⊂ (X,Q) that satisfy the LBB condition: there exists a constant β, in-
dependent of h, satisfying

inf
q∈Qh

sup
v∈Xh

(∇ · v, q)
‖q‖‖∇v‖

≥ β > 0.

Common examples of such elements include (P2, P1) Taylor–Hood elements, and diver-
gence-free (Pk, P

disc
k−1 ) Scott–Vogelius elements on meshes with particular structure

[2, 19], and see [5, 8] for other stable and divergence-free elements. We denote the
discretely divergence-free velocity space by

Vh := {v ∈ Xh, (∇ · v, q) = 0 ∀q ∈ Qh}.

3.2. Discrete NSEs. We can now state the discrete steady NSE problem as
follows: find (u, p) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(u, u, v)− (p,∇ · v) + ν(∇u,∇v) = 〈f, v〉,(3.2)

(∇ · u, q) = 0.(3.3)

As shown in [7, 11, 15], solutions to (3.2)–(3.3) exist and satisfy

(3.4) ‖∇u‖ ≤ ν−1‖f‖−1.

Define the data-dependent constant κ := Mν−2‖f‖−1. If the data satisfy the condi-
tion κ < 1, then the system (3.2)–(3.3) is well-posed with a unique solution pair (u, p)
[7]. We will assume throughout this paper that κ < 1, and refer to this as the small
data condition.

It will be notationally convenient to also consider the Vh formulation of (3.2)–
(3.3): find u ∈ Vh satisfying for all v ∈ Vh

(3.5) b∗(u, u, v) + ν(∇u,∇v) = 〈f, v〉.

The equivalence of (3.5) to (3.2)–(3.3) follows from the inf-sup condition [11].

Remark 3.1. The accuracy of the discrete solution can be improved by the use
of grad-div stabilization in the discrete NSE system, i.e., by adding γ(∇ · u,∇ · v) to
the momentum equation with γ > 0 [9, 13]. To simplify the presentation, we omit
this important term, as all the analysis to follow will hold if grad-div is added to the
system.

The Picard iteration, stated as follows, is a common approach to solving (3.2)–
(3.3).
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Algorithm 3.2 (Picard iteration for steady NSE).
Step 1: Choose u0 ∈ Xh.
Step k: Find (uk, pk) ∈ (Xh, Qh) satisfying for all (v, q) ∈ (Xh, Qh),

b∗(uk−1, uk, v)− (pk,∇ · v) + ν(∇uk,∇v) = 〈f, v〉,(3.6)

(∇ · uk, q) = 0.(3.7)

This algorithm converges with contraction ratio κ for any initial guess, provided
κ < 1 (see [7] for a standard proof). We note that the equivalent Vh formulation of
Step k of the Picard iteration can be written as find uk ∈ Vh satisfying for all v ∈ Vh

(3.8) b∗(uk−1, uk, v) + ν(∇uk,∇v) = 〈f, v〉.

3.3. Properties of the Picard solution operator for steady NSE. In order
to analyze the effect of Anderson acceleration on the steady NSE Picard iteration, we
next define a solution operator for the Picard linearization of the NSE from (3.8).

Definition 3.3. Define the Picard solution operator G : Vh → Vh as follows.
Given w ∈ Vh, G(w) ∈ Vh satisfies

(3.9) b∗(w,G(w), v) + ν(∇G(w),∇v) = 〈f, v〉 ∀v ∈ Vh.

By this definition of G, Step k of the Picard iteration (3.8) for the steady NSE
can be written simply as set uk = G(uk−1). The problem (3.9) is linear, and since
f ∈ X ′ is assumed, Lax–Milgram theory can easily be applied to show that (3.9) is
well-posed and thus that the solution operator G is well-defined. By taking v = G(w),
the trilinear term vanishes, leaving ν‖∇G(w)‖2 = 〈f,G(w)〉 ≤ ‖f‖−1‖∇G(w)‖, and
thus we have that for any w ∈ Vh,

(3.10) ‖∇G(w)‖ ≤ ν−1‖f‖−1.

We now prove that G is Lipschitz continuously (Frechét) differentiable, and a
contractive operator with contraction ratio κ.

Lemma 3.4. The operator G is Lipschitz continuously (Frechét) differentiable,
and for any w ∈ Vh satisfies ‖∇G′(w)‖ ≤ κ.

Remark 3.5. By standard fixed-point theory, Lemma 3.4 implies convergence of
the Picard algorithm, Algorithm 3.2, under the small data condition κ < 1. Moreover,
the convergence is global since the result will hold for any initial guess.

Proof. For w, h ∈ Vh, consider equations for G(w) and G(w+h) defined by (3.9):

b∗(w,G(w), v) + ν(∇G(w),∇v) = 〈f, v〉 ∀v ∈ Vh,
b∗(w + h,G(w + h), v) + ν(∇G(w + h),∇v) = 〈f, v〉 ∀v ∈ Vh.

Subtracting yields

(3.11) b∗(w + h,G(w + h)−G(w), v) + b∗(h,G(w), v)

+ ν(∇(G(w + h)−G(w)),∇v) = 0.

Now, setting v = G(w + h)−G(w) vanishes the first nonlinear term, and produces

ν‖∇(G(w + h)−G(w))‖2 ≤ |b∗(h,G(w), G(w + h)−G(w))|
≤M‖∇h‖∇G(w)‖‖∇(G(w + h)−G(w))‖
≤ ν−1M‖f‖−1‖∇h‖‖∇(G(w + h)−G(w))‖,
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thanks to (3.1) and (3.10). This reduces immediately to

‖∇(G(w + h)−G(w))‖ ≤ κ‖∇h‖,(3.12)

which proves G is Lipschitz continuous and contractive with contraction ratio κ.
Next we show the G is Frechét differentiable. First define for a given w ∈ Vh an

operator Aw : Vh → Vh such that for all h ∈ Vh

(3.13) b∗(h,G(w), v) + b∗(w,Aw(h), v) + ν(∇Aw(h),∇v) = 0 ∀v ∈ Vh.

Using properties for G and b∗ established above together with Lax–Milgram theory
it is easily verified the this linear problem is well-posed and thus Aw is well-defined.

Subtracting (3.13) from (3.11) provides

b∗(w,G(w + h)−G(w)−Aw(h), v) + ν(∇(G(w + h)−G(w)−Aw(h)),∇v)

= −b∗(h,G(w + h)−G(w), v)

≤M‖∇h‖‖∇(G(w + h)−G(w))‖‖∇v‖
≤ κM‖∇h‖2‖∇v‖

for all v ∈ Vh thanks to (3.1) for the first inequality and (3.12) for the second. This
proves that G is Frechét differentiable at w. From (3.12) and noting w ∈ Vh is
arbitrary establishes the result.

4. The Anderson-accelerated Picard iteration for NSE. In this section,
we define an Anderson-accelerated Picard iteration for the steady incompressible NSE.
We then provide analysis to establish local convergence of the residual at a faster rate
than that of the underlying fixed-point iteration. Numerical tests to back up the
theory are shown in section 5. Although the usual Picard iteration Algorithm 3.2,
is stable and globally convergent under a small data condition, its convergence rate
can be sufficiently slow that it may fail in practice. The goal of combining the Picard
iteration with Anderson acceleration is to improve convergence properties without
introducing significant extra cost.

We define the Anderson-accelerated Picard iteration for the incompressible steady
NSE (AAPINSE) as Algorithm 2.2 with G given by (3.9), the solution operator for
the Picard linearized NSE. We note that the optimization step of Algorithm 2.2 is
negligible in computational cost compared to the linear solve associated with applying
the G operator, until m = 4 or so, when the cost becomes of the same order of
magnitude as the linear solve. For even larger m, the cost of the optimization will
dominate the cost of the linear solve. Interestingly, in our tests, there is little gain in
convergence speed by using m = 4 over m = 3.

Combining Theorem 2.4 with Lemma 3.4 establishes local convergence of the
AAPINSE under the assumption of uniformly bounded optimization parameters and
a good initial guess. We prove next for AAPINSE that the acceleration does in fact
improve the convergence rate of the fixed-point iteration based on the improvement
given by the optimization. We provide results below for the cases of m = 1 and m = 2.
We were unable to find an easily digestible proof for general m, but expect extension
to greater values of m will follow along similar lines.

Theorem 4.1 (improved convergence of the AAPINSE residual with m = 1).
Suppose 0 < |αkk−1| < ᾱ for some fixed ᾱ. Then on any step where αkk−2 6= 0, the
m = 1 Anderson-accelerated Picard iterates satisfy

(4.1) ‖∇(G(uk)− uk)‖ ≤ κ‖∇(G(uk−1)− uk−1)‖ (θk + C0 ‖∇(G(uk−2)− uk−2)‖)
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with C0 = ν−1Mᾱ/(1− κ)2 and where 0 ≤ θk ≤ θ for some fixed θ < 1 represents the
improvement from the optimization at Step k and satisfies (2.3).

On any step where αkk−2 = 0, meaning uk = G(uk−1) (the standard Picard
iteration) it holds that θ = 1 and ‖G(uk) − uk‖ ≤ κ‖G(uk−1) − uk−1‖. Assuming
θk < θ for some θ < 1, Theorem (4.1) yields an improved convergence rate as k
increases, based on the success of the optimization problem. Unlike Theorem 2.5, the
improved convergence rate is only local; however, the assumptions on the optimization
coefficients are significantly weaker.

Proof. Define ek, ẽk, and wk by (2.1). The structure of the proof is first to estab-
lish two key inequalities that bound the error by the residual

‖∇ẽk‖ ≤ κ‖∇ek−1‖,(4.2)

‖∇ek‖ ≤
1

1− κ
‖∇wk−1‖,(4.3)

and then to use these for the NSE-specific main result. The first inequality (4.2)
follows directly from (3.12). The second follows from the decomposition ek = (uk−ũk)
+ (ũk − uk−1) = −αkk−2ẽk + wk−1. Using (4.2) we have

(4.4) ‖∇ek‖ ≤ κ|αkk−2|‖∇ek−1‖+ ‖∇wk−1‖.

The first term on the right of (4.4) can be controlled by the “backwards” inequality

(4.5) ‖∇ek−1‖ ≤
1

(1− κ)|αkk−2|
‖∇wk−1‖,

which follows from the closed form expression for αkk−2 for m = 1. It is based on

the contribution uk has from ũk−1, and requires the assumption αkk−2 is nonzero.

For m = 1 the optimization Step k[b] of Algorithm 2.2 can be written as αkk−2 =
arg min α∈R ‖∇ (wk−1 + α (wk−2 − wk−1))‖ , from which, exploiting the Hilbert space

structure,

αkk−2‖∇ (wk−1 − wk−2) ‖2 = (∇wk−1,∇ (wk−1 − wk−2)) .

Applying Cauchy–Schwarz on the right reduces this to ‖∇(wk−1 − wk−2)‖ ≤
1

|αk
k−2|
‖∇wk−1‖. By the identity wk−1−wk−2 = ẽk− ẽk−1 and the triangle inequality,

(4.6) (1− κ)‖∇ek−1‖ ≤ ‖∇ek−1‖ − ‖∇ẽk‖ ≤ ‖∇ (ẽk − ek−1) ‖ ≤ 1

|αkk−2|
‖∇wk−1‖,

where the first inequality follows from (4.2). Comparing the first and last terms of
(4.6) verifies (4.5), and applying (4.5) to (4.4) validates (4.3).

To establish the main result of the theorem, we make use of the two following
identities which follow from Algorithm 2.2 and uk = αkk−1ũk + αkk−2ũk−1:

αkk−1ẽk = uk − ũk−1,(4.7)

ek + αkk−2ek−1 = αkk−1wk−1 + αkk−2wk−2.(4.8)

From ũk+1 = G(uk), and (3.9), we have for j ≥ 1

ν(∇ũj+1,∇v) + b∗(uj , ũj+1, v) = 〈f, v〉 for all v ∈ Vh.(4.9)
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Adding αkk−1 times (4.9) with j = k − 1 to αkk−2 times (4.9) with j = k − 2 and

applying the definition of uk together with αkk−1 + αkk−2 = 1 produces the equation
for uk:

(4.10) ν(∇uk,∇v) + b∗(uk−1, uk, v)− b∗(ek−1, α
k
k−2ũk−1, v) = 〈f, v〉.

Subtracting (4.10) from (4.9), with j = k, we obtain

ν(∇(ũk+1−uk),∇v) + b∗(uk, ũk+1−uk, v) + b∗(ek, uk, v) +αkk−2b
∗(ek−1, ũk−1, v) = 0,

which by (4.7) is equivalent to

(4.11) ν(∇wk,∇v)+b∗(uk, wk, v)+b∗(ek+αkk−2ek−1, ũk−1, v)+b∗(ek, α
k
k−1ẽk, v) = 0.

Choosing v = wk in (4.11) vanishes the second term. Applying (3.1) and (4.8) yields

‖∇wk‖ ≤Mν−1
(
‖∇(αkk−1wk−1 + αkk−2wk−2)‖‖∇ũk−1‖+ κ|αkk−1|‖∇ek‖‖∇ek−1‖

)
.

Finally, applying ‖∇ũk−1‖ ≤ ν−1‖f‖−1 from (3.10) together with (2.3) and (4.3) we
have

‖∇wk‖ ≤ κθk‖∇wk−1‖+ κν−1M |αkk−1|‖∇ek‖‖∇ek−1‖

≤ κ‖∇wk−1‖

(
θ +

ν−1M |αkk−1|
(1− κ)2

‖∇wk−2‖

)
.

Together with the contraction of the underlying fixed-point iteration, Theorem 4.1
establishes convergence of the residual to zero after the first iterate that satisfies
‖∇wk−2‖ < (1 − κθ)/(κC0), and contraction at a faster rate than the fixed-point
iteration once ‖∇wk−2‖ < (1 − θ)/C0. The underlying assumption that the gain
from the optimization step is bounded away from unity by some fixed θ for bounded
coefficients on steps for which there is a contribution to uk from ũk−1 is a reason-
able characterization of conditions under which the algorithm should be expected to
succeed.

Next, we establish improved convergence of AAPINSE for the case m = 2. The
proof strategy is analogous to the m = 1 case, but with additional technical details
arising from the additional parameter in the optimization step. We provide the m = 2
proof as an indication that the extension to greater m would follow the same essential
idea.

Theorem 4.2 (improved convergence of the AAPINSE residual with m = 2).
Suppose the coefficients |αk+1

j | are bounded, j = k − 2, k − 1, k, the coefficient corre-

sponding to the latest fixed-point iterate satisfies |αk+1
k | > ᾰ > 0 and αk+1

k > αk+1
k−2.

Then on any step where at least one of αk+1
k−2 or αk+1

k−1 is nonzero, the m = 2 Anderson-
accelerated Picard iteration satisfies

‖∇(G(uk+1)− uk+1)‖ ≤ κθk+1‖∇(G(uk)− uk)‖+O(‖∇(G(uk−2)− uk−2)‖2),

where 0 ≤ θk+1 ≤ θ for some fixed θ < 1 satisfies (2.3).

The proof follows the same general strategy as the m = 1 case, and again estab-
lishes local convergence of the algorithm (with mild assumptions on the coefficients)
after the first iterate where ‖∇wk−2‖ is small enough, and with an improved rate when
the accelerated solution is other than the fixed-point iterate. We precede the proof
with a technical lemma to establish four key inequalities which bound the difference
between accelerated iterates by the latest three residuals. As this is a general result
(not NSE specific), it is posed in the same notation as section 2.
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Lemma 4.3. Let the sequences {uk} and {ũk} be given by Algorithm 2.2 with
m = 2, and define ek, ẽk, and wk by (2.1). Let G : X → X satisfy Assumption 2.1
with constant r < 1, where X is a Hilbert space with norm ‖·‖∗ induced by inner
product ( ·, · )∗. Then the following hold for k > 1:

|αk+1
k | ‖ek‖∗ ≤

1

(1− r)
(
|1− αk+1

k−2| ‖wk−1‖∗ + |αk+1
k−2| ‖wk−2‖∗

)
,(4.12)

|1− αk+1
k | ‖ek‖∗ ≤

1

(1− r)
(
|1− αk+1

k | ‖wk−1‖∗ + (1 + |αk+1
k |) ‖wk‖∗

)
,(4.13)

|αk+1
k−2| ‖ek−1‖∗ ≤

1

(1− r)
(
|1− αk+1

k | ‖wk−1‖∗ + |αk+1
k | ‖wk‖∗

)
,(4.14)

|1− αk+1
k−2| ‖ek−1‖∗ ≤

1

(1− r)
(
|1− αk+1

k−2| ‖wk−1‖∗ + (1 + |αk+1
k−2|) ‖wk−2‖∗

)
.(4.15)

Proof. Without confusion, denote αk+1
j by αj for j = {k − 2, k − 1, k}. First, by

Assumption 2.1 and the triangle inequality we have

(1− r) ‖en‖∗ ≤ ‖en‖∗ − ‖ẽn+1‖∗ ≤ ‖ẽn+1 − en‖∗ = ‖wn − wn−1‖∗ .(4.16)

To derive (4.12) and (4.15), write the Step k[b] minimization problem of Algorithm 2.2
in the equivalent form: find (αk, β0) that minimize

‖(αk(wk − wk−1) + β0(wk−1 − wk−2) + wk−2)‖2∗

with β0 = αk + αk−1 (so from αk + αk−1 + αk−2 = 1 we have 1 − β0 = αk−2).
Exploiting the Hilbert space structure, the critical points αk and β0 are the solutions
of

αk ‖wk − wk−1‖2∗ = −(wk − wk−1, β0wk−1 + (1− β0)wk−2)∗,(4.17)

β0 ‖wk−1 − wk−2‖2∗ = −(wk−1 − wk−2, αk(wk − wk−1) + wk−2)∗.(4.18)

Applying Cauchy–Schwarz and triangle inequalities together to (4.17) yields

|αk| ‖wk − wk−1‖∗ ≤ |1− αk−2| ‖wk−1‖∗ + |αk−2| ‖wk−2‖∗ .(4.19)

Applying the same estimates together with (4.19) to (4.18) yields

|β0| ‖wk−1 − wk−2‖∗ ≤ |1− αk−2| ‖wk−1‖∗ + (1 + |αk−2|) ‖wk−2‖∗ .(4.20)

Combining (4.16) with (4.19) (respectively, (4.20)) yields (4.12) (respectively, (4.15)).
To establish (4.13) and (4.14), follow the same process with the minimization

problem written in the equivalent form: find (β1, αk−2) that minimize

‖(wk + β1(wk−1 − wk) + αk−2(wk−2 − wk−1)‖2∗

with β1 = αk−1 + αk−2 (which implies 1− β1 = αk).

The purpose of the four estimates (4.12)–(4.15) is to bound the terms ‖∇ek‖
and ‖∇ek−1‖ where they appear in the following estimates by ‖∇wk‖ , ‖∇wk−1‖,
and ‖∇wk−2‖, without introducing optimization coefficients other than αk+1

k in the

denominator. This is important as only αk+1
k is justifiably bounded away from zero.

We proceed now with the proof of Theorem 4.2 applying Lemma 4.3 with ‖v‖∗ = ‖∇v‖
and r = κ.
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Proof of Theorem 4.2. Recall the solution from Step k is defined as uk+1 =
αkũk+1 +αk−1ũk+αk−2ũk−1 with αk+1

j denoted αj for j = {k−2, k−1, k}. From the
problem definition (3.8), the following equation holds for n = {k − 2, k − 1, k, k + 1}:

ν(∇ũn+1,∇v) + b∗(un, ũn+1, v) = 〈f, v〉,(4.21)

thus as in (4.10) we have

ν(∇uk+1,∇v) +

k∑
j=k−2

αjb
∗(uj , ũj+1, v) = 〈f, v〉.

Subtracting the above equation from (4.21) with n = k + 1 yields

(4.22) ν(∇(ũk+2 − uk+1),∇v) + b∗(uk+1, ũk+2 − uk+1, v)

+ b∗(uk+1, uk+1, v)−
k∑

j=k−2

αjb
∗(uj , ũj+1, v) = 0.

Next, rewrite the last two terms on the left-hand side in terms of ek, ẽk, and uαk given
by (2.2):

b∗(uk+1, uk+1, v)−
k∑

j=k−2

αjb
∗(uj , ũj+1, v)

= b∗ (uk+1 − uαk , ũk−1, v) + b∗ (uαk , ũk−1, v)

+ b∗(uk+1, uk+1 − ũk−1, v)−
k∑

j=k−2

αjb
∗(uj , ũj+1, v)

= b∗ (uk+1 − uαk , ũk−1, v) + b∗(uk+1, uk+1 − ũk−1, v)

− b∗(uk, αk(ẽk+1 + ẽk), v)− b∗(uk−1, αk−1ẽk, v).

Now using the identity uk+1 − ũk−1 = αkẽk+1 + (αk + αk−1)ẽk, produces

b∗(uk+1, uk+1, v)−
k∑

j=k−2

αjb
∗(uj , ũj+1, v)

= b∗ (uk+1 − uαk , ũk−1, v) + b∗(ek+1, αkẽk+1 + (αk + αk−1)ẽk, v) + b∗(ek, αk−1ẽk, v),

and replacing ek+1 by

ek+1 = (uk+1 − ũk+1) + (ũk+1 − uk) = −(αk−1 + αk−2)ẽk+1 − αk−2ẽk + (ũk+1 − uk),

gives

b∗(uk+1, uk+1, v)−
k∑

j=k−2

αjb
∗(uj , ũj+1, v)

= b∗ (uk+1 − uαk , ũk−1, v)− b∗((αk−1 + αk−2)ẽk+1 + αk−2ẽk, αkẽk+1

+ (αk +αk−1)ẽk, v) + b∗(ũk+1− uk, αkẽk+1 + (αk +αk−1)ẽk, v) + b∗(ek, αk−1ẽk, v).
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Thus, (4.22) can be written as

ν(∇wk+1,∇v) + b∗(uk+1, wk+1, v) + b∗ (uk+1 − uαk , ũk−1, v)

− b∗((αk−1 + αk−2)ẽk+1 + αk−2ẽk, αkẽk+1 + (αk + αk−1)ẽk, v)

+ b∗(wk, αkẽk+1 + (αk + αk−1)ẽk, v) + b∗(ek, αk−1ẽk, v) = 0.(4.23)

Next, setting v = wk+1 in (4.23) yields

ν‖∇wk+1‖2 = −b∗ (uk+1 − uαk , ũk−1, wk+1)

+ b∗ ((αk−1 + αk−2)ẽk+1 + αk−2ẽk, αkẽk+1 + (αk + αk−1)ẽk, wk+1)

− b∗(wk, αkẽk+1 + (αk + αk−1)ẽk, wk+1)− b∗(ek, αk−1ẽk, wk+1),(4.24)

and we proceed to bound the right-hand side terms. For the first term

b∗ (uk+1 − uαk , ũk−1, wk+1) ≤M ‖∇ (uk+1 − uαk )‖ ‖∇ũk−1‖‖∇wk+1‖
≤ ν−1M‖f‖−1θk ‖∇wk‖ ‖∇wk+1‖ ,

using (2.2), (2.3), and ‖∇ũk−1‖ ≤ ν−1‖f‖−1. The second term of (4.24) is majorized
via

M‖∇((αk−1 + αk−2)ẽk+1 + αk−2ẽk)‖‖∇(αkẽk+1 + (αk + αk−1)ẽk)‖‖∇wk+1‖

≤Mκ2‖∇wk+1‖
(
|1− αk||αk‖∇ek‖2 + |1− αk−2||αk−2| ‖∇ek−1‖2

)
+Mκ2 ‖∇wk+1‖ (|αk||αk−2|+ |1− αk||1− αk−2|) ‖∇ek‖‖∇ek−1‖ .

(4.25)

Applying (4.12)–(4.15) from Lemma 4.3, (4.25) is controlled by

Mκ2

(1− κ)2
‖∇wk+1‖

×
( (
|1− αk−2| ‖∇wk−1‖+ |αk−2| ‖∇wk−2‖

)
(
|1− αk| ‖∇wk−1‖+ (1 + |αk|) ‖∇wk‖

)
+
(
|1− αk| ‖∇wk−1‖+ |αk| ‖∇wk‖

)
(
|1− αk−2| ‖∇wk−1‖+ (1 + |αk−2|) ‖∇wk−2‖

))
+
((
|1− αk−2| ‖∇wk−1‖+ |αk−2| ‖∇wk−2‖

)(
|1− αk| ‖∇wk−1‖+ |αk| ‖∇wk‖

)
+
(
|1− αk| ‖∇wk−1‖+ (1 + |αk|) ‖∇wk‖

)
(
|1− αk−2| ‖∇wk−1‖+ (1 + |αk−2|) ‖∇wk−2‖

))
.

(4.26)

Using (4.12) and (4.15), the third term on the right-hand side of (4.24) is bounded
by

Mκ‖∇wk+1‖‖∇wk‖ (|αk|‖∇ek‖+ |1− αk−2|‖∇ek−1‖)

≤ Mκ

(1− κ)
‖∇wk+1‖‖∇wk‖

(
2|1− αk−2| ‖∇wk−1‖+ (1 + 2|αk−2|) ‖∇wk−2‖

)
.

By the assumption αk ≥ αk−2 we have

αk−1 = (αk−1 + αk−2)− αk−2 = (1− αk)− αk−2 ≤ (1− αk−2)− αk−2.
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Using this together with (4.12), (4.14), and (4.15), the last term of (4.24) is controlled
by

Mκ ‖∇wk+1‖ |αk−1|‖∇ek‖‖∇ek−1‖

≤ Mκ

(1− κ)2
‖∇wk+1‖

1

|αk|
(
|1− αk−2| ‖∇wk−1‖+ |αk−2| ‖∇wk−2‖

)
×
(
(|1− αk|+ |1− αk−2|) ‖∇wk−1‖+ |αk| ‖∇wk‖+ (1 + |αk−2|) ‖∇wk−2‖

)
.

(4.27)

Finally, combining (4.24)–(4.27) yields

‖∇wk+1‖ ≤ κθk ‖∇wk‖

+
Mν−1κ

(1− κ)

(
‖∇wk‖ (c1 ‖∇wk−1‖+ c2 ‖∇wk−2‖)

+

(
κ

1− κ
+

1

ᾰ(1− κ)

)
×O

(
‖∇wk−2‖2

))
= κθk ‖∇wk‖+O

(
‖∇wk−2‖2

)
,

where all the implicitly defined constants are sums and products of the bounded
|αk|, |1 − αk|, |αk−2|, and |1 − αk−2|. The only optimization coefficient that makes
an appearance in a denominator is αk+1

k . It is a reasonable assumption that this
coefficient is bounded away from zero as without a contribution from the latest fixed-
point iterate ũk+1, the new solution uk+1 remains spanned by the same (less one)
basis vectors as uk and should not yield an improved residual.

5. Numerical experiments. Here we present numerical experiments to show
the improved convergence provided by the Anderson acceleration for solving the steady
NSE. As illustrated below, Anderson acceleration can provide fast convergence even
when Newton and usual Picard iterations fail. Our test problems are the 2 dimen-
sional (2D) and 3 dimensional (3D) driven cavity, at varying Reynolds numbers. All
computations were done in MATLAB with the authors’ codes, and fminsearch with
an initial guess of (1, 0, . . . , 0) was used to solve the optimization problems.

5.1. 2D lid driven cavity. We now test AAPINSE on the 2D driven cavity,
at benchmark values of Re = 1000, 2500, and 5000, and compare results with those
of the usual Picard and Newton methods. The 2D driven cavity uses a domain
Ω = (0, 1)2, with no-slip boundary conditions on the sides and bottom, and a “moving
lid” on the top which is implemented by enforcing the Dirichlet boundary condition
u(x, 1) = 〈1, 0〉T . There is no forcing (f = 0), and the kinematic viscosity is set to
be ν := Re−1. We discretize with (P2, P1) Taylor–Hood elements on a 1

64 uniform
triangular mesh that provides 37,507 total degrees of freedom, and use u0 = 0 as
the initial guess. A sparse direct solver (backslash) was used to solve the linear
systems. Our results below do not use grad-div stabilization, but we also ran the
tests with grad-div stabilization using the parameter γ = 1 (see Remark 3.1), and
found very similar results to those without stabilization (slightly better convergence,
but essentially negligible), so we omit these results.

Plots of the velocity solutions from 4 level Anderson-accelerated Picard solvers
at Re = 1000, 2500, and 5000 are shown in Figure 1, and these solutions match well
those from recent literature [4].
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Re = 1000 Re = 2500 Re = 5000Streamlines Streamlines Streamlines

Fig. 1. Streamline plots of the solutions from 4 level Anderson-accelerated Picard solvers at
varying Re.

Re = 1000 Re = 2500 Re = 5000

k
0 10 20 30 40

|| 
G

(u
k)

 -
 u

k 
|| 1

10-15

10-10

10-5

100

105

1010

Picard
Picard-Anderson(1)
Picard-Anderson(2)
Picard-Anderson(3)
Picard-Anderson(4)
Newton

k
0 10 20 30 40

|| 
G

(u
k)

 -
 u

k 
|| 1

10-10

10-5

100

105

1010

Picard
Picard-Anderson(1)
Picard-Anderson(2)
Picard-Anderson(3)
Picard-Anderson(4)
Newton

k
0 10 20 30 40

|| 
G

(u
k)

 -
 u

k 
|| 1

10-8

10-6

10-4

10-2

100

102

104

106

Picard
Picard-Anderson(1)
Picard-Anderson(2)
Picard-Anderson(3)
Picard-Anderson(4)
Newton

Fig. 2. Convergence of the various nonlinear solvers for the 2D cavity test at varying Re.

Convergence results for Re =1000, 2500, and 5000 are shown in Figure 2. In all
cases, we observe an improvement from Anderson acceleration for the Picard method,
with an increase in improvement for higher Reynolds numbers. That is, while Ander-
son acceleration offers just a modest gain for Re = 1000, for Re = 2500 the gain is
much greater, and for Re = 5000 Picard appears to fail (or at least will take many,
many iterations to converge to a reasonable tolerance). The Newton solver fails in
all 3 cases, as we observe the Newton residuals are very large and show no signs of
getting small by n = 40 (this is basic Newton with no relaxation; it is a subject of
our future work to see how Anderson acceleration will help the convergence of New-
ton iterations). We observe the best Anderson performance in all cases with m = 4,
however, the convergence behaviors with m = 3 and m = 4 are generally close for
all 3 cases. Figure 3 shows the computed gain θk for each optimization problem, for
each value of m and Re investigated. In general, we see smaller values of θk (greater
gain) with increasing m. We compare our numerical results with the theoretical ones
by comparing median values of the gain θk and convergence rate κ taken over all
iterations k for each m and value of Re investigated. We estimate κ by taking the

median of ‖G(uk)−uk‖1
‖G(uk−1)−uk−1‖1 over all iterations in the m = 0 (Picard) case. For m > 0

the convergence rate is computed by the same respective ratio over all iterations past
the mth one. Table 1 shows the computed θmed, and Table 2 compares the theoreti-
cal convergence rate approximated to first order by κmedθmed to the computed mean
convergence rate taken over all iterations. We find the computed rates bounded below
the theoretical ones, with a better prediction for lower values of Re.
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Fig. 3. The θk versus k for varying m for the Re = 2500 driven cavity simulation.

Table 1
Shown below are median values of θk for the 2D driven cavity simulations.

Re = 1000 Re = 2500 Re = 5000
m θmed θmed θmed
1 0.9976 0.9872 0.9306
2 0.9684 0.9783 0.9368
3 0.9370 0.9137 0.9051
4 0.9229 0.8987 0.8919

Table 2
Shown below are median values of the convergence rates (median of successive residual ratios),

and an estimate of the predicted rate of our theory, using the product of the median gain of the
optimization θmmed with the median convergence rate of the Picard iteration, for varying Re and m.

Re = 1000 Re = 1000 Re = 2500 Re = 2500 Re = 5000 Re = 5000
m Conv rate θmmed · 0.5843 Conv rate θmmed · 0.7852 Conv rate θmmed · 0.9614

0 0.5843 - 0.7852 - 0.9614 -
1 0.5533 0.5829 0.6417 0.7751 0.7041 0.7307
2 0.5162 0.5658 0.6372 0.7682 0.6866 0.7356
3 0.4330 0.5475 0.5687 0.7175 0.6239 0.7107
4 0.4301 0.5392 0.5365 0.7056 0.5920 0.7003

Theorem 2.5 and Corollary 2.6 are expected to give an overly pessimistic view of
whether the algorithm should converge and at what rate, assuming the optimization
coefficients are sufficiently small in comparison to the gain from the optimization.
However we next see in these examples that the coefficients do not lie far outside
the range required from the theory. For m = 1 where there is less cancellation error
between the iterates to take into account, the theory predicts convergence in the
far preasymptotic regime, i.e., regardless of the magnitude of the residual. Figure 4
shows for the simulation with Re = 1000 and m = 1, 2, 3, the computed θk and
ηk, the latter of which for m = 1 is simply |αk+1

k−1|. For comparison, also shown are
the theoretical values of θ from Corollary 2.6 which guarantee convergence in the
sense ‖uk+1 − uk‖1 ≤ qk ‖u1 − u0‖1 at rate q = κ and, respectively, q < 1. The top
line of the plot showing θk sufficient for q < 1 is in places greater than one, which
shows the optimization coefficients from the Re = 1000 simulation using κ = 0.58 are
small enough to guarantee global convergence regardless of the value of θk ≤ 1. As
expected, the theory better describes the convergence behavior for smaller m, as the
lack of optimality due to not accounting for cancellation error makes these estimates
far from sharp.
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Fig. 4. The gain θk at each step compared to the the theoretical gain θq=κ and θq→1 sufficient
to show convergence at rate q = κ and q < 1 from Corollary 2.6. Also shown, the optimization
parameters ηk for Re = 1000 with m = 1, 2, 3.

Table 3
Shown below are timing (in seconds) for assembly, linear solve, and optimization steps for each

test (averaged over all iterations).

Re = 1000 Re = 2500 Re = 5000
m Assembly Solve opt. Assembly Solve opt. Assembly Solve Opt.

1 8.04e-0 2.45e-0 1.03e-1 8.02e-0 2.85e-0 1.47e-1 8.32e-0 2.87e-0 1.58e-1
2 7.94e-0 2.72e-0 2.80e-1 7.97e-0 2.95e-0 3.75e-1 7.77e-0 2.59e-0 4.85e-1
3 7.72e-0 2.20e-0 8.63e-1 8.11e-0 2.02e-0 7.78e-1 8.10e-0 2.57e-0 9.25e-1
4 8.19e-0 2.30e-0 1.72e-0 8.14e-0 2.57e-0 1.40e-0 7.73e-0 2.23e-0 2.21e-0

Last, for this test, we show the timings for the assembly, linear solve, and opti-
mization steps in Table 3. Here, we display the mean values for each, taken over all
iterations. We note that the assembly was not parallelized. While the assembly and
solve times do not appear to scale with m, the optimization step does, and appears
to roughly double when m is increased by 1. While the optimization step timing is
an order of magnitude less than that of the linear solve when m = 1, by m = 4 the
optimization step is no longer negligible, and for Re = 5000 has a cost the same as
that of the linear solver.

5.2. 3D lid driven cavity. Next, we test AAPINSE on the 3D lid driven cavity
problem. This problem is similar to the 2D case, and uses no-slip boundary conditions
on all walls, u = 〈1, 0, 0〉T on the moving lid, no forcing, and ν = 1

400 . We compute
with (P3, P

disc
2 ) Scott–Vogelius elements on a barycenter refined uniform tetrahedral

mesh that provides 206,874 total degrees of freedom. We tested the algorithm with
different levels of optimization, all with initial guesses of zero in the interior but
satisfying the boundary conditions. Figure 5 shows a visualization of the computed
solution with m = 4, which is in good agreement with [18]. To solve the linear systems
that arose at each iteration, we decomposed the saddle point matrix with a block LU
factorization via
(5.1)(

Ak B
BT 0

)(
ûk
p̂k

)
=

(
Ak 0
BT −BTA−1

k B

)(
I A−1

k B
0 I

)(
ûk
p̂k

)
=

(
f̂
ĝ

)
,

which leads to two solves with coefficient matrix Ak, and one solve with the Schur
complement BTA−1

k B as the coefficient matrix. A sparse direct solver was used to
solve systems with coefficient matrix Ak, and we did this by creating and reusing an
LUPQ factorization in MATLAB at each nonlinear iteration. For the Schur comple-
ment system, we used BICGSTAB as an outer solver with tolerance 1e-10, and to
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Fig. 5. Shown above are mid-slice plane plots for the 3D driven cavity simulations at Re = 400
using the Picard–Anderson (4) method, these plots are in good agreement with [18].
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Fig. 6. Convergence (left) and θk (right) for AAPINSE for the 3D Cavity test at Re = 400.

precondition it we used the pressure mass matrix and adjusted the saddle point linear
system by adding grad-div stabilization with parameter 100 (which has no effect on
the solution since divergence-free elements are being used). We note this is in the
same spirit as was done in [3] for the treatment of the Schur complement, where a
purely algebraic augmentation was used. The inner Schur complement solves were
accomplished using the factorization of Ak already created from the first solve using
Ak at each iteration. The typical number of outer BICGSTAB iterations needed for
each Schur complement solve was just 1 or 2, and this did not vary with m.

Figure 6 shows the convergence of residuals (left) and values of θk (right) for
AAPINSE with varying m, for the first 50 iterations. From the convergence plot,
we observe that the Picard iteration and AAPINSE with m = 1 essentially fail, but
a dramatic improvement is obtained using m ≥ 2, sufficient to provide convergence.
Clear improvements in convergence are observed as m is increased from 2 to 3, and 3
to 4. The θk plot shows the computed gain for each optimization problem and each
value of m. Here it is noted that the larger values of θk for each m tend to be further
from unity as m increases. Overall, there is a considerable spread in the θk values
for each m. Table 4 summarizes the computed median values of θk for the different
m, and we observe lower values for m ≥ 2. Interestingly, the median θk for m = 3 is
much lower than for m = 4, even though m = 4 converges faster; this suggests the
median may not be the best measure to use: since we essentially have exponential
convergence with rate κθk at each step, one very small θk can make up for several larger
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Table 4
Shown below are median values of θk for the 3D driven cavity simulations.

Re = 400
m θmed
1 0.8314
2 0.7532
3 0.6400
4 0.7598

Table 5
Shown below are median values of the convergence rates (median of ratios of successive resid-

uals), and an estimate of the predicted rate of our theory, using the product of the median gain of
the optimization θmmed with the median convergence rate of the Picard iteration κmed ≈ 0.9936.

m Conv rate θmmed · κmed
0 0.9936 -
1 0.9752 0.8261
2 0.8748 0.7484
3 0.8120 0.6359
4 0.8136 0.7550

Table 6
Shown below are timing (in seconds) for assembly, linear solve, and optimization steps for each

test for the 3D cavity problem (averaged over all iterations).

m Assembly Solve Opt.
1 8.43e+1 1.75e+1 8.68e-1
2 8.39e+1 2.02e+1 3.12e+0
3 8.74e+1 1.82e+1 8.37e+0
4 8.28e+2 1.72e+1 1.45e+1

ones. Table 5 compares the computed median convergence rate over all iterations to
the theoretical convergence approximated by κmedθmed, where κmed is calculated by

taking the median of ‖G(uk)−uk‖1
‖G(uk−1)−uk−1‖1 over all iterations in the m = 0 (Picard) case.

For m > 0 the convergence rate is computed by the same respective ratio over all
iterations past themth one. These results differ from the 2D case in that the computed
rates are not bounded above by the approximated theoretical rates (although for
m = 4 the values are close). However, in this case the computed median convergence
rate is approximately 1 with residuals not monotonically decreasing, which suggests
the this computation does not satisfy the small data condition (the operator G is not
contractive). In particular, (4.16) no longer implies the key estimates (4.12)–(4.15) in
the m = 2 case and, similarly, (4.6) does not imply (4.3) for the m = 1 analysis.

Last, for this test, we give the timings for the assembly, linear solve, and optimiza-
tion steps in Table 6. We display the median values for each, taken over all iterations.
We note that as in the 2D tests, the assembly was not parallelized. Results here are
similar to those found in the 2D tests: While the assembly and solve times do not
appear to scale with m, the optimization step does, and appears to roughly double
with each increase in m. For small m, the optimization cost is negligible compare to
the linear solve time, however, by m = 4 it is close the cost of a linear solve.

6. Conclusions. In this paper, we showed that Anderson acceleration applied
to the Picard iteration can provide a significant, and sometimes dramatic, improve-
ment in convergence behavior. We proved this analytically and, to our knowledge,
this is the first proof of Anderson acceleration providing (essentially) guaranteed im-
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proved convergence for a fixed point iteration and, in particular, for a nonlinear fluid
system. We also give results of several numerical tests that show the gains provided
by Anderson acceleration for this problem can even be an enabling technology in the
sense that it allows for convergence when both the Picard and Newton iterations fail.
The presented theory is based on characterizing the improvement in the fixed-point
convergence rate by the gain from the optimization problem. Our numerical results
appear to capture the highest order effects of our theory, and clearly reveal dramatic
improvement created by Anderson acceleration.

Important future work includes extending these ideas to the recently proposed
Incremental Picard Yosida variant of the Picard iteration for the steady NSE [14],
which has similar convergence properties of Picard but has linear systems that are
much easier to solve. We also plan to explore whether Anderson acceleration can
be used to aid in the convergence of Newton iterations for steady NSE, since (ba-
sic) Newton tends to fail for higher Re. Applying Anderson acceleration to steady
multiphysics problems such as MHD may also be a fruitful pursuit.
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