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Abstract

We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement
Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented
and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased
estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters’
posterior distributions obtained using our new code agree well with the published estimates for binary black holes
in the first Advanced LIGO–Virgo observing run.
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1. Introduction

The observations of six binary black hole mergers (Abbott
et al. 2016b, 2017a, 2017b, 2017c) and the binary neutron
star merger GW170817 (Abbott et al. 2017a) by Advanced
LIGO (Aasi et al. 2015) and Virgo (Acernese et al. 2015)
have established the field of gravitational-wave astronomy.
Understanding the origin, evolution, and physics of gravita-
tional-wave sources requires accurately measuring the
properties of detected events. In practice, this is performed
using Bayesian inference (Bayes & Price 1763; Jaynes 2003).
Bayesian inference allows us to determine the signal model
that is best supported by observations and to obtain posterior
probability densities for a model’s parameters, hence
inferring the properties of the source. In this paper, we
present PyCBC Inference, a set of Python modules that
implement Bayesian inference in the PyCBC open-source
toolkit for gravitational-wave astronomy (Nitz et al.
2018). PyCBC Inference has been used to perform
Bayesian inference for several astrophysical problems,
including testing the black hole area increase law (Cabero
et al. 2018); combining multimessenger observations of
GW170817 to constrain the viewing angle of the binary
(Finstad et al. 2018); and measuring the tidal deformabilities
and radii of the neutron stars of GW170817 (De et al. 2018).

We provide a comprehensive description of the methods and
code implemented in PyCBC Inference. We then demonstrate
that PyCBC Inference can produce unbiased estimates of the

parameters of a simulated population of binary black holes. We
show that PyCBC Inference can recover posterior probability
distributions that are in good agreement with the published
measurements of the binary black holes detected in the first
LIGO–Virgo observing run (Abbott et al. 2016b). This paper
is organized as follows. Section 2 gives an overview of
the Bayesian inference methods used in gravitational-wave
astronomy for compact-object binary mergers. We provide an
overview of the waveform models used; the likelihood function
for a known signal in stationary, Gaussian noise; the sampling
methods used to estimate the posterior probability densities and
the evidence; the selection of independent samples; and the
estimation of parameter values from posterior probabilities.
Section 3 describes the design of the PyCBC Inference
software and how the methods described in Section 2 are
implemented in the code. Section 4 uses a simulated population
of binary black holes and the black hole mergers detected in the
first LIGO–Virgo observing run to demonstrate the use of
PyCBC Inference. We provide the posterior probability densities
for the events GW150914, GW151226, and LVT151012, and
the command lines and configurations to reproduce these results
as supplemental materials: https://github.com/gwastro/pycbc-
inference-paper (De et al. 2018). Finally, we summarize the
status of the code and possible future developments in Section 5.

2. Bayesian Inference for Binary Mergers

In gravitational-wave astronomy, Bayesian methods are
used to infer the properties of detected astrophysical sources
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(Finn & Chernoff 1993; Cutler & Flanagan 1994; Nicholson &
Vecchio 1998; Christensen & Meyer 2001). Given the
observed data d t


( )—here this is data from a gravitational-

wave detector network in which a search has identified a signal
(Allen et al. 2012; Usman et al. 2016; Nitz et al. 2017)—
Bayes’ theorem (Bayes & Price 1763; Jaynes 2003) states that
for a hypothesis H,

p d t H
p d t H p H

p d t H
,

,
, 1J

J J
=

    
( ∣ ( ) ) ( ( )∣ ) ( ∣ )

( ( )∣ )
( )

where we define p A B( ∣ ) as the conditional probability of event
A given event B. In our case, the hypothesis H is the model of
the gravitational-wave signal, and J


are the parameters of this

model. Together, these describe the properties of the
astrophysical source of the gravitational waves. The posterior
probability density, p d t H,J

 
( ∣ ( ) ), in Equation (1) is the

conditional probability that the signal has parameters J

given

the observation d t


( ) and waveform model H. The posterior
probability density is proportional to the prior probability
density, p HJ


( ∣ ), which describes our knowledge about the

parameters before considering the observed datam d t


( ), and the
likelihood, p d t H,J

 
( ( )∣ ), which is the probability of obtaining

the observation d t


( ) given the waveform model H with

parameters J

.

Often, we are only interested in a subset of the parameters J

.

To obtain a probability distribution on one or a few parameters,
we marginalize the posterior probability by integrating
p d t H p H,J J
  

( ( )∣ ) ( ∣ ) over the unwanted parameters. Margin-

alizing over all parameters yields the evidence, p d t H


( ( )∣ ),
which is the denominator in Equation (1). The evidence serves
as a normalization constant of the posterior probability for the
given model H. If we have two competing models HA and HB,
the evidence can be used to determine which model is favored
by the data via the Bayes factor (Kass & Raftery 1995; Gelman
& Meng 1998; Skilling 2006),

p d t H

p d t H
. 2A

B

 =



( ( )∣ )
( ( )∣ )

( )

If  is greater than 1, then model HA is favored over HB, with
the magnitude of  indicating the degree of belief.

PyCBC Inference can compute Bayes factors and produce
marginalized posterior probability densities given the data from
a network of gravitational-wave observatories with N detectors
d t d t i N; 1i= < <


( ) { ( ) }, and a model H that describes the
astrophysical source. In the remainder of this section, we
review the methods used to compute these quantities.

2.1. Waveform Models

The gravitational waves radiated in a binary merger’s source
frame are described by the component masses, m1,2, the three-
dimensional spin vectors, s1,2


, of the compact objects (Thorne

1987), and the binary’s eccentricity, e (Peters 1964). A parameter f
describes the phase of the binary at a fiducial reference time,
although this is not usually of physical interest. For binaries
containing neutron stars, additional parameters Λ1,2 describe
the star’s tidal deformabilities (Flanagan & Hinderer 2008;
Hinderer 2008), which depend on the equation of state of the
neutron stars. The waveform observed by the Earth-based detector
network depends on six additional parameters: the signal’s time of
arrival, tc, the binary’s luminosity distance, dL, and four Euler
angles that describe the transformation from the binary’s frame to
the detector network frame (Wahlquist 1987). These angles are
typically written as the binary’s right ascension, α, declination, δ, a
polarization angle, Ψ, and the inclination angle, ι (the angle
between the binary’s angular momentum axis and the line of sight).
The convention adopted in PyCBC for ι denotes ι=0 as a
“face-on” binary (the line of sight parallel to binary angular
momentum),

2
i = p as an “edge-on” binary (the line of sight

perpendicular to binary angular momentum), and ι=π as a
“face-off” binary (the line of sight anti-parallel to binary angular
momentum).
Binary mergers present a challenging problem for Bayesian

inference, as the dimensionality of the signal parameter space is
large. This is further complicated by correlations between the
signal’s parameters. For example, at leading order, the
gravitational waveform depends on the chirp mass, (Peters
& Mathews 1963). The mass ratio enters the waveform at
higher orders, and is more difficult to measure. This results in
an amplitude-dependent degeneracy between the component
masses (Christensen & Meyer 2001). Similarly, the binary’s
mass ratio can be degenerate with its spin (Hannam et al.
2013), although this degeneracy can be broken if the binary is
precessing. Much of the effort of parameter estimation in
gravitational-wave astronomy has focused on developing
computationally feasible ways to explore this signal space,
and on extracting physically interesting parameters (or
combinations of parameters) from the large, degenerate
parameter space (see, e.g., Veitch et al. 2015 and references
therein). However, in many problems of interest, we are not
concerned with the full parameter space described above. For
example, field binaries (ie. binaries formed in isolation and not
influenced by surrounding stars) are expected to have
negligible eccentricity when they are observed by Advanced
LIGO and Virgo (Peters & Mathews 1963), so eccentricity is
neglected in the waveform models. Simplifying assumptions
can be made about the compact object’s spins (e.g., the spins
are aligned with the binary’s orbital angular momentum)
reducing the dimensionality of the waveform parameters space.

2
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Given a set of parameters, J

, one can obtain a model of the

gravitational-wave signal from a binary merger using a variety
of different methods, including post-Newtonian theory (see,
e.g., Blanchet (2006) and references therein), analytic models
calibrated against numerical simulations (Buonanno &
Damour 1999, 2000; Damour et al. 2000; Damour 2001; Ajith
et al. 2007, 2011; Santamaria et al. 2010), perturbation theory
(Teukolsky 1972; Berti et al. 2009), and full numerical solution
of the Einstein equations (see, e.g., Cardoso et al. 2015 and
references therein). Obtaining posterior probabilities and
evidences can require calculating 109( ) template waveforms,
which restricts us to models that are computationally efficient
to calculate. The cost of full numerical simulations makes them
prohibitively expensive at present. Even some analytic models
are too costly to be used, and surrogate models have been
developed that capture the features of these waveforms at
reduced computational cost (Pürrer 2016; Lackey et al. 2017).

The specific choice of the waveform model H for an analysis
depends on the physics that we wish to explore, computational
cost limitations, and the level of accuracy desired in the model.
A variety of waveform models are available for use in PyCBC
Inference, either directly implemented in PyCBC or via calls to
the LIGO Algorithm Library (LAL; Mercer et al. 2017). We
refer to the PyCBC and LAL documentation, and references
therein, for detailed descriptions of these models. In this paper,
we demonstrate the use of PyCBC Inference using the
IMRPhenomPv2 (Schmidt et al. 2015; Hannam et al. 2014)
waveform model for binary black hole mergers. This model
captures the inspiral-merger-ringdown physics of spinning,
precessing binaries and parameterizing spin effects using a spin
magnitude, aj, an azimuthal angle, j

aq , and a polar angle, j
pq , for

each of the two compact objects. Examples of using PyCBC
Inference with different waveform models include the analysis
of De et al. (2018), which used the TaylorF2 post-Newtonian
waveform model with tidal corrections, and Cabero et al.
(2018) that used a ringdown-only waveform that models the
quasi-normal modes of the remnant black hole.

2.2. Likelihood Function

The data observed by the gravitational-wave detector
network enters Bayes’ theorem through the likelihood,
p d t H,J
 

( ( )∣ ), in Equation (1). Currently, PyCBC Inference
assumes that each detector produces stationary Gaussian noise,
ni(t), that is uncorrelated between the detectors in the network.
The observed data is then d t n t s ti i i= +( ) ( ) ( ), where si(t) is
the gravitational waveform observed in the i-th detector. For
detectors that are not identical and co-located (as in the case of
the Advanced LIGO–Virgo network), each detector observes a
slightly different waveform due to their different antennae
patterns, which are functions of the sky position (right
ascension and declination) and polarization (Wahlquist 1987).

Under these assumptions, the appropriate form of
p d t H,J
 

( ( )∣ ) is the well-known likelihood for a signal of
known morphology in Gaussian noise (see, e.g., Wainstein &
Zubakov 1962 for its derivation), which is given by

3
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where N is the number of detectors in the network. The inner
product, a bá ñ˜∣ ˜ , is

a f b f
a f b f

S f
f4 d , 4i i

i i

n
i0òá ñ =

¥
˜ ( )∣ ˜ ( ) ˜ ( ) ˜ ( )

( )
( )( )R

where S fn
i ( )( ) is the power spectral density of the of the i-th

detector’s noise. Here, d fĩ ( ) and n fi˜ ( ) are the frequency
domain representations of the data and noise, obtained by a
Fourier transformation of di(t) and ni(t), respectively. The
model waveform, s f ,i J


˜ ( ), may be computed directly in the

frequency domain or in the time domain, and then Fourier
transformed to the frequency domain. There are several
operations (e.g., Fourier transforms, noise power spectral
density estimation, and inner products) that are common
between the calculation of Equation (3) and the computation of
the matched-filter signal-to-noise ratio (S/N) in PyCBC (Allen
et al. 2012; Usman et al. 2016; Nitz et al. 2017). PyCBC
Inference uses these existing functions where appropriate.
In general, gravitational-wave signals consist of a super-

position of harmonic modes. However, in many cases, it is
sufficient to model only the most dominant mode, as the
subdominant harmonics are too weak to be measured. In this
case, the signal observed in all detectors has the same simple
dependence on the fiducial phase f,

s f s f e, , , , 0 . 5i i
i0J f J= f

 
˜ ( ) ˜ ( ) ( )

The posterior probability, p d t H,J
 

( ∣ ( ) ), can be analytically
marginalized over f for such models (Wainstein & Zubakov
1962). Assuming a uniform prior on f ä [0, 2π), the marginalized
posterior is

p d t H p H I O s d

s s d d

log , log ,

1

2
, , , 6

i
i i

i
i i i i

0
0

0 0

å

å

J Jµ +

- á ñ - á ñ

   ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ∣ ( ) ) ( ∣ ) ( ˜ ˜ )
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where

s s f , , 0 ,i i
0 J fº =


˜ ˜ ( )

O s d
s f d f

S f
f, 4

; , 0
d ,i i

i i

n
i

0

0

*
ò

J
º

¥
( ˜ ˜ ) ˜ ( ) ˜ ( )

( )( )

and I0 is the modified Bessel function of the first kind.
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We have found that analytically marginalizing over f in this
manner reduces the computational cost of the analysis by a
factor of 2–3. The IMRPhenomPv2 model that we use here is a
simplified model of precession that allows for this analytic
marginalization (Schmidt et al. 2015; Hannam et al. 2014). As
the fiducial phase is generally a nuisance parameter, we use this
form of the likelihood function in Sections 4.1 and 4.2.

2.3. Sampling Methods

Stochastic sampling techniques, in particular the Markov
chain Monte Carlo (MCMC) methods (Metropolis et al. 1953;
Geman & Geman 1984; Gilks et al. 1996; Gelman et al. 1995),
have been used to numerically sample the posterior probability
density function of astrophysical parameters for binary-merger
signals (Christensen & Meyer 2001; Christensen et al. 2004;
Rover et al. 2006, 2007; Abbott et al. 2016b, 2017a,
2017b, 2017c, 2017d). Ensemble MCMC algorithms use
multiple Markov chains to sample the parameter space. A
simple choice to initialize the k-th Markov chain in the

ensemble is to draw a set of parameters,
k

1J
 ( )

, from the prior
probability density function. The Markov chains move around
the parameter space according to the following set of rules. At

iteration l, the k-th Markov chain has the set of parameters, l
k

J
 ( )

.
The sampling algorithm chooses a new proposed set of

parameters, l
k

J ¢

 ( )
, with probability Q ,l

k
l
k

J J ¢

 
( )

( ) ( )
. When a new

set of parameters is proposed, the sampler computes an
acceptance probability, γ, which determines if the Markov

chain should move to the proposed parameter set l
k

J ¢

 ( )
, such that

l
k

l
k

1J J=+ ¢

 ( ) ( )
. If l

i
J ¢

 ( )
is rejected, then l

k
l
k

1J J=+

 ( ) ( )
. After a

sufficient number of iterations, the ensemble converges to a
distribution that is proportional to a sampling of the posterior
probability density function. The true astrophysical parameters,
J

, can then be estimated from histograms of the position of the

Markov chains in the parameter space. Different ensemble
sampling algorithms make particular choices for the proposal

probability Q ,l
k

l
k

J J ¢

 
( )

( ) ( )
and acceptance probability, γ.

The open-source community has several well-developed soft-
ware packages that implement algorithms for sampling the
posterior probability density function. PyCBC Inference leverages
these developments, and we have designed a flexible framework
that allows the user to choose from multiple ensemble sampling
algorithms. Currently, PyCBC Inference supports the open-source
ensemble sampler emcee (Foreman-Mackey et al. 2013, 2018),
its parallel-tempered version emcee_pt (Foreman-Mackey et al.
2018; Vousden et al. 2016), and the kombine (Farr & Farr 2015;
Farr et al. 2018) sampler. All three are ensemble MCMC
samplers. The sampling algorithm advances the positions of the
Markov chains based on their previous positions and provides
PyCBC Inference these positions as they get updated.

The emcee_pt sampler is a parallel-tempered sampler,
which advances multiple ensembles based on the tempering or
the “temperatures” used to explore the posterior probability
density function. The posterior probability density function for
a particular temperature, T, is modified, such that

p d t H
p d t H p H

p d t H
,

,
. 7T

T
1

J
J J

=
    

( ∣ ( ) ) ( ( )∣ ) ( ∣ )
( ( )∣ )

( )

The emcee_pt sampler uses several temperatures in parallel,
and the position of Markov chains are swapped between
temperatures using an acceptance criteria described in Vousden
et al. (2016). Mixing of Markov chains from the different
temperatures makes parallel-tempered samplers suitable for
sampling posterior probability density functions with widely
separated modes in the parameter space (Vousden et al. 2016).
The emcee sampler performs the sampling using one
temperature, where T=1.
The kombine sampler on the other hand uses clustered

kernel-density estimates to construct its proposal distribution,
and proposals are accepted using the Metropolis–Hastings
condition (Hastings 1970). The kombine sampler has been
included in PyCBC Inference due to its efficient sampling
which significantly lowers the computational cost of an
analysis relative to the emcee_pt sampler. However, in
Section 4.1, we found that the nominal configuration of the
kombine sampler produced biased estimates of parameters for
binary black holes.

2.4. Selection of Independent Samples

The output returned by the sampling algorithms discussed in
Section 2.3 are Markov chains. Successive states of these
chains are not independent, as Markov processes depend on the
previous state (Christensen et al. 2004). The autocorrelation
length, τK, of a Markov chain is a measure of the number of
iterations required to produce independent samples of the
posterior probability density function (Madras & Sokal 1988).
The autocorrelation length of the k-th Markov chain,

X g l; 1l
k

g
k

J= < <


{ }( ) ( )
, of length, l, obtained from the

sampling algorithm is defined as

R1 2 , 8K
i

K

i
1

åt = +
=

ˆ ( )

where K is the first iteration along the Markov chain the
condition, mτK�K is true, m being a parameter which in
PyCBC Inference is set to 5 (Madras & Sokal 1988). The
autocorrelation function, Riˆ , is defined as

R
l

X X
1

, 9i
t

l i

t t i2
1

ås
m m= - -

=

-

+ˆ ( )( ) ( )

where Xt are the samples of Xl
k( ) between the 0-th and the t-th

iteration, Xt i+ are the samples of Xl
k( ) between the 0-th and the
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(t+ 1)-th iterations. Here, μ and σ2 are the mean and variance
of Xt, respectively.

The initial positions of the Markov chains influence their
subsequent positions. The length of the Markov chains before
they are considered to have lost any memory of the initial
positions is called the “burn-in” period. It is a common practice in
MCMC analyses to discard samples from the burn-in period to
prevent any bias introduced by the initial positions of the Markov
chains on the estimates of the parameters from the MCMC.
PyCBC Inference has several methods to determine when the
Markov chains are past the burn-in period. Here, we describe two
methods, max_posterior and n_acl, which we have found
to work well with the kombine and emcee_pt samplers used
in Sections 4.1 and 4.2.

The max_posterior algorithm is an implementation of
the burn-in test used for the MCMC sampler in Veitch et al.
(2015). In this method, the k-th Markov chain is considered to
be past the burn-in period at the first iteration, l, for which

N
log max log

2
, 10l

k

k l

p

,
 J J -

 
( ) ( ) ( )( )

where  J


( ) is the prior-weighted likelihood,

p d t H p H, , 11 J J J=
   

( ) ( ( )∣ ) ( ∣ ) ( )

and Np is the number of dimensions in the parameter space. The
maximization, max logk l,  J


( ), is carried out over all Markov

chains and iterations. The ensemble is considered to be past the
burn-in period at the first iteration, where all Markov chains
pass this test. We have found this test works well with the
kombine sampler if the network S/N of the signal is 5.

We have found that the max_posterior test returns an
iteration in the MCMC, while all Markov chains are still
converging when used with the emcee_pt sampler. This
underestimates the burn-in period because there is still an
influence from the initial points on the samples of the posterior
probability density function; however, adding at least one
autocorrelation length to the burn-in period computed with the
max_posterior test reduces this effect. Therefore, we use
the n_acl test with the emcee_pt sampler. This test posits
that the sampler is past the burn-in period if the length of the
chains exceed 10 times the autocorrelation length. The auto-
correlation length is calculated using samples from the second half
of the Markov chains. If the test is satisfied, the sampler is
considered to be past the burn-in period at the midway point of the
Markov chains.

Correlations between the neighboring samples after the burn-
in period are removed by “thinning” or drawing samples from
the Markov chains with an interval of the autocorrelation length
(Christensen et al. 2004). This is done so that the samples used
to estimate the posterior probability density function are
independent. Therefore, the number of independent samples
of the posterior probability density function is equal to the
number of Markov chains used in the ensemble times the

number of iterations after the burn-in period divided by the
autocorrelation length. PyCBC Inference will run until it has
obtained the desired number of independent samples after the
burn-in period.

2.5. Credible Intervals

After discarding samples from the burn-in period and
thinning the remaining samples of the Markov chains, the
product is the set of independent samples as described in
Section 2.4. Typically we summarize the measurement of a
given parameter using a credible interval. The x% credible
interval is an interval where the true parameter value lies with a
probability of x%. PyCBC Inference provides the capability to
calculate credible intervals based on percentile values. In the
percentile method, the x% credible interval of a parameter
value is written as A B

C
-
+ , where A is typically the 50th percentile

(median) of the marginalized histograms. The values A−B
and A+C represent the lower and upper boundaries of the x%
credible interval, and they are computed as the x50 2-( )-th
and (50+ x/2)-th percentiles, respectively.
An alternative method of calculating a credible interval

estimate is the Highest Posterior Density (HPD) method. An x
% HPD interval is the shortest interval that contains x% of the
probability. The percentile method explained above imposes a
non-zero lower boundary to the interval being measured. This
can be perceived as a limitation in cases where the weight of
histogram at the ∼0-th percentile is not significantly different
from the weight at the lower boundary of the credible interval.
Intervals constructed using the HPD method may be preferred
in such cases. Previous studies have noted that HPD intervals
may be useful when the posterior distribution is not symmetric
(Chen et al. 2000). PyCBC Inference uses HPD to construct
confidence contours for two-dimensional marginal distribu-
tions, but HPD is not used in the construction of one-
dimensional credible intervals for a single parameter. This
functionality will be included in a future release of PyCBC
Inference.

3. The PyCBC Inference Toolkit

In this section we describe the implementation of PyCBC
Inference within the broader PyCBC toolkit. PyCBC provides both
modules for developing code and executables for performing
specific tasks with these modules. The code is available on the
public GitHub repository at https://github.com/gwastro/pycbc,
with executables located in the directory bin/inference and
the modules in the directory pycbc/inference. PyCBC
Inference provides an executable called pycbc_inference that
is the main engine for performing Bayesian inference with PyCBC.
A call graph of pycbc_inference is shown in Figure 1. In this
section, we review the structure of the main engine and the Python
objects used to build pycbc_inference.
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3.1. pycbc_inference Executable

The methods presented in Sections 2.1, 2.2, 2.3, 2.4, and 2.5
are used to build the executable pycbc_inference. For
faster performances, pycbc_inference can be run on
high-throughput computing frameworks such as HTCondor
(Tannenbaum et al. 2001; Thain et al. 2005) and the processes
for running the samplers can be parallelized over multiple
compute nodes using MPI (Dalcin et al. 2011; Dalcín et al.
2008, 2005). The execution of the likelihood computation and
the PSD estimation are done using either single-threaded or
parallel FFT engines, such as FFTW (Frigo & Johnson 2005)
or the Intel Math Kernel Library (MKL). For maximum
flexibility in heterogeneous computing environments, the
processing scheme to be used is specified at runtime as a
command line option to pycbc_inference.

The input to pycbc_inference is a configuration file which
contains up to seven types of sections. The variable_args
section specifies the parameters that are to be varied in the
MCMC. There is a prior section for each parameter in the
variable_args section that contains arguments to initialize
the prior probability density function for that parameter. There is a

static_args section specifying any parameter for waveform
generation along with its assigned value that should be fixed in the
ensemble MCMC. Optionally, the configuration file may also
include a constraint section(s) containing any conditions that
constrain the prior probability density functions of the parameters.
For efficient convergence of a Markov chain, it may be desirable
to sample the prior probability density function in a different
coordinate system than that defined by the parameters in the
variable_args section or the parameters inputted to the
waveform generation functions. Therefore, the configuration file
may contain a sampling_parameters and sampling_
transforms section(s) that specifies the transformations
between parameters in the variable_args sections and the
parameters evaluated in the prior probability density function.
Finally, the waveform generation functions recognize only a
specific set of input parameters. The waveform_transforms
section(s) may be provided which maps parameters in the
variable_args section to parameters understood by the
waveform generation functions. More details on application of
constraints and execution of coordinate transformations are
provided in Sections 3.3 and 3.4, respectively.

Figure 1. Executable pycbc_inference samples the posterior probability density function. For an iteration in an ensemble MCMC algorithm, the Sampler
object uses the LikelihoodEvaluator object to compute the natural logarithm of the posterior probability, and returns it to pycbc_inference. The
LikelihoodEvaluator object uses the Generator object to generate the waveform and Distribution objects to evaluate the prior probability density
function. Samples are periodically written to the output file.

(A color version of this figure is available in the online journal.)
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The location of the configuration file, gravitational-wave
detector data files, data conditioning settings, and settings for
the ensemble MCMC are supplied on the command line
interface to pycbc_inference. The results from running
pycbc_inference are stored in a HDF (Collette et al. 2018)
file whose location is provided on the command line to
pycbc_inference as well. The main results of interest
are stored under the HDF groups ‘‘samples’’ and
‘‘likelihood_stats’’. The ‘‘samples’’ group
contains the history of the Markov chains as separate data sets
for each of the variable parameters. The ‘‘likelihood_-
stats’’ group contains a data set of the natural logarithm of
the Jacobian, which is needed to transform from the variable
parameters to sampling parameters, a data set containing the
natural logarithm of the prior probabilities, and a data set
containing the natural logarithm of the likelihood ratio Λ where

p d t H

p d t n
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is stored as an attribute in the output file. The sum of the natural
logarithms of Λ and p d t n

 ( ( )∣ ) is used to compute the likelihood

in Equation (3). The values for Λ and p d t nlog
 ( ( )∣ ) are stored

instead of the likelihood in Equation (3), because Λ is the quantity
maximized in gravitational-wave searches and it is closely related
the matched-filter S/N (i.e., the d f s f ,i i Já ñ

˜ ( )∣ ˜ ( ) components in
Equation (12)) (Allen et al. 2012; Usman et al. 2016). Each of
the data sets under the ‘‘samples’’ group and the
‘‘likelihood_stats’’ group has shape nwalkers×
niterations if the sampling algorithm used in the analysis
did not include parallel tempering, and has shape ntemps×n-
walkers×niterations for parallel-tempered samplers.
Here, nwalkers is the number of Markov chains, nitera-
tions is the number of iterations, and ntemps is the number of
temperatures.

pycbc_inference terminates once it reaches the desired
number of independent samples after the burn-in period using
the methods in Section 2.4. The number of independent
samples is set on the command line by the analyst. It is
computationally expensive to obtain the desired number of
independent samples using ensemble MCMC methods, and the
pycbc_inference processes may terminate early due to
problems on distributed-computing networks. Therefore,
pycbc_inference has checkpointing implemented which
allows users to resume an analysis from the last set of positions

of Markov chains written to the output file. The samples from
the Markov chains should be written at regular intervals so that
pycbc_inference can resume the ensemble MCMC from
the position of the Markov chains near the “state” the process
was terminated. The state is determined from a random number
generator and the position of the Markov chains. The frequency
with which pycbc_inference writes the samples from
Markov chains and the state of the random number generator
to the output file and a backup file is specified by the
user on the command line. A backup file is written by
pycbc_inference because the output file from
pycbc_inference may be corrupted. For example, if the
process is aborted while writing to the output file, then the output
file may be corrupted. In that case, samples and the state of the
random number generator are loaded from the backup file, and
the backup file is copied to the output file. This ensures that the
pycbc_inference process can always be resumed.
For analyses that use the emcee_pt sampler, the

likelihood can be used to compute the natural logarithm
of the evidence using the emcee_pt sampler’s
thermodynamic_integration_log_evidence func-
tion (Foreman-Mackey et al. 2018). Then, the evidences from
two analyses can be used to compute the Bayes factor, , for
the comparison of two waveform models.
We provide example configuration files and run scripts for

the analysis of the binary black hole mergers detected in the
Advanced LIGO’s first observing run in https://github.com/
gwastro/pycbc-inference-paper. These examples can be used
with the open-source data sets provided by the LIGO Open
Science Center (Vallisneri et al. 2015). The results of these
analyses are presented in Section 4.2.

3.2. Sampler Objects

The PyCBC Inference modules provide a set of Sampler
objects which execute the Bayesian sampling methods. These
objects provide classes and functions for using open-source
samplers, such as emcee (Foreman-Mackey et al. 2018)
emcee_pt, (Foreman-Mackey et al. 2018), or kombine
(Farr et al. 2018). This acts as an interface between PyCBC
Inference and the external sampler package. The executable
pycbc_inference initializes, executes, and saves the
output from the Sampler objects. A particular Sampler
object is chosen on the command line of pycbc_inference
with the ––sampler option. The Sampler object provides
the external sampler package the positions of the Markov
chains in the parameter space, the natural logarithm of the
posterior probabilities at the current iteration, the current state
determined from the random number generator, and the number
of iterations that the sampler is requested to run starting from
the current iteration. After running for the given number of
iterations, the sampler returns the updated positions of the
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Markov chains, the natural logarithm of the posterior
probabilities, and the new state.

3.3. Transform Objects

The Transform objects in PyCBC Inference are used to
perform transformations between different coordinate systems.
Currently, the Transform objects are used in two cases:
sampling transforms and waveform transforms.

Sampling transforms are used for transforming parameters
that are varied in the ensemble MCMC to a different coordinate
system before evaluating the prior probability density function.
As there exists degeneracies between several parameters in a
waveform model, it is useful to parameterize the waveform
using a preferred set of parameters which could minimize the
correlations. This leads to more efficient sampling, and
therefore it leads to faster convergence of the Markov chains.
One example of a sampling transformation is the transforma-
tion between the component masses m1 and m2 to chirp mass,
, and mass ratio, q. The convention adopted for q in PyCBC
Inference is q=m1/m2, where m1 and m2 are the component
masses with m1>m2. The chirp mass, , is the most
accurately measured parameter in a waveform model because it
is in the leading order term of the post-Newtonian expression of
the waveform model. In contrast, the degeneracies of the mass
ratio with spin introduces uncertainties in measurements of the
component masses. Therefore, sampling in and q proves to
be more efficient than m1 and m2 (Rover et al. 2006; Veitch
et al. 2015; Farr et al. 2016). In the GW150914, LVT151012,
and GW151226 configuration files in https://github.com/
gwastro/pycbc-inference-paper (De et al. 2018), we demon-
strate how to allow the Sampler object to provide priors in
the m m,1 2( ) coordinates, and specify sampling transformations
in the q,( ) coordinates.

Waveform transforms are used to transform variable para-
meters in the ensemble MCMC that may not be recognized by
the waveform model functions to parameters that are recognized.
For example, the total mass, Mtot=m1+m2, and the mass ratio
q may be used as variable parameters in the MCMC; however,
these parameters will not be accepted by the waveform model
functions. Waveform transforms will be used in this case to
transform Mtot, and q to the component masses m1 and m2, which
are accepted by the waveform model functions.

3.4. LikelihoodEvaluator Object

The LikelihoodEvaluator object computes the natural
logarithm of the prior-weighted likelihood given by the
numerator of Equation (1). Because the evidence is constant
for a given waveform model, the prior-weighted likelihood is
proportional to the posterior probability density function, and it
can be used in sampling algorithms to compute the acceptance

probability γ instead of the full posterior probability density
function. The prior-weighted likelihood is computed for each
new set of parameters as the Sampler objects advance the
Markov chains through the parameter space.

3.5. Distribution Objects

The LikelihoodEvaluator object must compute the
prior probability density function, p HJ


( ∣ ). There exists several

Distribution objects that provide functions for evaluating
the prior probability density function to use for each parameter,
and for drawing random samples from these distributions.
Currently, PyCBC Inference provides the following
Distributions:

1. Arbitrary : reads a set of samples stored in a HDF
format file and uses Gaussian kernel-density estimation
(https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.gaussian_kde.html) to construct the distribution;

2. CosAngle : a cosine distribution;
3. SinAngle : a sine distribution;
4. Gaussian : a multivariate Gaussian distribution;
5. Uniform : a multidimensional uniform distribution;
6. UniformAngle : a uniform distribution between 0

and 2π;
7. UniformLog : a multidimensional distribution that is

uniform in its logarithm;
8. UniformPowerLaw : a multidimensional distribution

that is uniform in a power law;
9. UniformSky : a two-dimensional isotropic distribu-

tion; and
10. UniformSolidAngle : a two-dimensional distribu-

tion that is uniform in solid angle.

Multiple Distribution objects are needed to define the
prior probability density function for all parameters. The
JointDistribution object combines the individual prior
probability density functions, providing a single interface for
the LikelihoodEvaluator to evaluate the prior prob-
ability density function for all parameters. As the sampling
algorithm advances the positions of the Markov chains, the
JointDistribution computes the product of the prior
probability density functions for the proposed new set of points
in the parameter space. The JointDistribution can
apply additional constraints on the prior probability density
functions of parameters and it renormalizes the prior prob-
ability density function accordingly. If multiple constraints are
provided, then the union of all constraints are applied. We
demonstrate how to apply a cut on and q obtained from the
m1 and m2 prior probability density functions in the GW151226
configuration file in https://github.com/gwastro/pycbc-
inference-paper (De et al. 2018).
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3.6. Generator Objects

As part of the likelihood calculation described in Section 2.2, a
waveform, s f ,i J


˜ ( ), is generated from a waveform model, H, and

set of parameters, J

. PyCBC Inference provides Generator

objects that allow waveforms s f ,i J


˜ ( ) to be generated for
waveform models described in Section 2.1 using PyCBC’s
interface to LAL (Mercer et al. 2017). There are also
Generator objects provided for generating ringdown wave-
forms as used in Cabero et al. (2018). Given the waveform model
provided in the configuration file, pycbc_inference will
automatically select the associated Generator object.

4. Validation of the Toolkit

PyCBC Inference includes tools for visualizing the results of
parameter estimation, and several analytic functions that can be
used to test the generation of known posterior probabilities. Two
common ways to visualize results are a scatter plot matrix of the
independent samples of the Markov chains, and marginalized
one-dimensional histograms showing the bounds of each
parameter’s credible interval. Analytic likelihood functions
available to validate the code include the multivariate normal,
Rosenbrock, eggbox, and volcano functions. An example
showing the visualization of results from a multivariate Gaussian
test is shown in Figure 2. This figure was generated using the
executable pycbc_inference_plot_posterior, which

makes extensive use of tools from the open-source packages
Matplotlib (Hunter 2007) and SciPy (Jones et al. 2001).
We can also validate the performance of PyCBC Inference

by (i) determining if the inferred parameters of a population of
simulated signals agrees with the known parameters of that
population and (ii) comparing PyCBC Inference parameter
measurements of astrophysical signals to the published LIGO–
Virgo estimates that used a different inference code. In this
section, we first check that the credible intervals match the
probability of finding the simulated signal parameters in that
interval; that is, that x% of signals should have parameter
values in the x% credible interval. We then compare the
recovered parameters of the binary black hole mergers
GW150914, GW151226, and LVT151012 to those published
in Abbott et al. (2016b). The validation tests and analyses
presented in this section have been performed with the PyCBC
v1.12.3 release.

4.1. Simulated Signals

To test the performance of PyCBC Inference, we generate
100 realizations of stationary Gaussian noise colored by power-
spectral densities representative of the sensitivity of Advanced
LIGO detectors at the time of the detection of GW150914
(Vallisneri et al. 2015). To each realization of noise we add a
simulated signal whose parameters are drawn from the same
prior probability density function used in the analysis of
GW150914 (Abbott et al. 2016d), with an additional cut placed

Figure 2. Samples of the posterior probability density function for a four-dimensional Gaussian distribution. Typically, these results are shown as a scatter plot matrix

of independent samples. Here, the points in the scatter plot matrix are colored by the natural logarithm of the prior-weighted likelihood, log J


( ). At the top of each
column is the marginalized one-dimensional histogram for a particular model parameter. In this case, each parameter, pi, is the mean of a Gaussian in the range (0, 1).
The median and 90% credible interval are superimposed on the marginalized histograms. Left: results obtained from the emcee_pt sampler. Right: results obtained
from the kombine sampler.
(A color version of this figure is available in the online journal.)
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on distance to avoid having too many injections with low
matched-filter S/N (Allen et al. 2012). The resulting injections
have matched-filter S/Ns between 5 and 160, with the majority
between ∼10 and ∼40. We then perform a parameter
estimation analysis on each signal to obtain credible intervals
on all parameters.

We perform this test using both the emcee_pt and
kombine samplers. For the emcee_pt sampler, we use 200
Markov chains and 20 temperatures. We run the sampler until
we obtain at least 2000 independent samples after the burn-in
period as determined using the n_acl burn-in test. For the
kombine sampler, we use 5000 Markov chains and the
max_posterior burn-in test. As a result, we need only to
run the kombine sampler until the burn-in test is satisfied, at
which point we immediately have 5000 independent samples of
the posterior probability density function.

Both simulated signals and the waveforms in the likelihood
computation are generated using IMRPhenomPv2 (Schmidt
et al. 2015; Hannam et al. 2014). This waveform model has 15
parameters. To reduce computational cost, we analytically
marginalize over the fiducial phase, f, by using Equation (6)
for the posterior probability, thereby reducing the number of
sampled parameters to 14. For each parameter, we count the
number of times the simulated parameter falls within the
measured credible interval.

Figure 3 summarizes the result of this test using the
emcee_pt and kombine samplers. For each of the
parameters we plot the fraction of signals whose true simulated
values fall within specific values of credible intervals as a
function of the corresponding credible interval values (this is
referred to as a percentile-percentile plot). We expect the
former to equal the latter for all parameters, though some
fluctuation is expected due to noise. We see that all parameters
follow a 1-to-1 relation, though the results from the kombine
sampler have greater variance then the emcee_pt sampler.

To quantify the deviations seen in Figure 3, we perform a
Kolmogorov–Smirnov (KS) test on each parameter to see
whether the percentile-percentile curves match the expected
1-to-1 relation. If the samplers and code are performing as
expected, then these p-values should in turn follow a uniform
distribution. We therefore perform another KS test on the
collection of p-values, obtaining a two-tailed p-value of 0.7 for
the emcee_pt sampler and 0.01 for the kombine sampler. In
other words, if the emcee_pt sampler provides an unbiased
estimate of the parameters, then there is a ∼70% chance that
we would obtain a collection of percentile-percentile curves
more extreme than seen in Figure 3. For the kombine
sampler, the probability of obtaining a more extreme collection
of curves than that seen in Figure 3 is only ∼1%.

A low p-value indicates that the two distributions in the KS
test differ. Therefore, based on these results, we have
confidence that PyCBC Inference provides unbiased estimates
of binary black hole parameters when used with the

emcee_pt sampler and the above settings. The kombine
sampler does not appear to provide unbiased parameter
estimates when used to sample the full parameter space of
precessing binary black holes with the settings we have used.

Figure 3. Fraction of simulated signals with parameter values within a credible
interval as a function of credible interval. Plotted are all 14 parameters varied in the
MCMC analyses. The diagonal line indicates the ideal 1-to-1 relation that is
expected if the samplers provide unbiased estimates of the parameters. We perform
a Kolmogorov–Smirnov (KS) test on each parameter to obtain two-tailed p-value
indicating the consistency between the curves and the diagonal line. Top: results
using the emcee_pt sampler. Bottom: results using the kombine sampler.
(A color version of this figure is available in the online journal.)
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4.2. Astrophysical Events

In this section, we present PyCBC Inference measurements
of properties of the binary black hole sources of the two
gravitational-wave signals GW150914 and GW151226, and
the third gravitational-wave signal LVT151012 consistent with
the properties of a binary black hole source from Advanced
LIGO’s first observing run (Abbott et al. 2016a, 2016b). We
perform the parameter estimation analysis on the Advanced
LIGO data available for these events at the LIGO Open Science
Center (Vallisneri et al. 2015). We use the emcee_pt sampler
for these analyses. For computing the likelihood, we analyze
the gravitational-wave data set, d t


( ), from the Hanford and

Livingston detectors. d t


( ) in our analyses are taken from GPS
time intervals 1126259452 to 1126259468 for GW150914,
1135136340 to 1135136356 for GW151226, and 1128678874
to 1128678906 for LVT151012. Detection of gravitational
waves from the search pipeline (Nitz et al. 2018; Usman et al.
2016; Dal Canton et al. 2014; Nitz et al. 2017; Abbott et al.
2016c) gives initial estimates of the mass, hence estimates of
the length of the signal. From results of the search, LVT151012
was a longer signal with more cycles than the other two events,
and LVT151012 had characteristics that were in agreement
with a lower mass source than GW150914 and GW151226.
Therefore, more data is required for the analysis of
LVT151012. The PSD used in the likelihood is constructed
using the median PSD estimation method described in Allen
et al. (2012) with 8s Hann-windowed segments (overlapped by
4 s) taken from GPS times 1126258950 to 1126259974 for
GW150914, 1135136238 to 1135137262 for GW151226, and
1128678388 to 1128679412 for LVT151012. The PSD
estimate is truncated to 4s in the time domain using the
method described in Allen et al. (2012). The data set is sampled
at 2048Hz, and the likelihood is evaluated between a low-
frequency cutoff of 20Hz and 1024Hz.

The waveforms s f ,i J


˜ ( ) used in the likelihood are generated
using the IMRPhenomPv2 (Schmidt et al. 2015; Hannam et al.
2014) model implemented in the LIGO Algorithm Library
(LAL; Mercer et al. 2017). The parameters measured in the
MCMC for these three events are m m, , , , ,1 2J a d y=


{

d t a a, , , , , , , ,L c
a a p p

1 2 1 2 1 2i q q q q }, and we analytically margin-
alize over the fiducial phase, f. These parameters form the
complete set of parameters to construct a waveform from a
binary black hole merger, and are the same parameters that
were inferred from the parameter estimation analyses in Abbott
et al. (2016b). As faster convergence of m1 and m2 can be
obtained with mass parameterizations of the waveform in 
and q we perform the coordinate transformation from (m1, m2)
to q,( ) before evaluating the priors.

We assume uniform prior distributions for the binary
component masses m1,2ä[10, 80]Me for GW150914,

m1,2ä[5, 80]Me for LVT151012, and m1,2 corresponding to
chirp mass 9.5, 10.5 Î [ ]Me and mass ratio qä[1, 18] for
GW151226. We use uniform priors on the spin magnitudes
a1,2ä[0.0, 0.99]. We use a uniform solid angle prior for the
spin angles, where a

1,2q is a uniform distribution a
1,2q

0, 2pÎ [ ), and p
1,2q is a sine-angle distribution. For the

luminosity distance, we use a uniform in volume prior with
dLä[10, 1000] Mpc for GW150914, dLä[10, 1500] Mpc for
GW151226, and dLä[10, 2500]Mpc for LVT151012. We use
uniform priors for the arrival time tcä[ts− 0.2 s, ts+ 0.2 s],
where ts is the trigger time for the particular event obtained
from the gravitational-wave search (Abbott et al.
2016b, 2016c). For the sky location parameters, we use a
uniform distribution prior for 0, 2a pÎ [ ) and a cosine-angle
distribution prior for δ. The priors described above are the same
as those used in Abbott et al. (2016b).
The parameter estimation analysis produces distributions that

are a sampling of the posterior probability density function for
the variable parameters from the ensemble MCMC. We map
these distributions obtained directly from the analysis to obtain
estimates of other parameters of interest such as the chirp mass,
, mass ratio, q, effective spin, χeff, and the precession spin,
χp (Schmidt et al. 2015) parameters. We use dL to relate the
detector-frame masses obtained from the MCMC to the source-
frame masses using the standard Λ-CDM cosmology
(Schutz 1986; Finn & Chernoff 1993).
Recorded in Table 1, is a summary of the median and 90%

credible interval values calculated for GW150914, GW151226,
and LVT151012 analyses. Results for m m1

src
2
src- , q−χeff,

and dL−ι are shown in Figures 4, 5, and 6 for GW150914,
GW151226, and LVT151012, respectively. The two-dimen-
sional plots in these figures show the 50% and 90% credible

Table 1
Results from PyCBC Inference Analysis of GW150914, GW151226,

and LVT151012. Quoted are the Median and 90% Credible Interval Values
for the Parameters of Interest. Interpretations of these Results are

Summarized in Section 4.2

Parameter GW150914 GW151226 LVT151012

det M31.03 1.527
1.555

-
+

 M9.71 0.058
0.059

-
+

 M18.09 0.782
1.04

-
+



m1
det M38.9 3.3

5.5
-
+

 M15.0 3.3
8.2

-
+

 M27.3 5.9
16.7

-
+



m2
det M32.9 4.9

3.2
-
+

 M8.5 2.5
2.3

-
+

 M16.3 5.8
4.3

-
+


src M28.18 1.38

1.59
-
+

 M8.86 0.246
0.302

-
+

 M14.99 0.964
1.302

-
+



m1
src M35.4 3.1

5.2
-
+

 M13.7 3.1
7.4

-
+

 M22.6 5.1
14.3

-
+



m2
src M29.9 4.4

3.0
-
+

 M7.7 2.3
2.1

-
+

 M13.5 4.8
3.8

-
+



q 1.18 0.16
0.39

-
+ 1.76 0.69

2.15
-
+ 1.68 0.63

2.51
-
+

effc 0.0324 0.12
0.11- -

+ 0.1986 0.07
0.17

-
+ 0.0046 0.16

0.25
-
+

a1 0.31 0.28
0.57

-
+ 0.53 0.46

0.40
-
+ 0.33 0.3

0.54
-
+

a2 0.31 0.29
0.57

-
+ 0.52 0.45

0.41
-
+ 0.36 0.32

0.53
-
+

dL 493 Mpc196
125

-
+ 461 Mpc181

157
-
+ 1062 Mpc458

454
-
+
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regions, and the one-dimensional marginal distributions show
the median and 90% credible intervals. Overlaid are the one-
dimensional marginal distributions, median, and 90% credible
intervals, as well as the 50% and 90% credible regions using
the samples obtained from the LIGO Open Science Center
(Vallisneri et al. 2015) for the analyses of the three events
reported in Abbott et al. (2016b) using the IMRPhenomPv2
model. The results show that GW150914 has the highest mass

components among the three events. GW150914 has more
support for equal mass ratios, whereas the GW151226 and
LVT151012 posteriors support more asymmetric mass ratios.
Overall, there is preference for smaller spins, with GW151226
having the highest spins among the three events. While the
inclination and luminosity distances are not very well
constrained, with generally a support for both face-on (ι= 0,
line of sight parallel to binary angular momentum) and face-off

Figure 4. Posterior probability densities for the main parameters of interest from the PyCBC Inference analysis of GW150914. The parameters plotted are
(a) m m1

src
2
src- , (b: q−χeff, and (c) dL−ι. The bottom-left panel in each of (a), (b), and (c) show two-dimensional probability densities with 50% and 90% credible

contour regions from the PyCBC Inference posteriors. The top-left and the bottom-right panels in each figure show one-dimensional posterior distributions for the
individual parameters with solid lines at the 5%, 50%, and 95% percentiles. For comparison, we also show 50% and 90% credible regions, one-dimensional posterior
probabilities with dashed lines at 5%, 50%, and 95% percentiles using the posterior samples obtained from the LIGO Open Science Center (Vallisneri et al. 2015) for
the GW150914 analysis reported in Abbott et al. (2016b), using the IMRPhenomPv2 model. The measurements show that masses for GW150914 are much better
constrained as compared with the other parameters presented. Though there is support for the system being both face-on and face-off, there seems to be slightly more
preference for a face-off system. The posteriors suggest a preference for lower spins. Our measurements are in agreement with the results presented in Abbott et al.
(2016b) within the statistical errors of measurement of the parameters.
(A color version of this figure is available in the online journal.)
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(ι= π, line of sight anti-parallel to binary angular momentum)
systems for all the three events, GW150914 seems to have
more preference for face-off systems. We also computed χp for
each of the three events and found no significant measurements
of precession. Overall, our results are in agreement with those
presented in Abbott et al. (2016b) within the statistical errors of
measurement.

5. Conclusions

In this paper we have described PyCBC Inference, a Python-
based toolkit with a simplified interface for parameter
estimation studies of compact-object binary mergers. We have
used this toolkit to estimate the parameters of the gravitational-
wave events GW150914, GW151226, and LVT151012; our
results are consistent with previously published values. In these

Figure 5. Posterior probability densities for the main parameters of interest from the PyCBC Inference analysis of GW151226. The parameters plotted are
(a) m m1

src
2
src- , (b) q−χeff, and (c) dL−ι. The bottom-left panel in each of (a), (b), and (c) show two-dimensional probability densities with 50% and 90% credible

contour regions from the PyCBC Inference posteriors. The top-left and the bottom-right panels in each figure show one-dimensional posterior distributions for the
individual parameters with solid lines at the 5%, 50%, and 95% percentiles. For comparison, we also show 50% and 90% credible regions, one-dimensional posterior
probabilities with dashed lines at 5%, 50%, and 95% percentiles using the posterior samples obtained from the LIGO Open Science Center (Vallisneri et al. 2015) for
the GW151226 analysis reported in Abbott et al. (2016b) using the IMRPhenomPv2 model. The measurements show that GW151226 is the lowest mass and fastest
spinning binary among the three O1 events presented in this work. The posteriors support asymmetric mass ratios. Inclination ι and distance dL are not well
constrained, and there is support for the system being both face-on and face-off. Our measurements are in agreement with the results presented in Abbott et al. (2016b)
within the statistical errors of measurement of the parameters.
(A color version of this figure is available in the online journal.)
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analyses, we do not marginalize over calibration uncertainty of
the measured strain in our results, which was included in prior
work (for example Abbott et al. 2016b, 2016d, 2016e). We will
implement this in PyCBC Inference in the future. We have
made the samples of the posterior probability density function
from the PyCBC Inference analysis of all three events available
in https://github.com/gwastro/pycbc-inference-paper (De et al.
2018) along with the instructions and configuration files needed
to replicate these results. The source code and documentation for

PyCBC Inference is available as part of the PyCBC software
package at http://pycbc.org.
PyCBC Inference has already been used to produce several

astrophysical results: (i) a test of the black hole area increase
law (Cabero et al. 2018); (ii) measuring the viewing angle of
GW170817 with electromagnetic and gravitational-wave
signals (Finstad et al. 2018); and (iii) measuring the tidal
deformabilities and radii of neutron stars from the observation
of GW170817 (De et al. 2018). The results presented in this

Figure 6. Posterior probability densities for the main parameters of interest from the PyCBC Inference analysis of LVT151012. The parameters plotted are
(a) m m1

src
2
src- , (b) q−χeff, and (c) dL−ι. The bottom-left panel in each of (a), (b), and (c) show two-dimensional probability densities with 50% and 90% credible

contour regions from the PyCBC Inference posteriors. The top-left and the bottom-right panels in each figure show one-dimensional posterior distributions for the
individual parameters with solid lines at the 5%, 50%, and 95% percentiles. For comparison, we also show 50% and 90% credible regions, one-dimensional posterior
probabilities with dashed lines at 5%, 50%, and 95% percentiles using the posterior samples obtained from the LIGO Open Science Center (Vallisneri et al. 2015) for
the LVT151012 analysis reported in Abbott et al. (2016b) using the IMRPhenomPv2 model. The measurements again show that the spins, inclination, and distance are
not very well constrained and there is support for the system being both face-on and face-off. Our measurements are in agreement with the results presented in Abbott
et al. (2016b) within the statistical errors of measurement of the parameters.
(A color version of this figure is available in the online journal.)
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paper and in the studies above demonstrate the capability of
PyCBC Inference to perform gravitational-wave parameter
estimation analyses. Future developments under consideration
are implementation of models to marginalize over calibration
errors, generic algorithms to perform model selection, HPD to
compute credible intervals, methods for faster computation of
the likelihood, and more independent samplers for cross-
comparison and validation of results for parameter estimation
and model selection.
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