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Abstract

We give an explicit recursive description of the Hilbert series and Grobner bases for the
family of quadratic ideals defining the jet schemes of a double point. We relate these
recursions to the Rogers—Ramanujan identity and prove a conjecture of the second
author, Oblomkov and Rasmussen.
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1 Introduction

In this paper, we study a family of quadratic ideals defining the jet schemes for the
double point D = Speck[x]/x2. Here k is a field of characteristic zero. Recall that
the (n — 1)-jet scheme of X is defined as the space of formal maps Spec k[7]/t" — X
[11]. In the case of the double point, such a formal map is defined by a polynomial
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x() =x0+x1t+ -+ xp_1"L,

suchthatx(r)> = 0 mod . By expanding this equation, we get a system of equations
n—1
fi= Xg, for=2x0x1,..., fun= inxn—l—i~
i=0

We denote the defining ideal of Jet*~' D C A" by

L :={ft,.-.., fu) €S R, :=K[x0, ..., xp—1].

The ring R, is Zzzo-graded by assigning the grading (i, 1) to x;. It is then clear that
the ideal [, is bihomogeneous. Let

Hu(g, 1) = ) dimp(Ra/1)i jq't! € Zllg, 1]]
i,j=0

denote the bigraded Hilbert series for R,/ I,,. Our first main result is the following.

Theorem 1.1 The series H,(q, t) satisfies the recursion relation

H,_»(q, qt) + tHy_3(q., g*1)
1 — g1t

Hn(qv t) =

with initial conditions

Ho(g,1) =1, Hi(g.t) =1+t Hy(q,t)= +1.

1—gt

Using this recursion relation, we obtain explicit combinatorial formulas for
Hl‘l (qs t ):

Theorem 1.2 The Hilbert series H,(q, t) is given by the following explicit formula:

h(n,p)+1 -1
- : i ( nI]; )q.qP(P )tP
n(g,t) = —h( ) N
S (U= g pn (=g )

where h(n, p) = |5 ].

Inthe limitn — oo, we reprove the theorem of Bruschek et al. [4], which relates the
Hilbert series of the arc space for the double point to the Rogers—Ramanujan identity.
In fact, we refine their result by considering an additional grading, see Eq. (7.1) .
Similar results for n = co were obtained by Feigin—Stoyanovsky [8,9], Lepowsky et
al. [5,6], and the second author, Oblomkov and Rasmussen in [10].
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Quadratic ideals and Rogers—-Ramanujan recursions

Remark 1.3 We note that in the Lie theoretic literature the variables of R,, are often
indexed x1, x2,...0r x_q, x_o, ... instead of our choice xg, x1, . ... We feel our nor-
malization is more natural for purposes of commutative algebra.

Although our approach to the computation of the Hilbert series is inspired by [4], it
is quite different. The key result in [4] shows that for n = oo the polynomials fj form
a Grobner basis of the ideal I,,. As shown below, the Grobner basis of the ideal 7,
for finite n is larger and has a very subtle recursive structure. We completely describe
such a basis in Theorems 4.2 and 4.6. In particular, we prove the following.

n—k+1
Theorem 1.4 Let k > 2. Then the reduced Grobner basis for I, contains (L o J)

polynomials of degree k.

Our proof of Theorem 1.1 does not use Grobner bases at all. First, by an explicit
inductive argument in Theorem 2.2 we give a complete description of the first syzygy
module for f;. Then, we define a “shift operator” S : R,, — Rj+, which sends x; to
Xi+1, and identify I, N xoR,, and I,,/(I,, N xoR,) with the images of I,,_3 and I,,_»
under appropriate powers of S. This implies the recursion relation in Theorem 1.1.

Remark 1.5 The shift operator has a left inverse given by x; — x;—y fori > 1. It
can be extended to a derivation, and in the n — oo limit this derivation has been
successfully used in work of Capparelli-Lepowsky—Milas as well as Kanade [5,12] to
prove results similar to ours, using a backward induction argument. This is in contrast
to our forward inductions which work for all n. We note also that in [4] a forward
induction argument is used in the n — oo limit. The representation-theoretic origin
of the shift operators lies in the lattice part of the affine Weyl group of type Ay, but
we do not pursue this connection further.

We also observe a recursive structure in the minimal free resolution of R, /I,. In
particular, we prove the following:

Theorem 1.6 Let b(i, n) denote the rank of the ith term in the minimal free resolution
for R,/ I, in other words the ith Betti number. Then

bi,n)=bi,n—1)+b(i—1,n—=3)+b(i —2,n—3).
As a consequence, we can compute the projective dimension of R, /1,,.
Corollary 1.7 The projective dimension of Ry, /I, equals |'27"'|.

Remark 1.8 It is easy to see that the reduced scheme (Jet”~! D)™ is a linear subspace
given by the equations xo = ... = X|nst) = 0 and has dimension

_1 1
dimJet" " 'D=n—1-|" = .
2 2

A more careful analysis of the gradings in Theorem 1.6 implies another formula
for the series Hy(q, t) which was first conjectured in [10].
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Theorem 1.9 The Hilbert series of R, /I, has the following form:

s o o
e

N qsp2—3pt2p<n—2p+1> _q5p22+5pt2p+2<n—2p—1> .
p g p g

The paper is organized as follows. In Sect. 2 we introduce the shift operator S,
describe its properties and prove Theorem 2.2 which explicitly describes all syzygies
between the f;. In Sect. 3, we use the shift operator to find a recursive relation for
the Hilbert series and to prove Theorem 1.1. In Sect. 4, we use the recursive structure
to describe a Grobner basis for [,,. In Sect. 5, we give a recursive description of the
minimal free resolution of R, /I, and prove Theorem 1.6. In Sect. 6, we solve both of
the above recursions explicitly (with the given initial conditions) and give two explicit
combinatorial formulas for H,, (g, t). Finally, in Sect. 7 we briefly discuss the limit of
all these techniques at n — oo and the connection to the Rogers—Ramanujan identity.

Hy(gq.1) =

2 Ideals and syzygies

2.1 Ideals

Let R, = K[xp,...,x,_1] and f; = Zf:é XiXy—1—;. Define I, € R, to be the ideal
generated by fi,..., f,. Let F,, be the free R,-module with the basis ey, ..., e,.
Consider the map ¢, : F,, — R, given by the equation

Gn(@r, ..., an) = flar + ...+ fuan.
The R;,-module Ker(¢;,) is called the first syzygy module of I;,.

Lemma 2.1 One has

> (= 3i)xi fug1-i = 0. 2.1)

i=0

Proof Indeed,

Z(n = 30X fot1-i = Z (n — 30)x; X X;.

i=0 i+k+l=n

The coefficient at each monomial x;xzx; equals

m—=3i)+mn—-3k)+(n—-3l)=3n-3(+k+1)=3n—-3n=0.

@ Springer



Quadratic ideals and Rogers—-Ramanujan recursions

For 0 < k < n, define
i = (—2kxg, (—=2k +3)x5—1,...,kx0,0,...,0) € F,.

By (2.1), we have ¢, (i) = 0. Denote also v;; = fie; — fje; (fori # j). Itis clear
that ¢, (v;;) = 0. The main result of this section is the following.

Theorem 2.2 The first syzygy module Ker(¢,) is generated by iy and v; j over R,.
We prove Theorem 2.2 in Sect. 2.4.

Remark 2.3 For n = oo a similar result was obtaiﬁd by Kanade [12], whose con-
structions are motivated by the affine Lie algebra sly. In particular, the ideals 7, in
Kanade’s picture, as well as in, e.g., Capparelli-Lepowsky—Milas [6], correspond to

Py

the principal subspaces of level 1 standard modules for sl,. See also [8,10].

2.2 The shift operator

We define a ring homomorphism S : R, — R, by the equation S(x;) = x;+1. Note
that S is injective and we can uniquely write any polynomial in R, in the form

F=x0f"+S(f", f'€Rn, " € Ru-1.
The following equation is clear from the definition and will be very useful:
Jn = 2x0x0-1 + S(fu-2). (2.2)
By abuse of notation, denote also S : F,, — F, 1> the map which is given by
Sy, ..., 0) = (0,0, S(xp), ..., S(an)). (2.3)

Lemma 2.4 Let o € F,. Then ¢,2(S()) is divisible by x¢ if and only if ¢, () = O.
Proof By (2.2) we have

On2(S(a)) = Z S(i) fiza =S (Z ot,ﬁ) mod xo.

i=1 i=l1

Therefore ¢,4+2(S(e)) is divisible by xp if and only if SO  «; f;) is divisible by xo.
But since no shift contains xo, this happens if and only if

S wfi)=0e Y aifi = du@ =0.
O

Since ¢, (r) = ¢ (vij) = 0, by Lemma 2.4 the images of S(ux) and S(v;;) under
¢n+2 are divisible by xo. The following lemma describes these images explicitly.

@ Springer



Y.Baietal.

Lemma 2.5 Onehas ¢ 2(S(ur)) = (2k+6)xx13 f1+2k+3)xk 12 fo—(k+3)x0 fr14,
Gn2(SWij)) = 2x0x 41 fira — 2x0Xi+1 fj+2.
Proof By definition,

S(ue) = (0,0, —2kxpr1, (=2k + 3)xk, ..., kx1,0,...,0)
= pk43 + 2k + 6)xpq3er + (2k + 3)xg2e0 — (k + 3)x0ex44,

SO
Gn+2(S(uk)) = 2k + 6)xr43 f1 + 2k + 3)xp42 f2 — (k + 3)x0 frt4-
Also, S(vij) = S(fi)ej+2 — S(fj)eit2, so

Gn+2(S(ij)) = S(fi) fj+2 — SUf) fitz
= (fi+2 — 2x0xi+1) fj+2 — (fj+2 — 2x0xj+1) fi+2
= 2x0Xj+1fi+2 — 2x0%i41 fj+2-

Corollary 2.6 One has

Pn2(S(r)) = 2k + 3)xpq2 f2 — (k + 3)x0S(fry2)
= kxpya fo — (k + 3)x052(fi)-

Proof

G2 (S(1r) = 2k + 6)x43 fi + (2k + 3)xis2 fo — (k + 3)x0 fira
= 2k + 6)xx13 f1 + 2k + Dxp42 12
— (k4 3)(2x2 X143 + 2x0x15512 + %052 (f2))
= 2k + 3)xxs2.f> — (k + 3)x05( fit2)
= kxisafo — (k4 3)x0S%(fo).

Example 2.7 1y = (—2x1, x0), so S(u1) = (0,0, —2x2, x1), and

G4(S(11)) = — 2x2(2x0x2 + X7) + X1 (2x0x3 + 2x1X2)
= 2X3X0X] — 4x0x§ =x3f2 — 4x052(x§).

Lemma 2.8 The polynomial x1S( fn—2) can be expressedvia fi, ..., fn—1 modulo x.
Proof We have (n — 3)xo f—2 + (n — 6)x1 fu—3 +--- —2(n — 3)x,—2fo = 0, so

(n = 3)x18(fu—2) + (n = 6O)x28(fp—3) + -+ — 2(n — 3)x,—15(fo) = 0.

It remains to notice that S(f;) = fi+2 mod xp. O

@ Springer



Quadratic ideals and Rogers—-Ramanujan recursions

Lemma 2.9 Assume that Ker(¢,_2) is generated by p and v; j and suppose that
¢n (@) is divisible by xo. Then a, = Axo + Bx1 + Z:’z}l yi fi for some A, B, and y;.

Proof As stated above, we can write o; = xoe; + S(e;"_,) fori > 3. Since f1 and f>
are divisible by x¢, we get

$u(S@") =Y S/ fi=) eifi=0 mod x.

i=3 i=1

By Lemma 2.4 we get ¢, _»(a”") = 0. By the assumption, we can write

D B+ Y vijvij-

k<n—2 i<j<n-2
Therefore
- 2—,3n 1X0 + Z Vin—2Sjs
j<n-3
and

oy = xoa,, + S(a)_y) = xoa, + S(Bu—1)x1

+ Z S(yjn-2)(fi+2 — 2x0Xj+1)-
j<n-3

2.3 Examples

Before proving Theorem 2.2, we would like to present the proof for n < 4.

Example 2.10 Forn = 2, we have f; = xé and f> = 2xpx1, so the module of syzygies
is clearly generated by (—2x1, xo) = u1

Example2 11 Letn = 3, suppose that o1 f1 + a2 fo + a3 f3 = 0. We can write
o3 = oz3x0 + oe3, where oz ' does not contain xo Since f; and f2 are divisible by xg
and f3 = 2xox2 + xl, we get x%ag’ =0,s0a; =0.Now a = a3u2 + y, where y
is a syzygy between f; with y3 = 0. By the previous example, y is a multiple of w1,

so the module of syzygies is actually generated by | and 5.

Example 2.12 Let n = 4, suppose that o is a syzygy. We can write a3 = ajxg + of
and a4 = axo + o where o do not contain xo. Similarly to the previous case, we
obtain

aix? +af - 2x1x = 0. (2.4)

@ Springer
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This means that there exists some 8 such that & = —2x8 and o) = x18. Now

Ollx(% + az - 2x0x1 + (otéxo —2x28)(2xpx2 + x12)
+ (ayxo + x18)(2x0x3 + 2x1x2) = 0.

The terms without xq cancel, and the linear terms in x( are the following:
x0Qaaxy + ahx] — 4x3 B 4 2a'dx xy + 2Bx1x3) = 0.

Note that all terms but —4x§ B are divisible by x1, so g is divisible by x1, 8 = mx.
Then

ay = afxo + mx? = (o) — 2xam)xg + mf;.

By subtracting mvs 4+ % (oy—2xom) 3 from o, we obtain asyzygy between f1, f2, f3,
and reduce to the previous case.

2.4 Syzygies

In this section, we prove Theorem 2.2 by induction on n. The base cases were covered
in Sect. 2.3. Suppose that ¢ = (ap,...,®,) € Ker(¢,), i.e., is a linear relation
between f1, ..., f,. As stated above, write o; = atjxo + S(a/_,) for i > 3. Without
loss of generality, we can assume that o, do not contain xo (otherwise we can subtract
a multiple of v; ;). Since

fi = 2xpxi—1 + S(fi—2),

by collecting terms without xo we get > 73 S(a/ ,)S(fj—2) = 0. This means that
¢n_2(a”) = 0 and by the induction assumption we may then write

n—1
4
o =N Bimicat Y. Bikvi-ak-2
i=3 3<j<k=n,j#k

Because
SWj—2,k-2) = =S(fr—2)ej + S(fj—2)er = vj i + 2xoxrej — 2xoXjex,

without loss of generality we can assume o” = § (Z;’;; Bi+1ti—2). By Corollary 2.6
we get

P (S(ni-2)) = —( + DxoS(fi) + (2i — Dxi—1 f2,

@ Springer
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hence
n—1
¢n@) = a1 fi + (@2 + Y (2 = DSBirD)xi-1) f2
i=3
n n—1
+ Y xoa fi = Y (i + DSBiy1)x0S(fi) =0.
i=3 i=3

By collecting the terms linear in x¢, we get

n—1 n
<062 + Z(2i - 1)5(,3i+1)xi1>2x1 + Zafs(ﬁ—z)
i=3 i=3
n—1
=Y G+ DSBir)Sf) =0,
i=3

SO
n n—1
D S(fica) = Y i+ DSBir)S(f)
i=3 i=3

is divisible by x1, and

n—1

Yol fica= Y i+ Dpipi fi

i=3 i=3
is divisible by xo, where o« = S(a”). By Lemma 2.9, this implies

n—2

Bn = Bxo+Cx1+ Y _vifi
i=3

for some constants B, C. Now we can rewrite

oy = a,xo + S(Buxo) = a,xo + Bx% + Cx1x2
n—3

+ ) vixi(fiya = 220X 1) + Va—2x1S(fu-2).
i=3

Observe that xl2 = f3 —2x0x2, X1X2 = %(f3 — 2x0x3) and by Lemma 2.8 x1S( f,,—2)

can be expressed via f1, ..., f;—1 modulo xg. In other words,
n—1
o, = Sxp + Z i fi
i=3

@ Springer
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for some coefficients ;. Then o — n+18u,,_ 1 — Zl":_; 8;v;,j is a syzygy between
fi, ..., fu—1, so by the induction assumption it can be expressed as an R,_1-linear
combination of the u; and v; ;.

Remark 2.13 The above proof shows that the syzygies v x and vy are not necessary,
and can be expressed as linear combinations of other syzygies. Indeed, since the
coefficients at ex are divisible by x, one can subtract an appropriate multiple of 1t —
and get a syzygy involving ey, ..., ex—1 only.

3 Hilbert series

In this section, we prove Theorem 3.5 by studying the relation between the ideals I,
and xoR,,.

Lemma 3.1 One has

Ry/(xoRy + 1) = S(Ry—2/1,—2)[xn 1]
as Ry,-modules, the module structure on the right coming from S : R,—1 — R,.

PrOOf We haVe xORn + I = <x07 flv ] fi’l) = <-x07 S(fl)v ] S(fn—2)>» SO

Rn/(xoRn + In) = Rn/{x0, S(f1)s - .. S(fu—2)) = S(Rp—2/1n-2)[xp—1].
O

Lemma 3.2 The subspace xoSz(In_g)[xn_l] does not intersect the ideal (1, f>) in
R,.. Furthermore, x0S*(I,—3)[xn—1] + (f1, f2) is an ideal in R, which is contained
inl, NxoR,.

Proof Given a non-zero polynomial g € I,,_3, the iterated shift S?(g) does not contain
xo or x1, so that xoS2(g) is not contained in (fi, f>). Furthermore, I,_3 is stable
under multiplication by xq, ..., x,—4, SO S 2(1,1_3) is stable under multiplication by
X2, ...,Xn_2, and xoSz(ln_g)[xn_l] is stable under multiplication by x2, ..., x,—1.
Multiplication by xq or x| sends the latter subspace to ( 1, f>), 50 x0S%(I,—3)[x,—1]1+
(f1, f2) is anideal in R,,.

Finally, to prove that this ideal is contained in I,, it is sufficient to prove that
xoSz(fk) € I, for k < n — 3. On the other hand, by Corollary 2.6:

1
x0S%(fi) = 153 (SG)  mod (fi. fa).

Lemma 3.3 One has
L N xoRy = x0S*(Ii—3)[xn—11+ (f1, fo).

@ Springer
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Proof By Lemma 3.2, the right-hand side is a submodule of the left-hand side, so it
remains to prove the reverse inclusion. We have

fi = 2xoxi—1 + S(fi2) = 2xoxi—1 + 2x1xi—2 + S*(fi—a).

Suppose that Y "_, &; fi € I, N xoR,. Then by Lemma 2.9,
oy = Axo + Bxy + Z yjfi = A'xo+ B'x1 + Z Vi S*(fj-a).
J J

Now by (2.1) and Corollary 2.6, xq f;; and x f;, can be expressed as R, -linear combi-
nations of fi, ..., fu—1 and elements of x0S>(I,_3)[x,—1] + (f1, f>), sO Y aifi
can be expressed as such a combination as well. Induction on 7 finishes the proof. O

Corollary 3.4 One has
xRy /(In N xoRy) = x5 (Ru—3/In—3)[xn—1].
Proof We have

xoRn/(f1, o) = X0R/(x3, x0x1) = x0k[x2, . .., Xp—1] = x0S*(Ry—3)[Xn—1].

Therefore

X0 Rn/(Iy N x0Ry) = x0Rn/(x0S*(Ii—3)[xn—11+ (f1, o))
= x0S*(Ry—3/In—3)[Xn—11.

O

Theorem 3.5 Let H,(q, t) denote the bigraded Hilbert series of the quotient R, /1I,.
Then one has the following recursion relation:

Hy—2(q, qt) + tHy—3(q, ¢*t)

Hi(q.1) = ger=r

3.1)

with initial conditions

Ho(g,t) =1, Hi(g,t)=1+1t, Hy(q,t)= + 1.

1—gt

Remark 3.6 This recursion is similar, but not identical to the various recursions con-
sidered by Andrews [1-3] in his proofs of the Rogers—Ramanujan identity. It is also
similar to the recursions recently considered by Paramonov [13] in a different context.
In the n — oo limit, Capparelli-Lepowsky-Milas [5] use analogous exact sequences
for principal level 1 subspaces of the standard modules of sl to arrive at a similar
formula.
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Proof We have an exact sequence
0— xoR,/(xoR, N 1I;,) = R,/I, = R,/(xoR, + I,,) — 0.

By Lemma 3.1, the Hilbert series of R,/ (xoR,,+1,,) equals M, and by Corollar
y q 1_qn ll y y

2
3.4 the Hilbert series of xoR,,/(xoR, N I,,) equals "H]"j]%. ]

4 Grobner bases

We will now compute Grobner bases for the ideals 7,. Recall that a Grobner basis
for an ideal [ is a subset G = {g1, ..., g5} C [ such that, for a chosen monomial
ordering <,

(LT<(g1), ..., LT<(gs)) = LT (1),

where LT - denotes leading term.
Let us order the monomials in R, in grevlex order, that is

x% < xP
if || < |B| or |@| = |B| and the rightmost entry of &« — B is negative.

Remark 4.1 In fact, any order refining the reverse lexicographic order will work, but
for definiteness and its popularity in computer algebra systems we shall fix grevlex
order throughout.

Theorem 4.2 Let

Gi={/i}SR.G2={f1, L} C R

and recursively define the sets G,,n > 3 as follows:
Gn = x08*(Gu—3) U {f1, 2} US(Gy-2),

where S is a modified shift operator as explained below. Then G,, is a Grobner basis
for I,.

Remark 4.3 The notation requires explanation. Note that any G, is naturally a subset
of R,, n > m so we can and will identify G,, inside a larger polynomial ring without
explicit mention. Furthermore, we denote by x0S2(G,_3) the image of G,—_3 under
S2:R,_» —> R, multiplied by x¢. The “operator” S is defined on elements pel,»
as follows: write p = Y 7_, ; f;, and let

S(p) =) S fira-

i=1
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Note that by (2.2), we have §( p)=S(p) + ZZ=1 x0Xi+2S(¢i) € I42. In particular,
if p # 0 and p is homogeneous then LT-(S(p)) = S(LT<(p)). Therefore, the
construction of S(p) requires a choice if ¢;, but the leading term of the result does not
depend on this choice.

Proof We will proceed by induction. The base cases n = 1, 2 are clear because the
ideals are monomial. Consider now the ideal LT (/,) generated by all the leading
terms of elements of [,. It is clear by Lemma 3.1 and the fact that S respects the
reverse lexicographic order that if g € I, is not divisible by xo, its leading term is the
image of a leading term in /,_» under S. Since we assumed G,_» to be a Grobner
basis, we must have LT - (g) divisible by some monomial in S(LT-(G,—2)).

Similarly, if g is divisible by x(, we know by Lemma 3.2 and order preservation
that its leading term is the image under xoS> of a leading term in I,_3 or divisible
by fi1, f>. By the induction assumption LT_(g) is then divisible by an element of
x0S2(LT-(Gn—3)) U{f1, f>}. In particular, LT (Z,,) € (LT-(G,)). But the reverse
inclusion is clear, so we have

LT.(Iy) = (LT< (Gn)>

as desired, and G, is a Grobner basis for 7,,. O

Example 4.4 We have

G3 = {11, f2, f3},
Ga = {f1. 2. f3 fa. x0x3},
Gs = {f1, f2, 3, fa, f5, x0x2x3},

Ge={f1,---, fo, x0x32 + 2x0Xx2X4, 2x1x§ + 3x0Xx3X4 — X0X2X5}.
Note that the last polynomial in G¢ can be identified with §(x0x§) € §(G4). Indeed,

4xox§ = 2x2(2x0x2 + x%) — x12x0x3 + 2x1x2) + x3(2x0x1)
=2x2f3 — x1fa+x3 /2,

SO

SWxox?) = 2x3.fs — x2.fo + x4 fa
= 2x3(2x0x4 + 2x1x3 + x%) — x2(2x0x5 + 2x1x4 + 2x2X3)
+ x4 (2x0x3 + 2x1x2)
= 4x1x32 + 6x0Xx3X4 — 2X0X2X5.

Remark 4.5 The Grobner basis constructed in Theorem 4.2 is far from being reduced.
The following theorem describes the reduced basis implicitly.

Since all G, contain {fi,..., f,} and none of their leading terms divides one
another, we can throw away other polynomials in G,, in a controlled manner to obtain
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a minimal Grobner basis. That is to say, if the leading terms of G,\{g} still gen-
erate the leading ideal we are in business. Therefore after appropriate reduction [7,
Proposition 6 on p. 92] we get a reduced Grobner basis with the same leading terms.

Let us call a monomial [ | xf” admissible if a; + aj+1 < 1 for all i, that is, it is not
divisible by x? or by x;x;41.

Theorem 4.6 Fix k > 2. The leading terms of (t-)degree k in a reduced Grobner basis
for I, have the form m(x) LT - (fy+k—2) where m(x) is an admissible monomial of

degree k — 2 in variables xy, . . ., X\ mth= |- The number of degree k polynomials in
n—k+1
the reduced Grobner basis equals (L 2o J).

Remark 4.7 1t is easy to see that there are no linear polynomials in the Grobner basis
(or in the ideal I,,), and f1, ..., f, are the only quadratic polynomials in the reduced
Grobner basis.

Proof We prove the statement by induction in n. Suppose that it is true for G,_; and
G,—3. By Theorem 4.2, the leading monomials in the degree k part of G,, consist of
shifted degree k monomials in G,_;, and twice shifted degree (k — 1) monomials in
G, 3, multiplied by x¢.

Consider first the case k = 3. We will prove that the leading terms in the reduced
Grobner basis have the form x ; LT - (f,, 1) for j < L%J . Indeed, in the first case, we
get S(x; LT« (f(n—2)4+1)) = xj1+1 LT <(fu+1). In the second case, we have to consider
the polynomials xoS?(f;) for all i < n — 3. Observe that for i < n — 4 we get
LT (x0S2(f;)) = xo LT ( fi+4) and hence divisible by the leading term of f; 4 and
can be eliminated. For i = n — 3 we get LT<(xoSz(f,,_3)) = xo LT (fr+1)-

Assume now that £ > 3. In the first case, we get

S(m(x) LT < (fn-2)+k—2)) = S(m(x)) LT < (fn4k—2)-

If m(x) is an admissible monomial in x;, 0 < j < [“=2%H=7 | then S(m(x)) is an
admissible monomial in x;, 1 < j < LWJ +1= L%J.
In the second case, we get

x0S%(m(x)) LT = (fin—3)+(k—1)-2)) = X087 (m(x)) LT~ (fk—2)-

Now S2(m(x)) is an admissible monomial in xj,2=<j< LWJ +2 =
L#J, s0 x0S2(m(x)) is also an admissible in a correct set of variables. In fact, all
such monomials not divisible by xo appear from the first case, and the ones divisible
by xo appear from the second case.

It is easy to see that none of these leading monomials are divisible by each other.
Therefore after appropriate reduction [7] we get a reduced Grobner basis with the
same leading terms.

Finally, we can count monomials of given degree k. The number of admissible
monomials of degree [ in s variables equals (“é“), so the number of polynomials in
G, of degree k equals
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<1+L%J—(k—2)+1>_<L%J>
k—2 "\ k=2 )

m}

Example 4.8 Let n = 12. The reduced Grébner basis for /1, contains quadratic poly-
nomials f7, ..., f12. It also contains 5 cubic polynomials with leading terms

xoxg, xlxg, xzxé, x3x§, x4x§,
6 quartic polynomials with leading terms
XQX2X6X7, X0X3X6XT, X0X4X6XT, X1 X3X6XT, X1 X4X6XT, X2X4X6X7,
and 4 quintic polynomials with leading terms
X()XZX4)C72, x0x2x5x72, x0x3x5x72, X1X3X5X72.

Observe that LT (f13) = x2, LT<(fi4) = x¢x7, and LT (f15) = x7.

5 Minimal resolution

In this section, we describe the bigraded minimal free resolutions of 1, and R, /I,.
We write them as follows:

0«1, <~ F(,n) < FQ2,n) <~ F@3,n)---
and
0« R,/I, < R, =F@QO,n) < F(l,n) <~ FQ2,n) < FQ3,n)---

Theorem 5.1 Let F (i, n) be the i-th term in the minimal free resolution for I,,. Then
there is an injection F(i,n — 1) — F(i, n), and

FG,n)/FGi,n—1)~SFGi—1,n—3) ®x0SF(Gi —2,n—3))

as R,-modules, and the shift of a free R,-module is as in (2.3). Note that the gradings
in the right-hand side are shifted by the bidegree of f, (which equals ¢"~'1?).

Proof Observe that the ideal generated by fi,..., f;—1 in R, is isomorphic to
I,_1[x,—1], so its minimal resolution over R, is identical to the one for I,,_; over
R,—1 tensored over R,. Moreover, since I, = (fi,..., fu), the minimal free R,-
resolution of 7,,_1[x,—1] is naturally a subcomplex of the minimal free resolution for
I,,. In other words, F(i,n — 1) ®g,_, R, can be identified with a subspace in F (i, n),
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which we will by abuse of notation also denote F(i,n — 1). We have a short exact
sequence

0— F(i,n—1)— F(i,n)— F@,n)/F(i,n—1) — 0.

From the long exact sequence in cohomology, it is easy to see that F (i, n)/F(i,n—1)
is acyclic in positive degrees. Now I, = (f1, ... fu),s0 F(1,n)/F(1,n — 1) £ R,
is generated by a single-vector f, corresponding to f,,. Furthermore, by Theorem 2.2
F (2, n) has generators corresponding to i1, ..., y—1 and v; j for3 <i < j < n,
so F2,n)/F2,n—1) = R”’2 is spanned by the basis elements corresponding to
Kn—1 and v; , for 3 <i <n — . The differential d : F(2,n) — F(1, n) descends to
d: F(2 n)/F2,n—1) — F(,n)/F(1,n —1). It sends w,—; toxofn and v; , to
fi+ fu.

Therefore, the quotient complex with terms F (i, n)/F(i,n — 1) is isomorphic to
the minimal resolution of R,/(xq, f3,..., fu—1) = Ru/{x0, S(f1), ..., S(fn=3)).
The latter is nothing but the (shifted) minimal resolution for 7,,_3 tensored with the

two-term complex R, X R,. O
Corollary 5.2 Let b(i, n) denote the rank of F (i, n). Then
bi,n)=bi,n—1D+bli—1,n—-3)+b(i —2,n—73). 5.1

Corollary 5.3 Let H, (q 1) denote the Hilbert series for R,/1,, and let H (g,1) =
H,(q,1) ]_[n 01(1 —q't). Then H (g, t) satisfies the following recursion relation:

Hy(q,t) = Hy—1(q, 1) — ¢" " '1*(1 — 1) H,_3(q, q1). (5.2)

Corollary 5.4 The projective dimension of I,, equals f%"] — 1. The projective dimension
of R, /I, equals [%”1.

Proof By definition, the projective dimension pd(/,) is equal to the length of the
minimal free (or projective) resolution. By (5.1) we have pd(Z,) = pd(1,,—3) + 2. The
minimal free resolutions for 7, I, and I3 are easy to compute:

(/1)

I <—— Ry
(—2)(1)
(fif2) , \ x
2 R; Ry
—2x0 —4xp
X1 —X1
(1 f2 13) 0 2xo
3 2
3 R;3 Rj3.
The minimal resolution of R, /I, is one step longer than the one for I,,. O
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6 Combinatorial identities

We define

(a) _ (L—q)--(1—g%
b/, I—q)-A—=g" - A —gq)---(1—q%b)
If a < b, we set (Z)q = 0. The following lemma is well known.

Lemma 6.1 The following identities holds:

a a a—+1 a a
(b)q + qu(b + 1)q = (b i 1>q = qa_b<b>q * (b + 1)4'
Proof One has
(40), === (0)
b+1), (A—g"*H\b),

a pr1f @ a p1 (d — qa_b))
(b)ﬁq (b+1>q <b>q<1+q 1 —¢o+)

(a) (1—qa+1)_<a+1)
b), (=gt \b+1),

Theorem 6.2 The Hilbert series H,(q, t) is given by the following explicit formula:

hence

m}

00 (h(”»l’)‘H) . qP(P—l)tP
Hy(q.1) =) S (6.1)
gLty _ gh—h(n,p)sy... _ gn—1p’ ’
= =g P (1 — g1

where h(n, p) = |52 |.

Proof By Theorem 3.5 it is sufficient to prove that the right-hand side of (6.1) satisfies
the recursion relation (3.1). Let us denote the p-th term in (6.1) by H, ,(q, t) so that
H,(q,t) = Zp Hy p(q,t). Wehave h(n — 2, p) =h(n —3,p —1) = h(n, p) — 1,
SO

h(’;m)q qPP=Dgp  gp
(I — gm0y (1= q"21)

h(n,p) —D(p=2);p—1  2p-2
(p_l )q.q(p Yp=2)¢p -q*P

(I — gy (1 =g 20)

Hy—2p(q,qt) =

Hn—3,p—l (g, qu) =
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therefore

Hy 2.,(q,qt) + tH, 3. p1(q, ¢*1)

qPP=Dyp h(n, p) h(n, p)
= —h(n.p) ) qp< ) + < )
(1 =g hmPe) .- (1 = q"21) p Jg \pr=1/,

B qP P Dep h(n, p) + 1
(1 —gq=hmpry (1 = g"~21) r o/,
= (1 —q""'DH, (g, 1. (6.2)
This proves (3.1), and the initial conditions are easy to check. O

The free resolution of 7, gives another formula for the Hilbert series of R, /1,,.

Proposition 6.3 Let b(i, n), as stated above, denote the rank of i-th module in the free
resolution of R,/ I,,. Then

b(z:n)=Z[(n_2;+l><ifp>+<n_2;_l)<i—§—l>]

p

Remark 6.4 The terms in the first sum are non-zeroif p < (n+1)/3andi/2 < p <.
The terms in the second sum are non-zeroif p < (n—1)/3and (i—1)/2 < p < (i—1).

Proof Let

-2 1 —2p—1
pp= (N Y= ( D),

Then

An—1,p,)+An—=3,p—1,i—1)+An—-3,p—1,i —2)
()60 G+ GG )
-P i—p p—1/\i—-p—1
_(n—=2p p n—2p p
(60 G
=<n_2p+1><_p)=A(n,p,i).
p i—p

Similarly, B(n—1, p,i)+Bn—-3, p—1,i—1)+B(n—-3, p—1,i—2) = B(n, p,i),
so the right-hand side satisfies the recursion relation (5.1). It remains to check the base

cases:.:
FOm) =1= (" N 1),

n—1 n—23
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rem=a=ns (7)) (") (")

By Corollary 5.4 b(i,n) =0fori > 2andn < 3. O

We have the following (g, t)-analog of Proposition 6.3.

Proposition 6.5 Let B(i, n) denote the bigraded Hilbert polynomial for the generating
setin F(i,n). Then

B(i, n) = Zq5p2—3p+(i2—p><z‘—p—1)t2p+(l-_P) n—2p+1 . p
g\l = P/yq

p>0 P

SPPSpHG=p)i=p=1) 5, sy v —2p—1 D
- 2P 2+ —p) (6.3
1 p g\ —p—1/, ©3)

Proof The proof'is completely analogous to the proof of Proposition 6.3, but we include
it here for completeness. By Theorem 5.1 we have a recursion relation

b(i.n) =b(i,n—1)+¢"""b(i — 1.n - 3)(q.q1)
+¢"'3b( —2,n = 3)(q, q1). (6.4)

We need to prove that the right-hand side of (6.3) satisfies (6.4). Let

—~ 5p23p4i—p)i—p—1) . n—2p+1
o1« 2B (200 (1)
q q

p i —p
Then
—~ 5p2—9p+d+(i—p)(i—p+1) .
An—-3,p—1,i—1)(q,qt) =gq PRI 2p—2+(i—p)
X . 9
p—1/),\i—-p/,
-~ 5p2—9p+a+(i—p)i—p—1) .
An—-3,p—1,i —2)(q,qt) =¢q P opt e Dip $2p—2+G=p=1)
X . 9
p—1 g\ —p— 1 q
SO

An—3,p—1,i—1)(g,qt) +1A(n -3, p—1,i —2)(q.qt)

_yq 5p279]7+4+(2i7p)(i7p71) (2p=2+—p) n—2p p
p=1),\i—=pJ,
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Now

An—1,p,i)+q¢" 'PAm =3, p—1,i — 1)(q, q1)
+q"'PAM -3, p—1.i —2)(q.q1)

5p2=3p+i=p)i=p=1) P
=gq 2 [2P+(l p)

() ) ()]

5p2=3p+(i—p)i—p=1) i n—2p+1 Al
qut2p+(z—p)< p ) ( f ) = A(n, p,i).
P g\l = P/yg

A similar recursion holds for B (n, p,i). It remains to check the initial conditions:

b0, n) =1,

_ » B

b(lom) = (® +q1* +...+ "_ltz)zqtz(nl ) +r2<no )
q

—~ n—2
b(2,n) = qt3[n — 1], + q5z4< X )
q

n—1 n—3 n—23
= qt3( ) +q5t4( )+q7t4< ) )
1 p 1 2 4

The following result was conjectured by the second author, Oblomkov and Ras-
mussen in [10, Conjecture 4.1].

O

Theorem 6.6 The Hilbert series of R, /I, has the following form:

Hy(gq.1) =

T e -
=0

5p2—3 -2 1 5p? —2p—1
X (quzxpﬂp(n ;—l— ) —qsl ;SPIZPH(” If > )
q q

(6.5)

Proof 1t is clear that H,(q,t) = m Z?io(—l)"’b\(i, n). The latter can be
i=o U—¢q

computed by (6.3), and it remains to use the identity

p—1 14
1_[(1 _ qkt) — Z(_l)/qj(j—l)ﬂt/ <p)
k=0 =0 J

@ Springer



Quadratic ideals and Rogers—-Ramanujan recursions

7 Limitatn —»

In the limit n — oo both formulas for the Hilbert series simplify. Indeed, for fixed p
we have

lim

(), ==
n—o\p), (A—q)-(1—gP)
so we can take the limit of all the above results.

Proposition 7.1 The limit of the Hilbert series Hy(q, t) has the following form:

° gPP=Dyp

(7.1)

Proposition 7.2 The limit of the bigraded rank of the ith syzygy module F (i, n) equals

~. 5p2—3p+<z Pli=p=1) 5 i p 1
b(i, 00) = q 2t ”)(. )
Z( i—=p)yd—=q)---(1—¢qP)

p>0

+4q

2 i~ Y (i—p— . p
Mﬂp.’_zﬂl—p) .
i—p-1J,

1
X . (1.2)
(1—q)-(1—qP)
Proposition 7.3 The limit of the Hilbert series H, (q, t) has the following form:
—q ky
p
H4.0 = o 7 4 Z( b H
5172—3/7 2 ip2+ip 2042

x|g 2 7P —¢q tP (7.3)

The equality between the right-hand sides of (7.3) and (7.1) was proved in [9,
Theorem 3.3.2(b)]. Att = landt = g, onerecovers more familiar Rogers—Ramanujan
identities.

The following proposition concerning Grobner bases in the limit was proved first
in [4], but we give an alternative proof here. In fact, [4] use a slightly different basis
of Bell polynomials. In [14, Section 17], a vertex-algebraic proof of essentially the
same fact was also obtained. Yet another proof can be obtained by taking the limit in
Theorem 4.6, as follows.

Proposition 7.4 For n — oo, the polynomials f; form a Grobner basis for the ideal

Ino.
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Before embarking on the proof, we record the following lemmas concerning Grob-
ner bases here for the convenience of the reader.

Lemma 7.5 ([7] Proposition 8 on p. 106). Given (g1, ..., &) € Fs, the S-pairs

e 1Cm(LT<(gl-), LT<(gj)) L 1CII1(LT<(g,‘), LT<(gj))e_ (7 4)
i LT (31) l LT (g;) ' '
form a homogeneous basis for the syzygies on {LT-(g1),...,LT-(gs)}.

Lemma 7.6 ([7]Proposition9onp.107)Letl = (g1, ..., gs). ThenG = {g1, ..., g}
is a Grobner basis for I if and only if every element of a homogeneous basis for the
syzygies on LT - (G) reduces to zero modulo G.

Lemma 7.7 ([7] Proposition 4 on p.103) G = {g1,...,8s} C R, and suppose
gi» &j € G have relatively prime leading monomials. Then the S-polynomial

lem (LT (gi), LT<(g,))

S(gi» gj) = Pu(Sij) = LT (g) 8j
lem(LT<(gi), LT<(g;))
— ; 7.5
LT_(g) 8j (7.5)

reduces to zero modulo G.

Proof of Proposition 7.4 Consider S(f;, f;). By Lemma 7.7, gcd(LT_(f}),
LT.(f;)) = limplies that S(f;, f;) reduces to zeromodulo { f¢};2 . Writei = 2g+r,
where r = 0, 1. Then LT_(f;) = x(? if i is even and LT (f;) = 2x4x4+1 if i is odd.
So the only case we need to consider is j = i + 1. In this case, we have

2x§xq+1 , [even

2 .
2quq+1’ i odd.

lem(LT<(f;), LT<(fi+1)) = {

Additionally

S fin) = {2Xq+1ﬁ ~Fafist, feven

Xg fi —2x441 fiv1, 1 odd.
But from (2.1) it follows that these S-pairs appear in the relations ¢, (,—1) = 0 for
n > 0. Since n = oo, we always have these relations in /. Additionally, moving the
S-pair to the right-hand side we reduce S(f;, fi+1) = 0 modulo { f¢}72 ;. In particular,
Lemma 7.6 implies that { f;};2, is a Grobner basis for /. O
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