

Tuning water-use efficiency and drought tolerance in wheat using abscisic acid receptors

Ryosuke Mega¹, Fumitaka Abe¹, June-Sik Kim¹, Yuuri Tsuboi⁴, Keisuke Tanaka⁵, Hisato Kobayashi^{5,11}, Yoichi Sakata¹, Kousuke Hanada⁷, Hisashi Tsujimoto¹, Jun Kikuchi¹, Sean R. Cutler¹ and Masanori Okamoto¹, Jun Kikuchi¹

Water availability is a key determinant of terrestrial plant productivity. Many climate models predict that water stress will increasingly challenge agricultural yields and exacerbate proiected food deficits. To ensure food security and increase agricultural efficiency, crop water productivity must be increased. Research over past decades has established that the phytohormone abscisic acid (ABA) is a central regulator of water use and directly regulates stomatal opening and transpiration. In this study, we investigated whether the water productivity of wheat could be improved by increasing its ABA sensitivity. We show that overexpression of a wheat ABA receptor increases wheat ABA sensitivity, which significantly lowers a plant's lifetime water consumption. Physiological analyses demonstrated that this water-saving trait is a consequence of reduced transpiration and a concomitant increase in photosynthetic activity, which together boost grain production per litre of water and protect productivity during water deficit. Our findings provide a general strategy for increasing water productivity that should be applicable to other crops because of the high conservation of the ABA signalling pathway.

Climate change and population growth have spurred urgent calls to increase crop water productivity (that is, grain yield per litre of consumed water). Rising global temperatures are anticipated to exacerbate crop losses, and agricultural water supplies must be increased by an estimated 17% by 2025 to compensate for global population growth¹. New strategies for improving crop water productivity are thus critical for next-generation agriculture2. Most water used in agriculture is driven to the atmosphere by transpiration—a process necessary for CO₂ fixation and growth. Transpiration is controlled by the movements of stomata, which are small epidermal leaf pores formed by a pair of guard cells that regulate gas and water exchange. Abscisic acid (ABA) is a key small molecule responsible for stomatal closure, and ABA receptors (PYR/PYL/RCAR proteins) play a central role in executing ABA's role in water relations^{3,4}. ABA controls the activity of a stress-activated kinase signalling network that regulates guard cell osmotic pressure and stomatal closure. In response to water deficit, ABA levels rise, which directs the formation of a ligand-receptor complex that inhibits the activity of clade A protein phosphatase 2Cs (PP2Cs), which are negative regulators of ABA signalling⁵⁻⁷. ABA-mediated inhibition of PP2Cs enables activation

of sucrose non-fermenting-1 (SNF1)-related protein kinases that elicit stomatal closure by phosphorylation and activation of S-type anion channels to trigger anion flux and stomatal closure^{7–9}.

Because of their pivotal role in transpiration regulation, ABA receptors are excellent targets for manipulating ABA sensitivity and water productivity¹⁰. Moreover, overexpression of ABA receptors has been extensively validated as a means to increase *Arabidopsis* ABA sensitivity¹¹ and biomass produced per litre of water¹². In addition, the same strategies were attempted in rice¹³ and poplar¹⁴. We therefore investigated the effectiveness of ABA receptor overexpression as a strategy for designing water-productive wheat. Wheat is a staple crop of worldwide importance that is particularly vulnerable to future climate conditions, as its yield is predicted to decrease by approximately 6.0% per °C rise in global mean temperature¹⁵.

We exploited the International Wheat Genome Sequencing Consortium sequence for hexaploid wheat¹⁶ (Supplementary Table 1) to identify wheat ABA receptors (TaPYLs) with sequences similar to dicot and monocot ABA receptors. The isolated TaPYLs phylogenetically clustered into three families that are conserved across angiosperms (Fig. 1a, Supplementary Fig. 1a and Supplementary Table 1). We similarly identified six TaPP2Cs (Supplementary Fig. 2a and Supplementary Table 1) and tested TaPYL ABA receptor activity using in vitro phosphatase inhibition assays (Fig. 1b and Supplementary Fig. 3). The isolated TaPYLs, except for TaPYL9, inhibited clade A PP2C activity, with half-maximum inhibitory concentration (IC₅₀) values indicating that these proteins are bona fide ABA receptors. In addition, TaPYL messenger RNA accumulation was suppressed and TaPP2C messenger RNAs were induced by both ABA and abiotic stress treatments, consistent with transcriptional responses observed for orthologues in other species (Fig. 1c,d, Supplementary Fig. 2b and Supplementary Table 3). Next, we investigated whether ABA receptor overexpression could be used to tune the ABA sensitivity of wheat. TaPYL4 was selected as a candidate for two reasons: its expression levels were relatively high under basal conditions and at various developmental stages, and it was determined to be a monomeric-class high-affinity ABA receptor (Fig. 1c,d and Supplementary Figs. 1b and 3). Interestingly, no allelic variations in TaPYL4 were observed, although we assessed TaPYL4 using published wheat databases^{17,18} and cloned sequences from the cultivars Cham6, Nesser, Fielder, Roelfs-F2007 and Norin61.

¹Arid Land Research Center, Tottori University, Tottori, Japan. ²NARO Institute of Crop Science, Tsukuba, Japan. ³Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan. ⁴Environmental Metabolic Analysis Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan. ⁵NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan. ⁶Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan. ⁷Frontier Research Academy for Young Researchers, Kyushu Institute of Technology, Kitakyushu, Japan. ⁸Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA. ⁹Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan. ¹⁰PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan. ¹¹Present address: Department of Embryology, Nara Medical University, Nara, Japan. *e-mail: okamo@cc.utsunomiya-u.ac.jp

LETTERS NATURE PLANTS

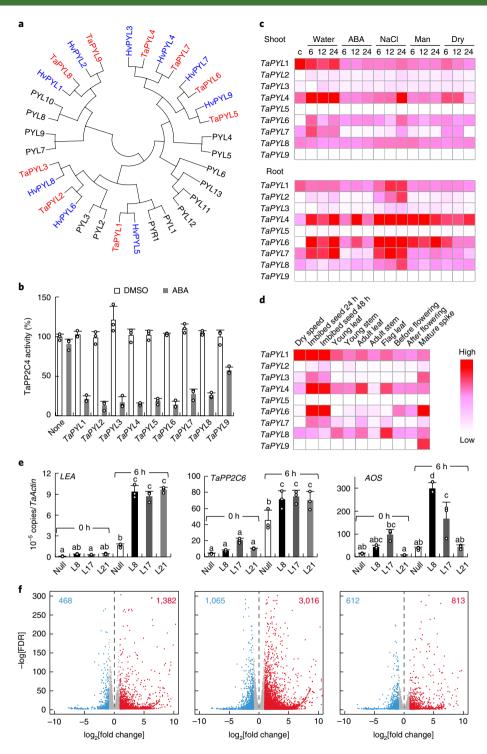
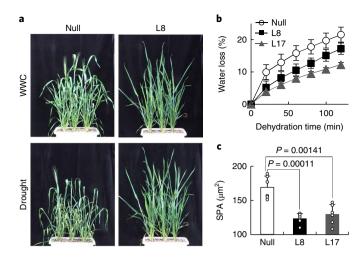



Fig. 1 | Molecular characterization of wheat ABA receptors. a, Phylogenetic tree for ABA receptors (black, Arabidopsis thaliana; red, Triticum aestivum ('Chinese Spring'); blue, Hordeum vulgare) constructed using the maximum-likelihood method in MEGA 6.06 followed by bootstrapping with 1,000 replicates. b, Inhibition assay of TaPYLs towards TaPP2C4 (n=3 biologically independent samples; central values and error bars represent means ±s.d.). DMSO, dimethyl sulfoxide. c,d, Expression of TaPYL genes under various stresses (c) and at different developmental stages (d). Water was used as a control (c). For the stress treatments in c, 7-day-old seedlings were subjected to 20 μM ABA, 150 mM NaCl, 200 mM mannitol (Man) or dehydration (Dry). Numbers are treatment times (h). TaPYL expression levels were evaluated according to copy number and normalized relative to TaActin (n=3 biologically independent samples). e, Expression of ABA-responsive genes in Null and TaPYLox seedlings. Seven-day-old seedlings were treated without (0 h) or with 0.5 μM ABA for 6 h (n=3 biologically independent samples; central values and bars represent means ± s.d.). Different letters denote significant differences (P < 0.05) based on the Tukey-Kramer test. Gene expression levels measured by qRT-PCR in c-e represent the sum of the expression levels of the three homeologues. f, Volcano plots of expression comparisons (L8 versus Null) under WWC (left), ABA (middle) and drought treatments (right). Differentially expressed transcripts were defined as those with a fold change ≥2 and false discovery rate (FDR) < 0.05 using the likelihood ratio test for multiple comparison (n=3 biologically independent samples). Red and blue numbers represent upregulated and downregulated transcripts of L8 compared to Null, respectively.

NATURE PLANTS LETTERS

a, Photographs of Null and TaPYLox L8 lines under WWC and drought. Before photography, plants cultivated for 50 d were subjected to drought stress by withholding water for 13 d. **b**, Results of a water loss assay for Null and TaPYLox. For the assay, leaves of 50-day-old plants were detached

Fig. 2 | ABA receptor overexpression confers drought tolerance.

and TaPYLox. For the assay, leaves of 50-day-old plants were detached and weighed at 20 min intervals (n=4 biologically independent samples; central values and error bars represent means \pm s.d.). \mathbf{c} , TaPYLox stomatal pore area (SPA) (n=6 biologically independent samples; central values represent means \pm s.d.). A two-tailed Student's t-test was used to compare Null plants and each TaPYLox line.

Thus, without consideration of allelic variation, we generated three TaPYL4-overexpressing wheat (TaPYLox) transgenic lines exhibiting high-level transgene expression (Supplementary Fig. 4). We obtained a non-transgenic 'null-segregant' sibling from the progeny of one of these primary transgenic lines to serve as an isogenic control line for molecular and physiological comparisons. As anticipated, multiple lines of evidence indicated that ABA receptor overexpression in wheat increases ABA sensitivity (Fig. 1e). Transcriptome analyses of wheat plants exposed to well-watered (WWC), ABAtreated (ABA) or water-deficit (drought) conditions revealed that substantially more genes in the TaPYLox lines responded to ABA treatment (Fig. 1f, Supplementary Fig. 5d and Supplementary Table 2), consistent with increased ABA sensitivity. TaPYL homologue expression appears to be balanced, in contrast with about 40% of homeologous transcripts, where triplets show ternary unbalanced expression (Supplementary Fig. 5a–c and Supplementary Table 1).

Consistent with the increased ABA sensitivity, we also observed an enhanced degree of seed dormancy in TaPYLox seeds—a state that was reversed by stratification (Supplementary Fig. 6). In addition, TaPYLox seedling growth displayed increased ABA sensitivity (Supplementary Fig. 7a–c), and TaPYLox plants were less prone to wilting, their detached leaves exhibited reduced water loss and their stomatal pore apertures were smaller compared with those of the controls (Fig. 2). We also compared the drought sensitivity of TaPYLox lines with three modern wheat cultivars cultivated in arid regions (Cham6, Nesser and Roelfs-F2007) and observed delayed wilting in TaPYLox plants (Supplementary Fig. 8 and Supplementary Video 1). Collectively, these results demonstrate that ABA receptor overexpression increases wheat ABA sensitivity, which in turn reduces the stomatal aperture size and transpiration.

Drought-sensitive wheat cultivars accumulate more ABA during water stress than drought-tolerant cultivars¹⁹. To investigate this relationship, we analysed the ABA levels of TaPYLox and control plants. Drought-inducible ABA levels in TaPYLox lines were lower than in control plants (~17-fold versus ~3-7-fold induction;

Supplementary Fig. 9). Consistent with this result, the number of drought-regulated genes in TaPLYox lines was smaller (2,026) than in control plants (2,968) (Supplementary Fig. 5d).

Next, we conducted leaf-level gas exchange measurements to better characterize the effects of ABA receptor overexpression on water use and carbon assimilation. Under irradiance levels comparable to the mid-day sun (>1,000 µmol photons m⁻² s⁻¹), TaPYLox transpiration was suppressed relative to the controls, whereas CO₂ assimilation rates were comparable (Fig. 3a,b), accordingly with 14 and 25% increases in instantaneous water-use efficiency (WUE) obtained for lines L8 and L17, respectively (Fig. 3c,d). Consistent with this result, carbon isotope discrimination (δ¹³C) analyses of plant leaves revealed reduced ¹³C fractionation in the TaPYLox transgenic lines (Fig. 3i). The degree of ¹³C fractionation by Rubisco decreases as intercellular CO2 levels decline because of stomatal closure, and, as a result, δ^{13} C values are commonly used to estimate differences in WUE between plants²⁰. Examination of the relationship between the CO₂ assimilation rate (A) and intercellular CO₂ concentration (C_i) (A-C_i curves) revealed that TaPYLox assimilated CO₂ efficiently even though the C_i of TaPYLox was lower than that of control plants at the upper range of CO₂ concentrations (Fig. 3e). These data indicated that the TaPYLox lines possessed increased CO₂ fixation capacity relative to controls, even at ambient CO₂ concentrations (Fig. 3f) where such measurements are more challenging (Fig. 3g). Similar increases in CO₂ assimilation induced by ABA receptor overexpression have also been reported in *Arabidopsis*¹². Analysis of $A-C_i$ curves²¹ revealed that maximum rate of carboxylation ($\dot{V}_{\rm cmax}$) values in TaPYLox plants were higher than in control plants (Fig. 3h), which suggests that increased Rubisco activity underlays the improvement in carbon assimilation induced by ABA receptor overexpression. Collectively, our data indicate that the TaPYLox lines show improved WUE and achieve this through a combination of reduced stomatal aperture size and increased photosynthetic activity.

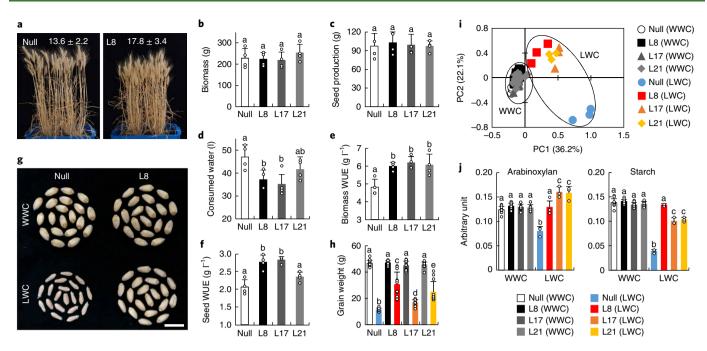
ABA receptor overexpression increases wheat WUE. However, to benefit agriculture, this increase must translate to increased grain yield per litre of input water. We therefore measured the total amount of water consumed by TaPYLox strains and control plants over a single generation. Biomass and grain weight were not significantly different between TaPYLox lines and controls under WWC (Fig. 4a-c), although TaPYLox plants varied somewhat in several morphological traits (Supplementary Fig. 10a-e). In contrast, the lifetime water consumption of TaPYLox strains was approximately 20% less than that of the controls and was associated with increased biomass and grain weight per litre of input water in two robust TaPYLox lines (L8 and L17; Fig. 4d-f). These benefits were not associated with significant differences in seed shape or weight (Fig. 4g,h and Supplementary Fig. 10f). Consequently, ABA receptor overexpression does not limit wheat grain production under our growth conditions and improves WUE even in the absence of water stress.

Next, we evaluated grain production under drought conditions. TaPYLox lines and control plants were cultivated under limited water conditions (LWC), which dramatically reduced control grain weight and resulted in small shrunken seeds typical of waterstressed wheat plants. In contrast, the negative effects of water stress were not observed in TaPYLox lines (Fig. 4g,h and Supplementary Figs. 10f and 11a-c). The basis for these improvements was the increased WUE of the transgenic lines, as TaPYLox strains consumed soil water more slowly and retained available soil water for longer than control plants (Supplementary Fig. 11d). In particular, from ~10 d after withholding water supply, TaPYLox lines adopted a more adequate stomatal aperture than control plants. Eventually, this advantage led to enhanced water provision during critical phases of seed maturation in TaPYLox. A similar 'water-banking' or 'water-saving' mechanism has been documented in engineered and

LETTERS NATURE PLANTS

Fig. 3 | ABA receptor overexpression improves WUE in photosynthesis. a,b, Light response of transpiration rate (a) and CO₂ assimilation rate (b) in Null (open circles), L8 (solid squares) and L17 (solid triangles). c, Instantaneous WUE; that is, the ratio of CO₂ assimilation to transpiration rates. d, Instantaneous WUE at photon flux density levels >1,000 μmol photons $m^{-2}s^{-1}$. e, Relationship between CO₂ assimilation and intercellular CO₂ concentration (C_i). f, C_i values at the ambient CO₂ concentration (C_a) of 400 ppm. g, Relationship between CO₂ assimilation and C_a for values of C_a < 500 ppm. h, Relationship between CO₂ assimilation and C₁ for values of C₁ < 400 ppm. In a-h, n=5 biologically independent samples and central values and error bars represent means ± s.d. i, Carbon isotope composition (δ¹³C) of Null, L8 and L17 plants. Fully mature leaves similar to those in Fig. 4a were sampled (n=8 biologically independent samples; central values and error bars represent means ± s.d.). In f and i, a two-tailed Student's t-test was performed to determine the significance of differences between Null plants and each TaPYLox line.

classically bred drought-tolerant maize lines, suggesting that this approach can be used as a general strategy for crop yield improvement in water-limited environments^{22,23}.


Drought-induced alterations in seed composition can adversely impact grain quality. To investigate seed composition, we performed both one- and two-dimensional NMR analyses to characterize the contents of water-soluble and -insoluble fractions from grains of TaPYLox and control plants. We also compared the samples by principal component analysis (PCA). Control and transgenic lines grown under WWC clustered together in the PCA score plots of both watersoluble and -insoluble fractions, indicating that the TaPYLox transgene had minimal impact on seed metabolite profiles (Fig. 4i and Supplementary Fig. 12a). In contrast, under LWC, TaPYLox lines displayed a profile that was more similar to plants grown under WWC than water-stressed control lines, which displayed a metabolic signature indicative of drought stress. In particular, quantities of droughtinducible amino acids and sugars were elevated in water-stressed controls, whereas arabinoxylan and starch were reduced (Fig. 4j and Supplementary Fig. 12b). Changes in the levels of these compounds are well characterized drought-induced responses in wheat²⁴. These results suggest that TaPYLox lines experience reduced abiotic stress during endosperm development (Fig. 4g,j). Consequently, modulation of ABA sensitivity increases WUE without impacting on grain production or metabolic components under ideal conditions, and increases productivity when water is limited.

Collectively, our findings demonstrate that ABA receptor overexpression in wheat improves grain production under drought and increases WUE. To our surprise, this improvement occurs with negligible effects on final biomass under WWC. The underlying mechanism for the maintenance of high rates of carbon assimilation despite reduced stomatal aperture size is unclear but involves an increase in carboxylation rates in the TaPYLox lines—a phenomenon also observed in ABA receptor-overexpressing *Arabidopsis* lines¹². Regardless of the mechanism, our study has shown that ABA sensitivity can be rationally tuned by increasing ABA receptor expression levels, with wheat WUE increased in turn. Although we used a transgenic approach to tune water use in this study, altered ABA receptor expression should be readily achievable using new plant breeding techniques through promoter editing or targeted screening for genotypes that increase receptor levels in natural or chemically mutagenized populations^{25–27}. Regardless of the techniques used, new water-banking traits will be essential for engineering futureproof crops that can maintain high productivity in water-limited regions.

Methods

qRT-PCR. For Fig. 1c, wheat Chinese Spring seedlings were hydroponically cultivated at 22/17 °C (day/night) and 60% relative humidity under a 16/8 h light/ dark photoperiod for 7 d, then treated with 20 µM ABA, 150 mM NaCl, 200 mM mannitol or dehydration for 6, 12 and 24 h. The mannitol and dehydration treatments were used to mimic abiotic stress (a common laboratory approach). For the dehydration treatment, seven-day-old Chinese Spring seedlings were transferred from hydroponic conditions and incubated in a humid box under conditions of gradually imposed drought stress. Shoots and roots were then harvested. For Fig. 1d, Chinese Spring plants were cultivated outdoors in a planter. For Fig. 1e, seedlings were hydroponically cultivated at 22/17 °C (day/night) and 60% relative humidity under a 16/8 h light/dark photoperiod for 7 d, then treated without (0 h) or with 0.5 µM ABA for 6 h. Samples were frozen in liquid nitrogen, then ground to a fine powder with a Qiagen TissueLyser II. Total RNA was extracted using a Plant Total RNA purification kit (GMbiolab) from each harvested tissue. Root and aboveground tissues were respectively treated with lysis buffers A and B supplied with the kit, whereas RNA from seeds was extracted after treatment with Plant RNA purification reagent (Thermo Fisher Scientific). Total RNA (500 ng) was reverse-transcribed using ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo). Quantitative reverse-transcriptase PCR (qRT-PCR) was performed on a

NATURE PLANTS LETTERS

Fig. 4 | Improvement of biomass production, seed production and water conservation by ABA receptor overexpression. a, Photographs represent 120-day-old whole plants. The values are the average productive tiller numbers \pm s.d. (n=16). **b,c**, Total biomass (dry weight; **b**) and seed production (**c**) per experiment. **d**, Water consumption volume per experiment. **e,f**, Total biomass (**e**) and grain weight production (**f**) from 1l water. In **b-f**, n=4 biologically independent experiments. **g**, Seed shape under WWC and LWC. Scale bar, 1 cm. **h**, Grain weight per 1,000 seeds (n=16 under WWC; n=12 under LWC). White and grey bars correspond to values under WWC, while coloured bars represent values under LWC. PC, principal component. **i**, PCA score plot of water-insoluble seed components under WWC (n=12) and LWC (n=3). **j**, Amounts of arabinoxylan and starch in seeds (n=12 under WWC; n=3 under LWC). In **h-j**, n represents biologically independent samples. In **h** and **j**, central values and error bars represent means \pm s.d. In **b-f**, **h** and **j**, different letters denote significant differences (P<0.05) according to the Tukey-Kramer test.

StepOnePlus Real Time PCR system (Life Technologies) using KOD SYBR qPCR Mix (Toyobo) and the gene-specific primer sets shown in Supplementary Table 4. The PCR programme consisted of an initial temperature of 98 °C for 2 min, followed by 40 cycles of 98 °C for 10 s, 60 °C for 10 s and 68 °C for 30 s. A melting curve was constructed by increasing the temperature from 68 to 99 °C at a rate of 0.05 °C s $^{-1}$. The copy number was calculated by generating a standard curve of the pMD20 plasmid containing the target gene DNA sequence. Three biological replicates were performed. For normalization of data, TaActin was used as an internal standard. The primer sequences used in this study are shown in Supplementary Table 4. qRT-PCR-based gene expression was evaluated as the sum of the expression levels of the three homeologues, as distinguishing each transcript was difficult because of the paucity of single-nucleotide polymorphisms among the three homeologous complementary DNAs of TaPYL, TaPP2C and ABA-responsive genes.

Transcriptome analysis. The transcriptome was analysed using three biological replicates of RNA samples from the leaves of 40-day-old plants after exposure to 1 of 3 stress conditions. The three treatments were as follows: WWC, corresponding to normal conditions (soil water potential (SWP) > $-110\,\mathrm{kPa}$); ABA (namely, incubation for 24 h after spraying with 25 μ M ABA); and drought, involving incubation for 24 h after withholding water to maintain SWP < $-390\,\mathrm{kPa}$. Each total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen) and evaluated for quality and quantity with an Agilent 2100 Bioanalyzer (Agilent Technologies) and the Agilent RNA 6000 Nano Kit (Agilent Technologies). Library preparation was performed according to the TruSeq RNA Sample Preparation version 2 guide (Illumina). Sequencing on an Illumina HiSeq 2500 system generated an average of 91.3 million pairedend reads (2 × 101 nucleotides) per library. The data analysis is detailed in the Supplementary Information.

Comparison of drought tolerance between Null and TaPYLox. T_3 plants were cultivated in a glasshouse for 50 d. As a drought stress treatment, water supply was withheld for 13 d. The plants were then photographed.

Water loss assay. T₃ plants were cultivated at 22/15 °C (day/night) and 60% relative humidity under a $14/10\,h$ light/dark photoperiod for $50\,d$ in a bulk growth chamber (internal dimensions: $170\,cm\times260\,cm\times200\,cm$ high). Ten leaves per plant were detached per experiment, incubated at room temperature and weighed

at 20 min intervals. Water loss (%) was calculated by dividing the post-incubation weight by the initial leaf weight. Four replicates were performed.

Measurement of stomatal pore area. Leaf epidermal impressions of Null, L8 and L17 plants were obtained according to Suzuki's universal micro-printing (SUMP) method using SUMP impression solution and SUMP B plates (Kenis). The copied stomatal images were observed by optical microscopy (BX41; Olympus). The stomatal aperture area was measured using ImageJ version 1.48 software (https://imagej.nih.gov/ij/). Six individual plants were used for measurements of the stomatal aperture, with 30 stomata measured per plant.

Plant WUE assay. T4 wheat plants (Null, L8, L17 and L21) were cultivated in planters (56.8 cm × 37.9 cm × 22.0 cm; containing 19.5 kg soil) lacking drainage holes at 22/15 °C (day/night) and 60% relative humidity under a 14/10 h light/ dark photoperiod. To reduce evaporative water loss from the soil surface to a negligible level, the soil surface was completely covered with aluminium foil except for the plant-growing position. Plants were grown under two environments (WWC and LWC) in a bulk growth chamber. Plants grown under WWC (SWP > -110 kPa) were cultivated until grain ripening. Four plants were cultivated in one planter; this was regarded as one replicate. Four sets were prepared, with a total of 16 plants cultivated for this experiment. The volume of consumed water was measured on a balance. After harvesting, biomass and grain weight were measured, and their values were divided by the volume of consumed water to determine the biomass and grain weight per litre of water. Plants subjected to LWC were first maintained under WWC before withholding water supply, which was halted one week after flowering. Under LWC, 211 water were supplied to each planter (19.3 cm × 34.2 cm × 16.9 cm; containing 5.0 kg soil) containing 3 plants. Soil water content (SWC) was measured using a 10HS soil moisture sensor and an Em5b data logger (Decagon). For use in Supplementary Fig. 11d, SWC was converted to SWP using the following equation: SWP = 1,606.8 × $e^{(-17.69 \times \text{SWC})}$. Simultaneously with SWC to SWP conversion, SWP was monitored with a TEROS-21 SWP sensor and an Em50 data logger. Finally, seeds were harvested to determine the grain weight, seed number and grain weight per 1,000 seeds. Seed number was counted with a Multiauto counter (Ohya Tanzo Seisakusho), with the grain weight from 11 water calculated in the same manner as under WWC. The harvested seeds were also used for NMR analysis.

LETTERS NATURE PLANTS

Gas exchange measurements. Gas exchange measurements were performed using a LI-6400 instrument (LI-COR). Parameters were calculated with the software supplied by the manufacturer. Fully developed flag leaves were used from plants that had been cultivated in a bulk growth chamber at 22/15°C (day/night) under a 14/10 h light/dark photoperiod and 60% relative humidity for 50 d. The lights were set to turn on at 06:00 and shut off at 20:00. Gas exchange measurements were started at 10:00. The CO₂ flow rate and leaf temperature were kept constant at 500 μmol s⁻¹ and 25 °C, respectively. To obtain light response curves, measurements were conducted at a CO₂ concentration of 400 ppm. After an initial 1 h of dark adaptation, the photon flux density of red and blue light (9:1) was increased incrementally to 20, 50, 100, 200, 500, 1,000, 1,500, 2,000, 2,500 and 3,000 μ mol m⁻² s⁻¹. To obtain CO₂ response curves, leaves were first acclimatized for 1 h at 400 ppm CO₂ and 2,000 µmol m⁻² s⁻¹ of red and blue light. The CO₂ concentration was then adjusted incrementally from 0 to 50, 100, 200, 400, 500, 800, 1,000, 1,500 and 2,000 ppm. CO₂ response curves were constructed using a LI-6800 instrument.

 ^{13}C analysis. The carbon isotope composition ($\delta^{13}\text{C}$) of wheat leaves was analysed using an Elemental Analyzer interfaced with a continuous-flow isotope ratio mass spectrometer (EA/IRMS; Thermo Fisher Scientific). The samples to be analysed were harvested from approximately four-month-old plants and dried in a desiccator. Each sample was measured against standard CO₂ calibrated with an isotope standard (accuracy of calibration $\pm\,0.066\%$ s.d.). ^{13}C discrimination was calculated as $\delta^{13}\text{C}=(R_{\text{sample}}/R_{\text{standard}}-1)\times 1,000$, where R is the $^{13}\text{C}/^{12}\text{C}$ isotope ratio of samples and standards.

Seed component analysis by NMR. Seed water-soluble fractions were extracted by gentle shaking with $100\,\mathrm{mM}$ potassium phosphate buffer containing 90% deuterium oxide, together with 1 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate as the chemical shift reference $(\delta=0\,\mathrm{ppm})^{28}$. The remaining insoluble fraction was washed with methanol, and the residual macromolecular fraction (mainly starch, hemicellulose and proteins) was solubilized with deuterated dimethyl sulfoxide and pyridine (4:1, ν/ν), as described previously²²9. Both water-soluble and -insoluble seed components were analysed by 1D-¹H NMR and 2D-¹H, ¹³C-NMR. The normalized NMR dataset was imported into the R software programme³0, following which the PCA package was used to compute the variance and regression of the principal component scores.

Statistical information. Significance was determined according to a two-tailed Student's *t*-test for comparisons between Null and TaPYLox. The Tukey–Kramer test was used for multiple comparisons. Error bars represent s.d. in all figures.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Newly identified wheat ABA receptors (TaPYLs) were deposited in NCBI databases: TaPYL1, MG273651; TaPYL3, MG273653; TaPYL6, MG273656; TaPYL7, MG273657; TaPYL8, MG273658; and TaPYL9, MG273659. To update TaPYL2, TaPYL4 and TaPYL5 information, MG273652, MG273654 and MG273655, respectively, were also deposited. The wheat reference gene annotation and sequence (International Wheat Genome Sequencing Consortium version 1.1) are available at https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations. The raw sequence and processed data for our RNA-Seq analysis were deposited in the NCBI Gene Expression Omnibus database under the specific accession number GSE79522.

Received: 22 January 2018; Accepted: 8 January 2019; Published online: 8 February 2019

References

- Pennisi, E. The blue revolution, drop by drop, gene by gene. Science 320, 171–173 (2008).
- Morison, J. I. L., Baker, N. R., Mullineaux, P. M. & Davies, W. J. Improving water use in crop production. *Phil. Trans. R. Soc. B* 363, 639–658 (2008).
- Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R. & Abrams, S. R. Abscisic acid: emergence of a core signaling network. *Annu. Rev. Plant Biol.* 61, 651–679 (2010).
- Kim, T. H., Böhmer, M., Hu, H., Nishimura, N. & Schroeder, J. I. Guard cell signal transduction network: advances in understanding abscisic acid, CO₂, and Ca²⁺ signaling. *Annu. Rev. Plant Biol.* 61, 561–591 (2010).
- Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).
- Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).

- Fujii, H. et al. In vitro reconstitution of an abscisic acid signaling pathway. Nature 462. 660–664 (2009).
- Geiger, D. et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. *Proc. Natl Acad. Sci. USA* 106, 21425–21430 (2009).
- Brandt, B. et al. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl Acad. Sci. USA 109, 10593–10598 (2012).
- Helander, J. D., Vaidya, A. S. & Cutler, S. R. Chemical manipulation of plant water use. *Bioorg. Med. Chem.* 24, 493–500 (2016).
- Santiago, J. et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. *Plant J.* 60, 575–588 (2009).
- 12. Yang, Z. et al. Leveraging abscisic acid receptors for efficient water use in *Arabidopsis. Proc. Natl Acad. Sci. USA* 113, 6791–6796 (2016).
- Kim, H. et al. Overexpression of *PYL5* in rice enhances drought tolerance, inhibits growth, and modulates gene expression. *J. Exp. Bot.* 65, 453–464 (2014).
- Yu, J. et al. Overexpression of pyrabactin resistance-like abscisic acid receptors enhances drought, osmotic, and cold tolerance in transgenic poplars. Front. Plant Sci. 8, 1752 (2017).
- Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. *Proc. Natl Acad. Sci. USA* 114, 9326–9331 (2017).
- IWGSC, A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788 (2014).
- Montenegro, J. D. et al. The pangenome of hexaploid bread wheat. Plant J. 90, 1007–1013 (2017).
- Jordan, K. W. et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. *Genome Biol.* 16, 48 (2015).
- Ji, X. et al. Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. *Plant Physiol.* 156, 647–662 (2011).
- Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* 40, 503–537 (1989).
- Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon dioxide response curves for C₃ leaves. *Plant Cell Environ.* 30, 1035–1040 (2007).
- Nemali, K. S. et al. Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. Plant Cell Environ. 38, 1866–1880 (2015).
- Cooper, M., Gho, C., Leafgren, R., Tang, T. & Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65, 6191–6204 (2014).
- Bowne, J. B. et al. Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. *Mol. Plant* 5, 418–429 (2012).
- Ogbonnaya, F. C. et al. in *Plant Breeding Reviews* (ed. Janick, J.) 35–122 (Wiley-Blackwell, Hoboken, 2013).
- 26. Huang, B. E. et al. A multiparent advanced generation inter-cross population for genetic analysis in wheat. *Plant Biotech. J.* **10**, 826–839 (2012).
- Krasileva, K. V. et al. Uncovering hidden variation in polyploid wheat. Proc. Natl Acad. Sci. USA 114, E913–E921 (2017).
- Kikuchi, J. et al. SpinCouple: development of a web tool for analyzing metabolite mixtures via two-dimensional *J*-resolved NMR database. *Anal. Chem.* 88, 659–665 (2016).
- Mori, T. et al. Multidimensional high-resolution magic angle spinning and solution-state NMR characterization of ¹³C-labeled plant metabolites and lignocellulose. Sci. Rep. 5, 11848 (2015).
- 30. R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

Acknowledgements

We thank Y. Kano, T. Shimizu and Y. Imai (Tottori University) for facility maintenance, W. Yamori (The University of Tokyo) and K. Hikosaka (Tohoku University) for advice on photosynthetic analyses, M. Inoue (Tottori University) for help with calculations of SWP from SWC, and K. Shimamoto (Nara Institute of Science and Technology) for providing the p2K-1GW plasmid. We also express our gratitude to the CIMMYT and ICARDA for providing wheat cultivar seeds, and thank the NBRP for providing TaPYL4 complementary DNA. This work was supported by grants from JST PRESTO (JPMJPR15Q5 to M.O.), KAKENHI (17H05009 to M.O.), Project Marginal Region Agriculture of Tottori University (to H.T. and M.O.), the Joint Research Program of Arid Land Research Center, Tottori University (30C2007 to M.O.), the NSF (IOS1258175 and 1656890 to S.R.C.) and the Cooperative Research Grant of the Genome Research for BioResource, NODAI Genome Research Center, Tokyo University of Agriculture.

NATURE PLANTS LETTERS

Author contributions

R.M. and M.O. conceived the project and planned the experiments. F.A. generated the TaPYLox lines. K.T., H.K. and Y.S. performed the RNA-Seq experiments. J.-S.K. analysed the data. Y.T. and J.K. performed the NMR experiments and data analysis. H.T. provided wheat materials and supervised the research. J.-S.K. and K.H. searched for fragment sequences of TaPYLs in the draft wheat genome. R.M. and M.O. performed all of the other experiments. R.M., S.R.C. and M.O. wrote the manuscript. All authors commented on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41477-019-0361-8.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to M.O.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

Corresponding author(s): Masanori OKAMOTO

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see <u>Authors & Referees</u> and the <u>Editorial Policy Checklist</u>.

Statistical parameters

	en statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, mai t, or Methods section).	
n/a	Confirmed	
	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement	
	An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly	
	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.	
\boxtimes	A description of all covariates tested	
	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons	
	A full description of the statistics including <u>central tendency</u> (e.g. means) or other basic estimates (e.g. regression coefficient) AND <u>variation</u> (e.g. standard deviation) or associated <u>estimates of uncertainty</u> (e.g. confidence intervals)	
\boxtimes	For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i>	
\boxtimes	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings	
\times	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes	
\boxtimes	Estimates of effect sizes (e.g. Cohen's <i>d</i> , Pearson's <i>r</i>), indicating how they were calculated	
	Clearly defined error bars	

Our web collection on <u>statistics for biologists</u> may be useful.

Software and code

Policy information about availability of computer code

State explicitly what error bars represent (e.g. SD, SE, CI)

Data collection

Software used for data collection in this study are as follows: qRT-PCR, StepOne Software ver. 2.3 (Applied Biosystems); RNA-seq analysis, Hiseq Control Software ver. 2.2.58 (Hiseq 2500, illmina); protein phosphatase 2C assay, SF6 ver. 4.7.11 (CORONA ELECTRIC); soil water potential and contents, ECH2O ver. 1.82 (METER); gas-exchange measurements, OPEN ver. 6.1 (LI-6400, Li-Cor) and Bluestem ver. 1.2.2 (LI-6800, Li-Cor); δ 13C analysis, Isodat Acquisition ver. 3.0 (Thermo); Size exclusion chromatography analysis, LabSolutions ver. 5.81 (Shimazu); ABA measurement, Analyst ver. 1.6.2 (AB Sciex); NMR analysis, TopSpin ver. 3.0 (Bruker BioSpin).

Data analysis

Software used for data analysis in this study are as follows: phylogenetic analysis, MEGA ver. 6.06 (Build#: 6140226); δ13C analysis, Isodat Workspace ver. 3.0 (Thermo); measurement of stomatal area and seedling length, ImageJ ver. 1.48 (https://imagej.nih.gov/ij/); measurement of seed area, SmartGRAIN ver. 1.2 (http://www.naro.affrc.go.jp/archive/nias/qtl/SmartGrain/); statistical analysis, Microsoft Excel 2016 MSO (ver. 16.0.10730.20127) and R statistical software (ver. 3.4.4; https://www.r-project.org/); quality trimming of the NGS (mRNA-seq) resultant sequence reads, Trim Galore (ver. 0.5.0; https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/); read mapping, Kallisto-Sleuth (ver. 0.44.0; https://pachterlab.github.io/kallisto/about); transcriptional analysis and drawing heatmap and ternary plot, gplots (ver. 3.0.1; https://cran.r-project.org/web/packages/gplots/index.html) and ade4 (ver. 1.7-4; https://pbil.univ-lyon1.fr/ade4/ade4-html/00Index.html); ABA measurement, MultiQuant ver. 3.01 (AB Sciex); principal component analysis, R statistical software with package library prcomp (ver. 3.4.4).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Newly identified wheat ABA receptors (TaPYLs) were deposited in NCBI databases: TaPYL1, MG273651; TaPYL3, MG273653; TaPYL6, MG273656; TaPYL7, MG273657; TaPYL8, MG273658; and TaPYL9, MG273659. To update TaPYL2, TaPYL4 and TaPYL5 information, MG273652, MG273654 and MG273655 were also deposited. The wheat reference gene annotation and sequence (IWGSC v1.1) are available at https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations. The raw sequence and processed data for our RNA-seq analysis were deposited in the NCBI Gene Expression Omnibus (GEO) database under the specific accession number GSE79522.

Field-specific reporting			
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.			
_ Life sciences	Behavioural & social sciences Ecological, evolutionary & environmental sciences		
For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf			
Life sciences study design			
All studies must disclose on these points even when the disclosure is negative.			
Sample size	Sample size was chosen based on previous studies and experience. We analyzed three transgenic wheat lines, which were isolated from independent callus. For the gene expression, seed component (limited water condition) and protein phosphatase analyses, a minimum number of three independent replicates was used. For soil water content analysis using soil moisture sensor and movie analysis using video camera, the experiments were repeated twice with similar results. Data other than those were obtained from at least more than four independent samples, and the detail information are described in our manuscript.		
Data exclusions	No data were excluded from analyses.		
Replication	All experiments were repeated at least twice with similar results. The number of biological replicates is noted in each figure legend.		
Randomization	We sometimes changed the positions of planters under well watered condition in plant water use efficiency assay. In limited watered condition assay, plants were moved constantly on automatic turntable. In other analyses, samples were collected randomly.		
Blinding	RNA-seq and seed component analyses were performed without material information. In other analyses, we did not apply blinding because the process of sample collection and analysis was carried out by the same person.		
Reporting for specific materials, systems and methods			
Materials & experimental systems Methods			
n/a Involved in th			
Unique bio Antibodies	logical materials ChIP-seq Flow cytometry		
Eukaryotic			
Palaeontology			

Unique biological materials

Animals and other organisms Human research participants

Policy information about <u>availability of materials</u>

Obtaining unique materials All unique materials used are available from the authors.