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Abstract— Capturing clear images while a camera is moving
fast, is integral to the development of mobile robots that can
respond quickly and effectively to visual stimuli. This paper
proposes to generate camera trajectories, with position and
time constraints, that result in higher reconstructed image
quality. The degradation in of an image captured during
motion is known as motion blur. Three main methods exist
for mitigating the effects of motion blur: (i) controlling optical
parameters, (ii) controlling camera motion, and (iii) image
reconstruction. Given control of a camera’s motion, trajectories
can be generated that result in an expected blur kernel or
point-spread function. This work compares the motion blur
effects and reconstructed image quality of three trajectories:
(i) linear, (ii) polynomial, and (iii) inverse error. Where inverse
error trajectories result in Gaussian blur kernels. Residence
time analysis provides a basis for characterizing the motion
blur effects of the trajectories.

I. INTRODUCTION

Visual information is a primary mode of knowledge-
acquisition for robotic systems that function in unstructured
environments (e.g. mobile robots). For these systems to intel-
ligently react to and interact with the environment effectively,
visual signals need to be processed at a high-level and in
an efficient manner. The acquisition of high-quality signals
from the environment is a fundamental problem that needs to
be resolved. Currently, cameras have found prevalent use as
they provide a rich source of information which is useful
for resolving problems in a large number of areas (e.g.
localization, object recognition, path planning) [1].

For systems in motion, the image captured by cameras
gets degraded by motion blur. Since a finite exposure time is
required for sufficient charge to develop in the photosensitive
element, relative motion between a camera and a scene
causes the sensor to capture information from different points
in space.e. There are two sources of motion blur: (i) camera
motion, and (ii) scene motion [2]. Motion of a camera
relative to the scene being captured results in spatially-
invariant (global) blur. All parts of an image captured under
global blur are affected by the same type of motion. If the
camera motion is known, it can be used to deblur the entire
image. In contrast, scene motion relative to a camera can
result in spatially-varying (local) blur. Mitigating local blur
requires the application of spatially-varying filters. In this
work stationary orthographic scenes with negligible changes
in depth are considered, resulting only in global blur.
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Many methods of mitigating motion blur have been con-
sidered by the computational imaging community. In general,
these methods either involve controlling optical parameters
of the camera (exposure, aperture, and focal length), con-
trolling the motion of the camera, or image reconstruction
through post-processing.

Generating good quality images with very short exposure
times is possible through the use of high-speed cameras.
Since significant motion is not allowed at the image capture
timescale motion bur effects are negligible. Although, these
cameras are expensive and lead to very high data rates that
a robotic system would need to be capable of storing and
processing. Other methods that involve active control of op-
tical parameters include coded exposure (flutter shutter) [3],
coded aperture [4], and focal sweep [5]. These methods use
intelligently control optical parameters during image capture,
followed by post-processing, to mitigate motion blur. The
ability to actively control optical parameters is not present
in most commercially available cameras. Furthermore, these
methods generally require a stationary camera and are not
applicable under the constraints of the problem considered
in this paper.

Controlling the motion of the camera enables control over
the point spread function (PSF), which describes how a
single point of light is spread over the imaging sensor. For
a stationary camera the PSF would ideally be a point of
the same width as the light beam, however aberrations due
to optical elements always exist. Given knowledge of how
an imaging system will move, feed-forward control signals
can be generated to compensate the motion and stabilize the
imaging sensor. If computed and executed exactly, the image
will be generated as if the imaging system is stationary.
However, this method is limited by the speed and range of
the compensating mechanism.

Image reconstruction aims to solve the inverse problem
of generating a latent image from an image degraded by
motion blur, through the use of prior knowledge (e.g. motion
information, natural image statistics) [6], [7], [8], [9]. Recon-
struction is typically performed by first estimating the point-
spread function (PSF), and then performing deconvolution.

The focus of this work is path planning for imaging
systems in fast motion, with the objective of capturing
good quality images. By controlling the camera trajectory,
the resulting PSF can also be controlled. Knowledge of
the expected PSF can then be used for image reconstruc-
tion. Similar approaches have been considered in literature,
but not in the same context. Levin et al. [10], propose
moving an imaging device in parabolic trajectories during
exposure. This results in PSFs that are invariant to blur



effects caused by objects moving at constant velocity in a
particular direction. This method was further extended by
Cho et al. [11] to include all planar motion directions by
taking orthogonal exposures. However, it is impractical to
take multiple exposures of the same scene. Bando et al. [12]
propose circular trajectories which generate kernels that are
orientation invariant for linear motion.

In contrast to past approaches, the approach proposed in
this paper focuses on trajectories that reduce the effects of
motion blur under time and position constraints. Trajectories
based on the inverse error function are shown to generate
deblurred images with lower mean squared error (MSE),
when compared to linear and parabolic trajectories. Further-
more, since inverse error trajectories result in Gaussian PSFs
the reconstructed image is robust to additive noise. Within
this family of trajectories, a variance parameter needs to
be selected which has implications on the final time and
reconstructed image quality. The main point of interest in this
study, is to examine how receding the time horizon affects
the trajectories generated and therefore the resulting blurry
image. Residence time analysis provides a basis for trajectory
generation.

II. MATHEMATICAL FORMULATION OF MOTION
DEBLURRING

A. Problem Statement

Consider an imaging device that is in motion within a
planar space X ⊆ R2, with position x = (x, y) ∈ X ,
nonlinear state dynamics f(x), mass m and control u. There
are two objectives to accomplish: (i) reach final position
xf at tf , and (ii) capture image I(xε). A one-dimensional
schematic of the problem and sample trajectory is presented
in Figures 1 and 2 respectively. For convenience, a sample
trajectory which is symmetric about xε and stationary at
xε is considered without a loss of generality. The exposure
window Tε = (tε, tε+ τ ], with duration τ , is the time period
during which the camera sensor captures information. The
trajectory parameters D and θ are defined by (1).

D =
xf − x0 − 2γ

2
, θ =

tf − t0 − τ
2

(1)

Given initial and final positions (x0, xf ), initial time t0
and exposure parameters (τ, γ), the time horizon tf defines
the speed outside of the exposure window. Based on con-
tinuity, this speed is considered the initial speed during the
exposure window ẋ(x−) and will be known as the entry
speed ve.

B. Image Formation

The photon-capture process used for camera sensors is
affected by two main sources of noise: (i) shot noise, and
(ii) Johnson-Nyquist (thermal) noise [13]. Shot noise is the
result of variance in the number of photons captured by
photo-sensitive elements over time, and is proportional to
the square-root of the light intensity on a per-pixel basis
[14]. The per-pixel dependence is dropped and the variance
is approximated to be proportional to the square-root of

Fig. 1. Schematic of imaging device in controlled motion.
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Fig. 2. Example of trajectory for imaging device in controlled motion.

average light intensity, denoted by λ. Thermal noise refers to
the electrical noise caused by thermal agitation of electrons
within the imaging sensor.

Shot noise is modeled as a stationary Poisson process
P with intensity λ, and thermal noise is modeled as an
additive zero-mean Gaussian process N with variance σ2.
Both processes are independent and their increments are
stationary. The Poisson process generates a blurry image B
to which Gaussian noise N is added, resulting in captured
image I . Therefore, for latent image L at exposure position
xε and exposure period Tε, the captured image is described
by (2) and (3).

B ∼P

(
λ

∫
Tε

L(x(t))dt

)
, N ∼ N

(
0, σ2

)
(2)

I(xε) = B(xε;λ,x(t), Tε) +N(xε) (3)

The exposure position xε is defined to be the average
position for the trajectory x(t) during the exposure window
Tε.

xε =
1

τ

∫
Tε

x(t)dt (4)

A sample image I∗ can be generated by evaluating the
expectation E and variance V of the image model, as in (5)



– (7). Where, α ∼N(0, 1) is a normally distributed random
variable. When |α| = 1, the effects of noise are greatest.

I∗ = E[B] + α
√

V[B] + V[N ] (5)

E[B] = V[B] = λτ

∫
Tε

L(x(t))dt (6)

V[N ] = σ2 (7)

C. Image Reconstruction

Reconstructed image L̂(xε) is generated by deconvolution
with expected PSF K̂. The real kernel K is assumed to accu-
rately represent the time-dependent process which generates
motion blur. This assumption holds true when considering
global blur. The image model in (3) can now be expressed
using the convolution operator ⊗, as shown in (8).

I(xε) = K(x(t))⊗ L(xε) +N(xε) (8)

Prior work by the authors [15] has shown that motion
information can be utilized for direct estimation of PSFs.
This process is known as dynamics-based motion deblurring
and enables real-time deblurring and panoramic generation
[16]. After PSF estimation, a deconvolution process is used
to generate the reconstructed image. The Richardson-Lucy
deconvolution algorithm provides a Bayesian-based iterative
procedure which is robust against noise [17], [18].

III. RESIDENCE TIME ANALYSIS

The following analysis will be done for a one-dimensional
state x ∈ R for ease of representation, but can be extended
for the planar case.

For a trajectory x(t) over exposure period Tε, residence
time is defined as the amount of time spent at a certain
position during the exposure period. That is, it is described
by the mapping τr(x) : R → R+ which will be called a
residence time distribution (RTD). In the case of a stationary
camera at position xε, the RTD is a delta function located
at xε with value τ . For monotonically increasing trajectories
x(t), when ẋ 6= 0 ∀t ∈ Tε, the expression for τr(x) can be
found using (9).

τr(x) =
1

ẋ(x)
(9)

For a given RTD, a monotonically increasing solution is
unique and also provides a lower bound on the speed at a
given position. If the system moves faster than the bound at a
certain position, then it must be revisited until the sum of the
residence times equal the value defined by the distribution.

Getting a closed form solution for monotonically increas-
ing trajectories is not feasible, as it would require a gen-
eral solution to all possible first-order ordinary differential
equations (ODEs). However, the relation above can be used
to analytically construct a RTD. For the purposes of image
reconstruction, the RTD is useful due to its proportionality
with the expected PSF. Given this fact, several desirable

characteristics for the residence time distribution are deter-
mined: (i) maximal at xε, (ii) symmetric about xε, and (iii)
constrained support.

Given that the objective is reconstruction of latent image
L(xε), being located at xε for the maximum amount of time
during exposure is ideal. The global maximum for an RTD
should therefore be located at xε. Local maxima exist where
ẋ = 0, or where speed is minimum over the trajectory. The
residence time values at a local maximum where ẋ = 0 can
be determined as the length of time the system is stationary at
that position. Therefore, multiple stationary points can exist
but the longest stationary point should be xε. If no stationary
points exist, then the minimum speed should occur at xε.

Symmetric distributions ensure that an equivalent amount
of information is distributed around the exposure position xε.
If the distribution is skewed, this implies that the trajectory is
faster on one side of xε than the other. Moving through space
at different speeds leads to a change in the power spectra of
the image [10]. This is not desirable, and therefore points
equidistant from xε should have the same speed. Therefore
the trajectory must pass through xε when t = tε + τ/2.

The compact support of the distribution is determined
by the minimum x− and maximum x+ position values of
the trajectory during exposure. For monotonically increasing
trajectories, the minimum and maximum values are the
positions at the beginning and end of exposure. For image
reconstruction, these bounds determine the blur kernel size.

While the analysis has been restricted to monotonically
increasing functions, monotonically decreasing functions can
be treated similarly. Furthermore, these trajectories can be
composed periodically to generate more complex trajectories.
Distribution shape does not change under periodic composi-
tion, but distribution mass increases in proportion with the
number of periods. ∫ x+

x−
τr(x)dx = τ (10)

Given the constraints defined above, there are still a num-
ber of possible trajectories and no clear basis for a choice.
We observe the fact that for a given exposure duration, the
mass of a distribution must remain unchanged. Therefore,
if the residence time is increased at xε it must necessarily
decrease in other positions. For symmetric distributions, this
relationship can be described by the distribution variance.
In the absence of noise, a lower variance results in higher
reconstructed image quality [19].

In order to explore how RTD variance affects the final
time and control effort required, a parametric distribution is
considered. The mapping from a parametric distribution to
time-dependent trajectories, can enable direct analysis of how
parameters affect the trajectory. A Gaussian function with
compact support [x−, x+], mean xε and variance δ2 satisfies
the constraints defined above and provides a parameter for
variance, making it a good candidate. An example of a
Gaussian RTD is given in Figure 3. A Gaussian RTD τ̃r
for exposure period τ is given by (11) and (12), where



γ = (xε − x−) = −(xε − x+) and τ0 = 1/ẋ(x−). The
scaling factor A is determined by evaluating the integral in
(10).
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Fig. 3. Conceptual representation of Gaussian RTD.

τ̃r(x;xε, δ) = A exp

[
− (x− xε)2

2δ2

]
(11)

A = τ

√
1

2π
erf
(

γ√
2δ2

)−1

(12)

The dynamics defined by a Gaussian RTD is given by
(13). One known solution to ODEs of this form involves the
inverse error function [20], as shown in (14).

ẋ(x) =
1

A
exp

[
(x− xε)2

2δ2

]
(13)

x(t) = xε −
√
2δ erfinv

(
−
√

2

π

t− tε
Aδ

)
(14)

IV. TRAJECTORY GENERATION

The following initial conditions are given: initial position
and time (x0, t0), final position xf , and exposure duration
Tε. Furthermore, the control policy outside of the exposure
window is chosen such that it generates constant velocity
trajectories. This choice is arbitrary and other control policies
can be considered, which will provide different boundary
conditions (i.e. by changing ve).

Trajectories are generated by observing the fact that an
entry velocity constraint can only be satisfied for a unique
pair (γ, δ). For the results presented here, the traveled
distance γ and entry velocity ve is considered to be given
and the variance parameter δ is numerically determined to
satisfy these constraints.

V. RESULTS

A. Simulation Results

Given a travel distance of γ = 3mm, various entry ve-
locities are considered (ve = {25mm/s, 50mm/s, 100mm/s)
which result in different δ values. RTDs, trajectories, and
exposure velocity profiles are presented in Figures 4, 5, and
6 respectively. Higher entry velocities ve result in lower final
times tf and are achieved by inverse error trajectories with
lower variance δ, but at the cost of higher control effort.

The control effort E for each of the exposure trajectories is
evaluated as the `2 norm of acceleration, as shown in (15).
As the variance δ decreases control effort increases as shown
in Figure 7, note that control effort is on a logarithmic scale.
Additional parameters used for simulation and experimental
results are presented in Table I.

E =

√∫
Tε

ẍ(t)2dt (15)

TABLE I
PARAMETERS FOR SIMULATION AND EXPERIMENTAL RESULTS.

x0 xf xε t0 τ
0 mm 120 mm 60 mm 0 s 0.5 s

In order to verify that inverse error trajectories produce
reconstructed images with lower MSE values in comparison
to linear and parabolic trajectories, simulation results are
generated for various γ and ve values. For both parameter
ranges a set of 30 images are blurred with the expected
PSFs, and then reconstructed using Richardson-Lucy decon-
volution. Table II presents the MSE values averaged over
30 images for various entry velocities. Table III presents the
MSE values averaged over 30 images for various traveled
distances.

The robustness of inverse error trajectories to additive
Gaussian noise is verified through comparison of MSE values
at various noise levels. The linear case is omitted as it is
clear that it performs worse than the others, instead the
difference between the MSE values of parabolic and inverse
error trajectories is presented in Table IV. It should be noted
that the error values for inverse error were lower in almost
all individual cases for each parameter range. Furthermore,
t-tests conducted for the various noise levels demonstrate
that the difference in average MSE values is statistically
significant when compared to the noise-free case (σ = 0)
with a confidence level of at least 95%.
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Fig. 4. Residence time distribution for varying ve.

B. Experimental Setup

An experimental set-up, shown in Figure 8, is used to
generate motion blurred images under different trajectories.
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Fig. 5. Trajectories for varying ve.
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Fig. 6. Velocity profiles of exposure trajectories for varying ve.

TABLE II
AVERAGE MSE OF RECONSTRUCTED IMAGES FOR VARIOUS ENTRY

VELOCITIES WITH γ = 3 MM AND σ = 0.002.

ve Linear Parabolic Inverse Error
25 mm/s 1.891E-2 1.807E-2 1.601E-2
50 mm/s 1.891E-2 1.727E-2 1.362E-2
100 mm/s 1.890E-2 1.685E-2 1.246E-2

A miniature camera with global shutter (model XiC, 2.3 MP
CMOS, Ximea Co.) is used with an exposure time τ = 0.5 s.
A longer exposure time is used in order to simulate the
effects of a fast-moving camera, while actually moving at

0 1 2 3 4 5 6
2

4

6

8

10

12

14

16

18

[m
m

/s
2
]

Fig. 7. Relationship between δ and E for γ = 3mm.

TABLE III
AVERAGE MSE OF RECONSTRUCTED IMAGES FOR VARIOUS TRAVELED

DISTANCES WITH ve = 50 MM/S AND σ = 0.002.

ve Linear Parabolic Inverse Error
2 mm 1.725E-2 1.551E-2 1.073E-2
3 mm 1.892E-2 1.724E-2 1.353E-2
5 mm 1.725E-2 1.551E-2 1.073E-2

TABLE IV
AVERAGE MSE OF RECONSTRUCTED IMAGES FOR VARIOUS NOISE

VARIANCE VALUES WITH γ = 3 MM, AND ve = 50 MM/S.

σ Parabolic Inverse Error Difference
0 1.491E-2 1.256E-2 2.346E-3

0.001 3.779E-2 2.462E-2 1.328E-2
0.005 3.779E-2E-2 2.462E-2 1.328E-2
0.01 2.501E-2 1.800E-2 7.054E-3
0.05 1.299E-1 7.160E-3 5.890E-2

moderate speeds (30-70 mm/s). The camera is translated
along one dimension on a linear stage that is actuated by
a NEMA-23 stepper motor. Commands are generated on a
computer and sent through a stepper motor controller (model
STR4, Applied Motion Products).

C. Experimental Results

Three trajectories are compared that result in the same
final time tf : (i) linear, (ii) parabolic, and (iii) inverse error.
These trajectories are shown in Figure 9. It should be noted
that the parabolic trajectory being used here is not the same
as the one used in [11], which would not satisfy the objective
of reaching position xf . Instead two parabolic curves have
been composed to generate a trajectory that is a path from
x0 to xf .

The blurry images generated under the various trajectories
are presented in Figure 10. MSE values and control effort
required, shown in Table V, are evaluated for each trajectory.
The static image is used as a reference for MSE calculations.
The results show that while greater effort is required for
inverse error trajectories in comparison to parabolic trajec-
tories, a lower MSE value is achieved.

camera

linear stage

scene

power supply

controller

Fig. 8. Experimental setup for capturing motion blurred images with
different trajectories.



TABLE V
RMS ERRORS (eRMS) AND CONTROL EFFORT (E) FOR VARIOUS

TRAJECTORIES.

Linear Parabolic Inverse Error
MSE 1.594E-2 1.038E-2 8.009E-3

E [mm/s2] 0 2.758E5 7.507E8
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Fig. 9. Trajectories used for experimental setup.

VI. CONCLUSION

This work has two main contributions: (i) residence time
analysis, and (ii) inverse error function trajectories. The
use of RTDs for motion blur analysis, to the authors’ best
knowledge, has not been presented in prior literature. This
analytical tool provides a mapping between camera trajec-
tories and the expected PSF, through velocity information.
Inverse error trajectories are shown to be one solution for
generating Gaussian PSFs. RTDs with lower variance result
in trajectories with lower final times, at the cost of higher
control effort. Experimental results provide verification of
the simulation results, which demonstrate that inverse error
trajectories result in lower MSE when compared to linear
and parabolic trajectories.

While several arguments have been made for why Gaus-
sian RTDs are good candidates for generating trajectories,
other RTDs can be considered as well. However, the useful-
ness of Gaussian RTDs extends beyond their mathematical
utility; characteristics such as minimum group delay make
Gaussian filters ideal time-domain filters [21]. More work
needs to be done to further characterize the motion blur
effects of Gaussian RTDs, create a general framework for
inverse error trajectory generation (position and orientation),
and provide experimental validation on faster moving sys-
tems.

REFERENCES

[1] B. Horn, Robot vision. MIT press, 1986.
[2] D. Burr, “Motion smear,” Nature, vol. 284, no. 5752, p. 164, 1980.
[3] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography:

motion deblurring using fluttered shutter,” ACM Transactions on
Graphics (TOG), vol. 25, no. 3, pp. 795–804, 2006.

[4] E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with
uniformly redundant arrays,” Appl. Opt., vol. 17, no. 3, pp. 337–347,
Feb 1978.

Static Inverse Error

Linear Parabolic

Fig. 10. Blurry images captured under various trajectories.

[5] D. Znamenskiy, H. Schmeitz, and R. Muijs, “Motion invariant imaging
by means of focal sweep,” in 2011 IEEE International Conference on
Consumer Electronics (ICCE), Jan 2011, pp. 91–92.

[6] S. K. Nayar and M. Ben-Ezra, “Motion-based motion deblurring,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 6, pp. 689–698,
2004.

[7] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Free-
man, “Removing camera shake from a single photograph,” in ACM
Transactions on Graphics (TOG), vol. 25, no. 3. ACM, 2006, pp.
787–794.

[8] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring
from a single image,” in ACM Transactions on Graphics (TOG),
vol. 27, no. 3. ACM, 2008, p. 73.

[9] S. Cho and S. Lee, “Fast motion deblurring,” in ACM Transactions on
Graphics (TOG), vol. 28, no. 5. ACM, 2009, p. 145.

[10] A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman, “Motion-
invariant photography,” in ACM Transactions on Graphics (TOG),
vol. 27, no. 3. ACM, 2008, p. 71.

[11] T. S. Cho, A. Levin, F. Durand, and W. T. Freeman, “Motion
blur removal with orthogonal parabolic exposures,” in Computational
Photography (ICCP), 2010 IEEE International Conference on. IEEE,
2010, pp. 1–8.

[12] Y. Bando, B.-Y. Chen, and T. Nishita, “Motion deblurring from a single
image using circular sensor motion,” in Computer Graphics Forum,
vol. 30, no. 7. Wiley Online Library, 2011, pp. 1869–1878.

[13] G. Boracchi and A. Foi, “Modeling the performance of image restora-
tion from motion blur,” IEEE Transactions on Image Processing,
vol. 21, no. 8, pp. 3502–3517, 2012.

[14] K. Mitra, O. S. Cossairt, and A. Veeraraghavan, “A framework for
analysis of computational imaging systems: Role of signal prior, sensor
noise and multiplexing,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 10, pp. 1909–1921, Oct 2014.

[15] M. D. Kim and J. Ueda, “Dynamics-based motion deblurring for a
biologically-inspired camera positioning mechanism,” in Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on. IEEE, 2013, pp. 2689–2694.

[16] ——, “Real-time panoramic image generation and motion deblurring
by using dynamics-based robotic vision,” IEEE/ASME Transactions
on Mechatronics, vol. 21, no. 3, pp. 1376–1387, 2016.

[17] W. H. Richardson, “Bayesian-based iterative method of image restora-
tion,” JOSA, vol. 62, no. 1, pp. 55–59, 1972.

[18] D. Fish, J. Walker, A. Brinicombe, and E. Pike, “Blind deconvolution
by means of the richardson–lucy algorithm,” JOSA A, vol. 12, no. 1,
pp. 58–65, 1995.

[19] J. A. O’Sullivan, M. Jiang, X.-m. Ma, and G. Wang, “Axiomatic
quantification of multidimensional image resolution,” IEEE Signal
Processing Letters, vol. 9, no. 4, pp. 120–122, 2002.

[20] A. Strecok, “On the calculation of the inverse of the error function,”
Mathematics of Computation, vol. 22, no. 101, pp. 144–158, 1968.

[21] H. Blinchikoff and H. Krause, Filtering in the time and frequency
domains. The Institution of Engineering and Technology, 2001.


