

1   **Title: Enzymatic Synthesis of Epoxidized Metabolites of Docosahexaenoic, Eicosapentaenoic,**

2   and Arachidonic Acids

4   **Authors & Affiliations:** Joseph W. Woodman<sup>1</sup>, Maris A. Cinelli<sup>1</sup>, Amy Scharmen-Burgdolf<sup>1</sup>, and

5   Kin Sing Stephen Lee<sup>1</sup>

6   <sup>1</sup>Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street,

7   East Lansing, MI, 48824, USA.

9   **E-Mail Addresses:**

10   Joseph W. Woodman ([woodma21@msu.edu](mailto:woodma21@msu.edu))

11   Maris A. Cinelli ([cinellim@msu.edu](mailto:cinellim@msu.edu))

12   Amy Scharmen-Burgdolf ([scharmen@msu.edu](mailto:scharmen@msu.edu))

14   **Corresponding Author:**

15   Kin Sing Stephen Lee ([sing@msu.edu](mailto:sing@msu.edu))

17   **Keywords:** epoxy polyunsaturated fatty acids, lipids, enzymatic synthesis, enantioselective

18   synthesis, omega-3 fatty acids, eicosanoids

20   **Short Abstract:**

21       We present a method useful for large-scale enzymatic synthesis and purification of

22   specific enantiomers and regioisomers of epoxides of arachidonic acid (AA), docosahexaenoic

23   acid (DHA), and eicosapentaenoic acid (EPA) with the use of a bacterial cytochrome P450

24   enzyme (BM3).

26   **Long Abstract:**

27       The epoxidized metabolites of various polyunsaturated fatty acids (PUFAs), termed

28   epoxy fatty acids, have a wide range of roles in human physiology. These metabolites are

29   produced endogenously by the cytochrome P450 class of enzymes. Because of their diverse and

30   potent biological effects, there is considerable interest in studying these metabolites.

31   Determining the unique roles of these metabolites in the body is a difficult task, as the epoxy

32   fatty acids must first be obtained in significant amounts and with high purity. Obtaining

33   compounds from natural sources is often labor intensive, and soluble epoxide hydrolases (sEH)

34 rapidly hydrolyze the metabolites. On the other hand, obtaining these metabolites via chemical  
35 reactions is very inefficient, due to the difficulty of obtaining pure regioisomers and  
36 enantiomers, low yields, and extensive (and expensive) purification. Here, we present an  
37 efficient enzymatic synthesis of 19(S),20(R)- and 16(S),17(R)-epoxydocosapentaenoic acids  
38 (EDPs) from DHA via epoxidation with BM3, a bacterial CYP450 enzyme isolated originally from  
39 *Bacillus megaterium* (that is readily expressed in *Escherichia coli*). Characterization and  
40 determination of purity is performed with nuclear magnetic resonance spectroscopy  
41 (NMR), high-performance liquid chromatography (HPLC), and mass spectrometry (MS). This  
42 procedure illustrates the benefits of enzymatic synthesis of PUFA epoxy metabolites, and is  
43 applicable to the epoxidation of other fatty acids, including arachidonic acid (AA) and  
44 eicosapentaenoic acid (EPA) to produce the analogous epoxyeicosatrienoic acids (EETs) and  
45 epoxyeicosatetraenoic acids (EEQs) (respectively).

46

47 **Introduction:**

48 As interest in the role that polyunsaturated fatty acids (particularly omega-3 and omega-  
49 6 polyunsaturated fatty acids) play in human biology has grown in recent years, researchers  
50 have taken notice of the wide range of appealing benefits that their metabolites exhibit. In  
51 particular, epoxy fatty acid metabolites produced by the cytochrome P450 class of enzymes  
52 have been a large point of focus. For example, many PUFA epoxides [including  
53 epoxyeicosatrienoic acids (EETs), epoxydocosapentaenoic acids (EDPs) and  
54 epoxyeicosatetraenoic acids (EEQs)] play a critical role in regulation of blood pressure and  
55 inflammation.<sup>1-5</sup> Interestingly, the specific enantiomers and regioisomers of AA and EPA  
56 epoxides are known to have varying effects on vasoconstriction.<sup>6,7</sup> While the physiological  
57 effects of the enantiomers and regioisomers of EETs and EEQs have been documented, little is  
58 known about the effect of the analogous epoxydocosapentaenoic acids (EDPs) formed from  
59 DHA. Widespread use of fish oil,<sup>8</sup> which is rich in both EPA and DHA, has also has stirred interest  
60 in EDPs.<sup>9</sup> The benefits of these supplements are believed to be partly due to the downstream  
61 DHA metabolites (16,17-EDP and 19,20-EDP being the most abundant) because in vivo levels of  
62 EDPs coordinate very well with the amount of DHA in the diet.<sup>10, 11</sup>

63 Studying the mechanisms and targets of these epoxy fatty acids by metabolomics,  
64 chemical biology, and other methods has proven challenging, in part because they exist as  
65 mixtures of regio- and stereo-isomers, and a method of obtaining pure amounts of the  
66 enantiomers and regioisomers is required. Conventional means for chemically synthesizing  
67 these compounds have proved ineffective. Use of peroxyacids like *meta*-chloroperoxybenzoic  
68 acid for epoxidation has many drawbacks, notably the lack of epoxidation selectivity, which  
69 necessitates expensive and painstaking purification of individual regioisomers and enantiomers.  
70 Total synthesis of DHA and EPA metabolites is possible, but also suffers from drawbacks that  
71 make it impractical for large-scale synthesis such as high costs and low yields.<sup>12-13</sup> Efficient  
72 overall production can be achieved with enzymatic synthesis, as enzymatic reactions are regio-  
73 and stereoselective.<sup>14</sup> Studies show that enzymatic epoxidation of AA and EPA (with BM3) is  
74 both regioselective and enantioselective,<sup>15-18</sup> but this procedure has not been tested with DHA,  
75 or on a large scale. The overall goal of our method was to scale up and optimize this

76 chemoenzymatic epoxidation to rapidly produce significant amounts of pure epoxy fatty acids  
77 as their individual enantiomers. Using the method presented here, researchers have access to a  
78 simple and cost-effective strategy for synthesis of EDPs and other PUFA epoxy metabolites.

79 **Protocol:**

80 **Caution:** Please consult all relevant material safety data sheets (MSDS) before using the listed  
81 chemicals.

82 **1. Expression of Wild-Type BM3.**

83 1.1. Inoculate pBS-BM3 transfected DH5 $\alpha$  *E. coli* (a generous donation from Dr. F. Ann Walker)  
84 in 5 mL of sterile LB broth with 0.5 mg of ampicillin added (in a 20 mL culture tube).

85 1.2. Incubate the cell culture in the shaker at 37 °C for 24 h at 200 rpm. Add the overnight  
86 starter culture (5 mL) and 100 mg of ampicillin to 1 L of sterile LB broth (in a Fernbach or  
87 Erlenmeyer flask). Shake at 37 °C for 6 h at 200 rpm, then at 30 °C for 18 h at 200 rpm.

88 1.3. Collect and centrifuge the cell culture at 4 °C for 10 min at 1000 g. Discard the supernatant  
89 (it can be either chemically sterilized by treatment with bleach or sterilized using an autoclave  
90 and then poured down the drain) and store the cell pellet at -78°C until enzyme purification.

91 **2. Purification of BM3.**

92 2.1.1. Thaw the cell pellet on ice and resuspend in 40 mL of ice-cold (4 °C) solubilization buffer  
93 [10 mM Tris, 0.01 mM phenylmethylsulfonyl fluoride (PMSF; caution: PMSF is toxic by contact!),  
94 0.01 mM EDTA; pH 7.8].

95 2.1.2. While on ice, sonicate the cells for 1 min with an ultrasonic homogenizer (output power  
96 setting 10, duty 100%), followed by a 1 min break on ice (repeat this procedure 6 times) in  
97 order to lyse the cells. Centrifuge the cell lysate at 4 °C for 30 min at 11,000 g to pellet cell  
98 debris.

99 2.2.1. Prepare a strong anion exchange chromatography column (see Table of Materials;  
100 diameter: 2.8 cm x 6 cm, column volume: 37 mL) by washing with 5 column volumes (CV) of  
101 buffer A (10 mM Tris, pH 7.8) at 4 °C.

102 2.2.2. Add the cell lysates to equilibrated column and wash the column with 3 CV of cold buffer  
103 A. Elute the BM3 by washing the column with cold buffer B (10 mM Tris, 600 mM NaCl, 6 CV).

104 2.2.3. Collect the reddish-brown eluent fraction. If the protein is not being used immediately,  
105 mix it with an equal volume of glycerol and flash freeze with liquid nitrogen. Store the frozen  
106 solution at -78 °C.

107 **3. Epoxidation of DHA by BM3.**

108 3.1. Prepare the reaction by adding 0.308 g [(0.940 mmol) of DHA (dissolved in 18.8 mL  
109 dimethylsulfoxide (DMSO)] to 2 L of stirring reaction buffer (0.12 M potassium phosphate, 5  
110 mM MgCl<sub>2</sub>, pH 7.4) along with 20 nM of the thawed BM3 enzyme. The enzyme concentration  
111 can be determined by the carbon monoxide/dithionite spectral assay method.<sup>19</sup>

112 3.2. While the solution is stirring, begin the reaction by adding 1 equivalent of NADPH  
113 (nicotinamide adenine dinucleotide phosphate reduced, tetrasodium salt, 0.808 g, 0.940 mmol)  
114 dissolved in reaction buffer. Stir the reaction for 30 min while bubbling air through the reaction  
115 mixture with an air-filled balloon attached to a syringe and needle.

116 3.3. Using a spectrophotometer (see Table of Materials), check the absorbance of the reaction  
117 mixture at 340 nm to determine if NADPH is depleted. If there is no remaining absorbance  
118 (indicating consumption of NADPH), the reaction is complete (typically it is after 30 min).

119 3.4. Quench the reaction mixture by slowly adding 1 M oxalic acid, dropwise, until the pH of the  
120 solution reaches 4.

121 **4. Extraction of EDPs.**

122 4.1. Extract the quenched buffer solution with 2 L of diethyl ether (anhydrous, peroxide-free) 3  
123 times. Collect the ether layer (6 L) and dry with anhydrous magnesium sulfate ( $\text{MgSO}_4$ ).

124 4.2. Filter the  $\text{MgSO}_4$  from the solution and concentrate the dried ether layer on a rotary  
125 evaporator to yield the crude EDP residue.

126 4.3. Purify the residue by flash column chromatography (a 40 g silica column cartridge is  
127 sufficient). Start at 10% ethyl acetate ( $\text{EtOAc}$ ) in hexanes and ramp up to 60%  $\text{EtOAc}$  in hexanes  
128 over 22 min. Three major peaks are obtained and collected, eluting in the order of 1. unreacted  
129 DHA; 2. mixture of EDP isomers; and 3. di-epoxide [normal over-oxidation products (See Figure  
130 1)].

131 4.4. Combine the fractions and concentrate them on the rotary evaporator. From this example,  
132 0.074 g, (24%) of unreacted DHA, 0.151 g (47%) of EDP isomers, and 0.076 g, (22%) of di-  
133 epoxide were obtained.

134 **5. Esterification of EDPs, Separation of 16(S),17(R)- and 19(S),20(R)-EDP, and Saponification of  
135 Esters.**

136 *Caution:* Trimethylsilyldiazomethane (TMS-diazomethane) is very toxic by both contact and  
137 inhalation. Use only in a fume hood with the proper personal protective equipment.

138 5.1. Dilute the epoxides (0.151 g, 0.435 mmol) in a round-bottomed flask or small vial with 2 ml  
139 of anhydrous methanol ( $\text{MeOH}$ ), 3 mL of anhydrous toluene, add a stir-bar, and add TMS-  
140 diazomethane (1.2 molar equivalents, or 0.26 mL of a 2 M solution in hexanes) under argon.

141 5.2. Wait 10 min and add additional TMS-diazomethane (0.050 mL) until a pale yellow color  
142 remains. After 30 more min, carefully concentrate the mixture using the rotary evaporator and  
143 purify the residue by flash column chromatography. Elute with 4%  $\text{EtOAc}$  in hexanes (using a 40  
144 g silica gel column or column cartridge) for 22 min. In this example, 19,20-EDP methyl ester  
145 (0.116 g, 74%) and 16,17-EDP methyl ester (0.029 g, 19%), were both obtained as clear oils  
146 (total yield, 93%).

147 5.3. Collect the fractions containing the purified EDP methyl ester regioisomers. 19(S),20(R)-EDP  
148 methyl ester elutes first, followed by 16(S),17(R)-EDP methyl ester. If any mixed fractions

149 remain [(containing both isomers; can be assessed by thin-layer chromatography (TLC) in 8:1  
150 hexane/EtOAc and staining with potassium permanganate (KMnO<sub>4</sub>)], re-chromatograph them  
151 with the same solvent system as before. Concentrate the fractions containing the individual  
152 regioisomers. At this point, identity and purity may be assessed by NMR (using CDCl<sub>3</sub> as the  
153 solvent; see the legend for Figure 2).

154 5.4. To convert individual EDP methyl ester regioisomers to their acid forms, dilute the EDP  
155 ester in THF: water (approximately 0.7 mL/0.1 mmol of ester). Add 2 M aqueous LiOH (3 molar  
156 equivalents) and stir overnight (completeness of the reaction can be assessed by TLC, using 3:1  
157 hexanes/EtOAc, staining with KMnO<sub>4</sub>; the product has a retention factor of ~0.3).

158 5.4. Quench the reaction slowly with formic acid, until the pH of the mixture is 3-4. Add water  
159 and ethyl acetate (1-2 mL/0.100 mmol of ester), and separate the layers. Extract the water layer  
160 with EtOAc (3 x 5 mL), wash with saturated brine (NaCl) solution, and dry the EtOAc layer over  
161 anhydrous sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>).

162 5.5. Concentrate the ethyl acetate solution using a rotary evaporator, add hexanes (10 mL) and  
163 concentrate again. Repeat twice to azeotropically remove residual formic acid. Purify the  
164 residue by flash column chromatography, eluting with 10-30% EtOAc over 15 min. Concentrate  
165 the desired fractions and dry in vacuo to afford the purified acid. At this stage, enantiomeric  
166 purity may be assessed (by chiral HPLC, see the legends for Figures 3-4 for column and  
167 conditions). Chemical purity can be assessed by C18 (achiral) HPLC (see Table of Materials and  
168 reference 14).

169

170 **Representative Results:**

171 The flash column chromatogram (performed using an automated flash purification  
172 system as described below) obtained upon purification of the crude mixture from enzymatic  
173 epoxidation is shown in Figure 1. Following esterification and separation of the regioisomers,  
174 pure 16(S),17(R)-EDP and 19(S),20(R)-EDP methyl esters were obtained (typically they are  
175 present in an approximate 1:4 to 1:5 ratio, with the major product being 19(S),20(R)-EDP. No  
176 other EDP regioisomers (e.g., 13,14- or 10,11-EDP) are obtained. The <sup>1</sup>H-NMR spectra of  
177 16(S),17(R)-EDP (Figure 2A) and 19(S),20(R)-EDP (Figure 2B) methyl esters, (along with their  
178 structures) are shown below, indicating the high purity of these compounds; C18 (achiral) HPLC  
179 of the acid forms also indicated purities >98%). Their identity was further confirmed by high-  
180 resolution mass spectroscopy (both of the acid and ester forms), which yielded mass/charge  
181 ratios and fragmentation patterns consistent with the identified EDPs. Enantiomeric purity was  
182 determined using chiral HPLC, by comparison to authentic enantiopure and mixed standards of  
183 the EDPs (in their acid form, Figures 3A and 4A). As can be observed in Figures 3B and 4B), both  
184 EDPs obtained by enzymatic epoxidation are highly enantiopure following saponification (>99%  
185 one enantiomer). The identities of these enantiomers were previously reported to be  
186 16(S),17(R)- and 19(S), 20(R)-EDP.<sup>18</sup>

187

188 **Figure Legends:**

189 **Figure 1.** Chromatogram from purification of crude mixture obtained from enzymatic  
190 epoxidation of DHA (along with relevant structures). The middle peak (monoepoxide) contains  
191 the desired EDPs. Purification was performed using an automated flash purification system (see  
192 Table of Materials).

193 **Figure 2.** Example  $^1\text{H}$ -NMR spectra of pure 16(S),17(R)-EDP methyl ester (2A) and 19(S),20(R)-  
194 EDP methyl ester (2B). Spectra were recorded at 500 MHz in  $\text{CDCl}_3$  (solvent is visible at 7.26  
195 ppm and residual water at 1.6 ppm). The chemical shifts are as follows: **16(S),17(R)-EDP methyl**  
196 **ester:**  $^1\text{H}$ -NMR (500 MHz;  $\text{CDCl}_3$ ):  $\delta$  5.57-5.35 (m, 10 H), 3.68 (s, 3 H), 2.99-2.95 (m, 2 H), 2.87-  
197 2.83 (m, 6 H), 2.47-2.37 (m, 6 H), 2.29-2.21 (m, 2 H), 2.11-2.05 (m, 2 H), 0.99 (t,  $J$  = 7.5 Hz, 3 H);  
198 **19(S),20(R)-EDP methyl ester:**  $^1\text{H}$ -NMR (500 MHz;  $\text{CDCl}_3$ ):  $\delta$  5.54-5.35 (m, 10 H), 3.68 (s, 3 H),  
199 2.97 (td,  $J$  = 6.4, 4.2 Hz, 1 H), 2.91 (td,  $J$  = 6.3, 4.2 Hz, 1 H), 2.85-2.82 (m, 8 H), 2.44-2.36 (m, 5 H),  
200 2.27-2.21 (m, 1 H), 1.65-1.51 (m, 3 H), 1.06 (t,  $J$  = 7.5 Hz, 3 H)

201 **Figure 3.** Chiral HPLC indicating enantiopurity of 16,17-EDP (acid form) produced by BM3 (A)  
202 shows “racemic” 16,17-EDP (an artificial mixture of authentic standards of both enantiomers<sup>14</sup>),  
203 whereas (B) shows enantiopure 16(S),17(R)-EDP produced by epoxidation of DHA with BM3,  
204 assessed as >99% *S,R* isomer. The column is cellulose-based (see Table of Materials, 250 x 4.6  
205 mm, 5  $\mu\text{m}$ , 1000  $\text{\AA}$ ) eluting with isocratic 45% 50 mM ammonium bicarbonate ( $\text{NH}_4\text{HCO}_3$ ) in  
206 methanol (30 min), with a sample concentration of 0.5 mM and flow rate of 1 mL/min.

207 **Figure 4.** Chiral HPLC indicating enantiopurity of 19,20-EDP (acid form) produced by BM3 (A)  
208 shows “racemic” 19,20-EDP (an artificial mixture of authentic standards of both enantiomers<sup>14</sup>),  
209 whereas (B) shows enantiopure 19(S),20(R)-EDP produced by epoxidation of DHA with BM3,  
210 assessed as >99% *S,R* isomer (method as described for Figure 3).

211 **Figure 5.** Enzymatic reaction scheme and structures of AA, EPA, EETs, and EEQs.

212 **Figure 6.** Chiral HPLC indicating enantiopurity of 17,18-EEQ (acid form) produced by BM3 (A)  
213 shows “racemic” 17,18-EEQ (an artificial mixture of authentic standards of both enantiomers<sup>14</sup>),  
214 whereas (B) shows enantiopure 17(S),18(R)-EEQ produced by epoxidation of EPA with BM3,  
215 assessed as >99% *S,R* isomer (method as described for Figure 3).

216

217 **Discussion:**

218 We present here an operationally simple and cost-effective method for preparing the two  
219 most abundant epoxy metabolites of DHA – 19,20 and 16,17-EDP. These epoxy fatty acids can  
220 be prepared in highly enantiopure (as their *S,R*-isomers) form using wild-type BM3 enzyme.  
221 Several critical points (which may be used for troubleshooting), and the extension of our  
222 method to preparing enantiopure epoxy metabolites of AA and EPA, are described below.

223 **BM3 storage guidelines.**

224 Storing the purified BM3 enzyme is possible by mixing the protein solution with equal  
225 volume of glycerol and flash freezing with liquid nitrogen before storage in a -78 °C freezer.

226 Once the enzyme is frozen, it can be stored for up to a year. The enzyme can only be thawed  
227 once, must be thawed on ice, and can only be left on ice for 4 h. Freezing again, and allowing  
228 the enzyme to thaw without an ice bath will deactivate the enzyme.

229 **Chemical storage guidelines.**

230 Many of the compounds required for the procedure are air-sensitive. These include DHA  
231 and other PUFAs, EDPs and other epoxy metabolites, and NADPH. To prevent peroxidation (and  
232 other oxidative processes) of these compounds, always flush the containers in which they are  
233 stored with argon or nitrogen and store at -78 °C.

234 Another important note is the solution in which the DHA is stored. Although DHA is not  
235 very stable in DMSO, BM3 is incompatible with ethanol and methanol, so DMSO must be used.  
236 To counteract its low stability, the DHA mixture must be prepared freshly the same day as the  
237 epoxidation. The total DMSO percentage in the reaction mixture must be kept under 1% to  
238 avoid deactivating the enzyme. Additionally, because NADPH has a short shelf life, the  
239 concentration should be checked with the spectrophotometer prior to addition to reaction. This  
240 ensures that 1 equivalent of the NADPH is always added to the reaction mixture.

241

242 **Epoxidation reaction guidelines.**

243 Airflow from the balloon into reaction mixture must be maintained in order to keep the  
244 reaction oxygenated (as oxygen is necessary for epoxidation). The mixture must also be stirred  
245 rapidly, since PUFAs are not very soluble in water (the solubility of DHA is ( $\leq$ 125  $\mu$ M in the  
246 reaction buffer). The reaction is quenched with oxalic acid to denature protein (as its chelates  
247 metal and removes cofactors) and acid keeps DHA its neutral form, which is necessary for  
248 diethyl ether extraction. The quenching of the reaction mixture must be done slowly to avoid  
249 acid-catalyzed hydrolysis of the EDPs.

250 **EDP extraction and purification guidelines.**

251 Ether was chosen specifically as the extraction solvent for multiple reasons.  
252 Dichloromethane can precipitate the protein out of solution, which complicates the extraction.  
253 EtOAc extracts glycerol from (added with the enzyme stock solution), which is difficult to  
254 remove and interferes with the flash chromatography.

255 EDP regioisomers in their free acid state are not easily separable, which is why the  
256 regioisomers are mixed into a single peak in the first flash column chromatography. Once they  
257 are converted to the methyl esters, the regioisomers are readily separable. Additionally, the  
258 esters are generally more stable than the corresponding acids for long-term storage if the acid  
259 form is not needed immediately.

260

261 **Significance of the method with respect to existing/alternative methods.**

262 Our method provides a simple and effective method for obtaining enantiopure EDPs,  
263 which has many advantages over existing and alternative methods. First, chemical epoxidation  
264 of DHA and other PUFAs and their derivatives is neither regioselective or enantioselective, and  
265 complicated mixtures are often obtained. Multiple flash chromatography columns and  
266 preparative HPLC, including chiral preparative HPLC, are therefore necessary to purify  
267 enantiopure epoxy fatty acids from these mixtures, which are labor intensive and can produce  
268 only very small amounts of the desired metabolites. Total synthesis can also be employed to  
269 produce epoxy fatty acids, but it is rigorous, time-consuming, requires multiple steps, and gives  
270 a low overall yield, whereas the BM3 enzyme is easy to express and purify, and the epoxidation  
271 is complete within a short period of time. Our method is also cost-effective: a commercial  
272 source<sup>20</sup> currently offers 16,17- and 19,20-EDP (as their racemates) for \$528/0.5 mg. One gram  
273 of NADPH can also be purchased for ~\$500-\$800, and can be used to produce over two  
274 hundred times the amount of 19,20-EDP (and approximately fifty times the amount of 16,17-  
275 EDP) offered commercially for a similar price – and in enantiopure forms, which are currently  
276 not commercially available.

277

278

279 **Limitations of the method.**

280 As this enzyme preferentially epoxidizes the last double bond of DHA, the major product  
281 is 19,20-EDP (although 16,17-EDP is also produced). Therefore, other DHA regioisomers that  
282 might be desired (e.g., 13,14-EDP, 10,11-EDP) cannot be produced by enzymatic epoxidation  
283 with wild-type BM3. Also, as only the *SR*-enantiomers are produced by BM3, the *RS*-  
284 enantiomers are inaccessible, although our previously published chemical inversion method<sup>14</sup>  
285 may be used to synthesize them. Additionally, because of the low solubility of lipophilic PUFAs  
286 in the reaction buffer, very large amounts of buffer would be necessary for large-scale  
287 production (ca. 500-1000 mg) of EDPs, which could potentially make extraction time-consuming  
288 or prohibitive.

289

290 **Other applications of the method.**

291 Pleasingly, this enzymatic epoxidation protocol is also applicable to EPA and AA  
292 (relevant structures are shown in Figure 5). The concentrations, buffer, and reaction time  
293 required for epoxidation of all three fatty acids is the same. For the EPA, the wild-type BM3  
294 enzyme is also used, and the EEQ fraction obtained from EPA (56% yield of monoepoxide), after  
295 esterification is ~14:1 17,18-EEQ:14,15-EEQ. Similar to the observations made for EDPs, the  
296 17,18-EEQ obtained is highly enantiopure (>99% 17(S),18(R)-EEQ, see Figure 6) as assessed by  
297 chiral HPLC (see Figure 3 legend and Table of Materials; identity of enantiomers was previously  
298 reported.<sup>17</sup> For AA, however, the F87V BM3 mutant must be used instead (as wild-type BM3 is a  
299 hydroxylase for AA).<sup>21</sup> Expression and purification of this mutant also uses the above protocol,  
300 and epoxidation is performed in an analogous fashion. By this method, 14,15-EET is obtained as  
301 the sole regioisomer. As 14,15-EET free acid is inseparable from unreacted AA following the

302 epoxidation, esterification is necessary; 14,15-EET methyl ester is obtained in 52% yield from  
303 AA. Chiral HPLC (see Figure 3 legend and Table of Materials) of the acid indicates highly  
304 enantiopure (>99%) 14(S),15(R)-EET (as previously reported).<sup>15</sup> The chemical shifts for these  
305 EPA and AA metabolites are as follows: **17(S),18(R)-EEQ methyl ester:** <sup>1</sup>H-NMR (500 MHz;  
306 CDCl<sub>3</sub>): δ 5.53-5.34 (m, 8 H), 3.67 (s, 3 H), 2.96 (td, J = 6.4, 4.2 Hz, 1 H), 2.90 (td, J = 6.3, 4.2 Hz, 1  
307 H), 2.85-2.79 (m, 6 H), 2.44-2.38 (m, 1 H), 2.32 (t, J = 7.5 Hz, 2 H), 2.26-2.20 (m, 1 H), 2.11 (q, J =  
308 6.7 Hz, 2 H), 1.71 (quintet, J = 7.4 Hz, 2 H), 1.66-1.50 (m, 2 H), 1.05 (t, J = 7.5 Hz, 3 H);  
309 **14(S),15(R)-EET methyl ester:** <sup>1</sup>H-NMR (500 MHz; CDCl<sub>3</sub>): δ 5.53-5.33 (m, 6 H), 3.67 (s, 3 H),  
310 2.95-2.92 (m, 2 H), 2.81 (dt, J = 17.8, 5.8 Hz, 4 H), 2.40 (dt, J = 14.1, 6.8 Hz, 1 H), 2.32 (t, J = 7.5  
311 Hz, 2 H), 2.23 (dt, J = 14.1, 6.8 Hz, 1 H), 2.11 (q, J = 6.8 Hz, 2 H), 1.71 (quintet, J = 7.4 Hz, 2 H),  
312 1.56-1.41 (m, 4 H), 1.38-1.30 (m, 4 H), 0.90 (t, J = 7.1 Hz, 3 H).

313

314 **Disclosures:** The authors have no conflicts of interest to disclose.

315

316 **Acknowledgements:** This work is funded by R00 ES024806 (National Institutes of Health), DMS-  
317 1761320 (National Science Foundation) and startup funds from Michigan State University. The  
318 authors wish to thank Dr. Jun Yang (University of California at Davis) and Lalitha Karchalla  
319 (Michigan State University) for assistance with optimization of the enzymatic reaction, and Dr.  
320 Tony Schilmiller (MSU Mass Spectrometry and Metabolomics Facility) for assistance with HRMS  
321 data acquisition.

322

323 **References:**

- 324 1. Campbell, W. B., Gebremedhin, D., Pratt, P. F., and Harder, D. R. Identification of  
325 epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. *Circulation Research*  
326 **78**, 415-423 (1996).
- 327 2. Ulu, A. et al. An omega-3 epoxide of docosahexaenoic acid lowers blood pressure in  
328 angiotensin-II-dependent hypertension. *Journal of Cardiovascular Pharmacology* **64**, 87-99  
329 (2014).
- 330 3. Ye, D. et al. Cytochrome p-450 epoxygenase metabolites of docosahexaenoate potently  
331 dilate coronary arterioles by activating large-conductance calcium-activated potassium  
332 channels. *Journal of Pharmacology and Experimental Therapeutics* **303**, 768-776 (2002).
- 333 4. Imig, J. D. Epoxyeicosatrienoic acids, hypertension, and kidney injury. *Hypertension* **65**, 476-  
334 682 (2015)
- 335 5. Capozzi, M. E., Hammer, S. S., McCollum, G. W., and Penn, J. S. Epoxygenated fatty acids  
336 inhibit retinal vascular inflammation. *Scientific Reports* **6**, 39211 (2016).

337 6. Zou, A-P. et al. Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and  
338 K(+) -channel activity. *American Journal of Physiology* **270**, F822-F832 (1996).

339 7. Lauterbach, B. et al. Cytochrome P450-dependent eicosapentaenoic acid metabolites are  
340 novel BK channel activators. *Hypertension* **39**, 609-13 (2002).

341 8. Clarke T. C., Black T. I., Stussman B. J., Barnes P. M., Nahin R.L. Trends in the use of  
342 complementary health approaches among adults: United States, 2002–2012. Hyattsville, MD:  
343 National Center for Health Statistics (2015).

344 9. Mozaffarian, D., and Wu, J. H. Y. Omega-3 fatty acids and cardiovascular disease. *Journal of*  
345 *the American College of Cardiology* **58**, 2047-2067 (2011).

346 10. Shearer, G., W. Harris, T. Pederson, and J. Newman. Detection of omega-3 oxylipins in  
347 human plasma in response to treatment with omega-3 acid ethyl esters. *Journal of Lipid*  
348 *Research* **51**, 2074-2081 (2010.)

349 11. Ostermann, A. I. and Schebb, N. H. Effects of omega-3 fatty acid supplementation on the  
350 pattern of oxylipins: a short review about the modulation of hydroxy-, dihydroxy-, and epoxy-  
351 fatty acids. *Food & Function* **8**, 2355-2367 (2017).

352 12. Khan, M. A. and Wood, P. L. Method for the synthesis of DHA. WO2012126088A1 (2012).

353 13. Nanba, Y., Shinohara, R., Morita, M., and Kobayashi, Y. Stereoselective synthesis of 17,18-  
354 epoxy derivative of EPA and stereoisomers of isoleukotoxin diol by ring-opening of TMS-  
355 substituted epoxide with dimsyl sodium. *Organic and Biomolecular Chemistry* **15**, 8614-8626  
356 (2017).

357 14. Cinelli, M. A. et al. Enzymatic synthesis and chemical inversion provide both enantiomers of  
358 bioactive epoxydocosapentaenoic acids. *Journal of Lipid Research* **59**, 2237-2252 (2018).

359 15. Falck, J. R. et al. Practical, enantiospecific syntheses of 14,15-EET and leukotoxin B (vernolic  
360 acid). *Tetrahedron Letters* **41**, 4131-4133 (2001).

361 16. Celik, A., Sperandio, D., Speight, R. E., and Turner, N. Enantioselective epoxidation of  
362 linolenic acid catalyzed by cytochrome P450BM3 from *Bacillus megaterium*. *Organic and*  
363 *Biomolecular Chemistry* **3**, 1688-2690 (2005).

364 16. Capdevila, J. H. et al. The highly stereoselective oxidation of polyunsaturated fatty acids by  
365 cytochrome P450BM-3. *Journal of Biological Chemistry* **271**, 22663-22671 (1996).

366 18. Lucas, D. et al. Stereoselective epoxidation of the last double bond of polyunsaturated fatty  
367 acids by human cytochromes P450. *Journal of Lipid Research* **51**, 1125-1133 (2010).

368 19. Guengerich, F. P., Martin, M. V., Sohl, C. D., and Cheng, Q. Measurement of cytochrome  
369 P450 and NADPH-cytochrome P450 reductase. *Nature Protocols* **4**, 1245-1251 (2009).

370 20. <https://www.caymanchem.com/product/10175> Cayman Chemical, 19,20-EpDPA.  
371

372 21. Graham-Lorence, S. et al. An active site substitution, F87V, converts cytochrome P450 BM-3  
373 into a regio- and stereoselective (14S, 15R)-arachidonic acid epoxygenase. *Journal of Biological*  
374 *Chemistry* **272**, 1127-1135 (1996).

375

376

377

378