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Abstract. Positive density lower bound is one of the major obstacles toward
large data theory for one dimensional isentropic compressible Euler equations,
also known as p-system in Lagrangian coordinates. The explicit example first
studied by Riemann shows that the lower bound of density can decay to zero as
time goes to infinity of the order O( 1

1+t
), even when initial density is uniformly

positive. In this paper, we establish a proof of the lower bound on density in
its optimal order O( 1

1+t
) using a method of polygonal scheme.

1. Introduction. In this paper we consider the Cauchy problem for isentropic gas
dynamics in Lagrangian coordinates⎧⎪⎨

⎪⎩
vt − ux = 0

ut + p(v)x = 0 ,

v(x, 0) = v0(x), u(x, 0) = u0(x) ,

(1)

where the specific volume v = 1/ρ, the density ρ > 0 and the velocity u of the gas
are all functions of (x, t) ∈ R× R

+. The pressure p(v) satisfies

p(v) = Kv−γ with γ > 1 , (2)

where γ is the adiabatic constant, and K is a positive constant. This system is
also called the p-system. For Lipschitz continuous solutions, (1) is equivalent to the
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corresponding Cauchy problem of isentropic Euler equations in Eulerian coordinates
[23]. Letting

c =
√
−p′(v)

be the sound speed, the Riemann invariants s and r are defined as

s := u− φ, r := u+ φ (3)

with

φ ≡ φ(v) :=

∫ v

1

√
−p′(v) dv . (4)

For smooth solutions, s and r satisfy

st + csx = 0 and rt − crx = 0 .

Toward a large data theory, such as the existences of BV solutions for isentropic
Euler equations (1), one of the main challenges comes from the possible degeneracy
when density approaches zero. In fact, when solution approaches vacuum, system
(1) loses its uniformly strict hyperbolicity, which causes major difficulties in ana-
lyzing the large data solutions, see [2,5,18] for analysis and examples showing these
difficulties. Therefore, sharp information on the time decay of density lower bound
is critical in the study of compressible Euler equations.

It is well known for (1) that the density can be arbitrarily close to zero as time
goes to infinity, even when initial density is uniformly away from zero, such as in
the interaction of two strong rarefaction waves, c.f. [9,20]. In his pioneer paper [20]
of 1860, Riemann studied the interaction between two rarefaction waves. Based
on Riemann’s construction, when γ = 2N+1

2N−1 with any positive integer N , Lipschitz

continuous examples were provided in Section 82 of [9], in which density functions
are proved to decay to zero in an order of O(1 + t)−1. For reader’s convenience, a
relative detailed discussion can be found in Section 2 below. Similar example can
be found in [14] for any γ > 1. In this paper, for 1 < γ < 3, we will prove the sharp
positive density lower bound of the order O(1 + t)−1 for any Lipschitz continuous
solutions of (1).

Thanks to the elegant structure of Euler equations, the local behavior of smooth
solutions can be classified into two classes: compression and rarefaction, as defined
below, see for instance [4, 8, 15, 21]. These concepts can be generalized to Lipschitz
continuous solutions without any difficulty.

Definition 1.1. At any point on (x, t)-plane, the smooth solution is forward (resp.

backward) rarefaction
⇀
R (

↼
R) if and only if sx ≥ 0 (resp. rx ≥ 0) at that point;

forward (resp. backward) compressive
⇀
C (

↼
C) if and only if sx < 0 (resp. rx < 0)

at that point.

Among many results, two of them are closely related to this paper. For purely
rarefactive piecewise Lipschitz continuous solutions, Lin [17] proved that the den-
sity has a O(1 + t)−1 order lower bound. For general smooth solutions, including

compressions in the solution, in a very recent paper [7], we find a O(1 + t)−
4

(3−γ)

lower bound when 1 < γ < 3. This result helps us to prove that gradient blowup
of u and/or v happens in finite time if and only if the initial data are forward or
backward compressive somewhere. This latter result is further extended in [7] to
nonisentropic flow.

In this paper, for general Lipschitz continuous solutions of (1) when 1 < γ < 3,

we improve the lower bound on density from O((1 + t)−
4

(3−γ) ) in [7] to the optimal
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order of O(1 + t)−1. Based on this result, the estimate in [7] on the life-span for
classical solutions of (1) can be improved.

Our main result of this paper is the following Theorem.

Theorem 1.2. Let 1 < γ < 3. Assume that initial data s0(x) = s(x, 0) and
r0(x) = r(x, 0) are uniformly bounded and Lipschitz continuous functions on x ∈ R,
and denote that

max
x �=y

s0(x)− s0(y)

x− y
= L1 < ∞, max

x �=y

r0(x)− r0(y)

x− y
= L2 < ∞

and

max
x

{|s0(x)|, |r0(x)|} = L3 < ∞.

Furthermore, assume that v(x, 0) in the initial data has uniformly positive upper
bound:

max
x

v(x, 0) = L4 < ∞.

For any given positive time T , if
(
u(x, t), v(x, t)

)
is a Lipschitz continuous weak

solution on R× [0, T ] for the initial value problem of (1), then there exists a positive
constant L = L(L1, L2, L3, L4), independent of T , such that

v(x, t) ≤ max
x

(
v(x, 0)

)
+ L t, for any (x, t) ∈ R× [0, T ]. (5)

Here, L1 and L2 measure how rarefactive the initial data are.
To prove this theorem, we study a polygonal scheme similar to those used in

[17, 19]. The polygonal scheme was first introduced by Dafermos [11] in the study
of scalar conservation law, then was modified by Diperna for system of conservation
laws [12]. This scheme, under a renowned name front tracking, has been widely
used for the well-posedness and behaviors of solutions for hyperbolic conservation
laws. For more details on the development of front tracking method, see for instance
[1, 10, 13, 22], and references therein.

The main difference of our scheme from the previous ones, is that we add a
memory of the local rarefaction and compression character on our scheme, which
helps us finally track the maximum rarefaction on waves. And this quantity is
crucial in estimating the decay of density. Here, we choose the polygonal scheme
since it fits the p-system very well. We wish to point out here that one of our
motivations in this paper besides showing the density lower bound is to provide
the readers a new method in tracking the variation of solutions during the wave
interactions.

In order to track the density changes along the time evolution, it is important
to characterize the key players of density loss in the approximate solutions. In the
polygonal scheme, we divide the (x, t)-plane into finite districts, on each of which
the forward (resp. backward) waves are of the same type: forward (resp. backward)
rarefaction or compression.

Because the density increases when it crosses a compressive wave, it seems that
only districts including forward and backward rarefaction waves directly make the
density decreasing. However, things are more complicated than they appear. In fact,
for rarefaction-rarefaction districts adjacent to initial line, we can apply directly a
similar argument used in [17] to obtain the desired lower bound on density. However,
the major difficulty that we have to conquer in this paper is how to analyze those
rarefaction-rarefaction districts far away from the initial line. These rarefaction
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waves have passed some compressions in the opposite families before reaching the
rarefaction-rarefaction districts. So

max
x �=y

s(x, t)− s(y, t)

x− y
and max

x �=y

r(x, t)− r(y, t)

x− y
,

might increase as time evolves. In order to obtain a sharp lower bound on density,
we need to carefully analyze all three types of districts: rarefaction-rarefaction,
rarefaction-compression and compression-compression districts.

Unlike many previous analysis, where the changes of density are monitored across
the boundaries of districts, or jump edges, we track the wave packs in each district,
for which we introduced the concepts of rarefactive and/or compressive characters
in Section 3 below. With the help of these characters, we are able to track the
variation of density precisely. Furthermore, in Definition 4.1, we introduced an
interesting function a(t) which measures the possible density loss. Using one of our
key new ideas, we are able to prove in Lemma 4.3 that a(t) is not increasing in
time, in the scheme approximating general smooth solutions. Using this lemma, we
could sew up the density estimates obtained in each district into a global one up to
time T in the regime of Lipschitz continuous solutions.

This paper is organized as follows. In Section 2, we review the explicit example
given in [9] where density decays to zero in time with an order of O(1 + t)−1. In
Section 3, we review the polygonal scheme and define Rarefaction/Compression
character. In Section 4, we prove the main theorem on lower bound of density.
Finally, as an application, in Section 5, we use the time-dependent lower bound (5)
obtained in Theorem 1.2 to improve the life-span estimates for classical soluitons of
(1) given in [7].

2. Exact interaction between two centered rarefactions. In this section, we
review a classical example for interaction between two centered rarefaction waves
provided in Section 82 of [9], where detail calculations are given. To be consistent
with classical literatures, (only) throughtout this section, instead of s and r, we use
the following slightly different Riemann invariants S and R,

S = u+ 2
√
Kγ

γ−1 v
1−γ
2 , R = u− 2

√
Kγ

γ−1 v
1−γ
2 . (6)

In fact, S (resp. R) is different from s (resp. r) only by some constants. The
following relation is crucial to measure density,

S −R = 4
√
Kγ

γ−1 v
1−γ
2 . (7)

For simplicity, in Figure 1 below, we only consider an interaction between two
centered rarefaction waves, where we assume that the first interaction happens at
t = t̄ > 0 and x = 0, with constant state (S̄, R̄) below the point (0, t̄). Furthermore,
we assume that u(0, t̄) = 0, hence

S̄ = −R̄ > 0.

Again, for simplicity, we assume that S in the left state of interaction is always
positive and R in the right state of interaction is always negative.

Then using the fact that S and R are constant along forward and backward
characteristics, respectively, in [20], Riemann first found the following equation:

t(S,R) = t̄

( S̄ − R̄
S −R

)σ

F

(
1− σ, σ, 1,

(S̄ − S)(R̄ − R)

(S̄ − R̄)(S −R)

)
(8)
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Figure 1. Interaction of two centered rarefaction waves.

where t(S,R) is the time when the interaction ends, F (z1, z2, z3, z4) is a hypergeo-
metric function and

σ =
γ + 1

2(γ − 1)
. (9)

When σ is a positive integer N or equivalently

γ =
2N + 1

2N − 1
,

the equation (8) is reduced into

t(S,R) = t̄

( S̄ − R̄
S −R

)σ

Pσ−1

(
1

S̄
S̄2 − SR
S −R

)
, (10)

where Pσ−1(z) is the Legendre’s function, which is a (σ − 1)-th order polynomial.
Recall that we assume that S in the left state of interaction is always positive

and R in the right state of interaction is always negative. Let |S| and |R| be both
very small, then density ρ at the point where interaction ends (at time t(S,R)) is
very close to zero. Using (7), to the leading order, we have

t(S,R) = O(ρ−1),

where we used (6), (9)-(10), Pσ−1(z) is a (σ − 1)-th order polynomial and 1
S̄ (S̄2 −

SR) > S̄ is uniformly positive. When |S| and |R| both approach zero,

t(S,R) → ∞ .

So when t is large enough,

min
x

ρ(x, t) = O(1 + t)−1 .

It is clear that the initial density in this explicit example is uniformly positive,
as illustrated in the right picture of Figure 1.

For general γ > 1, similar calculation on the density lower bound for the inter-
action of centered rarefactions can be found in [14].
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3. The polygonal scheme and Rarefaction/Compression character. In this
section, we review some basic setup for the polygonal scheme following the notations
in [17, 19]. Here, we adapt a simpler version of the scheme used in [19].

3.1. Pressure, Riemann invariants and Standard states. We first give the
polygonal approximation of p(v) as follows: for any given positive integer n, let

v
(n)
0 = 1, and v

(n)
k (for integer k) be determined by the recurrence formula

G(v
(n)
k , v

(n)
k+1) :=

(
p(v

(n)
k )− p(v

(n)
k+1)

)(
v
(n)
k+1 − v

(n)
k

)
=

1

n2
. (11)

It is easy to check that for each fixed n there exists a unique sequence
{
v
(n)
k

}∞

k=1
,

defined by (11), such that

lim
k→∞

v
(n)
k = ∞, and lim

k→−∞
v
(n)
k = 0 .

Furthermore, denoting

δ
(n)
k := v

(n)
k+1 − v

(n)
k ,

one has
lim
k→∞

δ
(n)
k = ∞ .

By connecting the points
(
v
(n)
k , p(v

(n)
k )

)
and

(
v
(n)
k+1, p(v

(n)
k+1)

)
through straight lines,

we have a polygonal approximation for p(v), denoted by p(n)(v).
In the second step, based on the definition of p(n)(v), we give the polygonal

approximation of Riemann invariants r and s. Denoting

Φ(n)(v) :=

∫ v

1

√
−p(n)

′
(v) dv , (12)

then
Φ(n)(v

(n)
0 ) = Φ(n)(1) = 0 ,

and

Φ(n)(v
(n)
k+1)− Φ(n)(v

(n)
k ) =

√
G(v

(n)
k , v

(n)
k+1) =

1

n
.

One quickly has

Φ(n)(v
(n)
k ) =

k

n
,

where k is an integer and n is a positive integer.
We define

r(n)(u, v) = u+Φ(n)(v), s(n)(u, v) = u− Φ(n)(v) , (13)

which are corresponding to the Riemann invariants r and s defined in (3), respec-
tively.

Finally, we give the definition of standard states:(
u, v

)
=

( i

n
, v

(n)
j

)
, i.e.

(
u, Φ(n)

)
=

( i

n
,
j

n

)
,

and (
r(n), s(n)

)
=

(2k
n
,
2l

n

)
,

where i and j are integers satisfying

k =
1

2
(i+ j) and l =

1

2
(i− j) .

For convenience, we might omit the superscript (n) if there are no confusions.
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3.2. Riemann problems. Based on the definitions introduced in the previous
subsection, now we consider the following Riemann problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vt − ux = 0 ,

ut + p(n)(v)x = 0 ,

(
u0(x), v0(x)

)
=

{ (
u−, v−

)
, x < 0 ,(

u+, v+
)
, x > 0 ,

(14)

with (
u−, v−

)
=

( i

n
, v

(n)
j

)
,

(
u+, v+

)
=

( i+M +N

n
, v

(n)
j+M−N

)
,

where M (and N) can be −1, 0 or 1. Clearly, we have

(
r
(n)
0 (x), s

(n)
0 (x)

)
=

⎧⎨
⎩

(
r
(n)
− , s

(n)
−

)
, x < 0 ,(

r
(n)
+ , s

(n)
+

)
, x > 0 ,

with (
r
(n)
− , s

(n)
−

)
=

(2k
n
,
2l

n

)
,

(
r
(n)
+ , s

(n)
+

)
=

(2(k +M)

n
,
2(l +N)

n

)
.

The solution of the Riemann problem (14) consists of |M | + |N | + 1 standard
states, divided by |M | + |N | jump discontinuities (straight lines centered at the
origin).

To calculate the middle state (r
(n)
m , s

(n)
m ) in the solution of Riemann problem (14),

we use the following criterions:

s(n) and r(n) are constants across backward and forward jumps, respectively. (15)

This criterion follows from (3). Hence the middle state in the solution of Riemann
problem (14) is always

(
r(n)m , s(n)m

)
=

(2(k +M)

n
,
2l

n

)
.

Then it is easy to have (
um, vm

)
=

( i+M

n
, v

(n)
j+M

)
.

Remark 1. We note that

• if M = 1 (resp. N = 1), the backward (resp. forward) jump discontinuity
describes a rarefactive wave.

• If M = 0 (resp. N = 0), there are no backward (resp. forward) jump
discontinuity.

• if M = −1 (resp. N = −1), the backward (resp. forward) jump discontinuity
describes a compressive wave.

The definitions of rarefaction and compression are in Definition 1.1. We refer the
readers to [2, 5] for more details on wave curves for rarefaction and compression
waves.
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When M is −1 or 1, from (11), the slope of the backward jump is

↼
λ = −

√√√√−p(v
(n)
j+M )− p(v

(n)
j )

v
(n)
j+M − v

(n)
j

=
−1

n
∣∣v(n)j+M − v

(n)
j

∣∣ < 0. (16)

When N is −1 or 1, from (11), the slope of the forward jump is

⇀
λ =

√√√√−p(v
(n)
j+M )− p(v

(n)
j+M−N )

v
(n)
j+M − v

(n)
j+M−N

=
1

n
∣∣v(n)j+M − v

(n)
j+M−N

∣∣ > 0. (17)

3.3. The polygonal scheme and Rarefactive/Compressive characters. For
any given Lipschitz continuous initial data (r0, s0) with u0 and v0 uniformly bounded
and v0 uniformly away from zero, similar to [17], we can find a sequence of piecewise

constant functions (u
(n)
0 , v

(n)
0 ) which takes values on finitely many standard states.

More precisely, for arbitrary integer n > 0, there exist finite points −∞ = x
(n)
1 <

x
(n)
2 < ... < x

(n)
j < x

(n)
j+1 = +∞, such that for every integer 1 ≤ α ≤ j,

(
r(n)(x), s(n)(x)

)
=

(2k(n)α

n
,
2l

(n)
α

n

)
,

for some integers k
(n)
α and l

(n)
α for x ∈ (x

(n)
α , x

(n)
α+1).

Furthermore, (k
(n)
α−1, l

(n)
α−1) is different from (k

(n)
α , l

(n)
α ) and

|k(n)α−1 − k(n)α | ≤ 1, |l(n)α−1 − l(n)α | ≤ 1 .

For such sequence, we have

(u
(n)
0 , v

(n)
0 ) → (u0, v0) (18)

uniformly, and

max
α

2

n
(
x
(n)
α+1 − x

(n)
α

) −→ max
x �=y

{s0(x)− s0(y)

x− y
,
r0(x)− r0(y)

x− y

}
, as n → ∞ .

(19)
Here, in fact, we can choose the approximation piecewise constant profiles of s(n)(x)
and r(n)(x) such that when x is varying from xα to xα+1, the variations of s and r
values are equal to ± 2

n , which more precisely means,

s(n)(xα+1 + ε)− s(n)(xα + ε) = ± 2

n
and r(n)(xα+1 + ε)− r(n)(xα + ε) = ± 2

n

when ε is small enough. So as n → ∞, (19) is satisfied.
For any positive integer n, we solve the Riemann problem (14) at each disconti-

nuity. Note the left, right and middle sates in the solution of each Riemann problem
(14) are still standard states, split by jump discontinuities. Let these jump discon-
tinuities evolve. When two jumps in different characteristic families interact with
each other, new Riemann problem appears, which can also be solved according to
the method established in the previous subsection and there are exactly two out-
going jumps. Before the possible interactions between jumps of the same family,
we get a well-defined polygonal scheme, including finitely many jumps, because the
total number of interactions are finite and the number of outgoing discontinuities
equals to the number of incoming discontinuities in one interaction.
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In [19], the authors show that under some regularity condition on the initial data
(u0, v0), the approximation solutions (u(n), v(n)) in the polygonal scheme used in
current paper are well-defined, i.e. there is no interaction between jumps of the
same family, in a time interval t ∈ [0, T ] with T > 0 only dependent on the C1-
norm of (u0, v0) but independent of n. Furthermore, the approximation solutions
converge to a Lipschitz continuous solution for p-system when n → ∞. We will give
more details on this local-in-time convergence result later.

In this subsection, we first assume that there is no interaction between jumps of
the same family.

Definition 3.1. In the polygonal scheme, for any positive integer n, the (x, t)-plane
is divided into finite blocks by finitely many jump discontinuities. If a block is a
diamond, we call it a diamond block or diamond. Each jump discontinuity may also
be divided into finite many pieces, which are denoted by jump edges, by finitely
many intersection points with other jumps.

To be precise on the definitions of a block or a jump edge, we note s(n) and r(n)

are both constants inside each block and on each side of a jump edge, or in another
word, there are no other jump discontinuities going inside a block or a jump edge.

To obtain a good lower bound on density, it is crucial to study the variation of
a jump edge inside a characteristic tube, such as the propagation of edge l1 in the
forward characteristic direction in Figure 2.

First, we define the Rarefactive/Compressive (R/C) character on a jump edge.

Definition 3.2 (R/C character on a jump edge). We classify the jump edges into
four types: Rr, Rc, Cr and Cc. Most of time, we add an arrow to denote forward
or backward character, respectively.

More precisely, a backward (resp. forward) jump edge l1 (resp. l2) in the scheme,
shown in Figure 2, is said to be:

i.
⇀
Rr (resp.

↼
Rr), if u− < u+ < u++ (resp. u−− < u− < u+).

ii.
⇀
Rc (resp.

↼
Rc), if u− < u+ and u+ > u++ (resp. u− < u+ and u−− > u−).

iii.
⇀
Cr (resp.

↼
Cr), if u− > u+ and u+ < u++ (resp. u− > u+ and u−− < u−).

iv.
⇀
Cc (resp.

↼
Cc), if u− > u+ > u++ (resp. u−− > u− > u+).

For the left-most forward (resp. right-most backward) jump edge in the scheme
which is unbounded from its left (resp. right) hand side, we always say this jump
edge belongs to either Cc or Rr by checking the relation of u from the right (resp.
left) boundary following the table above.

For simplicity, we always use C to denote Cr or Cc character.

Remark 2. In the definition of Rr, Rc, Cr and Cc, the capital letter denotes the
character on the boundary behind the edge (u increases from left to right for a
rarefaction boundary) and the subscript denotes character on the boundary ahead
of the edge.

In Figure 2, we use the subscripts a and b to denote states ahead of and behind
a jump wave front. By (15), one always has vb > va for a Rr or Rc jump edge; and
vb < va for a Cr or Cc jump edge. In the Rc and Cr pieces, vaa = vb.

Then we define the R/C character on any blocks.

Definition 3.3 (R/C character in a block). A block is called a
⇀
Rr

↼
Rr block if its

South-West and South-East boundaries are
⇀
Rr and

↼
Rr, respectively.
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Figure 2. Definition of forward (resp. backward) R/C characters
for the jump edge l1 (resp. l2). The picture is on the (x, t)-plane.

Similar definitions are also for
⇀
Rr

↼
Rc

⇀
Rc

↼
Rr,

⇀
Rc

↼
Rc,

⇀
C

↼
Rr,

⇀
C

↼
Rc,

⇀
Rr

↼
C,

⇀
Rc

↼
C and

⇀
C

↼
C blocks.

Figure 3. Proof of Lemma 3.4. The picture is on the (x, t)-plane.

Lemma 3.4. The forward (resp. backward) jump edges lSW and lNE (resp. lSE

and lNW ) shown in Figure 3 belong to the same type.

Proof. By (13) and (15), we have

u
(n)
1 − u

(n)
4 = Φ

(n)
4 − Φ

(n)
1 , u

(n)
3 − u

(n)
2 = Φ

(n)
2 − Φ

(n)
3 ,

and

u
(n)
1 − u

(n)
2 = Φ

(n)
1 − Φ

(n)
2 , u

(n)
3 − u

(n)
4 = Φ

(n)
3 − Φ

(n)
4 .

Summing up these equations, one obtains

u
(n)
1 − u

(n)
2 = u

(n)
4 − u

(n)
3 and u

(n)
1 − u

(n)
4 = u

(n)
2 − u

(n)
3 , (20)
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with states 1∼4 given in Figure 3, hence the monotonicity of u is preserved in both
forward and backward directions, which is enough to prove this lemma by Definition
3.2.

Definition 3.5 (R/C character in a district). Given a block in certain type (for

example a
⇀
Rr

↼
Rr block), we define a district in that type (for example a

⇀
Rr

↼
Rr

district) to be the largest connected set which includes the given block and consists
of only blocks in the same type.

Finally, we prove that v decays in some direction, when we restrict our consid-

eration on districts which are not in
⇀
Rr

↼
Rr type.

Lemma 3.6. If the forward character of a district D is
⇀
C or

⇀
Rc, then v on any block

adjacent to and above North-West boundary of D is not larger than the maximum
v values on blocks adjacent and below South-East boundary of D.

And all Φ(n) values on blocks in D are at most 1/n larger than the maximum
Φ(n) value on blocks adjacent and below South-East boundary of D.

Symmetric decay of v happens if the backward character of a district D is
↼
C or

↼
Rc.

The proof of this lemma is obvious from Remark 2. This lemma is corresponding
to the fact that density increases from behind to ahead of a compression simple
wave.

4. The lower bound on density in the scheme. This section will be devoted
to prove density’s lower bound estimate shown in Theorem 1.2. The key idea in
proving (5) is to define a function a(n)(t) for any n, which is not decreasing on t.
The monotonicity of a(n)(t) will finally lead to a lower bound on density, under
the help of the local convergence theorem for the polygonal scheme in [19]. In this
section, we always assume that jumps in the same family do not interact, where
this assumption will be removed in the end of this section.

To define a(n)(0), in the first step, we modify some blocks adjacent to the initial
line t = 0 to diamonds, as in Figure 4 and the left picture of Figure 5. After these
modifications, we call all interior and boundary diamonds as complete diamonds,
also shown in Figure 4.

Definition 4.1. Call the collection of all complete diamonds (after modifications)

as CD. The lowest boundary of CD is a polygonal line, denoted by t = L
(n)
0 (x). It

is clear that t = L
(n)
0 (x) consists of finitely many jump edges. See Figure 5.

A jump edge JEi on t = L
(n)
0 (x) is said in L

(n)
0,R if it is

⇀
Rr or

↼
Rr. We define the

length of the propagation of JEi onto x-axis as a
(n)
i (0). Now we define

a(n)(0) = min
JEi∈L

(n)
0,R

a
(n)
i (0) .

For t > 0, it is not necessary to modify the diamond again. We thus define a(n)(t)
in a similar way.

We first give a lemma on the initial data.

Lemma 4.2. Assume the initial density ρ(n)(x, 0) has positive upper and lower
bounds, and

J = max
x �=y

{s0(x)− s0(y)

x− y
,
r0(x)− r0(y)

x− y

}
< ∞, (21)
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then the density ρ(n)
(
x, L

(n)
0 (x) +

)
has positive lower and upper bounds. And

lim
n→∞

1

na(n)(0)
≤ M0J , (22)

and M0 is a positive constant depending on the uniform upper and lower bound on
initial density but independent of n.

Remark 3. By (18), we know that, under the assumptions on initial data in The-
orem 1.2, assumptions in Lemma 4.2 are all satisfied. M0 only depends on L3 and
L4, by the definition of s and r in (2)∼(4). J clearly only depends on L1 and L2.
The definition of L1∼L4 are given in Theorem 1.2.

Figure 6. Proof of Lemma 4.2. l2 and l′2 are parallel with each
other. The picture is on the (x, t)-plane.

Proof. The first claim is clearly true because each state below the curve t = L0(x)
is an initial state in the scheme.

To prove (22), it is enough to show that for any jump edge PQ with endpoints

P and Q on the curve t = L
(n)
0 (x), we have

1

n|xP − xQ| ≤ M0J + εn, (23)

where εn goes to zero as n goes to infinity.

We divide jump edges on the curve t = L
(n)
0 (x) into two types: jump edge

intersecting with the initial line and jump edge not intersecting with the initial line.
Without loss of generality, we only consider two forward jump edges l1 and l2 in
Figure 6.

We denote three line segments on t = 0 divided by adjacent backward jumps as
Bj−1, Bj and Bj+1, respectively, which are shown in Figure 6.
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Noticing that l1 is
↼
Rr, from (15), Definition 3.2 and the discussion in Subsection

3.1, we have r = 2(k−1)
n , 2k

n and 2(k+1)
n in backward tubes, which means that all

connected blocks are divided by two adjacent backward jumps, including Bj−1, Bj

and Bj+1, respectively, where k = 1
2 (i+ j) for some integers i and j.

By studying the shaded triangle in Figure 6, it is easy to get that there exists a
constant M only depending on the upper and lower bounds of initial density, such
that

M ≥ |Bj |
Δl1x

as n large enough, where Δl1x means the length of projection of l1 onto the line
t = 0. Then we have

2
n

Δl1x
≤ M

rBj+1 − rBj−1

|Bj | . (24)

Hence (23) is clearly correct, because the right hand side of (24) is bounded above
by J as n goes to infinity, where we have also used (19).

For l2, noting that Δl2x ≥ Δl′2x where l′2 is parallel to l2, because l2 is
↼
Ri, we

know that two backward jumps enclosing l2 open up. A more detailed argument on
this fact can be found in Step 2.1 in the proof of Lemma 4.3. Now we change the
problem to a problem for l′2 which intersects with t = 0, hence similar as the case
for l1, we can prove (23).

This completes the proof of the lemma.

The following lemma plays a key role in this paper.

Lemma 4.3. Assume all assumptions on initial data in Theorem 1.2 hold. For
any positive time T , suppose the scheme is well-defined on R × [0, T ], then a(n)(t)
is not decreasing on t for all t ∈ [0, T ].

Proof. We divide our proof into two steps. For convenience, we omit the subscript
(n) in the proof of this lemma.
Step 1. Suppose jump edges PuPl and Pu′Pl are two lower boundaries of a diamond
Ω, where Pu, Pu′ and Pl are three vertexes of Ω, and specially Pl is the lowest vertex.

Then we prove that: for any time T ≥ 0, PuPl and Pu′Pl are either both in or
both not in the collection of selected diamonds at time T .

Actually, if Pl is in the region t ≥ T , then Ω is a selected diamond.
If Pl is not in the region t ≥ T , then diamonds containing PuPl or Pu′Pl as

north boundary are not selected. Thus except these diamonds, the only diamond
including PuPl or Pu′Pl is Ω. Hence PuPl and Pu′Pl are either both selected or
both not selected.

Step 2. Recall that the R/C characteristic does not change along forward and
backward characteristic directions. Also using the claim proved in Step 1, to prove
the lemma, we only have to show that, in any diamond, the minimum difference in

x for any
⇀
Rr and

↼
Rr south jump edges is less or equal to the minimum difference

in x for any
⇀
Rr and

↼
Rr north jump edges.

We discuss case by case for diamonds including
⇀
Rr or

↼
Rr.

Case (2.1). We consider a
⇀
Rr

↼
C or a

⇀
Rr

↼
Rc diamond shown in Figure 7. We use

subscripts E, W , N and S to denote functions related to east, west, north and
south endpoints of the diamond, respectively. And we use subscripts NE, NW ,
SE and SW to denote functions related to North-East, North-West, South-East
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and South-West boundary jump edges of the diamond, respectively. Especially we
use lNE , lNW , lSE and lSW to denote the North-East, North-West, South-East and
South-West boundary jump edges of the diamond.

We want to show that
xE − xN ≥ xS − xW . (25)

Figure 7. From left to right: the middle diamonds are: RrCc;
RrCr; and RrRc diamonds, respectively, where forward character
always goes first. The picture (x, t)-plane.

By studying the three possible cases in Figure 7 using (16)∼(17), we always have

0 <
λNW

λSE
< 1 and 1 ≤ λNE

λSW
, (26)

where recall that subscripts N , S, W , E denote the north, south, west and east
endpoints of the middle diamond in the figure, respectively.

Then we could give an easy geometric proof for (25) in Figure 8. In fact, drawing
two dash lines parallel to lNW and lSW , respectively, then by (26), we know the

parallelogram is inside the diamond, although in
⇀
Rr

↼
Cr and

⇀
Rr

↼
Rc diamonds in

Figure 7 one edge of the parallelogram lies on lNE . Then by Figure 8, clearly (25)
is correct.

Figure 8. The proof of (25) on a diamond satisfying (26). The
picture is on the (x, t)-plane.
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Case (2.2). However, the easy geometric proof in the previous part fails for
⇀
Rr

↼
Rr

interaction where the second inequality in (26) is in the opposite direction. Instead

we use the similar idea as the one used in [17] to cope with a
⇀
Rr

↼
Rr diamond.

Figure 9. The center diamond is a RrRr block. The picture is on
the (x, t)-plane.

We use B and D to denote the difference in x and t for each adjacent pair of
endpoints on the diamond, respectively, such as

BNW = |xN − xW |, DNW = |tN − tW |. (27)

Then clearly one has

BNW +BNE = BSW +BSE ,

DNW +DSW = DNE +DSE ,

and
BNW

DNW
=

BNE

DNE
= λNW < λSE =

BSW

DSW
=

BSE

DSE
.

Denote that

0 < α =
λNW

λSE
< 1,

it is easy to deduce that

BNW =
1

2
(1 + α)BSE +

1

2
(1− α)BSW ,

and

BNE =
1

2
(1 + α)BSW +

1

2
(1− α)BSE .

Hence we have

min(BNW , BNE) > min(BSW , BSE), (28)

which is the estimate we need.
Combining all the information obtained above, we have finished the proof of this

lemma.

Finally we prove Theorem 1.2.

Proof. We divide our proof into two steps.
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Step 1. First we show that: Suppose the polygonal scheme is well-defined when
0 < t ≤ T ∗. Then we have, when n is sufficiently large,

v(n)(x, t) ≤ max
x

v
(n)
0 (x) + L · t when 0 < t ≤ T ∗ (29)

for a uniform constant L = L(L1, L2, L3, L4) independent of n, where constants
L1∼L4 are defined in Theorem 1.2.

By Lemma 3.6, we know that v(n) is not increasing along some direction in any

districts except
⇀
Rr

↼
Rr districts. Hence in these districts clearly we have

max
in whole district

Φ(v(n)) ≤ max
on lower boundary of the district

Φ(v(n)) +
1

n
. (30)

Figure 10. Bound on v(n) in a RrRr district. In the figure, we
omit the subscript (n) for convenience. The picture is on the (x, t)-
plane.

Next, in the
⇀
Rr

↼
Rr district, we will use the result obtained in Lemma 4.3 that

a(n)(t) is not decreasing on t to prove (29). To see it, choose a block with v = v
(n)
i (t)

inside this block, then trace it back to a block with v = v
(n)
j (t0) on the lower

boundary of the considered
⇀
Rr

↼
Rr district by a series of jump edge shown in Figure

10. The v values in Figure 10 are given according to a fact that in the
⇀
Rr

↼
Rr district

if v(n) = v
(n)
k ahead of a jump edge then v(n) = v

(n)
k+1 behind that jump edge. Then

by (16)∼(17) and the definition of a(n)(t), we have

t− t0 ≥ a(n)(0)

i∑
k=j

n(v
(n)
k+1 − vk) = na(n)(0)(v

(n)
i − v

(n)
j ),

which immediately implies that

v
(n)
i ≤ v

(n)
j +

1

na(n)(0)
(t− t0) . (31)

Then using Lemma 4.2, Remark 3, (30) and (31), we can prove (29), where note
for each polygonal scheme, there are at most finitely many districts.

Step 2. The local-in-time existence result in [19] shows that under the assumption
in Theorem 1.2, there exists a time interval t ∈ [0, ε] in which the polygonal schemes
are well-defined when n is sufficiently large and converging to a Lipschitz continuous
solution for (1) as n approaches infinity. The constant ε is only dependent of
Lipschitz norms on v and u, but independent of n.

By the weak-strong uniqueness of the classical solution for (1), c.f. [10], we know
the Lipschitz continuous solution of (1) when t ∈ [0, ε] agrees with the solution
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through the limit of polygonal scheme. Hence any Lipschitz continuous solution
satisfies (5) by the a priori estimate in (29) for the approximation solution.

Then, for any finite time T > 0 and any Lipschitz continuous solutions on [0, T ],
repeating above process finite many times, we prove that the solution always satisfies
(5) when t ∈ [0, T ], where in each time we could evolve by a time step ε which is
constant. This completes the proof of the theorem.

5. Life span of classical solutions. In this section, we apply the time-dependent
lower bound (5) obtained in Theorem 1.2 to achieve a better estimate for the life-
span of classical solutions including compression than [7], when 1 < γ < 3. Before
stating this result, we first review a lemma coming from [7,15].

Lemma 5.1. [7, 15] For C1 solutions of (1) we have

∂+y = −K0v
γ−3
4 y2 , (32)

∂−q = −K0v
γ−3
4 q2 , (33)

where
y(x, t) :=

√
c sx, q(x, t) :=

√
c rx

and K0 is a constant only depending on γ which can be easily found in [7].

Then the estimates on the life-span of classical solutions including compression
can be given in the following corollary.

Corollary 1. Assume all assumptions in Theorem 1.2 hold, the initial data s0(x)
and r0(x) are C1, and

G0 := min
x

(
y(x, 0), q(x, 0)

)
< 0, (34)

i.e. the initial data are compressive somewhere, then singularity happens not later
than

t =
1

L

{(
− 4K0

γ + 1

1

G0
+H

γ+1
4

0

) 4
γ+1 −H0

}
,

where we denote
H0 := max

x
v(x, 0) .

Proof. Without loss of generality, we assume that

y(x∗, 0) = G0 + ε = min
x

(
y(x, 0), q(x, 0)

)
+ ε < 0,

where 0 < ε 
 1 is a constant.
For smooth solutions, along a forward characteristic x+(t) starting from (x∗, 0),

by (32), one has

1

y
(
x+(t), t

) =
1

y
(
x∗, 0

) +

∫ t

0

K0v
γ−3
4

(
x+(ξ), ξ

)
dξ .

Then the right hand side of this equation equals to zero, i.e. y
(
x+(t), t

)
blows up,

not later than a time t satisfying

− 1

y
(
x∗, 0

) =

∫ t

0

K0v
γ−3
4

(
x+(ξ), ξ

)
dξ .

Thus by (5) in Theorem 1.2, it is very easy to finish the proof of this corollary,
where we use that ε can be arbitrarily small.
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