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Abstract—Currently available risk prediction methods are
limited in their ability to deal with complex, heterogeneous,
and longitudinal data such as that available in primary care
records, or in their ability to deal with multiple competing
risks. This paper develops a novel deep learning approach that
is able to successfully address current limitations of standard
statistical approaches such as landmarking and joint model-
ing. Our approach, which we call Dynamic-DeepHit, flexibly
incorporates the available longitudinal data comprising various
repeated measurements (rather than only the last available
measurements) in order to issue dynamically updated survival
predictions for one or multiple competing risk(s). Dynamic-
DeepHit learns the time-to-event distributions without the need
to make any assumptions about the underlying stochastic models
for the longitudinal and the time-to-event processes. Thus, unlike
existing works in statistics, our method is able to learn data-
driven associations between the longitudinal data and the various
associated risks without underlying model specifications. We
demonstrate the power of our approach by applying it to a
real-world longitudinal dataset from the UK Cystic Fibrosis
Registry which includes a heterogeneous cohort of 5,883 adult
patients with annual follow-ups between 2009-2015. The results
show that Dynamic-DeepHit provides a drastic improvement
in discriminating individual risks of different forms of failures
due to cystic fibrosis. Furthermore, our analysis utilizes post-
processing statistics that provide clinical insight by measuring the
influence of each covariate on risk predictions and the temporal
importance of longitudinal measurements, thereby enabling us
to identify covariates that are influential for different competing
risks.

Index Terms—Dynamic survival analysis, competing risks,
longitudinal measurements, time-to-event data, deep learning,
cystic fibrosis

I. INTRODUCTION

URVIVAL analysis informs our understanding of the

relationships between the (distribution of) first hitting
times of events of interest (such as death, onset of a certain
disease, etc.) and the covariates, and enables us to issue
corresponding risk assessments for such events. Clinicians use
survival analysis to make screening decisions or to prescribe
treatments, while patients use the information about their
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clinical risks to adjust their lifestyles in order to mitigate
such risks. Since the Cox proportional hazard model [2] was
first introduced, a variety of methods have been developed
for survival analysis, ranging from statistical models to deep
learning techniques [3]-[9].

A key limitation of existing survival models is that they
utilize only a small fraction of the available longitudinal
(repeated) measurements of biomarkers and other risk factors.
In particular, even though biomarkers and other risk factors are
measured repeatedly over time, survival analysis is typically
based on the last available measurement. This represents a
severe limitation, since the evolution of biomarkers and risk
factors has been shown to be informative in predicting the
onset of disease and various risks. For example, Cystic Fibrosis
(CF), which is the most common genetic disease in Caucasian
populations [10], gives rise to different forms of dysfunction
involving the respiratory and gastrointestinal systems, which
primarily lead to progressive respiratory failure [11], [12].
Forced expiratory volume (FEV;), and its development, is
a crucial biomarker in assessing the severity of CF as it
allows clinicians to describe the progression of the disease
and to anticipate the occurrence of respiratory failures [12],
[13]. Therefore, to provide a better understanding of disease
progression, it is essential to incorporate longitudinal measure-
ments of biomarkers and risk factors into a model. Rather than
discarding valuable information recorded over time, this allows
us to make better risk assessments on the clinical events.

This paper presents a deep neural network, which we
call Dynamic-DeepHit (demonstrator available in [1]), that
extends our previous work in [5] to dynamic survival anal-
ysis. Dynamic-DeepHit learns, on the basis of the available
longitudinal measurements, a data-driven distribution of first
hitting times of competing events. Thus, the proposed method
completely removes the need for explicit model specifications
(i.e., no assumption about the form of the underlying stochastic
processes are made) and learns the complex relationships
between trajectories and survival probabilities. An important
aspect of our method is that it naturally handles situations in
which there are multiple competing risks where more than one
type of event plays a role in the survival setting. (Competing
risks are not independent and must be treated jointly; for
example, [14] has shown that various treatments for breast
cancer increase the risk of a cardiovascular event. See [3], [5]
for details of existing survival models that address competing
risks.)

To enable dynamic survival analysis with longitudinal time-
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to-event data, Dynamic-DeepHit employs a shared subnetwork
and a family of cause-specific subnetworks. The shared sub-
network encodes the information in longitudinal measurements
into a fixed-length vector (i.e., a context vector) using a recur-
rent neural network (RNN), which has achieved a great success
in various applications handling time-series data (e.g, machine
translation [15], image caption generation [16], and speech
recognition [17]). We employ a temporal attention mechanism
[18] in the hidden states of the RNN structure when con-
structing the context vector. This renders Dynamic-DeepHit to
access the necessary information, which has progressed along
with the trajectory of the past longitudinal measurements, by
paying attention to relevant hidden states across different time
stamps. Then, the cause-specific subnetworks take the context
vector and the last measurements as an input and estimate the
joint distribution of the first hitting time and competing events
that is further used for risk predictions.

To demonstrate the usefulness of our method, we compare
its performance with that of competing approaches using
a longitudinal data which was collected by the UK Cys-
tic Fibrosis Registry. This data contains a cohort of 5,883
adult patients (from age 18 onwards) suffering from CF,
who had annual follow-ups between 2009-2015. Throughout
the evaluation, we define two competing events: death from
respiratory failures and that from other causes. It is essential
to jointly account for competing risks to take preventative
steps for CF patients: CF is a systemic disease which gives
rise to different forms of dysfunctions in multiple systems
and organs — CF-associated liver disease has been reported
as the third most frequent cause of death [19]. We show
that our method achieves significant improvements on the
discriminative performance over the state-of-the-art methods
and provides the calibration performance that was comparable
to the best performing benchmarks. Particularly, Dynamic-
DeepHit achieved improvements of 4.36% and 9.67% over the
best benchmark (6.26% and 14.97% over the joint model) on
average in terms of discriminative performance for death from
respiratory failure and death from other causes, respectively.
In addition, while the vast majority of clinical literature has
focused on spirometric biomarkers, e.g., FEV;% predicted',
as the main CF risk factors, Dynamic-DeepHit confirmed the
importance of the history of intravenous antibiotic treatments
and nutritional status in the risk assessment of CF patients.
Our demonstrator is available in [1]

II. RELATED WORK

We start by noting that in this work we focus on dynamic
survival analysis with competing risks outside the hospital,
where the measurements are sparse and irregular, and a disease
develops or progresses over the duration of months or even
years. Hence, our work differs from existing work on predict-
ing risks in the hospital setting, where numerous measurements
are available and a patient is recovering or deteriorating over
the course of a few hours or possibly days. For instance, with

'FEV1% predicted is a ratio of the maximum volume of air blown out
during lung function test to the predicted value for a ‘normal’ person of the
similar age, sex, and body composition in percentage.

chronic diseases such as CF, patients are followed up over the
span of years, usually as part of regular physical examinations.
The clinical status of the patient also evolves slowly, allowing
for the development of related comorbidities (e.g. CF-induced
diabetes), which in turn affect key biomarkers that reflect
a patient’s clinical status and rate of deterioration, such as
lung function scores (e.g., FEV1% predicted) in CF. Thus,
we examine related work on dynamic survival analysis that
utilizes measurements collected repeatedly, but infrequently,
outside the hospital.

The most widely used dynamic survival methods in this set-
ting are joint models which jointly describe both longitudinal
and survival processes [20]-[26]. In particular, a joint model
comprises two sub-models — one for repeated measurements
of the longitudinal process and the other for the time-to-event
data (e.g., typically, a linear mixed model and a Cox model)
— linking them using a function of shared random effects.
Overall, joint models find to learn a full representation of
the joint distribution of the longitudinal time-to-event data.
From a dynamic prediction perspective, the full representation
of joint models leads to a reduced bias in estimation [21]
providing flexibility to make predictions at any time points of
interest. However, learning such full representation requires
an optimization of the joint likelihood and relies on fixed
model specifications for both processes. Thus, model mis-
specifications (e.g., the assumption on longitudinal process and
proportional hazard assumption on time-to-event) will limit
the overall performance and the optimization of the joint like-
lihood requires severe computational challenges when applied
to high-dimensional datasets [24]. Nonparametric specification
of the longitudinal process was previously explored in [22] and
[23], which models the longitudinal process via individual-
level penalized splines and cubic B-splines, respectively, at
the cost of higher computational complexity. Joint models
integrating latent classes [25], [26] have been recently devel-
oped to account for heterogeneous population. However, these
approaches still maintain a proportional hazard assumption
which we refrain from doing by adopting deep learning.

Landmarking is another approach for dynamic survival
analysis on the basis of longitudinal data [27]-[30]. The basic
idea behind landmarking is to build a survival model (e.g., a
Cox model), fitted to the subjects from the original dataset
who are still at risk at the landmarking time (usually, the
prediction time of the interest). Thus, landmarking is “par-
tially conditional” since each survival model is conditioned
on the available information accrued by the corresponding
landmarking time, rather than incorporating the entire lon-
gitudinal history, and predictions on survival probabilities
are issued using the last measurements as an estimate of
biomarkers at the landmarking time. Even though longitudinal
measurements are not fully explored, it is shown that, in
practice, landmarking is competitive with joint models and
significantly easier to implement [30]. However, landmarking
is not fully dynamic; survival predictions are only available at
the predefined landmarking times, not at times at which new
measurements are obtained. Moreover, it makes assumptions
about the underlying stochastic process for the survival model,
which may not be true in practice, thereby limiting the model
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in terms of learning the relationships between the covariates
and events of interest. Lastly, it only incorporates a subset
of the longitudinal history up to the landmarking time, which
may result in information loss when making predictions.

Deep networks have been shown to achieve significantly
improved performance in survival analysis [5]-[9] owing
to the ability to represent complicated associations between
features and outcomes. Authors in [6], [7] have employed
deep neural networks for modeling non-linear representations
of the relationships between covariates and the risk of a
single clinical event. However, these networks are limited to
the conventional Cox proportional hazard assumption without
addressing time-dependent influences of covariates on the
time-to-event. Recently, deep networks have been utilized to
develop a nonparametric Bayesian model using the Gaussian
process [8], to construct the tree-based Bayesian mixture
model [9], and to directly learn the distribution of survival
times [5] for survival analysis with competing risks. However,
all of these methods provide only static survival analysis:
they use only the current information to perform the survival
predictions and most of the works focus on a single risk
rather than multiple risks. To our best knowledge, this paper
is the first to investigate a deep learning approach for dynamic
survival analysis with competing risks on the basis of repeated
measurements (longitudinal data).

III. PROBLEM FORMULATION
A. Time-to-Event Data

Time-to-event (survival) data provides three pieces of in-
formation for each subject: i) observed covariates, ii) time-to-
event(s), and iii) a label indicating the type of event (e.g.,
death or adverse clinical event) including right-censoring.
Observed covariates include static (time-invariant) and time-
varying covariates that are recorded for a period of time. We
suppose that the longitudinal measurement times, event times,
and censoring times are aligned based on a synchronization
event, such as the entry to a clinical trial, the date of an
intervention, and the onset of a condition.

Formally, for each subject i, a sequence of longitudinal
observations until time ¢ is described as a d,-dimensional

multivariate time-series X l(t) = {X%(t;) 0 < té <
t forj=1,---,J"}, where x'(t;) can be simplified as xg. =
[33;',17 s ,I;dz} which includes both static and time-varying

covariates recorded at time ¢;. Covariates are not necessarily
measured at regular time intervals and not every covariate is
observed at each measurement (i.e., partially missing). Thus,
we i) distinguish notations between time stamps j = 1,--- , J*
and the corresponding actual times t = ¢{,--- ,¢%, and ii)
set x; 4 = * to denote ‘that the d-th element of X; was not
measurgd (othf;rwise, X; € R). For notational simplicity, we
use X' = A*(t";) to denote a whole set of longitudinal
observations available for subject ¢ until the last measurement
time ¢/, of that subject.

We treat survival time as discrete (e.g., a temporal resolution
of one month) and the time horizon as finite (e.g., no patients
lived longer than 100 years). Thus, a set of possible survival

times is denoted as 7 = {0,1, -+ ,Thnaxt where Ty is a

predefined maximum time horizon. Discretization is performed
by transforming continuous-valued times into a set of con-
tiguous time intervals, i.e., T = 7 implies T € [r,7 + dt)
where ¢ implies the temporal resolution. We assume that
every subject experiences exactly one event among K > 1
possible events of interest within 7. (We cannot observe the
occurrence of the other events once one event is observed.)
For instance, a patient eventually dies, but can die from only
one cause [31]. This includes cause-specific deaths due to CF,
where deaths from other causes are competing risks for death
due to respiratory failure. Survival data is frequently right-
censored because events of interest are not always observed
(i.e., subjects are lost to follow-up). The set of possible
events is K = {©,1,2,---, K}, with & denoting right-
censoring. Throughout this paper, we assume that censoring
is uninformative. This assumption is common in the survival
literature and implies that whether a subject withdraws from
the study depends only on the observed history but not on the
clinical outcomes [20], [22], [27], [29], [32].

We consider a dataset D = {(X%, 7% k%)}Y | comprising
survival data for IV subjects who have been followed up for a
certain amount of time. Here, 7¢ = min(7", C?) is the time-
to-event with 7% € 7 and C? € T indicating the event and
the censoring times, respectively, and k° € KC being the event
or censoring that occurred at time 7°. Note that T is either the
time at which an event (e.g., death) occurred or the time at
which the subject was censored (e.g., disappeared from follow-
up); in either case, the subject was known to experience no
event at times prior to 7. Fig. 1 depicts a survival dataset com-
prising histories of longitudinal measurements with different
numbers of measurements at irregular time intervals, where
each subject experiences either event type 1 or type 2, or has
its endpoint censored.

« :Eventtype 1 (k = 1)
W : Event type 2 (k = 2)
¥ : Censored (k = @)

Subject 1

@
Subject 2 7% o—0—o0—o0—o0——— he K D=9
e ™,
Subject 3 o—o0 4 k® =1
@
[¢--mmemmmccc e e e >,
Subject 4 O0———o—% KW =0

time (t)

Fig. 1: Illustration of survival data with longitudinal measure-
ments where subjects are aligned based on the synchronization
event. Colored dots indicate the times at which longitudinal
measurements are observed.

B. Cumulative Incidence Function

Our goal is to analyze the cause-specific risk given the
history of observations over time and to issue dynamic risk
predictions when new measurements are available. To do
so, we use the cause-specific cumulative incidence function
(CIF) which is key to survival analysis under the presence
of competing risks. As defined in [3], the CIF expresses
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Fig. 2: An illustration of (a) the network architecture of Dynamic-DeepHit with K competing risks and (b) a schematic

depiction of the network at training/testing stages.

the probability that a particular event k* € K occurs on
or before time 7* conditioned on the history of longitudinal
measurements X'*. The fact that longitudinal measurements
have been recorded up to t%. implies survival of the subject
up to this time point. Thus, the CIF is defined as follows:
Fp (771X7)

A

P(T < 7%k = k*|X*, T > th.).
> P(T=r1k=Fk[X"T>t5.).

TT*

6]

Whenever a new measurement is recorded for this subject
at time ¢ > t%., we can update (1) accounting for that
information in a dynamic fashion.

Similarly, the survival probability of a subject at time 7*
given X'* can be derived by

S(T|X*) 2 P(T > 7%|X*, T > t%.)
=1- ) F(r*|x").

kAo

2)

However, the true CIF, Fj«(7*|X*), is not known; we utilize
the estimated CIF, Fk* (7*|X*), in order to perform dynamic
risk prediction of event occurrences and to assess how models
discriminate between cause-specific risks among subjects. The
estimated CIF will be described in the next section.

IV. DYNAMIC-DEEPHIT

In this section, we describe our novel Dynamic-DeepHit ar-
chitecture for survival analysis with competing risks on the
basis of longitudinal measurements. We seek to train the
network to learn an estimate of the joint distribution of the
first hitting time and competing events given the longitudinal
observations. This representation is then used to estimate the
cause-specific CIFs (1) and survival probability (2).

Before describing the network architecture in detail, we
redefine the history of longitudinal measurements in order to
provide the information on measurement times and missing
observations to the network as described in the previous
section. Let X' = (X', M’ A") where X' = {x},--- ,x",},

M’ = {m{,--- ,m’,} which is a sequence of mask vec-
tors that indicate which covariates are missing, and A’
{64,684 ---,6%,} which is a sequence of time intervals between
two adjacent measurements. Here, mj = [mf,---,m} ; |
with m; ;= 1if 2% ; * and mj ; = 0 otherwise, and
5; implies the actual amount of time that has ellapsed }lntil
the next measurements are collected, i.e., 5; = t; 41— t; for
1<75< J? and 63 = 0. Then, the entire training set can be
given as a set of tuples D = {(X*, M! A% 78 k)N .

A. Network Architecture

Dynamic-DeepHit is a multi-task network, which consists
of two types of subnetworks: a shared subnetwork that handles
the history of longitudinal measurements and predicts the next
measurements of time-varying covariates, and a set of cause-
specific subnetworks which estimates the joint distribution of
the first hitting time and competing events. As the multi-
task learning has been successful across different applications
[33]-[36], we jointly optimize the two subnetworks to help
the overall network capture associations between the time-to-
event under competing risks and i) the static covariates and ii)
the progression of underlying process that governs the time-
varying covariates. Fig. 2 illustrates (a) the overall architecture
of Dynamic-DeepHit which comprises a shared subnetwork
and K cause-specific subnetworks and (b) the conceptual
framework of the proposed network at training/testing stages.
Throughout this subsection, we omit the dependence on ¢ for
ease of notation.

1) Shared Subnetwork: The shared subnetwork consists of
two components: i) a RNN structure to flexibly handle the
longitudinal data with each subject having different numbers
of measurements, that are captured at irregular time intervals
and are partially missing and ii) an attention mechanism
to unravel the temporal importance of the history of mea-
surements in making risk predictions. For each time stamp
j=1,---J—1, the RNN structure takes a tuple of (x;, m;, d;)
as an input and outputs (y;,h;), where y; is the estimate of
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time-varying covariates after time J; has elapsed, i.e., ;412
and h; is the hidden state at time stamp j. Utilizing the
Gated Recurrent Unit (GRU) RNN [37], h; can be derived
as follows:

z; = o(W:h; 1 + U.[x; m; §;] +b.),

rj = o(Whj 1 + Ur[x; m; 6;] +by),
anh(Wh(rj O] hj_l) + Uh[xj m; 5j] + bh),

. 3)
(1-2;) ©hjy +2; O hy,

h;
h;

where W, U, and b are weight matrices and vectors which
parameterize the shared subnetwork, ©® is element-wise mul-
tiplication, and o(-) is the sigmoid function. Note that we
illustrate the subnetwork with GRUs but other RNNs, such as
vanilla RNNs, LSTMs [38], and bidirectional RNNs [39], can
be also utilized.

The temporal attention mechanism [18] on the hidden
states helps our network decide which parts of the previous
longitudinal measurements to pay attention to. Formally, it
outputs a context vector, ¢, as an weighted sum of the previous
hidden states as follows:

J—1
C = Zajhj7 (4)
j=1

exp(e;)
iy exp(ee) )
th measurements. Here, e; = f,(h;,x;,m) is used to score

the importance of the j-th measurement by referencing on the
last measurement, (x7, my). We set f,(-) as a two-layer feed-
forward network that takes the hidden state at time stamp j,
h;, and the tuple of (x;, m) as the input and outputs a scalar
e;j for j =1,---,J — 1. The temporal mechanism is jointly
trained with all the other components of our network.

2) Cause-specific Subnetworks: Each cause-specific sub-
network utilizes a feed-forward network composed of fully-
connected layers to capture relations between the cause-
specific risk and the history of measurements. The inputs
to these subnetworks is the context vector of the shared
subnetwork. This gives the subnetworks access to the learned
common representation of the longitudinal history, which has
progressed along with the trajectory of the past longitudinal
measurements, by paying attention to relevant hidden states
across the time stamps. Overall, each cause-specific subnet-
work captures the latent patterns that are distinct to each
competing event. Formally, the k-th cause-specific subnetwork
takes as input the vector ¢ and the last measurement (x 7, m ;)
and outputs a vector, f, (c,xs,my).

3) Output Layer: Dynamic-DeepHit employs a soft-max
layer in order to summarize the outcomes of each cause-
specific subnetwork, fo, (*), -+, fer(+), and to map into a
proper probability measure. Overall, the network produces
an estimated joint distribution of the first hitting time and
competing events. In particular, given a subject with X'*, each
output node represents the probability of having event k at

where a; = represents the importance of the j-

>The time elapsed until the next-time measurements is available since the
shared subnetwork only takes the past measurements as inputs.

time 7, i.e., o) . = P(T = 7,k = k|X*). Therefore, we can
define the estimated CIF for cause £* at time 7" as follows:
*
~ Zt**< <Tr* Ok*,
Py (77]X7) = et 5)
- Zk;ﬁe antj* Ok.n

Note that (5) is built upon the condition that this subject has
survived up to the last measurement time.

B. Training Dynamic-DeepHit

To train Dynamic-DeepHit, we minimize a total loss func-
tion L, that is specifically designed to handle longitudinal
measurements and right-censoring. The total loss function is
the sum of three terms:

Lol = L1+ Lo+ L3, (6)

where £, is the negative log-likelihood of the joint distribution
of the first hitting time and events, which is necessary to
capture the first hitting time in the right-censored data, and
Lo and L3 are utilized to enhance the overall network. More
specifically, £, combines cause-specific ranking loss functions
to concentrate on discriminating estimated individual risks
for each cause, and L3 incorporates the prediction error on
trajectories of time-varying covariates to capture the hidden
representations of the longitudinal history and to regularize
the network.

1) Log-likelihood Loss: The first loss function is the nega-
tive log-likelihood of the joint distribution of the first hitting
time and corresponding event considering the right-censoring
[40], which is extended to the survival setting where the
history of longitudinal measurements and K competing risks
are available. More specifically, for a subject who is not
censored, it captures both the event that occurs and the time
at which the event occurs; for a subject who is censored,
it captures the time at which the subject is censored (lost
to follow-up) in both cases conditioned on the longitudinal
measurements recorded until the last observation. We define
L as follows:

N

Ly = —Z []l(k:l;é ) - log(

=1

027:7.,.1: )
1- Zk#@ant;ioz,n )
+1(ki = ) -1og(1 -3 Fk(#wi))] :
k#o

where 1(-) is the indicator function. The first term captures the
information provided by uncensored subjects. The second term
follows from the knowledge that they are alive at the censoring
time, and so the first hitting time of each event k£ € K occurs

after the given censoring time; see [41].

2) Ranking Loss: The second loss function incorporates
estimated CIFs calculated at different times (i.e., the time
at which an event actually occurs) in order to fine-tune the
network to each cause-specific estimated CIF. To do so,
we utilize a ranking loss function which adapts the idea of
concordance [42]: a subject who dies at time 7 should have
a higher risk at time 7 than a subject who survived longer
than 7. However, the longitudinal measurements of subjects
can begin at any point in their lifetime or disease progression
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[43], and this makes direct comparison of the risks at different
time points difficult to assess. Thus, we compare the risks of
subjects at times elapsed since their last measurements, that
is, for subject i, we focus on s = 7' — t’, instead of 7°.
Define a pair (i, j) an acceptable pair for event k if subject 4
experiences event k at time s’ while the other subject j does
not experience any event until s* (ie., s7 > s%).2

Then, the estimated CIF satisfies the concordance if F‘k (si—i—
th:|X") > Ey(s' + t),|X7). We define the ranking loss
among acceptable pairs of subjects having different histories
of measurements as follows:

K

Ly = Z akZAk:ij : ﬂ(Fk(S’—F %

k=1 i#j

X0), F(si+ tgjpcf)) ,

®)
where Ayi; £ 1(k' = k,s° < /) is an indicator for
acceptable pairs (i,j) for event k, oy, > 0 is a hyper-
parameter chosen to trade off ranking losses of the k-th
competing event, and 7)(+) is a differentiable loss function. For
convenience, we choose here that the coefficients «y, are all
equal (i.e., ay = a for k= 1,--- , K), and the loss function
n(a,b) = exp(—2=2). Incorporating L, into the total loss
function penalizes incorrect ordering of pairs and encourages
correct ordering of pairs with respect to each event.

3) Prediction Loss: Longitudinal measurements on time-
varying covariates, such as the trajectory of biomarkers and
the presence of comorbidities over time, may be highly
associated with the occurrence of clinical events. Thus, we
introduce an auxiliary task in the shared subnetwork, which
makes predictions, y;, on the step-ahead covariates, x4, of
our interest, to regularize the shared subnetwork such that
the hidden representations preserve information for the step-
ahead predictions. Taking account missing measurements into
consideration, the prediction loss is defined as follows:

N Ji—-1

Lz=p- Z Z 2(1 - m§'+17d) : C(x§‘+17day§,d)7 9)

i=1 j=0 deZ

where 3 > 0 is a hyper-parameter and ((a,b) = |a — b|? for
continuous covariates and {(a,b) = —alogb—(1—a) log(1-b)
for binary covariates. By incorporating the missing indicators,
the loss is calculated for the step-ahead predictions whose
actual measurements are not missing. We select Z as a set
of time-varying covariates (e.g., biomarkers or comorbidities)
on which we aim to focus the network to be regularized.

C. Discussion on the Scalability

For an accurate estimation of CIFs in (5), it is desirable
to have the time interval resolution for discretizing the time
horizon (i.e., 7 in Section III) to be fine rather than coarse to
maintain more information on time-to-event/censoring. How-
ever, Dynamic-DeepHit might become over-fitted as it requires
the number of output nodes equivalent to |7 (i.e., inversely
proportional to the resolution of the time horizons). To prevent
this, we utilize i) early stopping based on the performance

3 An acceptable pair (4, §) naturally captures the right-censoring of subject
j since it only considers subjects who lived longer than s*.

metric of our interest (i.e., discriminative performance) and
ii) L1 regularization over weights in the cause-specific sub-
networks and the output layer. Throughout the experiments,
we discretized the time with a resolution of one month that
is a fine resolution for longitudinal data with regular follow-
ups on a yearly basis, since the time information in the
data was mostly available in month format. We show that
Dynamic-DeepHit achieves a significant gain in terms of
the discriminative performance and provides the calibration
performance comparable to the best performing benchmark.
We provide more details in the subsequent sections.

V. DATASET

Experiments were conducted using retrospective longitudi-
nal data from the UK Cystic Fibrosis Registry; this database is
sponsored and hosted by the UK Cystic Fibrosis Trust*. The
registry comprises a cohort of 10,995 patients during annual
follow-ups between 2008-2015 with covariates for individual
CF patients including demographics, genetic mutations, bac-
terial infections, comorbidities, hospitalization, lung function
scores and therapeutic management. Lung transplantation (LT)
is recommended for patients with end-stage respiratory failure
as a means to improve life expectancy [44], [45]. Unfor-
tunately, there are more LT candidates than available lung
donors, and in addition, the LT procedure is accompanied with
serious risks of subsequent post-transplant complications [46].

Meanwhile, complications due to organ transplantation and
CF-associated liver disease have been reported as the most
frequent causes of death among CF patients after lung-related
disease, which share a number of risk factors with respiratory
failure [19]. Hence, it is important that patients who are at risk
of respiratory failure and other causes be provided with a joint
prognosis in order to properly manage LT. More specifically,
an effective LT referral policy should efficiently allocate the
scarce donor lungs by identifying high-risk patients as candi-
dates for transplant, without overwhelming the LT waiting list
with low-risk patients for whom a LT might be an unnecessary
exposure to the risk of post-transplant complications or be at
risk of other CF-associated diseases [47].

In this paper, we focused on follow-up variables that are
available from 2009 — this was due to covariate mismatch
between measurements recorded in 2008 and those recorded
in the rest of the years. Since transplantation decisions are
mostly relevant for adults and deaths in children with CF
are now very rare in developed countries [48], we excluded
pediatric patients, and included only patients who were aged
18 years or older. Overall, out of 10,995 patients, experiments
were conducted on 5,883 adult patients with total of 90
features (11 static covariates and 79 time-varying covariates).
For each patient, longitudinal measurements were conducted
roughly every year; the time interval between two adjacent
measurements ranges from O to 69 months with mean of 9.20
months. Here, we discretized the time with a resolution of
one month since the date information in the data was mostly
available in month format. The number of yearly follow-ups
was from 1 to 7 with mean of 5.34 measurements per patients.

“https://www.cysticfibrosis.org.uk/the- work- we-do/uk-cf-registry
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Among the total of 5,883 patients, 605 patients (10.28%)
were followed until death and the remaining 5,278 patients
(89.72%) were right-censored (i.e., lost to follow-up). We
divided the mortality cause into: i) 491 (8.35%) deaths due
to respiratory failures and ii) 114 (1.94%) deaths due to other
causes including complications due to organ transplantation
and CF-associated liver failure. A full description of the CF
dataset, including the data assembly process, and how the
missing values were handled in our experiments are available
in Appendix A of the supplementary material.

VI. EXPERIMENTS

The usefulness of a survival model should be assessed pri-
marily by how well the model discriminates among predicted
risks and secondarily by how well the model is calibrated.
As an illustration in CF, lung transplant is the treatment
of last resort for patient with end-stage respiratory failure.
Successful transplant can mean many additional years of life
for such patients, but there are many more patients in need of
transplants than there are available donor lungs. Therefore, it
is important to correctly discriminate/prioritize recipients on
the basis of risk. However, if the risk predictions of a given
model are not well calibrated to the truth (i.e., if there is poor
agreement between predicted and observed outcomes), then
the model will have little prognostic value for clinicians. As
discussed above, we assess the risk predictions of Dynamic-
DeepHit with respect to how well the predictions discriminate
among individual risks and how accurate the predictions are. In
this section, we only reported the discriminative performance;
please refer to Appendix H of the supplementary material for
the calibration performance in terms of Brier score [49] that
was comparable to the best performing benchmarks.

Throughout the experiments, all patients are aligned based
on their date of birth to synchronize the time for comparing
risk predictions made at different points. More specifically,
the time at which measurements are recorded and that at
which events or censoring occur is defined as the amount
of time elapsed since births. We define the set of possible
survival times to be up to 100 years with a monthly time
interval, i.e., Tiax = 1200). Our results are obtained using
5 random 80/20 train/test splits: we randomly separated the
data into a training set (80%) and a testing set (20%) and
then reserved 20% of the training set as a validation set for
hyper-parameter optimization and for early-stopping to avoid
over-fitting. The hyper-parameters, such as the coefficients,
the activation functions, and the number of hidden layers
and nodes of each subnetwork, are chosen utilizing Random
Search [50]. The permitted values of the hyper-parameters
are listed in Appendix B of the supplementary material. For
the prediction loss in (9), we considered two scenarios: i)
T = {FEV;,% predicted} for a fair comparison with the joint
models, where FEV; % predicted is a well-known biomarker of
the respiratory failure and ii) Z includes all the time-varying
covariates including lung function scores, nutritional status,
and comorbidities.

A. Benchmarks

We compared Dynamic-DeepHit with state-of-the-art meth-
ods that account for dynamic survival analysis under the
presence of longitudinal measurements including the joint
model [20], the joint model based on latent classes [26], and
survival methods under landmarking approaches [29].

In particular, the joint model (JM)®> was implemented using
a Bayesian framework that uses MCMC algorithms [51] by
modeling the time-to-event data using a cause-specific Cox
proportional hazards regression and the longitudinal process
using a multivariate linear mixed model. (Due to the compu-
tational limitations of standard joint models [24], we selected
only FEV;% predicted for the longitudinal process.) To ac-
count for the competing risks setting, the cause-specific Cox
was created by fixing an event (e.g., death from respiratory
cause) and treating the other event (e.g., death from other
causes) simply as a form of censoring; see [52]. The joint
models integrating latent class (JM-LC)® to characterize the
underlying heterogeneity of the cohort [26] was implemented
with G = 3 latent classes whose parameters are associated
with each class with the similar model specifications to JM.

For the landmarking approaches, we chose the landmarking
times as the prediction times, which is age at 30, 40, and
50, and only patients who are at risk at these landmarking
times (patients who have not experienced any event or been
censored) are considered when we fit survival models at
each landmarking time. Overall, the landmarking approaches
are implemented utilizing the following survival models: the
cause-specific version of the Cox proportional hazards model
(es-Cox)’ and random survival forests under competing risks
(RSF)® [4] with 1000 trees, as a non-parametric alternative of
the Cox model.

Please refer to Appendix C of the supplementary material
for more details on the benchmark implementations.

B. Discriminative Performance

In this subsection, we present the performance metric that
is extended to the survival setting with competing risks and
longitudinal measurements, and then we evaluate Dynamic-
DeepHit in terms of this metric. To assess the discriminative
performance of the various methods, we use a cause-specific
time-dependent concordance index (Cy(t, At)), which is an
extension of the time-dependent concordance index® in [53]
adapted to the competing risks setting with longitudinal mea-
surements; similar extensions'® are made in [54], [55]. More
specifically, Cy(t, At) takes both prediction and evaluation

Shttps://cran.r-project.org/web/packages/IMbayes/
Ohttps://cran.r-project.org/web/packages/lcmm/
7https://cran.r-project.org/web/packages/survival/
8https://cran.r-project.org/web/packages/randomForestSRC/

This metric is suitable for evaluating discriminative performance at differ-
ent time horizons once risk predictions are issued with the same condition.
However, since the time horizon at which risk predictions are made is not
considered, this metric cannot be directly used in the longitudinal setting.

10This metric provides area under ROC curve (AUC) considering both the
prediction and evaluation times. However, it quantifies how well a survival
model can order risks at given evaluation time, while our proposed metric
quantifies how well a survival model can order risks up to that evaluation
time, which better represents the time-to-event setting with right-censoring
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times into account to reflect possible changes in risk over time
compared to the ordinary concordance index [42], which is a
widely used discriminative index in survival analysis.!! Given
the estimated CIF in (5), Cy(t, At) for event k is defined as

Cio(t, A) :P(Fk(t FAHX(E) > B (t + At (1))
(10)

<k =k, 7 <7§—|—At)7

where ¢ indicates the prediction time which is the time when
the prediction is made to incorporate dynamic predictions and
At denotes the evaluation time which is the time elapsed
since the prediction is made. Throughout the evaluations,
Ey(t + At|X(t)) implies the risk of event k occurring in
At years, which is predicted at age ¢ given the longitudinal
measurements until that age.

The discriminative performance of Dynamic-DeepHit on
the CF dataset is reported in Table I; means and standard
deviations were obtained via 5 random splits. Throughout
the evaluation, the tested prediction and evaluation times are
in years. Dynamic-DeepHit outperformed the benchmarks for
all evaluated prediction and evaluation times with respect to
C(t,At) for both causes. All the improvements over the
benchmarks were statistically significant; we denoted * for p-
value < 0.01 and { for p-value < 0.05. More specifically, on
average, Dynamic-DeepHit achieved improvements of 4.36%
and 9.67% over the best benchmark (6.26% and 14.97%
over JM) for death from respiratory failure and death from
other causes, respectively. Please refer to Appendix G of the
supplementary material for further comparison especially on
the heterogeneous sub-populations.

To provide more fair comparison with JM, we also re-
ported the discriminative performance of simplified versions
of Dynamic-DeepHit: i) the proposed network (denoted as
FEV; %) whose L3 is computed only based on Z = {FEV1%
predicted} and ii) the proposed network (denoted as cause-
spec.) that is separately trained for each cause in a cause-
specific manner (by fixing an event and treating the other event
as right-censoring). As seen in Table I, the simplified versions
still achieved significant performance improvements over JM.
It is worth to highlight that, especially for predicting the risk
of death from other causes, the full-fledged network achieved
performance improvement over the cause-specific version by
jointly learning latent representations that are common to
competing events.

To further understand the source of gains, we compare
Dynamic-DeepHit with the following variations: the network
in [5] which performs risk predictions based only on the
last available measurements (the dynamic-RNN in the shared
subnetwork is replaced with a feed-forward network and the
network is trained without £3) and a deep network utilizing
the same architecture with that of Dynamic-DeepHit whose
output layer is modified to model the time-to-event data via
the Exponential distribution (denoted as Exponential; see

""The concordance index and its variations are based on the assumption that
patients who experienced an event should be assigned a higher risk than those
who lived longer (i.e., patients experienced event or was censored afterward).
Thus, it naturally handles right-censoring — for example, if both patients are
censored, we do not include this pair of patients as defined in (10).

Appendix C of the supplementary material for details). For the
comparison, the same hyper-parameter optimization is applied.
Dynamic-DeepHit leverages the RNN architecture to learn the
associations between the longitudinal measurements and the
time-to-events, and to incorporate the history of the measure-
ments when making risk predictions. Hence, as expected, our
method outperformed our previous work in [5], which discards
the historical information and relies only on the last available
measurements. In contrast to the network which specifies the
underlying survival process as Exponential distribution and,
thus, is limited to learn the complex interactions with the
covariates, our network better discriminates individual risks by
directly learning the joint distribution of the first hitting time
and the competing events. More experiments on the source of
gain —networks that are trained utilizing only parts of the loss
functions— can be found in Appendix D of the supplementary
material.

In clinical follow-up studies, it is often the case where
only a small number of patients are available or where the
missing rate of longitudinal measurements varies significantly.
To further evaluate the robustness of the proposed network in
these scenarios, we reported the discriminative performance
by varying the number of training samples and the missing
rate of FEV,% predicted in Appendix E and F, respectively.

C. Interpreting Dynamic-DeepHit Predictions

Although deep networks offer tremendous success in pre-
dictive ability including survival analysis, low interpretability
of the inference process has prevented them from being
widely used in medicine. In this subsection, we utilize a post-
processing statistic that can be used by clinicians to interpret
predictions issued by Dynamic-DeepHit and to understand
the associations of covariates and survival over time. It is
worth drawing a distinction between interpreting a model,
versus interpreting its decision [56], [57]. While interpreting
complex models (e.g deep neural networks) may sometimes
be infeasible, it is often the case that clinicians only want
explanations for the prediction made by the model for a given
subject. To help interpret predictions issued by Dynamic-
DeepHit, we leverage the partial dependence introduced in
[58] by extending it to the survival setting with longitudinal
measurements.

Let &; be a chosen target subset of the input covariates X’
and X\d be its complement, i.e., XdUX\d = X. Then, we can
rewrite the estimated CIF in (5) as Fy(7|X) = Fy(7]X;, X\q)
to explicitly denote the dependency on variables in both
subsets. The partial dependence function at time At¢, which
is the time elapsed since the last measurement, for event k
can be defined as a function of X; as follows:

WA Xa) = B, [Fr(ty + AtlX2, X,4)
1ML . (11)
~ N ;Fk(tﬁ + At|Af’da X\d)7

where t; indicates the time of the last measurement. Thus,
from (11), we can approximately assess how the estimated
CIFs are affected by different values of X; on average.
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TABLE I: Comparison of Cy(t, At) (mean + std) for various methods. Higher the better.

Algorithms Resp. Failure Other Causes
At=1 At=3 Al=5 At =10 At=1 At=3 At=5 At =10
cs-Cox 0.840+0.09T | 0.837+0.087 | 0.837+£0.087 | 0.837+0.087 || 0.667£0.10* | 0.664+0.10* | 0.665+0.10* | 0.665+0.10*
RSF 0.9360.017 | 0.93240.01 0.9314+0.027 | 0.92940.01T || 0.7984+0.04* | 0.79240.04* | 0.773+£0.05* | 0.776+0.05*
M 0.882+0.03* | 0.8960.01* | 0.896+0.01* | 0.897+0.01* || 0.760+0.02* | 0.795£0.03* | 0.80240.02* | 0.81240.01*
° IM-LC 0.89740.04T | 0.89440.05T | 0.894+0.05T7 | 0.89440.05T || 0.856+£0.02* | 0.855+0.02* | 0.85540.02* | 0.855+0.02*
S 7 750 T 7 0.910£0.02% | 0.907£0.02* | 0.907-£0.02* | 0.9074£0.01* || 0.819:£0.077 | 0.831£0.07T | 0.834+£0.07T | 0.839+0.077 ]
L' | Exponential | 0.8954+0.03* | 0.89040.03* | 0.89040.03* | 0.89040.02* || 0.824:£0.05* | 0.825:0.05* | 0.824:£0.05* | 0.824:£0.05* |
Proposed
FEI{H% 0.948+0.01 0.93940.01 0.93840.01 0.93740.01 0.9244+0.02 | 0.92240.02 | 0.921+0.02 | 0.9214+0.02
cause-spec. | 0.94640.01 0.937+£0.02 | 0.93640.02 | 0.93340.02 0.875+0.04T | 0.86740.05T | 0.8624+0.05t | 0.866+0.05
full-fledged | 0.949+0.01 0.941+0.01 | 0.94240.01 | 0.941-0.01 0.929+0.02 | 0.927+0.02 | 0.925+0.02 | 0.926+0.02
cs-Cox 0.842£0.03* | 0.842£0.03* | 0.842£0.03* | 0.842£0.03* || 0.748£0.10* | 0.749£0.10F | 0.749£0.10* | 0.749£0.10%
RSF 0.888+0.01* | 0.88740.02* | 0.886£0.03* | 0.89140.03* || 0.803+£0.06" | 0.77140.05* | 0.74940.05* | 0.746+0.05*
M 0.906£0.01* | 0.90540.01* | 0.908+0.01* | 0.909+0.01* || 0.818+0.03* | 0.814£0.03* | 0.81340.02* | 0.84040.02*
- JM-LC 0.911£0.04T | 0.9104£0.04T | 0.910+0.041 | 0.910+0.047 || 0.851+0.02* | 0.851£0.02* | 0.850+0.02* | 0.85040.02*
S 7 750 T | 0913F10.02% | 0.923£0.02* | 0.923£0.01* | 0.9234£0.01* || 0.837£0.077 | 0.8454£0.07T | 0.846+£0.07T | 0.849+0.077 ]
L | Exponential | 0.8830.03*_| 0.883£0.03 | 0.882:003" | 0882003 || 0.816+0.04* | 0817004 | 0.816+004" | 0.816:0.04" |
Proposed
FEV1% 0.95640.01 0.95840.01 0.95740.01 0.95740.01 0.93440.02 | 0.9314+0.02 | 0.931+0.02 | 0.93140.02
cause-spec. | 0.955+0.01 0.95740.01 0.95740.01 0.958+0.01 0.907+0.027 | 0.90940.02 | 0.906:£0.03T | 0.90940.02F
full-fledged | 0.961+0.01 0.963-£0.01 0.963+0.01 | 0.963+0.01 0.939-£0.01 0.938£0.01 | 0.939+0.01 | 0.939+0.01
cs-Cox 0.851£0.117 | 0.851£0.117 | 0.851+0.11T | 0.851+£0.11T || 0.721£0.09* | 0.720£0.09* | 0.720£0.09* | 0.72040.09*
RSF 0.898+0.01* | 0.89040.03* | 0.892+0.02* | 0.891+0.02* || 0.741+0.05* | 0.764-£0.03* | 0.763£0.03* | 0.76840.04*
M 0.9004+0.01* | 0.90240.01* | 0.908+£0.01* | 0.908+0.01* || 0.824+0.03* | 0.823+0.02* | 0.82640.01* | 0.843-0.02*
o | IMLC_ | 09168004 | 0916+004* | 091620.04* | 0916:£0.04% || 0.852:£0.02* | 0.8524002* | 085240.02% | 0.853:0.02°
o[ [5] 0.929£0.01* | 0.929£0.01* | 0.929-£0.01* | 0.9294+0.01* || 0.851£0.077 | 0.858-£0.06T | 0.859+£0.067 | 0.862+0.067 ]
LI | Exponential | 0.875+0.02* | 0.87440.02* | 0.87440.02* | 0.87340.02* || 0.806:£0.04* | 0.806:£0.04* | 0.806-£0.04* | 0.806:£0.04* |
Proposed
FEV1% 0.96240.01 0.9624+0.00 | 0.96240.00 | 0.961+0.00 0.92640.03 0.935+0.02 | 0.9304£0.02 | 0.934+0.02
cause-spec. | 0.96240.01 0.96140.01 0.94440.03 | 0.95440.02 0.896+0.04T | 0.92940.03 | 0.929+0.03 | 0.925+0.03
full-fledged | 0.968+0.00 | 0.968-:0.01 0.967+0.01 | 0.967+0.01 0.941+0.01 0.942+0.01 | 0.943+0.01 | 0.936:0.02

* indicates p-value < 0.01, { indicates p-value < 0.05

TABLE II: The top 15 most influential covariates with At =5
year. The values indicate the amount of increase(+)/decrease(-)
in the predicted risks on average and the covariates are ranked
by the absolute values.

Rank Death Cause

Resp. Failure Other Causes
1 FEV; Predicted (-0.033) IV ABX Days Hosp. (+0.014)
2 IV ABX Days Hosp. (+0.032) Gram-Negative (-0.013)
3 Gram-Negative (-0.029) FEV; Predicted (-0.012)
4 FEV; (-0.026) FEV; (-0.012)
5 Weight (-0.026) Weight (-0.011)
3 BMI (-0.025) BMI (-0.010)
7 Colonic Stricture (-0.024) Oral Hypo. Agents (-0.008)
8 Oral Hypo. Agents (-0.019) Class IV Mutation (-0.008)
9 Class IV Mutation (-0.017) IV ABX Days Home (+0.007)
10 B. Cepacia (+0.016) Cancer (+0.007)
11 GI Bleed (non-var.) (-0.016) GI Bleed (var.) (+0.007)
12 O2 Continuous (+0.015) HypertonicSaline (-0.006)
13 Drug Dornase (-0.015) Bone Fracture (-0.006)
14 IV ABX Days Home (+0.014) Colonic Stricture (-0.006)
15 05 Nocturnal (+0.013) 05 Nocturnal (+0.006)

IV: intravenous, ABX: antibiotics

To see the influence of covariates on risk predictions issued
by Dynamic-DeepHit, we calculated the change in (11) for
each covariate X; for d = 1,--- ,dyx by varying the value
from its minimum, Zq min, tO its Maximum, g max:

p)/k(Atv Xd = md,min) - ’Yk(Ata Xd = md,max)‘ (12)

Table II illustrates the fifteen most influential covariates for
the death from respiratory failure and the death from other
causes, respectively. Here, we set At = 5 year and the

amount of increase/decrease is used to rank the influence.
Here, the values imply the averaged increase/decrease of the
risk predictions (by varying the covariate from its minimum to
maximum) and the signs indicate whether the increase of each
covariate increases (+) or decreases (-) the risk predictions.

Previous studies in respiratory failures of CF patients have
identified FEV1% predicted as a strong surrogate for the
survival, and have shown that a decrease in FEV % predicted
severely increases the mortality of CF patients [10], [11].
Notably, the risk predictions on the respiratory failure made by
Dynamic-DeepHit was highly influenced by FEV; % predicted
in a similar manner. In addition, days of intravenous (IV)
antibiotics (ABX), which are used to treat severe bacterial
infections, both in hospital and at home, and body mass
index (BMI) and weight turned out to be highly influential
covariates. This finding is consistent with the domain knowl-
edge, which finds the IV ABX and hospitalization periods
are often considered as key risk factors for CF patients [12]
and the occurrence of malnutrition, which is often indicated
by BMLI, is associated with reductions in their survival [59].
More interestingly, the predicted risks for respiratory failure
were significantly increased when a patient has Burkholderia
cepacia (B. Cepacia), which is a rare but significant threat to
CF patients colonizing in the lungs that causes infection and
inflammation that deteriorates lung function [60].

For death from other causes, the partial dependence dis-
played the similar trend, while IV ABX days was more
influential to the predicted risks than FEV; % predicted was. In
particular, the risk predictions for the death from other causes
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showed slightly different influences from other covariates,
such as the indicators of cancer and GI bleeding in variceal
source that is a strong sign of liver failure. Therefore, the risk
factors and corresponding risk predictions issued by Dynamic-
DeepHit need to be carefully interpreted with different prior-
ities depending on the events.

D. Temporal Importance of Longitudinal Measurements

The temporal attention mechanism in the shared subnetwork
renders Dynamic-DeepHit to pay special attention to time
stamps at which the measurements are important for making
risk predictions. To investigate the attention mechanism, we
aim this subsection at finding to which patients the net-
work focuses on the long-term (or short-term) dependency
of the measurements. For ease of illustration, we define
J* = argmax;ec(i,...,7—1} a; as the time stamp at which the
proposed network pays the most attention to.

Best FEV; { === Long-term =g 1.22x10-58
= Short-term

FEV, e —— 1.64x10758
FEV1% Predicted —_—— 1.00x10-3%
Best FEV1% Predicted ———— 3.43x10-50
Weight — 1.96x10-2%
Height . —— 6.50x10°17
BMI _—— 6.58x10°12
IV ABX Days Home —_— 3.73x1070%
IV ABX Days Hosp. _— 4.89x10°0%
Non-IV Hosp. ADM pr—— 9.57x1004

—4 -2 0 2 4

Standard Deviation

(a) Mean and 95% CI for continuous covariates

Dornase Alpha —— 7.65x107%%
Inhaled B. Dilators — 1.54x10716
Cortico Combo — 1.56x10°13
P. Aeruginosa —— 1.26x1011
Class IV Mutation —_—— 1.50x107%¢
Chronic Oral ABX —_—— 1.50x107%%
Tobi Solution —_— 2.66x1070%
Oral B. Theoph, | =——— 1.08x10%4
Aspergillus —_—— 1.60x10%4
Gender — 2.11x10°%

10-! 100 10t

Odds Ratio

(b) Odds ratio and 95% CI for binary covariates

Fig. 3: Forest plots on (a) continuous covariates and (b)
binary covariates with the smallest p-values. The left column
displays the covariate names and the right column denotes
the corresponding p-values. (The covariates are ordered from
smallest to largest.)

We divide the patients into two groups based on their
temporal dependency: the long-term dependency group com-
prises patients having the highest attention weight to earlier
measurements, i.e., 7* < J — 1, and the short-term depen-
dency group consists of patients having the highest attention

weight to the most recent measurement, i.e., j* = J — 1.
Among 3710 patients with at least three measurements (i.e.,
J > 3), our network focused on the long-term dependency
of longitudinal measurements for 290 patients (7.82%) and on
the short-term dependency for 3420 patients (92.18%). Then,
the characteristics of the two groups were compared using
independent two-sample ¢-test for continuous covariates and
Fisher’s exact test for discrete covariates.

In Fig. 3, we illustrated forest plots on twenty covariates
(ten for the continuous and ten for binary covariates) with
the smallest p-values, which implies strong evidence that their
distributions are different in the two groups. More specifically,
for each continuous covariate in Fig. 3(a), we aligned the
mean and the 95% confidence interval (CI) of each group
with the overall population — this implies that how much the
distribution of each group is different from the mean of the
overall population in terms of its standard deviation. For an
example of Best FEV, the mean of the long-term dependency
group (i.e., 3.37) was approximately a standard deviation (i.e.,
0.92) larger than the overall mean (i.e., 2.44) while that of
the short-term dependency group (i.e., 2.36) was very close to
the overall mean. For each binary covariate in Fig. 3(b), we
displayed the odds ratio (OR) and the 95% CI, which is the
ratio of the odds of being in the long-term dependency group in
the presence of the covariate and the odds of being in the long-
term dependency group without the presence of the covariate —
this statistic quantifies the strength of the association between
each covariate and being in the long-term dependency group.
For instance, if the OR is greater than 1, then the presence
of the covariate raises the odds of being in the long-term
dependency group.

Interestingly, patients in the long-term dependency group
displayed, on average, factors that mitigate the predicted risks
compared to those in the short-term dependency group. For
continuous covariates, as seen in Fig. 3(a), the factors include
higher lung functions scores (i.e., FEV;, FEV;% predicted,
Best FEV;, and Best FEV;% predicted), shorter IV ABX
periods (i.e., IV ABX days at home and in hospital), richer
nutritional status (i.e., weight and BMI), that decrease the
predicted risks for both death from the respiratory failure and
that from other causes as reported in Table II. For binary co-
variates, as seen in Fig. 3(b), the factors include lower bacterial
infection rate (i.e., pseudomonas aeruginosa and aspergillus
whose infection increases the risk of the respiratory failure
[60]) and lower therapy/treatments rate (i.e., dornase alpha,
cortico combo, chronic oral ABX, and tobi solution). Indeed,
Dynamic-DeepHit issued lower risk predictions for patients
in the long-term group; the predicted risks were 38.98% and
35.20% lower on average for respiratory failure and death from
other causes, respectively.

E. Dynamic Survival Prediction

At run-time, Dynamic-DeepHit issues cause-specific risk
predictions as defined in (5) for each subject incorporating
his/her medical history. Owing to the RNN structure utilized
in the shared subnetwork, whenever a new observation is made
for that subject, the proposed method is easily able to integrate
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Fig. 4: Illustration of dynamic risk predictions issued by
Dynamic-DeepHit for patients with (a) £ = 1, (b) k£ = 2,
and (c¢) kK = &. Gray solid lines, yellow dotted lines, and stars
indicate times at which measurement are taken, the time at
which a patient is censored, and the time at which an event
occurred, respectively.

this information into the history of measurements and to issue
new risk predictions in a fully dynamic fashion. It is worth
highlighting that the landmarking methods can only provide
risk assessment at the predefined landmarking times [29].
In Fig. 4, we have illustrated the dynamic survival analysis
for representative patients in order to show how Dynamic-
DeepHit issues and updates risk predictions for different
causes (including right-censoring) with new measurements
being collected. Along with the predicted risks, trajectories
of two highly influential covariates, FEV;% predicted and IV
ABX Days in Hospital, are illustrated to show their associa-
tions. As demonstrated in Fig. 4, Dynamic-DeepHit was able
to flexibly update the cause-specific risks by incorporating

new measurements in a dynamic fashion. For example, the
predicted risks for the patient in Fig. 4(a) was relatively high
compared to that of the patient in Fig. 4(c), presumably due
to the high and increasing IV ABX days in hospital and the
decreasing FEV; % predicted. The importance of this dynamic
approach can be seen in Fig. 4(a) when a sudden increase in
the number of IV ABX days around at age 23 resulted in a
steep increase in predicted risks.

VII. CONCLUSION

In this paper, we developed a novel approach, Dynamic-
DeepHit, to perform dynamic survival analysis with competing
risks on the basis of longitudinal data. Dynamic-DeepHit is a
deep neural network which learns the estimated joint distribu-
tions of survival times and competing events, without making
assumptions regarding the underlying stochastic processes.
We train the network by leveraging a combination of loss
functions that capture the right-censoring and the associations
of longitudinal measurements with disease progression, both
of which are inherent in time-to-event data. We demonstrated
the utility of our proposed method through a set of experiments
conducted on a cohort of 5,883 adult CF patients whose
follow-ups have been recorded in the UK Cystic Fibrosis
Registry. The experiments show that the proposed method sig-
nificantly outperforms the cutting-edge benchmarks in terms of
discriminative performance. Supported with a post-processing
statistic to interpret risk predictions issued by the proposed
method, the results suggest the possibility of improved dy-
namic analysis on disease progression that will result in more
effective health care.
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