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Abstract

In this paper, we study the global existence of classical solutions to the three di-
mensional incompressible viscous magneto-hydrodynamical system without mag-
netic diffusion on periodic boxes, that is, with periodic boundary conditions. We
work in Eulerian coordinates and employ a time-weighted energy estimate to prove
the global existence result, under the assumptions that the initial magnetic field is
close enough to an equilibrium state and the initial data have some symmetries.

1. Introduction

The equations of viscous magnetohydrodynamics (MHD) model the motion
of electrically conducting fluids interacting with magnetic fields. When the fluids
are strongly collisional plasmas, or the resistivity due to collisions is extremely
small, the diffusion in a magnetic field is often neglected [4,8,13]. When magnetic
diffusion is missing, it is extremely interesting to understand whether the fluid
viscosity only could prevent singularity development from small smooth initial
data in three dimensional physical space (in view of the strongly nonlinear coupling
between fluids and the magnetic field). Mathematically, it is also close in structure
to the model of dynamics of certain complex fluids, including the hydrodynamics
of viscoelastic fluids, c.f. [16–20]. To this end, we investigate the global existence
of smooth solutions to the following initial boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bt + u · ∇B = B · ∇u,

ut + u · ∇u − �u + ∇ p = B · ∇B,

∇ · u = ∇ · B = 0,

u(0, x) = u0(x), B(0, x) = B0(x),

(1.1)

with periodic boundary conditions

x ∈ [−π, π ]3 = T
3, (1.2)
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where B = (B1, B2, B3) denotes the magnetic field, u = (u1, u2, u3) the fluid
velocity, and p = q + 1

2 |B|2, where q denotes the scalar pressure of the fluid.
Impressive progress had been made in the past several decades for MHD sys-

tems. Indeed, according to the level of dissipations, there are roughly three different
layers of models: inviscid and non-resistive (no viscosity, no magnetic diffusion,
hence no dissipation); viscous and resistive (fully dissipative in fluids and in mag-
netic field); and partially dissipative (only viscosity ormagnetic diffusion presents).
On the one hand, it is natural to expect the global existence of classical solutions for
viscous and resistive MHD at least for small initial data; this has been confirmed in
classic papers by Duvaut and Lions [9] and by Sermange and Temam [23]. In
2008, Abidi and Paicu [1] generalized these results to the inhomogeneous MHD
system with initial data in the so-called critical spaces. More recently, Cao and
Wu [6] (also see [7]) proved the global well-posedness for any data in H2(R2)

with mixed partial viscosity and magnetic diffusion in a two dimensional MHD
system. On the other hand, it is somehow striking that Bardos et al. [3] proved
that the inviscid and non-resistive MHD system also admits a unique global clas-
sical solution when the initial data is near a nontrivial equilibrium. It seems that
dispersion and some coupling of nonlinearity between fluids and the magnetic field
alone are sufficient to maintain the regularity from initial data. Very recently, the
vanishing dissipation limit from a fully dissipative MHD system to an inviscid and
non-resistive MHD system has been justified by He et al. [10], Cai and Lei [5],
Wei and Zhang [25] under some structural conditions between viscosity andmag-
netic diffusion coefficients. Therefore, it is not a surprise that the remaining case,
partially dissipative MHD, has attracted a lot of attention in the recent years. As
documented in [6,15], the inviscid and resistive 2D MHD system admits a global
H1 weak solution, but the uniqueness of such a solutionwith higher order regularity
is still not known.

In the case of our consideration, namely the incompressible MHD system with
positive viscosity and zero resistivity, it is still an open problemwhether or not there
exists a global classical solution even in two dimensional space for generic smooth
initial data. The main difficulty of studying these MHD systems lies in the non-
resistivity of the magnetic equation. Some interesting results have been obtained
for small smooth solutions. For a closely related model in three dimensions, the
global well-posedness was established by Lin and Zhang [19], and a simpler
proof was offered by Lin and Zhang [20]. With certain admissible conditions for
initial data, Lin et al. [18] established the global existence in 2D for initial data
close to an nontrivial equilibrium state and the three dimensional case was proved
by Xu and Zhang [26]. Later, Ren et al. [21] removed the restriction in the 2D
case (see Zhang [27] for a simplified proof). We also refer to another proof for
the 2D incompressible case byHu and Lin [11].Hu [12] further established some
results for the 2D compressible MHD system. Very recently, under the Lagrangian
coordinate system, Abidi and Zhang [2] proved the global well-posedness for
the three dimensional MHD system without the admissible restriction. For certain
class of large data, Lei [14] proved the global regularity of some axially symmetric
solutions in the three space dimensional MHD system. While all results down the
line are about theCauchyproblem, an initial boundary value problem for the 2Dcase
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under the Eulerian coordinate in a strip domainR× (0, 1) was done by Ren et al.
[22] recently. The three dimensional case onR2 × (0, 1) for both compressible and
incompressible fluids was considered by Tan and Wang [24] under Lagrangian
coordinates. In the three dimensional case, these inspiring results, along with many
innovative methods and estimates, made full use of partial dissipation offered by
viscosity, dispersion of waves on an unbounded domain and the structure of the
Lagrangian formulation (which contains a one time derivative already and helps
capture the weak dissipation). It is then natural to explore two questions. The first
of these is, is it possible to establish global existence of small smooth solutions on
bounded domain, where the dispersion effect is limited? The second question is:
can one work with Eulerian coordinates where the system takes a simpler form and
thus involves the loss of one time derivative and the loss of possible time decay?

Our main aim in this paper is to offer answers to these questions. Indeed, as one
step in this direction,wewill establish the global existence of small smooth solutions
to the three dimensional incompressible viscous magneto-hydrodynamical system
without resistivity on periodic boxes, under the assumptions that the initialmagnetic
field is close enough to an equilibrium state and that the initial data have some
symmetry structure. We will also avoid the use of Lagrangian formulation. The
advantage of the Eulerian coordinates is that, if successful, things will be neat and
simple.

To fix the idea, we adopt the following notations:

xh = (x1, x2), ∇h = (∂1, ∂2), Bh = (B1, B2)
�,

as well as similar notations for other quantities, without causing further confusion.
We assume that

u0,h(x), B0,3(x) are even periodic with respect to x3,

u0,3(x), B0,h(x) are odd periodic with respect to x3,
(1.3)

and moreover that
∫

T3
u0 dx = 0,

∫

T3
B0,3 dx = α �= 0. (1.4)

Our main result can be stated as follows:

Theorem 1.1. Consider the three dimensional MHD system (1.1)–(1.2) with initial
data that satisfies the conditions (1.3)–(1.4). Then there exists a small constant
ε > 0 only depending on α such that the system (1.1) admits a global smooth
solution provided that

‖u0‖H2s+1 + ‖∇B0‖H2s � ε,

where s � 5 is an integer.

Remark 1.2. Our methods can be applied to other related models. Similar results
for the compressible system will be presented in a forthcoming paper.
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Without loss of generality, we assume that α = (2π)3, and following Lin and
Zhang [19], we let

B0 = b0 + e3,

where e3 = (0, 0, 1)�. Hence, we have
∫

T3
b0 dx =

∫

T3
u0 dx = 0. (1.5)

Set B = b + e3, so we get the system of pair (u, b) as follows:
⎧
⎪⎨

⎪⎩

bt + u · ∇b = b · ∇u + ∂3u,

ut + u · ∇u − �u + ∇ p = b · ∇b + ∂3b,

∇ · u = ∇ · b = 0,

(1.6)

with initial data

u(0, x) = u0(x), b(0, x) = b0(x),

and with the property of initial data (1.3) holding, that is,

uh(0, x), b3(0, x) are even periodic with respect to x3,

u3(0, x), bh(0, x) are odd periodic with respect to x3.
(1.7)

Also, by the periodic boundary conditions (1.5) and system (1.6), we have
∫

T3
b dx =

∫

T3
u dx = 0. (1.8)

Remark 1.3. The property (1.7) will hold in the time evolution. Indeed, we can
define ū(t, x), b̄(t, x) as follows:

ūh(t, xh, x3) = uh(t, xh,−x3), ū3(t, xh, x3) = −u(t, xh,−x3),

b̄h(t, xh, x3) = − bh(t, xh,−x3), b̄3(t, xh, x3) = b3(t, xh,−x3).

Then, quantities ū, b̄ satisfy the same system, (1.6), like u, b, and also have the same
initial data. Hence, by the uniqueness of classical solution, we obtain b̄(t, x) =
b(t, x) and ū(t, x) = u(t, x). Therefore, we see property (1.7) persist.

Although property (1.7) (from (1.3)) could be realized physically initially and
is preserved in time evolution as explained in the previous remark, its physical
interpretation is not quite clear. It identifies a significant class of initial data on a
periodic box admitting a global classical solution to (1.6) near a nontrivial mag-
netic equilibrium. Mathematically, it helps in analysis to allow us to use Poincaré
inequality (Proposition 2.1) for some crucial terms in the estimates. On the other
hand, this is also needed to rule out an extremely unclear situation related to the
global regularity of 2D MHD without magnetic diffusion when the initial data is a
small perturbation near the trivial equilibrium, which is a very difficult problem.
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To help readers understand the situation, let’s choose the following special class of
initial data:

B0(x) =
(

Bh
0 (xh), 1

)
, u0(x) =

(
uh
0(xh), 0

)
,∇h · Bh

0 = ∇h · uh
0 = 0, (1.9)

which reduces the original system (1.1) into the following 2D problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bh
t + uh · ∇h Bh = Bh · ∇huh,

uh
t + uh · ∇huh − �huh + ∇h P = Bh · ∇h Bh,

∇h · Bh = ∇h · uh = 0,

Bh(0, xh) = Bh
0 (xh), uh(0, xh) = uh

0(xh),

(1.10)

with initial data (Bh
0 (xh), uh

0(xh)) being a perturbation near a trivial equilibrium.
This, however, is still a challenging open problem. Furthermore, we note that if
(Bh, uh)(t, xh) is a classical solution of (1.10), then B(t, x) = (Bh(t, xh), 1),
u(t, x) = (uh(t, xh), 0) is the corresponding solution of (1.1) with initial data (1.9).
When the problem is considered in the whole space, by requiring finite energy in
R
3, one finds Bh

0 (xh) = 0 = uh
0(xh), avoiding the complex situation successfully.

However, on a periodic bounded domain, the finite energy condition is not sufficient
to show that the solution of (1.10) is trivial. To avoid the unclear situationmentioned
before, some additional conditions are needed. In this paper, we impose (1.7) (from
(1.3)) to ensure that Bh

0 (xh) = 0 = uh
0(xh), and thus system (1.10) has only a trivial

solution. It would be interesting to explore other conditions for this purpose.
In order to proveTheorem1.1,we only need to consider the system (1.6) instead.
In this paper, we have to face the difficulties from the bounded domain and the

loss ofweak dissipationwithout using theLagrangian formulation.One of themajor
differences in analysis between the whole space and the bounded domain is the
character of dissipation. For the whole space, although the system contains only the
viscosity, it is possible to recover dissipative structure for all components of u and b,
in addition to the advantage of wave dispersion. For the bounded domain, however,
it is extremely difficult to recover dissipative structure for all components of u and
b. Indeed, evenwith the help of condition (1.7) and Poincaré inequality (Proposition
2.1), we could not derive dissipation for b3. We emphasize that the analysis of the
whole space case is quite complicated and exhibits very different features compared
with our case here. They are different in nature and difficult in various aspects.
These challenges will be overcome through a carefully designed weighted energy
method with the help of some observations on the structure of the system. One of
the major observations is that the time derivative of b is essentially quadratic terms
plus a derivative term in the good direction x3 where dissipation kicks in. Another
observation is that although the bounded domain pushes us away from the possible
dispersion of waves, it does compensate us with Poincaré inequality. However, the
high space dimensions, the lack of magnetic diffusion, and the strongly coupled
nonlinearity of the problemmake themathematical analysis very challenging. Even
with our carefully designed time-weighted energies, there are still many dedicated
technical issues. One of our main obstacles is to derive the time dissipative estimate
to the term b · ∇b, which behaves most wildly in the system. Writing b · ∇b =



642 Ronghua Pan, Yi Zhou & Yi Zhu

b3 · ∂3b + bh · ∂hb, we notice that b3 · ∂3b contains one good quantity ∂3b can be
estimated relatively easily due to dissipation in the x3 direction. Hence, we focus
on the term bh · ∇hb containing two bad terms. To overcome this difficulty, we
make full use of the condition (1.7) and Poincaré inequality in x3 direction. Thus
the norm of bh can be controlled by the norm of ∂3bh . This specific choice of
estimate avoids the presence of interaction between two wild quantities. Such an
idea actually originates from the null condition in the theory of wave equations.
However, we still have to come across other difficulties in the estimate process. For
example, we cannot achieve the uniform bound of all higher order norms that we
want. Instead, we turn to control the growth of such norms by the energy frame we
construct in the next section. More detailed decay estimates will also be presented
in Section 2.

2. Energy Estimate and the Proof of Main Result

2.1. Preliminary

In this subsection, we first introduce a useful proposition related to Poincaré
inequality which plays an important role in our proof to the main theorem of this
paper.

Proposition 2.1. For any function f (x) ∈ Hk+1(T3), k ∈ N satisfying the condi-
tion

1

2π

∫ π

−π

f (xh, x3) dx3 = 0, ∀ xh ∈ T
2, (2.1)

it holds that

‖ f ‖Hk (T3) � ‖∂3 f ‖Hk (T3).

Proof. First, we can write

‖ f ‖2Hk (T3)
=

k∑

|α|=0

∫

T2

∫ π

−π

|∂α f (xh, x3)|2dx3dxh . (2.2)

Here, α = (α1, α2, α3) is a multi-index and ∂α = ∂
α1
1 ∂

α2
2 ∂

α3
3 .

Notice the condition (2.1), where we have, for multi-index α = (α1, α2, 0),

1

2π

∫ π

−π

∂α f (xh, x3)dx3 = 0.

For multi-index α = (α1, α2, α3) where α3 > 0, by the periodic boundary condi-
tion, we also have

∫ π

−π

∂α f (xh, x3)dx3 = ∂
α1
1 ∂

α2
2 ∂

α3−1
3 f (xh, ·)

∣
∣
∣
π

−π
= 0.
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Therefore, the average value of ∂α f (xh, ·) in x3 direction over [−π, π ] is zero.
Hence, applying standard Poincaré inequality to ∂α f (xh, x3) in the x3 direction,
we have ∀xh ∈ T

2 and,
∫ π

−π

|∂α f (xh, x3)|2dx3 �
∫ π

−π

|∂α∂3 f (xh, x3)|2dx3.

According to the definition of ‖ f ‖Hk (T3), that is (2.2), we finally obtain

‖ f ‖2Hk (T3)
=

k∑

|α|=0

∫

T2

∫ π

−π

|∂α f (xh, x3)|2dx3dxh

�
k∑

|α|=0

∫

T2

∫ π

−π

|∂α∂3 f (xh, x3)|2dx3dxh

=‖∂3 f ‖2Hk (T3)
.

�	
Now, let us introduce the energy frame that will enable us to achieve our desired

estimate. Based on our discussion in Section 1, we define some time-weighted
energies for the system (1.6). The energies beloware definedon thedomainR+×T

3.
For s ∈ N and 0 < σ < 1, we set

E0(t) = sup
0�τ�t

(1 + τ)−σ
(
‖u(τ )‖2H2s+1 + ‖b(τ )‖2H2s+1

)

+
∫ t

0
(1 + τ)−1−σ

(
‖u(τ )‖2H2s+1 + ‖b(τ )‖2H2s+1

)
dτ

+
∫ t

0
(1 + τ)−σ

(
‖u(τ )‖2H2s+2 + ‖∂3b(τ )‖2H2s

)
dτ,

G0(t) = sup
0�τ�t

(1 + τ)1−σ
(
‖∂3u(τ )‖2H2s + ‖∂3b(τ )‖2H2s

)

+
∫ t

0
(1 + τ)1−σ ‖∂3u(τ )‖2H2s+1 dτ,

G1(t) = sup
0�τ�t

(1 + τ)3−σ
(
‖∂3u(τ )‖2H2s−2 + ‖∂3b(τ )‖2H2s−2

)

+
∫ t

0
(1 + τ)3−σ ‖∂3u(τ )‖2H2s−1 dτ,

E1(t) = sup
0�τ�t

(1 + τ)3−σ ‖u(τ )‖2H2s−2

+
∫ t

0
(1 + τ)3−σ

(
‖u(τ )‖2H2s−1 + ‖∂3b(τ )‖2H2s−3

)
dτ,

e0(t) = sup
0�τ�t

‖b(τ )‖2H2s . (2.3)
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In the following, we will successively derive the estimate of each energy stated
above. By (1.8) and Poincaré inequality, we only need to consider the highest order
norms in each energy.

2.2. A Priori Estimate

First, we will deal with the highest order energy, that is, E0(t). It shows that the
highest order norm H2s+1(T3) of u(t, ·) and b(t, ·)will grow in the time evolution.

Lemma 2.2. Assume that s � 5 and the energies are defined as in (2.3), then we
have

E0(t) � E0(0)+ E0(t)E1/2
1 (t)+ E1/2

1 (t)e0(t)+ E5/6
0 (t)E1/6

1 (t)e1/20 (t)+ E0(t)e
1/2
0 (t).

Proof. We divide the proof into two steps. Instead of deriving the estimate of E0
directly, we shall first get the estimate of E0,1(t) defined by

E0,1(t) � sup
0�τ�t

(1 + τ)−σ (‖u(τ )‖2H2s+1 + ‖b(τ )‖2H2s+1)

+
∫ t

0
(1 + τ)−σ ‖u(τ )‖2H2s+2 dτ

+
∫ t

0
(1 + τ)−1−σ (‖u(τ )‖2H2s+1 + ‖b(τ )‖2H2s+1) dτ.

(2.4)

Step 1
Applying∇2s+1 derivative on the system (1.6). Then, taking inner product with

∇2s+1b for the first equation of system (1.6) and taking inner product with ∇2s+1u
for the second equation of system (1.6). Adding them up and multiplying the time
weight (1 + t)−σ , we get

1

2

d

dt
(1 + t)−σ

(
‖u‖2

Ḣ2s+1 + ‖b‖2
Ḣ2s+1

)
+ σ

2
(1 + t)−1−σ

(
‖u‖2

Ḣ2s+1 + ‖b‖2
Ḣ2s+1

)

+ (1 + t)−σ ‖u‖2
Ḣ2s+2 = I1 + I2 + I3 + I4,

(2.5)

where,

I1 = − (1 + t)−σ

∫

T3
u · ∇∇2s+1u ∇2s+1u + u · ∇∇2s+1b ∇2s+1b dx

+ (1 + t)−σ

∫

T3
b · ∇∇2s+1b ∇2s+1u + b · ∇∇2s+1u ∇2s+1b dx

+ (1 + t)−σ

∫

T3
∇2s+1∂3u ∇2s+1b + ∇2s+1∂3b ∇2s+1u dx,

I2 = − (1 + t)−σ
2s+1∑

k=1

∫

T3
∇ku · ∇∇2s+1−ku ∇2s+1u dx,
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I3 = (1 + t)−σ
s∑

k=1

∫

T3

(
∇kb · ∇∇2s+1−ku − ∇ku · ∇∇2s+1−kb

)
∇2s+1b dx

+ (1 + t)−σ
2s+1∑

k=s+1

∫

T3

(
∇kb · ∇∇2s+1−ku − ∇ku · ∇∇2s+1−kb

)
∇2s+1b dx,

I4 = − (1 + t)−σ
s∑

k=1

∫

T3
∇kb · ∇∇2s+1−kb ∇2s+1u dx

− (1 + t)−σ
2s+1∑

k=s+1

∫

T3
∇kb · ∇∇2s+1−kb ∇2s+1u dx .

We shall estimate each term on the right hand side of (2.5). First, for the term
I1, using integration by parts and the divergence free condition, we have

I1 = 0. (2.6)

The main idea for the next estimates is that we will carefully derive the bound
of each term so that it can be controlled by the combination of energies defined in
(2.3). By Hölder inequality and the Sobolev imbedding theorem, we have

|I2| � (1 + t)−σ ‖u‖W s+1,∞‖u‖2H2s+1

� (1 + t)−σ ‖u‖Hs+3‖u‖2H2s+1

� (1 + t)−σ ‖u‖H2s−1‖u‖2H2s+1 ,

provided that s � 4. Hence,

∫ t

0
|I2(τ )| dτ � sup

0�τ�t
(1 + τ)−σ ‖u‖2H2s+1

∫ t

0
‖u‖H2s−1 dτ � E0(t)E1/2

1 (t).

(2.7)
Similarly, for the first part of I3 (we denote the first term on the right hand as

I3,1 and the second term as I3,2), we see that

|I3,1| � (1 + t)−σ
(
‖b‖W s,∞‖u‖H2s+1‖b‖H2s+1 + ‖u‖W s,∞‖b‖2H2s+1

)

� (1 + t)−σ
(
‖b‖Hs+2‖u‖H2s+1‖b‖H2s+1 + ‖u‖Hs+2‖b‖2H2s+1

)

� (1 + t)−σ
(
‖b‖H2s ‖u‖H2s+1‖b‖H2s+1 + ‖u‖H2s−1‖b‖2H2s+1

)
,

provided that s � 3. And for the second part of I3, we have

|I3,2| � (1 + t)−σ
(
‖b‖2H2s+1‖u‖W s+1,∞ + ‖u‖H2s+1‖b‖W s+1,∞‖b‖H2s+1

)

� (1 + t)−σ
(
‖b‖2H2s+1‖u‖Hs+3 + ‖u‖H2s+1‖b‖Hs+3‖b‖H2s+1

)

� (1 + t)−σ
(
‖b‖2H2s+1‖u‖H2s−1 + ‖u‖H2s+1‖b‖H2s ‖b‖H2s+1

)
,
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provided that s � 4. Hence, combining I3,1 and I3,2 and using Hölder inequality,
we get
∫ t

0
|I3(τ )| dτ

� sup
0�τ�t

‖b‖H2s

(∫ t

0
(1 + τ)−1−σ ‖b‖2H2s+1 dτ

) 1
2
(∫ t

0
(1 + τ)1−σ ‖u‖2H2s+1 dτ

) 1
2

+ sup
0�τ�t

(1 + τ)−σ ‖b‖2H2s+1

∫ t

0
‖u‖H2s−1dτ. (2.8)

Using Gagliardo–Nirenberg interpolation inequality and Hölder inequality, we can
bound
∫ t

0
(1 + τ)1−σ ‖u‖2H2s+1 dτ �

∫ t

0

[
(1 + τ)3−σ ‖u‖2H2s−1

] 1
3
[
(1 + τ)−σ ‖u‖2H2s+2

] 2
3 dτ

� E2/3
0 (t)E1/3

1 (t). (2.9)

Thus, combining (2.8) with (2.9), we finally obtain the estimate of I3
∫ t

0
|I3(τ )| dτ � E5/6

0 (t)E1/6
1 (t)e1/20 (t) + E1/2

1 (t)e0(t). (2.10)

Next, for the last term, I4, we use the same method as above and obtain

|I4| � (1 + t)−σ ‖b‖H2s+1‖b‖W s+1,∞‖u‖H2s+1

� (1 + t)−σ ‖b‖H2s+1‖b‖H2s ‖u‖H2s+1 ,

provided that s � 3. Hence,

∫ t

0
|I4(τ )| dτ � E5/6

0 (t)E1/6
1 (t)e1/20 (t). (2.11)

Summing up the estimates for I1–I4, that is, (2.6), (2.7), (2.10) and (2.11), and
integrating (2.5) in time, we can get the estimate of E0,1(t)which is defined in (2.4)

E0,1(t) � E0(0) + E0(t)E1/2
1 (t) + E1/2

1 (t)e0(t) + E5/6
0 (t)E1/6

1 (t)e1/20 (t).

(2.12)

Here, we have used the Poincaré inequality to consider the highest order norms
only.

Step 2
Now, let us work for the remaining term in E0(t). Applying ∇2s on the second

equation of system (1.6) and taking inner product with ∇2s∂3b, then multiplying
the time weight (1 + t)−σ we get

(1 + t)−σ ‖∂3b‖2
Ḣ2s = I5 + I6 + I7 + I8, (2.13)
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where

I5 = (1 + t)−σ

∫

T3
∇2s(u · ∇u) ∇2s∂3b dx − (1 + t)−σ

∫

T3
∇2s�u ∇2s∂3b dx,

I6 = − (1 + t)−σ
s∑

k=0

∫

T3
∇kbh · ∇h∇2s−kb ∇2s∂3b + ∇kb3 · ∇3∇2s−kb ∇2s∂3b dx

− (1 + t)−σ
2s∑

k=s+1

∫

T3
∇kbh · ∇h∇2s−kb ∇2s∂3b

+ ∇kb3 · ∇3∇2s−kb ∇2s∂3b dx,

I7 = d

dt
(1 + t)−σ

∫

T3
∇2su ∇2s∂3b dx + σ(1 + t)−1−σ

∫

T3
∇2su ∇2s∂3b dx,

I8 = (1 + t)−σ

∫

T3
∇2s∂3u ∇2s∂t b dx .

Like the process in Step 1, we shall derive the estimate of each term on the
right hand side of (2.13). First, using Hölder inequality and the Sobolev imbedding
theorem, we can bound I5 as follows:

|I5| � (1 + t)−σ ‖u‖H2s+1‖u‖Hs+2‖∂3b‖H2s + (1 + t)−σ ‖u‖H2s+2‖∂3b‖H2s

� (1 + t)−σ ‖u‖H2s+1‖b‖H2s+1‖u‖H2s−1 + (1 + t)−σ ‖u‖H2s+2‖∂3b‖H2s ,

provided that s � 3. Thus, we have
∫ t

0
|I5(τ )| dτ � E0(t)E1/2

1 (t) + E1/2
0,1 (t)

(∫ t

0
(1 + τ)−σ ‖∂3b‖2H2sdτ

)1/2

.

(2.14)
Next, we turn to the estimate of I6. Notice that I6 is the most wild term in our

proof, due to the bad behaviour of b · ∇b. Although we have already divided this
term into bh ·∇hb and b3 ·∇3b two terms, the estimate for bh ·∇hb is still nontrivial.
Thanks to the Proposition 2.1 that we have proved at the beginning of this section,
we can overcome this problem using the following strategy.

Notice the property (1.7). We easily know that in the x3 direction, the average
value of function bh(xh, ·) over [−π, π ] equals zero. Thus, using the Proposi-
tion 2.1, Hölder inequality and the Sobolev imbedding theorem, we get

|I6| � (1 + t)−σ
(
‖bh‖W s,∞‖b‖H2s+1‖∂3b‖H2s + ‖b3‖W s,∞‖∂3b‖2H2s

)

+ (1 + t)−σ
(‖bh‖H2s ‖b‖W s,∞‖∂3b‖H2s + ‖b3‖H2s ‖∂3b‖W s−1,∞‖∂3b‖H2s

)

� (1 + t)−σ
(
‖∂3bh‖Hs+2‖b‖H2s+1‖∂3b‖H2s + ‖b3‖Hs+2‖∂3b‖2H2s

)

+ (1 + t)−σ
(‖∂3bh‖H2s ‖b‖Hs+2‖∂3b‖H2s + ‖b3‖H2s ‖∂3b‖Hs+1‖∂3b‖H2s

)

� (1 + t)−σ
(
‖∂3b‖H2s−3‖b‖H2s+1‖∂3b‖H2s + ‖b‖H2s ‖∂3b‖2H2s

)
,

provided that s � 5. Hence,
∫ t

0
|I6(τ )| dτ � E0(t)E1/2

1 (t) + E0(t)e
1/2
0 (t). (2.15)
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For the next term I7, using Hölder inequality, it is straightforward to see

|
∫ t

0
I7(τ ) dτ | � E0,1(t). (2.16)

For the last term I8, using the first equation of system (1.6) and integrating by
parts, we find

I8 = (1 + t)−σ

∫

T3
∇2s∂3u∇2s(∂3u + b · ∇u − u · ∇b) dx

= − (1 + t)−σ

∫

T3
∇2s+1∂3u∇2s−1(∂3u + b · ∇u − u · ∇b) dx .

Thus, by Hölder inequality and Sobolev imbedding theorem, we have

|I8| �(1 + t)−σ (‖u‖2H2s+2 + ‖u‖2H2s+2‖b‖H2s ),

provided that s � 2. Hence, we arrive at
∫ t

0
|I8(τ )| dτ � E0,1(t) + E0(t)e

1/2
0 (t). (2.17)

Summing up the estimates for I5–I8, that is, (2.14), (2.15), (2.16) and (2.17),
and integrating (2.13) in time, using Young inequality and Poincaré inequality we
can easily bound

∫ t

0
(1 + τ)−σ ‖∂3b‖2H2s dτ � E0,1 + E0(t)E1/2

1 (t) + E0(t)e
1/2
0 (t). (2.18)

This gives the estimate for the last term in E0(t). Now, multiplying (2.12) by
suitable large number and plus (2.18), we then complete the proof of this lemma. �	

Next, we work with the lower order energies defined in (2.3), especially we
want to derive the decay estimate and get the uniform bound of lower order norms
of magnetic field.

Lemma 2.3. Assume that s � 5 and the energies are defined as in (2.3), then we
have

G0(t) � E0(t) + G0(t)E1/2
1 (t) + E1/2

0 (t)G1/2
0 (t)

[
G1/2

1 (t) + E1/2
1 (t)

]

+ E1/2
0 (t)G1/4

0 (t)G1/4
1 (t)e1/20 (t).

Proof. First, applying ∇2s∂3 derivative on the system (1.6). Then, taking inner
product with ∇2s∂3b for the first equation of system (1.6) and taking inner prod-
uct with ∇2s∂3u for the second equation of system (1.6). Summing them up and
multiplying the time weight (1 + t)1−σ we obtain

1

2

d

dt
(1 + t)1−σ

(
‖∂3u‖2

Ḣ2s + ‖∂3b‖2
Ḣ2s

)
+ (1 + t)1−σ ‖∂3u‖2

Ḣ2s+1 =
6∑

i=1

Ji ,

(2.19)
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where,

J1 = 1 − σ

2
(1 + t)−σ

(
‖∂3u‖2

Ḣ2s + ‖∂3b‖2
Ḣ2s

)
,

J2 = − (1 + t)1−σ

∫

T3
u · ∇∇2s∂3u ∇2s∂3u + u · ∇∇2s∂3b ∇2s∂3b dx

+ (1 + t)1−σ

∫

T3
b · ∇∇2s∂3b ∇2s∂3u + b · ∇∇2s∂3u ∇2s∂3u dx

+ (1 + t)1−σ

∫

T3
∇2s∂23u ∇2s∂3b + ∇2s∂23b ∇2s∂3u dx,

J3 = − (1 + t)1−σ
2s∑

k=1

∫

T3
∇ku · ∇∇2s−k∂3u ∇2s∂3u dx

− (1 + t)1−σ
2s∑

k=0

∫

T3
∇k∂3u · ∇∇2s−ku ∇2s∂3u dx,

J4 = − (1 + t)1−σ
2s∑

k=1

∫

T3
∇ku · ∇∇2s−k∂3b ∇2s∂3b dx

− (1 + t)1−σ
2s∑

k=0

∫

T3
∇k∂3u · ∇∇2s−kb ∇2s∂3b dx,

J5 = (1 + t)1−σ
2s∑

k=0

∫

T3
∇k∂3b · ∇∇2s−ku ∇2s∂3b dx

+ (1 + t)1−σ
2s∑

k=1

∫

T3
∇kb · ∇∇2s−k∂3u ∇2s∂3b dx,

J6 = (1 + t)1−σ
2s∑

k=1

∫

T3
∇kb · ∇∇2s−k∂3b ∇2s∂3u dx

+ (1 + t)1−σ
2s∑

k=0

∫

T3
∇k∂3b · ∇∇2s−kb ∇2s∂3u dx .

Like the proof in Lemma 2.2, we shall now estimate each term on the right hand
side of (2.19). First, for the term J1, it is easy to see that

∫ t

0
|J1(τ )| dτ � E0(t). (2.20)

Using integration by parts and divergence free condition, it is clear that

J2 = 0. (2.21)

For each term in J3, we divide it into two parts: k � s and k > s. We treat these
two cases respectively and estimate as follows:
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|J3| � (1 + t)1−σ
(
‖u‖W s,∞‖∂3u‖2H2s + ‖u‖H2s ‖∂3u‖W s,∞‖∂3u‖H2s

)

+ (1 + t)1−σ
(
‖∂3u‖W s,∞‖u‖H2s+1‖∂3u‖H2s + ‖∂3u‖2H2s ‖u‖W s,∞

)

� (1 + t)1−σ
(
‖u‖H2s−1‖∂3u‖2H2s + ‖u‖H2s+1‖∂3u‖H2s−1‖∂3u‖H2s

)
,

provided that s � 3. Thus, we have
∫ t

0
|J3(τ )| dτ � G0(t) ·

∫ t

0
‖u‖H2s−1 dτ

+ E1/2
0 (t)G1/2

0 (t)
∫ t

0
(1 + τ)1/2‖∂3u‖H2s−1 dτ

� G0(t)E1/2
1 (t) + E1/2

0 (t)G1/2
0 (t)G1/2

1 (t). (2.22)

The term J4 can be estimated by the same method as in J3, as follows:

|J4| � (1 + t)1−σ
(
‖u‖W s,∞‖∂3b‖2H2s + ‖u‖H2s ‖∂3b‖W s,∞‖∂3b‖H2s

)

+ (1 + t)1−σ
(‖∂3u‖W s,∞‖b‖H2s+1‖∂3b‖H2s + ‖∂3u‖H2s ‖b‖W s,∞‖∂3b‖H2s

)

� (1 + t)1−σ
(
‖u‖H2s−1‖∂3b‖2H2s + ‖u‖H2s ‖∂3b‖H2s−3‖∂3b‖H2s

)

+ (1 + t)1−σ
(‖∂3u‖H2s−1‖b‖H2s+1‖∂3b‖H2s + ‖∂3u‖H2s ‖b‖H2s ‖∂3b‖H2s

)
,

provided that s � 5. Now,
∫ t

0
|J4(τ )| dτ � G0(t)

∫ t

0
‖u‖H2s−1 dτ + E1/2

0 (t)G1/2
0 (t)

∫ t

0
(1 + τ)1/2‖∂3b‖H2s−3 dτ

+ E1/2
0 (t)G1/2

0 (t)
∫ t

0
(1 + τ)1/2‖∂3u‖H2s−1 dτ

+ e1/20 (t)
(∫ t

0
(1 + τ)−σ ‖∂3b‖2H2s dτ

)1/2(
∫ t

0
(1 + τ)2−σ ‖∂3u‖2H2s dτ

)1/2

� G0(t)E1/2
1 (t) + E1/2

0 (t)G1/2
0 (t)E1/2

1 (t)+E1/2
0 (t)G1/4

0 (t)G1/4
1 (t)e1/20 (t),

(2.23)

where, we have used the following inequality
∫ t

0
(1 + τ)2−σ ‖∂3u‖2H2s dτ �

∫ t

0
(1 + τ)

1−σ
2 ‖∂3u‖H2s+1(1 + τ)

3−σ
2 ‖∂3u‖H2s−1 dτ

� G1/2
0 (t)G1/2

1 (t).
(2.24)

Similarly, we can estimate J5 as follows:

|J5| � (1 + t)1−σ
(
‖∂3b‖W s,∞‖u‖H2s+1‖∂3b‖H2s + ‖∂3b‖2H2s ‖u‖W s,∞

)

+ (1 + t)1−σ
(‖b‖W s,∞‖∂3u‖H2s ‖∂3b‖H2s + ‖b‖H2s ‖∂3u‖W s,∞‖∂3b‖H2s

)

� (1 + t)1−σ
(
‖∂3b‖H2s−3‖u‖H2s+1‖∂3b‖H2s + ‖∂3b‖2H2s ‖u‖H2s−1

)

+ (1 + t)1−σ ‖b‖H2s ‖∂3u‖H2s ‖∂3b‖H2s ,
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provided that s � 5. Hence, using (2.24), we easily get

∫ t

0
|J5(τ )| dτ

� E1/2
0 (t)G1/2

0 (t)
∫ t

0
(1 + τ)1/2‖∂3b‖H2s−3 dτ + G0(t)

∫ t

0
‖u‖H2s−1 dτ

+ e1/20 E1/2
0

(∫ t

0
(1 + τ)2−σ ‖∂3u‖2H2s dτ

)1/2

� E1/2
0 (t)G1/2

0 (t)E1/2
1 (t) + G0(t)E1/2

1 (t) + E1/2
0 (t)G1/4

0 (t)G1/4
1 (t)e1/20 (t).

(2.25)

In the same manner, we can estimate the last term J6. Indeed,

|J6| � (1 + t)1−σ (‖b‖W s,∞‖∂3b‖H2s ‖∂3u‖H2s + ‖b‖H2s ‖∂3b‖W s,∞‖∂3u‖H2s )

+ (1 + t)1−σ (‖∂3b‖W s,∞‖b‖H2s+1‖∂3u‖H2s + ‖∂3b‖H2s ‖b‖W s,∞‖∂3u‖H2s )

� (1 + t)1−σ
(‖b‖H2s ‖∂3b‖H2s ‖∂3u‖H2s + ‖∂3b‖H2s−3‖b‖H2s+1‖∂3u‖H2s

)
,

provided that s � 5. Then, it is clear that

∫ t

0
|J6(τ )| dτ � e1/20 E1/2

0

(∫ t

0
(1 + τ)2−σ ‖∂3u‖2H2s dτ

)1/2

+ E1/2
0 (t)G1/2

0 (t)
∫ t

0
(1 + τ)1/2‖∂3b‖H2s−3 dτ

� E1/2
0 (t)G1/4

0 (t)G1/4
1 (t)e1/20 (t) + E1/2

0 (t)G1/2
0 (t)E1/2

1 (t).
(2.26)

Finally, summing up the estimates for J1–J6, that is, (2.20), (2.21), (2.22),
(2.23), (2.25) and (2.26), and integrating (2.19) in time, using Poincaré inequality
we can complete the proof of this lemma. �	
Lemma 2.4. Assume that s � 4 and the energies are defined as in (2.3), then we
have

G1(t) � E0(0)+G0(t)+E1/3
0 (t)E2/3

1 (t)+G1(t)E1/2
1 (t)+G1/2

1 (t)E1/2
1 (t)e1/20 (t).

Proof. First, taking ∇2s−2∂3 derivative on the system (1.6). Then, taking inner
productwith∇2s−2∂3b for the first equation of system (1.6) and taking inner product
with ∇2s−2∂3u for the second equation of system (1.6). Summing them up and
multiplying the time weight (1 + t)3−σ we get

1

2

d

dt
(1 + t)3−σ

(
‖∂3u‖2

Ḣ2s−2 + ‖∂3b‖2
Ḣ2s−2

)
+ (1 + t)3−σ ‖∂3u‖2

Ḣ2s−1 =
6∑

i=1

Ni ,

(2.27)
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where,

N1 = 3 − σ

2
(1 + t)2−σ

(
‖∂3u‖2

Ḣ2s−2 + ‖∂3b‖2
Ḣ2s−2

)
,

N2 = − (1 + t)3−σ

∫

T3
u · ∇∇2s−2∂3u ∇2s−2∂3u + u · ∇∇2s−2∂3b ∇2s−2∂3b dx

+ (1 + t)3−σ

∫

T3
b · ∇∇2s−2∂3b ∇2s−2∂3u + b · ∇∇2s−2∂3u ∇2s−2∂3b dx

+ (1 + t)3−σ

∫

T3
∇2s−2∂23u ∇2s−2∂3b + ∇2s−2∂23b ∇2s−2∂3u dx,

N3 = − (1 + t)3−σ
2s−2∑

k=1

∫

T3
∇ku · ∇∇2s−2−k∂3u ∇2s−2∂3u dx

− (1 + t)3−σ
2s−2∑

k=0

∫

T3
∇k∂3u · ∇∇2s−2−ku ∇2s−2∂3u dx,

N4 = (1 + t)3−σ
2s−2∑

k=0

∫

T3
∇k∂3b · ∇∇2s−2−ku ∇2s−2∂3b dx

− (1 + t)3−σ
2s−2∑

k=1

∫

T3
∇ku · ∇∇2s−2−k∂3b ∇2s−2∂3b dx,

N5 = (1 + t)3−σ
2s−2∑

k=1

∫

T3
∇kb · ∇∇2s−2−k∂3u ∇2s−2∂3b dx

− (1 + t)3−σ
2s−2∑

k=0

∫

T3
∇k∂3u · ∇∇2s−2−kb ∇2s−2∂3b dx,

N6 = (1 + t)3−σ
2s−2∑

k=1

∫

T3
∇kb · ∇∇2s−2−k∂3b ∇2s−2∂3u dx

+ (1 + t)3−σ
2s−2∑

k=0

∫

T3
∇k∂3b · ∇∇2s−2−kb ∇2s−2∂3u dx .

The first term N1 can be bounded as follows:

|N1| � (1 + t)2−σ
(
‖∂3u‖2H2s + ‖∂3b‖2H2s−2

)

� (1 + t)
1−σ
2 ‖∂3u‖H2s+1 (1 + t)

3−σ
2 ‖∂3u‖H2s−1

+ [
(1 + t)−σ/2 ‖∂3b‖H2s

]2/3[
(1 + t)

3−σ
2 ‖∂3b‖H2s−3

]4/3
,

and thus ∫ t

0
|N1(τ )| dτ � G1/2

0 (t)G1/2
1 (t) + E1/3

0 (t)E2/3
1 (t). (2.28)
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Using integration by parts and the divergence free condition, we find

N2 = 0. (2.29)

For the term N3, thanks to Hölder inequality and the Sobolev imbedding theo-
rem, we have

∫ t

0
|N3(τ )| dτ �

∫ t

0
(1 + τ)3−σ ‖∂3u‖2H2s−2‖u‖H2s−1 dτ

� G1(t)
∫ t

0
‖u‖H2s−1 dτ

� G1(t)E1/2
1 (t),

(2.30)

provided that s � 3.
Then, we turn to the term N4. For each term in N4, we divide it into two parts:

k � s −1 and k � s. We treat these two cases respectively and estimate as follows:

|N4| � (1 + t)3−σ
(‖∂3b‖W s−1,∞‖u‖H2s−1‖∂3b‖H2s−2 + ‖∂3b‖H2s−2‖u‖W s−1,∞‖∂3b‖H2s−2

)

+ (1 + t)3−σ
(
‖u‖W s−1,∞‖∂3b‖2H2s−2 + ‖∂3b‖W s−1,∞‖u‖H2s−2‖∂3b‖H2s−2

)

� (1 + t)3−σ ‖u‖H2s−1‖∂3b‖2H2s−2 ,

provided that s � 3. Indeed,

∫ t

0
|N4(τ )| dτ � G1(t)

∫ t

0
‖u‖H2s−1 dτ

� G1(t)E1/2
1 (t).

(2.31)

Also for the next term N5, we divide each term into two parts: k � s − 1 and
k � s. Using Hölder inequality and the Sobolev inequality respectively, we can
bound

|N5| � (1 + t)3−σ

∣
∣
∣
∣
∣
∣

2s−2∑

k=1

∫

T3
∇

(
∇kb · ∇∇2s−2−k∂3u

)
∇2s−3∂3b dx

∣
∣
∣
∣
∣
∣

+ (1 + t)3−σ

∣
∣
∣
∣
∣
∣

2s−2∑

k=0

∫

T3
∇

(
∇k∂3u · ∇∇2s−2−kb

)
∇2s−3∂3b dx

∣
∣
∣
∣
∣
∣

� (1 + t)3−σ (‖b‖W s,∞‖∂3u‖H2s−1‖∂3b‖H2s−3 + ‖b‖H2s−1‖∂3u‖W s,∞‖∂3b‖H2s−3)

+ (1 + t)3−σ (‖∂3u‖W s,∞‖b‖H2s ‖∂3b‖H2s−3 + ‖∂3u‖H2s−1‖b‖W s,∞‖∂3b‖H2s−3 )

� (1 + t)3−σ ‖∂3u‖H2s−1‖∂3b‖H2s−3‖b‖H2s ,

provided that s � 3. Hence,

∫ t

0
|N5(τ )| dτ � G1/2

1 (t)E1/2
1 (t)e1/20 (t). (2.32)
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We divide the last term N6 into two parts as follows:

N6 = −(1 + t)3−σ

{
2s−2∑

k=2

∫

T3
∇kb · ∇∇2s−2−k∂3b ∇2s−2∂3u dx

+
2s−3∑

k=0

∫

T3
∇k∂3b · ∇∇2s−2−kb ∇2s−2∂3u dx

}

−(1 + t)3−σ

{∫

T3
∇b · ∇∇2s−3∂3b ∇2s−2∂3u dx

+
∫

T3
∇2s−2∂3b · ∇b ∇2s−2∂3u dx

}

� N6,1 + N6,2.

For the first part N6,1, using Hölder inequality and the Sobolev inequality, we easily
get

|N6,1| � (1 + t)3−σ ‖b‖H2s−1‖∂3b‖H2s−3‖∂3u‖H2s−2 ,

provided that s � 4. Then for the second part N6,2, using integration by parts, we
can bound

|N6,2| � (1 + t)3−σ ‖b‖W 2,∞‖∂3b‖H2s−3‖∂3u‖H2s−1

� (1 + t)3−σ ‖b‖H2s ‖∂3b‖H2s−3‖∂3u‖H2s−1 ,

provided that s � 2. Combining the estimates of N6,1 and N6,2, we finally obtain

∫ t

0
|N6(τ )| dτ � G1/2

1 (t)E1/2
1 (t)e1/20 (t). (2.33)

As with the process in the above lemmas, according to (2.28), (2.29), (2.30),
(2.31), (2.32) and (2.33), we complete the proof of this lemma. �	
Lemma 2.5. Assume that s � 4 and the energies are defined as in (2.3), then we
have

E1(t) � E0(t) + G0(t) + G1(t) + E3/2
1 (t) + E1(t)e

1/2
0 (t)

+ G1/2
1 (t)E1/2

1 (t)e1/20 (t).

Proof. Like the proof in Lemma 2.2, we divide the proof into two steps. We first
deal with E1,1(t) which is defined as follows:

E1,1(t) := sup
0�τ�t

(1 + τ)3−σ ‖u(τ )‖2H2s−2 +
∫ t

0
(1 + τ)3−σ ‖u(τ )‖2H2s−1 dτ.

(2.34)
Step 1

Applying ∇2s−2 on the second equation of system (1.6). Then, taking inner
product with ∇2s−2u and multiplying the time weight (1 + t)3−σ , we get



Global Classical Solutions of Three Dimensional MHD System 655

1

2

d

dt
(1 + t)3−σ ‖u‖2

Ḣ2s−2 + (1 + t)3−σ ‖u‖2
Ḣ2s−1 = F1 + F2 + F3 + F4,

(2.35)

where,

F1 = 3 − σ

2
(1 + t)2−σ ‖u‖2

Ḣ2s−2 ,

F2 = − (1 + t)3−σ

(∫

T3
u · ∇∇2s−2u∇2s−2u dx

+
2s−2∑

k=1

∫

T3
∇ku · ∇∇2s−2−ku∇2s−2u dx

)

,

F3 = (1 + t)3−σ

∫

T3
∇2s−2∂3b∇2s−2u dx,

F4 = (1 + t)3−σ

∫

T3
∇2s−2(b · ∇b)∇2s−2u dx .

Similarly, we shall estimate each term on right hand side of (2.35). First, for
the term F1, by Gagliardo–Nirenberg interpolation inequality, we have

|F1| �(1 + t)2−σ ‖u‖2H2s

�
[
(1 + t)−σ ‖u‖2H2s+2

]1/3[
(1 + t)3−σ ‖u‖2H2s−1

]2/3
.

Hence, ∫ t

0
|F1(τ )| dτ � E1/3

0 (t)E2/3
1 (t). (2.36)

For the term F2, integrating by parts and using the divergence free condition,
we directly know that the first part of F2 equals 0. Hence, by Hölder inequality and
the Sobolev imbedding theorem, we get

∫ t

0
|F2(τ )| dτ �

∫ t

0
(1 + τ)3−σ ‖u‖W s−1,∞‖u‖2H2s−2 dτ

� sup
0�τ�t

(1 + τ)3−σ ‖u‖2H2s−2

∫ t

0
‖u‖H2s−1 dτ

� E3/2
1 (t),

(2.37)

provided that s � 2.
Next, we turn to the estimate of F3 and F4 which are the wildest terms, due to

the bad behaviour of b. Thanks to the Proposition 2.1, we can use the same strategy
as the estimate of I6 in Lemma 2.2 to solve this problem.

For the term F3, using integration by parts and Proposition 2.1, we get

|F3| � (1 + t)3−σ

∣
∣
∣
∣

∫

T3
∇2s−3bh∇2s−1∂3uh − ∇2s−3∂3b3∇2s−1u3 dx

∣
∣
∣
∣

� (1 + t)3−σ
(‖bh‖H2s−3‖∂3uh‖H2s−1 + ‖∂3b3‖H2s−3‖u3‖H2s−1

)

� (1 + t)
3−σ
2 ‖∂3b‖H2s−3(1 + t)

3−σ
2 ‖∂3u‖H2s−1 .
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Hence,
∫ t

0
|F3(τ )| dτ � G1/2

1 (t)E1/2
1 (t). (2.38)

Also, for the term F4, using integration by parts and dividing the term into four
parts, we have

F4 = − (1 + t)3−σ

∫

T3
∇2s−3(b · ∇b)∇2s−1u dx

= − (1 + t)3−σ
s−1∑

k=0

∫

T3

(
∇kbh · ∇h∇2s−3−kb + ∇kb3 · ∇3∇2s−3−kb

)
∇2s−1u dx

− (1 + t)3−σ
2s−3∑

k=s

∫

T3

(
∇kbh · ∇h∇2s−3−kb + ∇kb3 · ∇3∇2s−3−kb

)
∇2s−1u dx .

Using Hölder inequality, the Sobolev imbedding theorem and Proposition 2.1, we
get

|F4| � (1 + t)3−σ
(‖bh‖W s−1,∞‖b‖H2s−2‖u‖H2s−1 + ‖b3‖W s−1,∞‖∂3b‖H2s−3‖u‖H2s−1

+ ‖bh‖H2s−3‖b‖W s−2,∞‖u‖H2s−1 + ‖b3‖H2s−3‖∂3b‖W s−3,∞‖u‖H2s−1
)

� (1 + t)3−σ
(‖∂3b‖Hs+1‖b‖H2s−2‖u‖H2s−1 + ‖b3‖Hs+1‖∂3b‖H2s−3‖u‖H2s−1

+ ‖∂3b‖H2s−3‖b‖Hs ‖u‖H2s−1 + ‖b3‖H2s−3‖∂3b‖Hs−1‖u‖H2s−1)

� (1 + t)3−σ ‖b‖H2s−1‖∂3b‖H2s−3‖u‖H2s−1 ,

provided that s � 4. Hence,

∫ t

0
|F4(τ )| dτ

� sup
0�τ�t

‖b‖H2s−1

( ∫ t

0
(1 + τ)3−σ ‖∂3b‖2H2s−3 dτ

)1/2

( ∫ t

0
(1 + τ)3−σ ‖u‖2H2s−1 dτ

)1/2

� E1(t)e
1/2
0 (t).

(2.39)

Summing up the estimates for F1 ∼ F4, that is, (2.36), (2.37), (2.38) and (2.39),
and integrating (2.35) in time, we can get the estimate of E1,1(t) which is defined
in (2.34):

E1,1(t) � E1(0) + E0(t)
1/3E2/3

1 (t) + G1/2
1 (t)E1/2

1 (t) + E3/2
1 (t) + E1(t)e

1/2
0 (t).
(2.40)

Here, we have used the Poincaré inequality to consider the highest order norms
only.
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Step 2
Now, let us work for the remaining term in E1(t). Applying ∇2s−3 derivative

on the second equation of system (1.6) and taking inner product with ∇2s−3∂3b,
multiplying the time-weight (1 + t)3−σ we get

(1 + t)3−σ ‖∂3b‖2
Ḣ2s−3 = F5 + F6 + F7 + F8, (2.41)

where

F5 = (1 + t)3−σ

∫

T3
∇2s−3(u · ∇u)∇2s−3∂3b dx

− (1 + t)3−σ

∫

T3
∇2s−3�u∇2s−3∂3b dx,

F6 = −(1 + t)3−σ
s−1∑

k=0

∫

T3
∇kbh · ∇h∇2s−3−kb∇2s−3∂3b

+ ∇kb3 · ∇3∇2s−3−kb∇2s−3∂3b dx

−(1 + t)3−σ
2s−3∑

k=s

∫

T3
∇kbh · ∇h∇2s−3−kb∇2s−3∂3b

+∇kb3 · ∇3∇2s−3−kb∇2s−3∂3b dx,

F7 = d

dt
(1 + t)3−σ

∫

T3
∇2s−3u∇2s−3∂3b dx

− (3 − σ)(1 + t)2−σ

∫

T3
∇2s−3u∇2s−3∂3b dx,

F8 = (1 + t)3−σ

∫

T3
∇2s−3∂3u∇2s−3∂t b dx .

Similar to the process in Step 1, we shall drive the estimate of each term on
the right hand side of (2.41). First, using Hölder inequality and Sobolev imbedding
theorem, we get

|F5| � (1+ t)3−σ ‖u‖H2s−2‖u‖Hs+2‖∂3b‖H2s−3 + (1+ t)3−σ ‖u‖H2s−1‖∂3b‖H2s−3 .

Hence, for s � 3,

∫ t

0
|F5(τ )| dτ � E3/2

1 (t) + E1/2
1,1 (t)

[∫ t

0
(1 + τ)3−σ ‖∂3b‖2H2s−3 dτ

]1/2

. (2.42)

Next, for the most wild term F6, similar to the estimate of I6 in Lemma 2.2, we
use property (1.7) and Proposition 2.1 to obtain

|F6| � (1 + t)3−σ
(
‖bh‖W s−1,∞‖b‖H2s−2‖∂3b‖H2s−3 + ‖b3‖W s−1,∞‖∂3b‖2H2s−3

)

+ (1 + t)3−σ
(‖bh‖H2s−3‖b‖W s−2,∞‖∂3b‖H2s−3

+‖b3‖H2s−3‖∂3b‖W s−3,∞‖∂3b‖H2s−3
)

� (1 + t)3−σ
(
‖∂3bh‖Hs+1‖b‖H2s−2‖∂3b‖H2s−3 + ‖b3‖Hs+1‖∂3b‖2H2s−3

)
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+ (1 + t)3−σ
(‖∂3bh‖H2s−3‖b‖Hs ‖∂3b‖H2s−3

+‖b3‖H2s−3‖∂3b‖Hs−1‖∂3b‖H2s−3
)

� (1 + t)3−σ ‖∂3b‖2H2s−3‖b‖H2s−2 ,

provided that s � 4. Hence,

∫ t

0
|F6(τ )| dτ � E1(t)e

1/2
0 (t). (2.43)

And, for the term F7, by Hölder inequality, we can get

∫ t

0
|F7(τ )| dτ � G1/2

1 (t)E1/2
1 (t)

+
∫ t

0
(1 + τ)

1−σ
2 ‖u‖H2s−3(1 + τ)

3−σ
2 ‖∂3b‖H2s−3 dτ

� G1/2
1 (t)E1/2

1 (t) + E1(t)
1/2

(∫ t

0
(1 + τ)1−σ ‖u‖2H2s+1 dτ

)1/2

� G1/2
1 (t)E1/2

1 (t) + E1/3
0 (t)E2/3

1 (t). (2.44)

For the last term F8, using the first equation of system (1.6), we can write

F8 = (1 + t)3−σ

∫

T3
∇2s−3∂3u∇2s−3(∂3u + b · ∇u − u · ∇b) dx .

By Hölder inequality and the Sobolev imbedding theorem, we have

|F8| � (1 + t)3−σ
(
‖∂3u‖2H2s−3 + ‖∂3u‖H2s−3‖b‖H2s−2‖u‖H2s−2

)
,

provided that s � 3. Hence,

∫ t

0
|F8(τ )| dτ � E1,1(t) + e0(t)

1/2E1(t)
1/2G1(t)

1/2. (2.45)

Summing up the estimates for F5 ∼ F8, that is, (2.42), (2.43), (2.44) and (2.45),
and integrating (2.41) in time, and using Young inequality, we easily get

∫ t

0
(1 + τ)3−σ ‖∂3b‖2H2s−3 dτ

� E1,1(t) + E3/2
1 (t) + E1(t)e

1/2
0 (t) + G1/2

1 (t)E1/2
1 (t)

+E1/3
0 (t)E2/3

1 (t) + G1/2
1 (t)E1/2

1 (t)e1/20 (t). (2.46)

This gives the estimate for the last term in E1(t). Now, multiplying (2.40) by
a suitable large number, plus (2.46), and using Young inequality, we complete the
proof of this lemma. �	
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Lemma 2.6. Assume that s � 3 and the energies are defined as in (2.3), then we
have

e0(t) � E0(0) + G0(t) + G1(t) + E1/6
0 (t)E1/3

1 (t)e0(t)

+ E1/2
0 (t)E1/2

1 (t)e1/20 (t) + G1/4
0 (t)G1/4

1 (t)e0(t).

Proof. Taking ∇2s derivative on the first equation of system (1.6). Then, taking
inner product with ∇2sb , we get

1

2

d

dt
‖b‖2

Ḣ2s = M1 + M2 + M3, (2.47)

where,

M1 =
s∑

k=1

∫

T3

(
∇kb · ∇∇2s−ku − ∇ku · ∇∇2s−kb

)
∇2sb dx

+
2s∑

k=s+1

∫

T3

(
∇kb · ∇∇2s−ku − ∇ku · ∇∇2s−kb

)
∇2sb dx,

M2 =
∫

T3

(
bh · ∇h∇2su + b3 · ∇3∇2su

)
∇2sb dx,

M3 =
∫

T3
∇2s∂3u ∇2sb dx .

Now we will estimate each term on the right hand side of (2.47) line by line.
First, by Hölder inequality and the Sobolev imbedding theorem, we easily get

|M1| � ‖b‖W s,∞‖u‖H2s ‖b‖H2s + ‖u‖W s,∞‖b‖2H2s

+ ‖b‖H2s ‖u‖W s,∞‖b‖H2s + ‖u‖H2s ‖b‖W s,∞‖b‖H2s

� ‖u‖H2s ‖b‖2H2s ,

provided that s � 2.Hence, using theGagliardo–Nirenberg interpolation inequality
and Hölder inequality, we can bound

∫ t

0
|M1(τ )| dτ � e0(t)

∫ t

0
‖u‖1/3

H2s+2‖u‖2/3
H2s−1 dτ � E1/6

0 (t)E1/3
1 (t)e0(t). (2.48)

For the next term M2, using the same method as above, we directly obtain

|M2| � ‖bh‖L∞‖u‖H2s+1‖b‖H2s + ‖b3‖L∞‖∂3u‖H2s ‖b‖H2s

� ‖bh‖H2s−3‖u‖H2s+1‖b‖H2s + ‖∂3u‖H2s ‖b‖2H2s ,

provided that s � 3. According to the Proposition 2.1, we can use the same strategy
as the estimate of I6 in Lemma 2.2, and obtain

|M2| � ‖∂3bh‖H2s−3‖u‖H2s+1‖b‖H2s + ‖∂3u‖H2s ‖b‖2H2s .
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Using (2.24) and Hölder inequality, we get
∫ t

0
|M2(τ )| dτ � E1/2

0 (t)e1/20 (t)
∫ t

0
(1 + τ)σ/2‖∂3b‖H2s−3 dτ

+ e0(t)
∫ t

0
‖∂3u‖H2s dτ

� E1/2
0 (t)E1/2

1 (t)e1/20 (t) + G1/4
0 (t)G1/4

1 (t)e0(t).

(2.49)

For the last term, M3, we also have
∫ t

0
|M3(τ )| dτ � e1/20 (t) ·

∫ t

0
‖∂3u‖H2s dτ � G1/4

0 (t)G1/4
1 (t)e1/20 (t). (2.50)

Combining (2.48), (2.49) and (2.50) together, we now complete the proof of
this lemma by using Young’s inequality. �	

2.3. Proof of the Theorem 1.1

Now, let us combine the above a priori estimates of all the energies defined in
(2.3) together, and finally give the proof of Theorem 1.1. First, we define the total
energy as follows:

Etotal(t) = E0(t) + G0(t) + G1(t) + E1(t) + e0(t).

Then, multiplying each inequality in the above five lemmas by different suitable
number, and summing them up, we can obtain the following inequality:

Etotal(t) � C1E0(0) + C1E3/2
total(t), (2.51)

for some positive constant C1.
According to the setting of initial data in Theorem 1.1, there exists a positive

constant C2 such that Etotal(0)+C1E0(0) � C2ε. Due to the local existence result,
which can be achieved through a basic energy method, there exists a positive time
T such that

Etotal(t) � 2C2ε, ∀ t ∈ [0, T ]. (2.52)

Let T ∗ be the largest possible time of T for what (2.52) holds, then we only need
to show T ∗ = ∞ while completing the proof of Theorem 1.1. Notice the estimate
(2.51); we can use a standard continuation argument to show that T ∗ = ∞ provided
that ε is small enough. We omit the details here. Hence, we finish the proof of
Theorem 1.1.
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