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Abstract

In this paper, we study the global existence of classical solutions to the three di-
mensional incompressible viscous magneto-hydrodynamical system without mag-
netic diffusion on periodic boxes, that is, with periodic boundary conditions. We
work in Eulerian coordinates and employ a time-weighted energy estimate to prove
the global existence result, under the assumptions that the initial magnetic field is
close enough to an equilibrium state and the initial data have some symmetries.

1. Introduction

The equations of viscous magnetohydrodynamics (MHD) model the motion
of electrically conducting fluids interacting with magnetic fields. When the fluids
are strongly collisional plasmas, or the resistivity due to collisions is extremely
small, the diffusion in a magnetic field is often neglected [4,8, 13]. When magnetic
diffusion is missing, it is extremely interesting to understand whether the fluid
viscosity only could prevent singularity development from small smooth initial
data in three dimensional physical space (in view of the strongly nonlinear coupling
between fluids and the magnetic field). Mathematically, it is also close in structure
to the model of dynamics of certain complex fluids, including the hydrodynamics
of viscoelastic fluids, c.f. [16-20]. To this end, we investigate the global existence
of smooth solutions to the following initial boundary value problem:

B;+u-VB =B -Vu,
uy+u-Vu—Au+Vp=B VB,
V-u=V-B=0,

u(0,x) =uo(x), B(0,x) = Bo(x),

(1.1)

with periodic boundary conditions

x €[-m ) =T, (1.2)
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where B = (B, Bz, B3) denotes the magnetic field, u = (u1, u, u3) the fluid
velocity, and p = g + %|B|2, where g denotes the scalar pressure of the fluid.

Impressive progress had been made in the past several decades for MHD sys-
tems. Indeed, according to the level of dissipations, there are roughly three different
layers of models: inviscid and non-resistive (no viscosity, no magnetic diffusion,
hence no dissipation); viscous and resistive (fully dissipative in fluids and in mag-
netic field); and partially dissipative (only viscosity or magnetic diffusion presents).
On the one hand, it is natural to expect the global existence of classical solutions for
viscous and resistive MHD at least for small initial data; this has been confirmed in
classic papers by DuvauT AND LIONS [9] and by SERMANGE AND TEMAM [23]. In
2008, ABIDI AND PaIcu [1] generalized these results to the inhomogeneous MHD
system with initial data in the so-called critical spaces. More recently, CAO AND
Wu [6] (also see [7]) proved the global well-posedness for any data in H?(R?)
with mixed partial viscosity and magnetic diffusion in a two dimensional MHD
system. On the other hand, it is somehow striking that BARDOS ET AL. [3] proved
that the inviscid and non-resistive MHD system also admits a unique global clas-
sical solution when the initial data is near a nontrivial equilibrium. It seems that
dispersion and some coupling of nonlinearity between fluids and the magnetic field
alone are sufficient to maintain the regularity from initial data. Very recently, the
vanishing dissipation limit from a fully dissipative MHD system to an inviscid and
non-resistive MHD system has been justified by HE ET AL. [10], Ca1 AND LEI [5],
WEI AND ZHANG [25] under some structural conditions between viscosity and mag-
netic diffusion coefficients. Therefore, it is not a surprise that the remaining case,
partially dissipative MHD, has attracted a lot of attention in the recent years. As
documented in [6,15], the inviscid and resistive 2D MHD system admits a global
H' weak solution, but the uniqueness of such a solution with higher order regularity
is still not known.

In the case of our consideration, namely the incompressible MHD system with
positive viscosity and zero resistivity, it is still an open problem whether or not there
exists a global classical solution even in two dimensional space for generic smooth
initial data. The main difficulty of studying these MHD systems lies in the non-
resistivity of the magnetic equation. Some interesting results have been obtained
for small smooth solutions. For a closely related model in three dimensions, the
global well-posedness was established by LIN AND ZHANG [19], and a simpler
proof was offered by LIN AND ZHANG [20]. With certain admissible conditions for
initial data, LIN ET AL. [18] established the global existence in 2D for initial data
close to an nontrivial equilibrium state and the three dimensional case was proved
by XU AND ZHANG [26]. Later, REN ET AL. [21] removed the restriction in the 2D
case (see ZHANG [27] for a simplified proof). We also refer to another proof for
the 2D incompressible case by Hu aND Lin [11]. Hu [12] further established some
results for the 2D compressible MHD system. Very recently, under the Lagrangian
coordinate system, ABIDI AND ZHANG [2] proved the global well-posedness for
the three dimensional MHD system without the admissible restriction. For certain
class of large data, LE1 [14] proved the global regularity of some axially symmetric
solutions in the three space dimensional MHD system. While all results down the
line are about the Cauchy problem, an initial boundary value problem for the 2D case
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under the Eulerian coordinate in a strip domain R x (0, 1) was done by REN ET AL.
[22] recently. The three dimensional case on R? x (0, 1) for both compressible and
incompressible fluids was considered by TAN AND WANG [24] under Lagrangian
coordinates. In the three dimensional case, these inspiring results, along with many
innovative methods and estimates, made full use of partial dissipation offered by
viscosity, dispersion of waves on an unbounded domain and the structure of the
Lagrangian formulation (which contains a one time derivative already and helps
capture the weak dissipation). It is then natural to explore two questions. The first
of these is, is it possible to establish global existence of small smooth solutions on
bounded domain, where the dispersion effect is limited? The second question is:
can one work with Eulerian coordinates where the system takes a simpler form and
thus involves the loss of one time derivative and the loss of possible time decay?

Our main aim in this paper is to offer answers to these questions. Indeed, as one
step in this direction, we will establish the global existence of small smooth solutions
to the three dimensional incompressible viscous magneto-hydrodynamical system
without resistivity on periodic boxes, under the assumptions that the initial magnetic
field is close enough to an equilibrium state and that the initial data have some
symmetry structure. We will also avoid the use of Lagrangian formulation. The
advantage of the Eulerian coordinates is that, if successful, things will be neat and
simple.

To fix the idea, we adopt the following notations:

xp = (x1,%), Vi=(,8), By= (B, B,

as well as similar notations for other quantities, without causing further confusion.
We assume that

uo.n(x), Bps3(x) areeven periodic with respect to x3, (13)
up3(x), Bon(x) areodd periodic with respect to x3, '

and moreover that
/ updx =0, / Bpzdx =a #0. (1.4)
T3 'ﬂ"3

Our main result can be stated as follows:

Theorem 1.1. Consider the three dimensional MHD system (1.1)—(1.2) with initial
data that satisfies the conditions (1.3)—(1.4). Then there exists a small constant
& > 0 only depending on o such that the system (1.1) admits a global smooth
solution provided that

luoll g2+t + IV Boll s = e,

where s 2 5 is an integer.

Remark 1.2. Our methods can be applied to other related models. Similar results
for the compressible system will be presented in a forthcoming paper.
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Without loss of generality, we assume that o = (277)3, and following LIN AND
ZHANG [19], we let

By = b + e3,

where e3 = (0,0, 1) ". Hence, we have

/ bodx=/ updx = 0. (1.5)
3 T3

Set B = b + e3, so we get the system of pair (u, b) as follows:

by +u-Vb=>b-Vu+ dzu,
ur+u-Vu—Au+Vp=>b-Vb+ d3b, (1.6)
V-u=V-b=0,

with initial data
u(0,x) = ug(x), b(0,x) = bo(x),
and with the property of initial data (1.3) holding, that is,

up(0,x), b3(0,x) areeven periodic with respect to x3, (17
u3(0,x), by(0,x) areodd periodic with respect to x3. '

Also, by the periodic boundary conditions (1.5) and system (1.6), we have

/ bdx:/ udx =0. (1.8)
T3 T3

Remark 1.3. The property (1.7) will hold in the time evolution. Indeed, we can
define u(t, x), b(t, x) as follows:

up(t, xp, x3) =up(t, xp, —x3), us(t, xp, x3) = —u(t, xp, —x3),

bi(t, xp, x3) = — by(t, xp, —x3),  b3(t, xp, x3) = b3(t, xp, —x3).

Then, quantities u, b satisfy the same system, (1.6), like u#, b, and also have_the same
initial data. Hence, by the uniqueness of classical solution, we obtain b(¢, x) =
b(t,x) and u(t, x) = u(z, x). Therefore, we see property (1.7) persist.

Although property (1.7) (from (1.3)) could be realized physically initially and
is preserved in time evolution as explained in the previous remark, its physical
interpretation is not quite clear. It identifies a significant class of initial data on a
periodic box admitting a global classical solution to (1.6) near a nontrivial mag-
netic equilibrium. Mathematically, it helps in analysis to allow us to use Poincaré
inequality (Proposition 2.1) for some crucial terms in the estimates. On the other
hand, this is also needed to rule out an extremely unclear situation related to the
global regularity of 2D MHD without magnetic diffusion when the initial data is a
small perturbation near the trivial equilibrium, which is a very difficult problem.
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To help readers understand the situation, let’s choose the following special class of
initial data:

Bo() = (Bf G, 1) o) = (wh(x0),0) . Vi - B =V -y =0, (19)
which reduces the original system (1.1) into the following 2D problem:

B! +u" - v, B" = B" . vju",

ul +u" - Vyut — Apu + v, P = B" . v, B",
Vi B" =V, -uh =0,

B (0, xp) = B{ (xn), u" (0, x3) = ug (xn),

(1.10)

with initial data (B[)‘ (xp), ug(xh)) being a perturbation near a trivial equilibrium.
This, however, is still a challenging open problem. Furthermore, we note that if
(B", u")(t, x3) is a classical solution of (1.10), then B(r,x) = (B"(t,xp), 1),
u(t, x) = (", xp), 0) is the corresponding solution of (1.1) with initial data (1.9).
When the problem is considered in the whole space, by requiring finite energy in
R3, one finds B{)‘ (xp) =0= ug(xh), avoiding the complex situation successfully.
However, on a periodic bounded domain, the finite energy condition is not sufficient
to show that the solution of (1.10) is trivial. To avoid the unclear situation mentioned
before, some additional conditions are needed. In this paper, we impose (1.7) (from
(1.3)) to ensure that Bé’ (xp) =0= ug (x1n), and thus system (1.10) has only a trivial
solution. It would be interesting to explore other conditions for this purpose.

In order to prove Theorem 1.1, we only need to consider the system (1.6) instead.

In this paper, we have to face the difficulties from the bounded domain and the
loss of weak dissipation without using the Lagrangian formulation. One of the major
differences in analysis between the whole space and the bounded domain is the
character of dissipation. For the whole space, although the system contains only the
viscosity, it is possible to recover dissipative structure for all components of # and b,
in addition to the advantage of wave dispersion. For the bounded domain, however,
it is extremely difficult to recover dissipative structure for all components of u and
b.Indeed, even with the help of condition (1.7) and Poincaré inequality (Proposition
2.1), we could not derive dissipation for b3. We emphasize that the analysis of the
whole space case is quite complicated and exhibits very different features compared
with our case here. They are different in nature and difficult in various aspects.
These challenges will be overcome through a carefully designed weighted energy
method with the help of some observations on the structure of the system. One of
the major observations is that the time derivative of b is essentially quadratic terms
plus a derivative term in the good direction x3 where dissipation kicks in. Another
observation is that although the bounded domain pushes us away from the possible
dispersion of waves, it does compensate us with Poincaré inequality. However, the
high space dimensions, the lack of magnetic diffusion, and the strongly coupled
nonlinearity of the problem make the mathematical analysis very challenging. Even
with our carefully designed time-weighted energies, there are still many dedicated
technical issues. One of our main obstacles is to derive the time dissipative estimate
to the term b - Vb, which behaves most wildly in the system. Writing b - Vb =
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bz - 33b + by, - I,b, we notice that b3 - 93b contains one good quantity d3b can be
estimated relatively easily due to dissipation in the x3 direction. Hence, we focus
on the term by, - Vb containing two bad terms. To overcome this difficulty, we
make full use of the condition (1.7) and Poincaré inequality in x3 direction. Thus
the norm of b; can be controlled by the norm of d3b;,. This specific choice of
estimate avoids the presence of interaction between two wild quantities. Such an
idea actually originates from the null condition in the theory of wave equations.
However, we still have to come across other difficulties in the estimate process. For
example, we cannot achieve the uniform bound of all higher order norms that we
want. Instead, we turn to control the growth of such norms by the energy frame we
construct in the next section. More detailed decay estimates will also be presented
in Section 2.

2. Energy Estimate and the Proof of Main Result

2.1. Preliminary

In this subsection, we first introduce a useful proposition related to Poincaré
inequality which plays an important role in our proof to the main theorem of this

paper.

Proposition 2.1. For any function f(x) € H*T'(T?), k e N satisfying the condi-

tion
s

1
— [ fGn,x3)dx3=0, Vux,eT? 2.1)
2 J_,
it holds that
W g ersy S 103 1 e rs)-

Proof. First, we can write

k T
1A Wy = D /T i /_ 10 o, x3) Py (2.2)

la]=0

Here, @ = (a1, @2, a3) is a multi-index and 8% = 9" 95295".
Notice the condition (2.1), where we have, for multi-index o = (a7, a2, 0),
1 T

— 3% f (x5, x3)dx3 = 0.
27 J_,

For multi-index o = (o1, @2, @3) where a3 > 0, by the periodic boundary condi-
tion, we also have

T T
./ 0% f (xp, x3)dxs = 95195207 f(xp. )| =0,

-7 -



Global Classical Solutions of Three Dimensional MHD System 643

Therefore, the average value of 3% f (x,, -) in x3 direction over [—, 7] is zero.
Hence, applying standard Poincaré inequality to 0% f(x;, x3) in the x3 direction,
we have Vx;, € T2 and,

ris T
/ 9% £ Ge x3) P < / 1% f (e, x3) 2dxs.

- -7

According to the definition of || || g 3y, that is (2.2), we finally obtain

k s
L ey = D fT i /_ n|a“f<xh,x3>|2dx3dxh

||=0

k T
3 // 18%9 f (xn. x3)[*d3dax,
T> J—m
Ja|=0
=195 f Wt -
O

Now, let us introduce the energy frame that will enable us to achieve our desired
estimate. Based on our discussion in Section 1, we define some time-weighted
energies for the system (1.6). The energies below are defined on the domain R+ x T3.

Fors e Nand 0 < o < 1, we set

Eo) = swp (1407 (@B + 161 )
0<t<t

t
+ /0 1+ 077 (@ Bpss + 16 B ) dr

t
+ /0 14+ 07 (s + 1035113, ) d,

Go®) = sup (140 (153, + 1936132,
0<t<t

t
+ /0 (14 D) 7 )1930()[32,41 d,

Gi() = sup (140" (103D, + 1936032
0<t<t

t
+ / (14 1) [[83u(0) |32, dT,
0

Ei(t) = sup (147" u(0)]|32-
0<t<t

t
+ /0 (1407 (@ s + 1055y ) d,

eo(t) = sup [[B(T)]|32-
0<t<t

(2.3)
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In the following, we will successively derive the estimate of each energy stated
above. By (1.8) and Poincaré inequality, we only need to consider the highest order
norms in each energy.

2.2. A Priori Estimate

First, we will deal with the highest order energy, that is, Eo(¢). It shows that the
highest order norm H 2H1(T3) of u(t, -) and b(z, -) will grow in the time evolution.

Lemma 2.2. Assume that s = 5 and the energies are defined as in (2.3), then we
have

Eo(1) < Eo(0)+ Eo()E, > (1) + E > (1)eo (1) + Ey (1) E\"* (1)ey* (1) + Eo(t)ey* (1).

Proof. We divide the proof into two steps. Instead of deriving the estimate of Ej
directly, we shall first get the estimate of Ey 1(¢) defined by

Eo1(t) 2 sup (1+ 1) (lu(@) 3201 + 16 13201
0t

t
+ /0 (14 0) (D) 50 dr 2.4)

t
+ /0 1+ )@ 12000 + 16@)[1F2000) T

Step 1

Applying V>*! derivative on the system (1.6). Then, taking inner product with
V25+1p for the first equation of system (1.6) and taking inner product with V=1
for the second equation of system (1.6). Adding them up and multiplying the time
weight (1 41)77, we get

1d

_ o 11—
S 07 (Il + 100 ) + A +07'7 (s + 160,01 )

+ A+ Nl =h + L+ I3 + La,
(2.5)

where,
L=-01+ t)—"/ - VI vEy 4y vV 92 dx
T3
+1+07° / b-VVHEHp vE Ty . vvEHy V3T dy
T3

+ (1 + t)—a /3 V25+183u V2S+1b + V2S+183b V2S+lu dx,
T

2s+1
h=—-—(0+1"° Z /3 Viu . vy ti—ky V25+1udx,
T
k=1
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N
L=(1+07")" /% (ka LVVEHTR vk vv2~‘+1—’<b) vATp dx
T3
k=1

2s+1
+ (1 + t)—a Z \/‘3 <ka . VVzS"rl—ku _ Vku A Vv25+l—kb) V2S+lb dx,
T\
k=s+1

N
ILi=—(0+1)"° Z/ VEp . vvB Ik g2+, gy
k=1 T

2s+1
—(14+n"° Z /3 Vip . v tI=kp v25 1, dx.
’JI‘;
k=s+1

We shall estimate each term on the right hand side of (2.5). First, for the term
11, using integration by parts and the divergence free condition, we have

I =0. (2.6)

The main idea for the next estimates is that we will carefully derive the bound
of each term so that it can be controlled by the combination of energies defined in
(2.3). By Holder inequality and the Sobolev imbedding theorem, we have

- 2
1] S (4077 ullys+00 [l o
- 2
S A+ 07 Ml s el 3o

— 2
SA+07 Null g1 lull gy

provided that s = 4. Hence,

t

t
_ 1/2
|L(t)ldT < sup (1+7) “Ilullzmn/ lull gas—1dr < Eo(t)El/ ().
0 0<r<s 0

2.7
Similarly, for the first part of I3 (we denote the first term on the right hand as
I3,1 and the second term as /32), we see that

5.0l S (107 (IBllwsos lll g 1] e + allwoe 1612211 )
SA+07 (Wbl sl e 1B gaess + Nl g2 151111 )
S A+ 07 (1Bl g Nl v 1] v + el et 161,11 )

provided that s = 3. And for the second part of I3, we have

- 2
115,21 S (D7 (161l + el goest DBl 1] e )
— 2
S A+ 07 (161l yesn + el et 1B s 1B g2 )

S 07 (I el poser + gz 161 s 151 o)
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provided that s = 4. Hence, combining /3,1 and I3 and using Holder inequality,
we get

t
/ [13(r)|dT
0

1 1
t 2 t i
< sup [|b]l e (/0 (1 + )b, 0 dr) (/O (1 + )" ullF 20 dr)

0<t<t

t
+sup (40 Wl [l dr. (2.8)
0<7t<t 0

Using Gagliardo—Nirenberg interpolation inequality and Holder inequality, we can
bound

t t 1 2
/0 A4+ ul e dt S /0 [+ Nl P[4+ D)7 Nl 2] de
< EE o). 2.9)
Thus, combining (2.8) with (2.9), we finally obtain the estimate of I3
t
5/6 1/6,,\ 1/2 172
/ 130 de S EY°)E*(1)ey* (1) + E| > (1)eo (1). (2.10)
0
Next, for the last term, I4, we use the same method as above and obtain
|I4| SJ (1 —+ t)_a ||b||H2x+l ||b|| Ws+1,00 ||u||H2s+I
S+ D7 bl st 161 sl s
provided that s = 3. Hence,
t
5/6 1/6,.. 1/2
f \Iy(v)dt < E)° ) E*(1)e)* (1) @2.11)
0

Summing up the estimates for I1—1I4, that is, (2.6), (2.7), (2.10) and (2.11), and
integrating (2.5) in time, we can get the estimate of Eq 1(¢) which is defined in (2.4)

Eo.1(1) S Eo(0) + Eo()E\ > (1) + E{*(1)eo (1) + E) (1) E\/* (1)ey* ().

2.12)

Here, we have used the Poincaré inequality to consider the highest order norms
only.

Step 2

Now, let us work for the remaining term in Eq(r). Applying V2 on the second
equation of system (1.6) and taking inner product with V2*93b, then multiplying
the time weight (1 + 7)™ we get

(1 + 07 N0s3blpn = Is + Is + 17 + Iy, (2.13)
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where

Is :(1+z)—“/ V¥ (u - Vu) stagbdx—(l-l-t)_”/
T3

V3 Au V¥ 33b dx,
']T3

s
Ie=—(0+1)"° Zf Veby, - Vi VB 5D V203 + VEbs - V3 VP 5p V2 93b dx
']1‘3
k=0

2s
—(1+07° Z /Tg Veby, - VR VE R V2 93b
k=s+1 :

+ VEbs - V3V Kb v 53b dx,

d
7 =—({0+1)" u hbdx +o(14+1)" u 30 dx,
I A+ | V*uv¥s3bd A+~ | V¥uv¥xbd
dr T3 T3

Is = (1 +t)—“/ V¥ 33u V> 3,b dx.
T3

Like the process in Step 1, we shall derive the estimate of each term on the
right hand side of (2.13). First, using Holder inequality and the Sobolev imbedding
theorem, we can bound /5 as follows:

5] S (407 ullgass el o2 19351 gras + (14 1) el grass2 183D g
S A+ 07 ull et 16l s e s 4 (1407 ull v 13351 s

provided that s = 3. Thus, we have

t t 172

/ Is(]dt < Eo)E (1) + Eo/{ (1) ( / A+ ||83b||§,zxdr) .

’ ’ (2.14)

Next, we turn to the estimate of /4. Notice that /g is the most wild term in our
proof, due to the bad behaviour of b - Vb. Although we have already divided this
term into by, - Vb and b3 - V3b two terms, the estimate for by, - Vb is still nontrivial.
Thanks to the Proposition 2.1 that we have proved at the beginning of this section,
we can overcome this problem using the following strategy.

Notice the property (1.7). We easily know that in the x3 direction, the average
value of function by (xj,, -) over [—m, w] equals zero. Thus, using the Proposi-
tion 2.1, Holder inequality and the Sobolev imbedding theorem, we get

6l S (L4077 (IBallwsoo 101 2es1 19361 + 13 s [185D1 2, )
+ (L 077 (bl s 1Bl 13D s + 1631z 185l s 18511 1)
S 07 (1030n 52161 s 19301+ 1031 o2 105D, )
(1077 (10354l 2 1] =2 1135D g + 1531172111955 11930 )
S 07 (1030125161 vt 1936 g2 + 1612 185013 )
provided that s = 5. Hence,

t
/ [I6(t)| dt < Eo()E,"* (1) + Eo()ey* (1) (2.15)
0
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For the next term /7, using Holder inequality, it is straightforward to see

t
| fo 1) drl < Eo(0). (2.16)

For the last term Ig, using the first equation of system (1.6) and integrating by
parts, we find

Ig=(1+1)""° f VZ03uV> (03u +b - Vu —u - Vb) dx
T3
=—(140n"° / VI 9uv> N @3u + b - Vu — u - Vb) dx.
']1‘3

Thus, by Holder inequality and Sobolev imbedding theorem, we have

- 2 2
g] S 4677 (ull g + el s D1 g2s),
provided that s = 2. Hence, we arrive at

t
/ [Ig(t)] dt < Eo.1 (1) + Eo(t)el(0). 2.17)
0

Summing up the estimates for /5—/g, that is, (2.14), (2.15), (2.16) and (2.17),
and integrating (2.13) in time, using Young inequality and Poincaré inequality we
can easily bound

t
/0 (1 + D)7 [133b113, dT S Eo1 + Eo()E,* (1) + Eo(ey > (). (2.18)

This gives the estimate for the last term in Eo (7). Now, multiplying (2.12) by
suitable large number and plus (2.18), we then complete the proof of this lemma. O

Next, we work with the lower order energies defined in (2.3), especially we
want to derive the decay estimate and get the uniform bound of lower order norms
of magnetic field.

Lemma 2.3. Assume that s = 5 and the energies are defined as in (2.3), then we
have

Go(t) S Eo(0) + Go E* (0 + E* 06> 1) [ 612 (0) + £/ 0]

+EF G 06 )ey* ).

Proof. First, applying V93 derivative on the system (1.6). Then, taking inner
product with V25335 for the first equation of system (1.6) and taking inner prod-
uct with V¥ 33 for the second equation of system (1.6). Summing them up and
multiplying the time weight (1 4 7)!~% we obtain

6
1d _ _
5+ ”(||83u||i-,m+||83b||i-,25)+<1+t)‘ No3ulpr = Y i
i=

1
(2.19)
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where,
l-0o - 2 2
h=—52 0+ 07 (1l + 13013, )
h=—1+n""° f u-VV%0u V¥ + u - VV>93b V> 93b dx
3

+A+0)'° / b-VVd#b V¥ d3u + b - VVZd3u V> d3u dx
T3

+ (140t f VE02u V¥ d3b 4 V> 93b V> d3u dx,
3

2s
J3=—(14+nt° Z/ VEu - V% 93u V2 d3u dx
=171
2s
— (140t Z/ VEo3u - VYV V2 d3u dx,
=0’T’
2s
Jo=—(1+0""° Z/ VEu - vV Risb V2 93b dx
=11

2s
—(1+p° Z/ VEdsu - VVE~*p V2 93b dx,
=0 ’T*
2s
Js=(1+n'"° Zf VEd3b - VYV Ky V2 93b dx
T3
k=0
2s
+ 1+t Z/ Ve - YV 93 V2 3b dx,
k=1 T
2s
Jo=(1+0'"° Z/ VEb - YV 93b V2 93u dx
11‘3
k=1

2s
+ 4+t Z /3 VE93b - VY25 b V¥ 930 dx.
T
k=0

649

Like the proof in Lemma 2.2, we shall now estimate each term on the right hand

side of (2.19). First, for the term Ji, it is easy to see that

t
/ |Ji(m)ldT < Eo(1). (2.20)
0

Using integration by parts and divergence free condition, it is clear that

Jr = 0. 2.21)

For each term in J3, we divide it into two parts: k < s and k > 5. We treat these

two cases respectively and estimate as follows:
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31 S (1407 (s 19310132, + el g 050l oo 0520 )
(U0 (U3atlweoo il oo 19302 + 0501 s Tl )
SA+0 (ull g 1032003+ el s 19300l goems Nosul o)

provided that s = 3. Thus, we have
t t
/ [13(ldr < Golo) - / il s de
0

t
+EV2 0G0 / 1+ 02 sl oo d

1/2

< GoE,* (1) + Ey> )Gy > ()G (0). (2.22)

The term J4 can be estimated by the same method as in J3, as follows:

al S (U407 (Jullweoe 195512, + Nl g2 193l weoe 195D 2 )
+ (L)' (1B5ull w161 2ot 1830 25 + 11830 e 1Bl w1930 2 )

S A0 (lll s 1051, + Nl o 10361 1931 )
+ (L 0177 (105l 2ot 11| g2 19350 s+ 19300 2 1611 s 1030 g2 )

provided that s = 5. Now,
1/2 1/2 !
/ | Ja(0) de <Go(t)/ s de + EY2 ()G (r)/ (1 + D)V 33bll s dr
0
l/z(t)Gl/z(t)/ (1 + )2 d3u o1 dt

1/2 1 o 1 2—0 172
+ e (t) ( +1)° I|33b||stdT ( + )27 [03u3,, dT

1/2 172 172 1/4 14, 1/2

< Go()E, (z>+E (r)GW(t)E‘/z(r)JrE )G )G (1)ey* (1),

(2 23)

where, we have used the following inequality

4 el 3—ao
/ (1 + 0> o3ullp, dt < f (1+17) 2 [[83ull gass1 (1 + 7) 2 [|93ul| yos—1 dt

1/2(I)G1/2(t).
(2.24)

Similarly, we can estimate J5 as follows:
sl S A+n'° (||83b||Ws,oc||u||Hzx+1 10361l 25 + ||33b||ilzs||bt||wsv°0)
+ (140" (1bllwso 1830l 2 13351 25 + 151l g2 11830 | ws.os (1835l 725 )
SA+n'e (nagbnﬂzsfs luell s 133D | g2 + 1103511724 ||u||Hzxfn)
+ (L0 77 15l gz 1930l s 133D e
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provided that s > 5. Hence, using (2.24), we easily get

t
‘/1|J3(f)|df
0

t t
< Eé/z(t)G(l)/z(t)/ (14 7)"2)|93b]| g2ss dT + Go(t)/ | graemr de
0 0

2172 ! 172
+ey*Ey/ ( / (A + 027 3ul?, dr)

JEOE () + GoE* () + EY* ()G ()G (1)e* (1).

(2.25)

E)*(1)G

In the same manner, we can estimate the last term Jg. Indeed,

6l S (14D (bllwese 135 s 183l g2s + 151251835 1w 183 22
+ (14 D" 1sbllwsoe 15l et 1930l s + 193511 g 1Bl e 1932 20
S+ 0" (bl g2 103 g 103l s + 19351 gras—s 1Bl s 103 ),

provided that s = 5. Then, it is clear that

t ' 12
1/2 ~1/2 _
f o (D) dt S ey *Ey/ (/ (1+ 1) "||a3u||§,zsdr>
0 0

t
+Ey (G @) [ (1 + 0283 o3 de

1/2 1/4 1/4 1/2 1/2

G G ey > (1) + EY* )Gy ) E @),

(2.26)

Finally, summing up the estimates for Ji—Jg, that is, (2.20), (2.21), (2.22),
(2.23), (2.25) and (2.26), and integrating (2.19) in time, using Poincaré inequality
we can complete the proof of this lemma. O

Lemma 2.4. Assume that s = 4 and the energies are defined as in (2.3), then we
have

G1(1) < Eo0)+Go()+Ey) O E 0)+G () E, > (1)+G > (1) E*(1)ey > (0).

Proof. First, taking V>*~29; derivative on the system (1.6). Then, taking inner
product with V25=235 b for the first equation of system (1.6) and taking inner product
with V2=293u for the second equation of system (1.6). Summing them up and
multiplying the time weight (1 + )3~ we get

6
1d
Sq I+’ "(uagunHm 2+ 18351125, )+(1+t)‘ TNO3ul3yy =Y Ni

i=1
(2.27)
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where,
3—0 _
Ny = T(l +1)*° (||33u||i-,2k2 + ||33b||i',2372) .

Ny = —(1+t)3“’/

U-VVP 20 V2 205u +u - VVZ 2936 V¥ 293b dx
']1‘3

+ (1 +1)° / b-VV 203 V> 29u + b - VV> 2 d3u V¥ 293b dx
'11‘3

+a +t)3“’f

st—2a§u V2S—2a3b + VZS—28%b V2S_283u d.x,
T ’

25—2
Ny=—(1+0>° Zf VEu - VA2 K30 VA2 3 dx
k=1 /T

2s—2
— (1413 Z/ VEd3u - VVE 27y 2525 dx,
T3
k=0

252
Ny (1+t)3*02/ VEd3b - VB 27k w225 dx
k=0 T

25—2
— (413 Zf VEu - VB2 5:b VB 295b dx,
T3
k=1
2s—2
Ns=(1+11"" )" / VA - vV 27K 5 V3 295b dx
T3
k=1
252
— 1+ Z/ VEou - vV 2k v 255b dx,
']1'3
k=0
25—2
Ne=(1+1)>"° Z / Vi - vV 27K 93p V2030 dx
']1'3
k=1

2s—2
+(1+1)3° Z /3 VKa3b - VVE 27K v 255y dx.
’]I‘\
k=0

The first term N can be bounded as follows:

NS (40777 (030l + 195122 )
< A+ 072 9sull st (14 1) |30 e
+ [ A+ 07 fasbll 2 PPL A+ 02 fasbllaa]
and thus

t
/0 INI(D)]dr < GG () + E) ) EY (). (2.28)
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Using integration by parts and the divergence free condition, we find
N> =0. (2.29)

For the term N3, thanks to Holder inequality and the Sobolev imbedding theo-
rem, we have

t t
[ s@tar 5 [ o sl sl e dn

t
<Gi() / ol gaecr de 230
0

<SGIE* @),

provided that s = 3.
Then, we turn to the term N4. For each term in N4, we divide it into two parts:
k < s—1andk = s. We treat these two cases respectively and estimate as follows:

INg| S (1 + l‘)3_g (lla?,bllwx—l,oo”u”[.]h—l 1036l gr2s—2 + 103D ]| 2s—2 ”ullws—l,x\||83b||H2x—2)
Tl ([ T LY R L DO P R Ay

S A+0¥ ull g2 183513,

provided that s = 3. Indeed,

t t
/0 |Na(7)|dt SGl(t)/O llull pr2s—1 dT

<SGI(E ().

2.31)

Also for the next term Ns, we divide each term into two parts: k < s — 1 and

k = s. Using Holder inequality and the Sobolev inequality respectively, we can
bound

252
INs|SA+0377 | Y /% V(ka-VV2S_2_k83u) v25=393b dx
T;
k=1

2s—2
+A+ Y /3 v (Vk83u : szs—”‘b) v25=393b dx
T
k=0

S+ 03 (Ubllwsos 1930l gr2s—1 18351 grae—s + 161 r2e—1 1932l ws.oo 193B1] 25-3)
+ (140377 (1332l ws.o 161l 25 18351l gy2e—3 + 1932 gr2e—1 1B ]| ws.oo 1336 gy26-3)
S+ 037 031l o1 10351 263 16 o

provided that s = 3. Hence,

t
/ INs()|dr S G E(1)ey* (1). (2.32)
0
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We divide the last term Ng into two parts as follows:

25s—2
Ne=—(1+41)>"° {Z / VEb . VY2793 V2 95u dx
= /T°

2s—3
+ Z / VEosb - vV 27k v 2950 dx}
']1*3
k=0

—(141)*° {/ Vb - VV¥ 3936 V¥ 293u dx
'11'3

+ / VE23:b - Vb V2S283udx}
T3
A
= Ne.1 + Ne2.

For the first part Ng_1, using Holder inequality and the Sobolev inequality, we easily
get
IN6.1l S (14 )77 |1bll gras1 183D | rae-311932]| 22,

provided that s = 4. Then for the second part Ng 2, using integration by parts, we
can bound

IN6.2l S (1412|1200 183D gy26-3 1932 | o1
S A+ 03715 g2 193D | as—3 113304 | g1,

provided that s = 2. Combining the estimates of Ne 1 and Ne 2, we finally obtain

t
1/2 1/2,,. 172
/ INo()ldt < G2V E(1)ey* (0). (2.33)
0
As with the process in the above lemmas, according to (2.28), (2.29), (2.30),
(2.31), (2.32) and (2.33), we complete the proof of this lemma. ]
Lemma 2.5. Assume that s = 4 and the energies are defined as in (2.3), then we
have
< 3/2 172
Ei(t) S Eo(t) + Go(r) + G1(t) + E1'7 (1) + E1(t)ey (1)

1/2 1/2,,\ 172
+ G2 (E]P()ey* ().
Proof. Like the proof in Lemma 2.2, we divide the proof into two steps. We first
deal with E; (¢) which is defined as follows:

t
Ep1(t) == sup (1+ 1) [lu(m)|3- + / (1417 [|u(D) |32, d7.
0St<t 0

(2.34)
Step 1
Applying V>~2 on the second equation of system (1.6). Then, taking inner
product with V=24 and multiplying the time weight (1 + ¢)377, we get
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2
H2s5—

2

2 Al

\=F+ P+ F3+ Fy,
(2.35)

1d _
55<1+z>3 lu|

where,

3—0 _
Fy ===+ 0> ul s,

Fr=—(1+1)>"° (/ u- V2V 2y dx
T3

25—2
+ Z / AVATTIR VA v A v dx) ,
T3
k=1

F=0+ t)“’f

VE23:pVH 2y dx,
T3

Fy =(1+t)3—"/ V32 - Vb))V 2y dx.
3

Similarly, we shall estimate each term on right hand side of (2.35). First, for
the term F7, by Gagliardo—Nirenberg interpolation inequality, we have

|F1] SA+ 07 ul3
_ 1/3 _ 2/3
S[A+ 07 ulP ] 1A + 03 JulP s 7.

Hence,
'
1/3 2/3
/ IFi(0)]dr S EYP (0 EY ). (2.36)
0
For the term F», integrating by parts and using the divergence free condition,

we directly know that the first part of F, equals 0. Hence, by Holder inequality and
the Sobolev imbedding theorem, we get

t t
f |Fy(D)]dt S f 1+ 03 ullys—r.oo w22 dT
0 0

t
S sup (140777 Jull 30 / ]l 2ot d (2.37)
0t 0

<SE @),

provided that s = 2.

Next, we turn to the estimate of F3 and F4 which are the wildest terms, due to
the bad behaviour of b. Thanks to the Proposition 2.1, we can use the same strategy
as the estimate of /g in Lemma 2.2 to solve this problem.

For the term F3, using integration by parts and Proposition 2.1, we get

1Bl S +1)3°

/ V2S—3bhv2s—la3uh _ V25—3a3b3vz5—1u3 dx
T3

S A+ 077 (1bwll 2318310 || gras—1 + 19331 s lues | gras-1)

3—a 3—0o
S A+ 1030 gas—3 (1 4+ 1) "2 (|03l 251
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Hence,

t
/0 IF(0)ldr < GPE ). (2.38)

Also, for the term Fj, using integration by parts and dividing the term into four
parts, we have

Fyp=—(1+41)>""° /3 VB3 vh)yVEydx
T

s—1
=—(1+037 )" /3 (kah B/ VA Y S VL7 V3V25_3_kb) v~y dx
T
k=0

25—3
Y /2 (kah VB3R 4 ks V3V2S—3—kb) v~y dx.
T;
k=s

Using Holder inequality, the Sobolev imbedding theorem and Proposition 2.1, we
get

|Fal S+ 0 (1bnllws-100 101 o=z el grze—t + 153 [l s—1.0 1935 | o3 [l ]| 261
+ 1bnll g3 1161l ws—200 1l 2ot + 1531 gr2e—3 13381 yys—3.00 lull 25-1)
S A+ 0377 (113351 o1 101l gas—2 el e + 1531 o1 193D | 253 ]| 251
+ 13351l gas—3 101l s 1l st + 15311 253 1133811 gys—1 1l gy2s—1)
S A+ 03 N1bl| 21 193D o3 1l o1,

provided that s = 4. Hence,

t
/ |Fy(o)] dr
0

! 3o 2 172
S sup bl ([ (1403710361, dr)
0=t 0

t 172
([ ol ar)

S Ei()ey* ().

(2.39)

Summing up the estimates for F| ~ Fy, thatis, (2.36), (2.37), (2.38) and (2.39),
and integrating (2.35) in time, we can get the estimate of E ;(¢) which is defined
in (2.34):

Ei1() S E10) + Eo)' PET (1) + GYP (O E{(0) + E;* (1) + E1()e (o).

(2.40)
Here, we have used the Poincaré inequality to consider the highest order norms
only.
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Step 2
Now, let us work for the remaining term in E{(¢). Applying V>~ derivative
on the second equation of system (1.6) and taking inner product with V>~333b,
multiplying the time-weight (1 + )3~ we get
(141 771103b1%5, 5 = Fs + Fs + F7 + F, (2.41)
where

Fs =(1 +t)3—“/ V33w - Vu)VE 3 93b dx
']1'3

—(1410)*° / VIS AuVS393bdx,
T3

s—1
Fo=—(14+1)>"° Z/ VEby - Vi VE 3k 2 —35.p
=07 T°
+ VEby - V3V 3K pv 3 9:b dx
25—3
_(1 + t)3—0' Z /kah . thz5—3—kbvzs—3a3b
k=s T3

+VE by - VaVE 3 pvE355p dx,

d
Fr=—(1 +z)3*"/ V3B 393b dx
dr T3
— (3—0)(1+t)2—“/ V2 3uv>393b dx,
T3
Fs =(1 +z)3—"/ V3 39;uv>39,b dx.
']1'3

Similar to the process in Step 1, we shall drive the estimate of each term on
the right hand side of (2.41). First, using Holder inequality and Sobolev imbedding
theorem, we get

|Fs| < (14037 lull gas—2 llull o2 1035 gy25-3 + (14137 ]| y2s-1 11035 gy25-3.

Hence, for s = 3,

t t 1/2
3/2 1/2 —
/0 |Fs(n)ldt S E)(0) + E)F () [ /0 (1+ 1) 193b 17205 dr] . (242)

Next, for the most wild term Fg, similar to the estimate of /¢ in Lemma 2.2, we
use property (1.7) and Proposition 2.1 to obtain

|Fs| S (1417 (ubh lws—1.00 D1l g2s-2 183Dl gras—3 + ||b3||ws-1,oo||aab||i,zx_3)

+ (1 + 0377 (I1bwll g2s—3 1B llyys-2.00 183b | 2s-3
+ (1631l gr25-3 103D 53,00 |03 | gy25-3)

S (07 (10300 gos1 101 221051 s + Wbl s 1301,
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+ (L4107 (03Bl gr2s—3 1611 s 03B s
+1153 1 r25-3 193D || 51 193D || gr2s—3)
S A+ 0377 183511353 151l 252,

provided that s = 4. Hence,
! 1/2
/ |Fo()|dt < E1(ney* (). (2.43)
0

And, for the term F7, by Holder inequality, we can get

t
/0 F(0)de < G20E (1)

4 1-o0 3—0o
+ f (140 F s (1 + 02 93D s dr
0

t 1/2
2 2 _
SGPOE 0 + B! (/0 U+ 0l dz)

< GPOE )+ E OET ). (2.44)

For the last term Fg, using the first equation of system (1.6), we can write
Fs=(141)>"° /T} VI 303uV> 3 (03u + b - Vu —u - Vb) dx.
By Holder inequality and the Sobolev imbedding theorem, we have
|Fs| S (1+1)7° (||aau||2h,3 + [193ull 253 ||b||st-z||u||Hzx-z) :

provided that s = 3. Hence,
t
f |Fs(D)|dt < Epi(0) + eo) 2 E1 ()G ()2 (2.45)
0

Summing up the estimates for F5 ~ Fg, thatis, (2.42), (2.43), (2.44) and (2.45),
and integrating (2.41) in time, and using Young inequality, we easily get

t
/0 (1+ 1) 103b11%a, + d

3/2 172 172 172

SE @)+ E; )+ E; (t)eo )+ Gl (I)El )
N L @i

This gives the estimate for the last term in E(#). Now, multiplying (2.40) by
a suitable large number, plus (2.46), and using Young inequality, we complete the
proof of this lemma. O
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Lemma 2.6. Assume that s = 3 and the energies are defined as in (2.3), then we
have

eo(t) S Eo(0) + Go(t) + G1(t) + E/ () E| (t)eo ()

+ Ey (O E0ey* (1) + Gy 106GV Deo ).

Proof. Taking V> derivative on the first equation of system (1.6). Then, taking
inner product with V3D we get

1d
53 1P = M+ Mo+ Ms, (2.47)

where,

S
M = Z/ (vkb R VAEA R R v/ VVZS_kb) Vb dx
=1 YT

2s
+ ) / (ka-VVZS_ku—kaVsz_kb) Vb dx,
']T3
k=s+1

My = / (bh SV Vu + by - vgv%) VZbdx,
']1‘3

M3 :/ V¥ 93u V¥bdx.
'11‘3

Now we will estimate each term on the right hand side of (2.47) line by line.
First, by Holder inequality and the Sobolev imbedding theorem, we easily get

2
IMy| S B llws.oe llull s 101 g2 + llullwso D11 o
+ 1Dl s llullwso< 1D1 gr2s + Nl grs 1Dl ws- 11D gos

2
S el e 101 s

provided thats = 2. Hence, using the Gagliardo—Nirenberg interpolation inequality
and Holder inequality, we can bound

t t
1/3 2/3 1/6 1/3
/0 M (7)] dT < eo(r) [0 Il s 5y d S Eg/* ) E{ (teo(r). (2.48)

For the next term M>, using the same method as above, we directly obtain

IMa| S Nbnllzoellull s 11 g2s + 11031l Loe l3ull gros 1D1] s

S0l s el graser 181 g2 + N1030l] s 161170

provided that s = 3. According to the Proposition 2.1, we can use the same strategy
as the estimate of /g in Lemma 2.2, and obtain

2
|Ma| S 11036 || gros=3 llull s+ 161l 2s + 11030 ]| s 1611 -
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Using (2.24) and Holder inequality, we get

t t
/ IMa(0)| dt S Ey*(0)ey* () / (1 + 1)°72|93b]l 2o dt
0 0

t
2.49
+ eo(I)A 1031l gr2s dT (2.49)

<SEPOE0el* () + GG (1eo(r).

For the last term, M3, we also have

t t
/ IM3(0)|de < el () / I93ul s dr S G/ (G (e > (). (2.50)
0 0

Combining (2.48), (2.49) and (2.50) together, we now complete the proof of
this lemma by using Young’s inequality. O

2.3. Proof of the Theorem 1.1

Now, let us combine the above a priori estimates of all the energies defined in
(2.3) together, and finally give the proof of Theorem 1.1. First, we define the total
energy as follows:

Ewal(t) = Eo(t) + Go(t) + G1(t) + E1(2) + eo(2).

Then, multiplying each inequality in the above five lemmas by different suitable
number, and summing them up, we can obtain the following inequality:

Ea(t) < C1E(0) + C1 Egyy (1), 2.51)
for some positive constant Cj.

According to the setting of initial data in Theorem 1.1, there exists a positive
constant C; such that E1(0) + C1 Eg(0) < Cae. Due to the local existence result,
which can be achieved through a basic energy method, there exists a positive time
T such that

Eotal(t) £ 2Cre, V1 e[0,T]. (2.52)

Let 7™ be the largest possible time of T for what (2.52) holds, then we only need
to show T* = oo while completing the proof of Theorem 1.1. Notice the estimate
(2.51); we can use a standard continuation argument to show that 7* = oo provided
that € is small enough. We omit the details here. Hence, we finish the proof of
Theorem 1.1.
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